CN102020253A - Topological insulator material and preparation method thereof - Google Patents
Topological insulator material and preparation method thereof Download PDFInfo
- Publication number
- CN102020253A CN102020253A CN 201010537082 CN201010537082A CN102020253A CN 102020253 A CN102020253 A CN 102020253A CN 201010537082 CN201010537082 CN 201010537082 CN 201010537082 A CN201010537082 A CN 201010537082A CN 102020253 A CN102020253 A CN 102020253A
- Authority
- CN
- China
- Prior art keywords
- bismuth selenide
- bamboo
- nanostructure
- shaped
- template
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000463 material Substances 0.000 title claims abstract description 34
- 239000012212 insulator Substances 0.000 title claims abstract description 21
- 238000002360 preparation method Methods 0.000 title claims abstract description 16
- FBGGJHZVZAAUKJ-UHFFFAOYSA-N bismuth selenide Chemical compound [Se-2].[Se-2].[Se-2].[Bi+3].[Bi+3] FBGGJHZVZAAUKJ-UHFFFAOYSA-N 0.000 claims abstract description 46
- 239000002086 nanomaterial Substances 0.000 claims abstract description 35
- 238000000034 method Methods 0.000 claims abstract description 16
- 238000000151 deposition Methods 0.000 claims description 12
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 10
- 230000008021 deposition Effects 0.000 claims description 9
- 239000003792 electrolyte Substances 0.000 claims description 8
- 238000010438 heat treatment Methods 0.000 claims description 8
- GSEJCLTVZPLZKY-UHFFFAOYSA-N Triethanolamine Chemical compound OCCN(CCO)CCO GSEJCLTVZPLZKY-UHFFFAOYSA-N 0.000 claims description 7
- ZGTMUACCHSMWAC-UHFFFAOYSA-L EDTA disodium salt (anhydrous) Chemical compound [Na+].[Na+].OC(=O)CN(CC([O-])=O)CCN(CC(O)=O)CC([O-])=O ZGTMUACCHSMWAC-UHFFFAOYSA-L 0.000 claims description 6
- 229910000380 bismuth sulfate Inorganic materials 0.000 claims description 6
- 229910000365 copper sulfate Inorganic materials 0.000 claims description 6
- ARUVKPQLZAKDPS-UHFFFAOYSA-L copper(II) sulfate Chemical compound [Cu+2].[O-][S+2]([O-])([O-])[O-] ARUVKPQLZAKDPS-UHFFFAOYSA-L 0.000 claims description 6
- 238000005137 deposition process Methods 0.000 claims description 6
- BEQZMQXCOWIHRY-UHFFFAOYSA-H dibismuth;trisulfate Chemical group [Bi+3].[Bi+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O BEQZMQXCOWIHRY-UHFFFAOYSA-H 0.000 claims description 6
- ZOMNIUBKTOKEHS-UHFFFAOYSA-L dimercury dichloride Chemical class Cl[Hg][Hg]Cl ZOMNIUBKTOKEHS-UHFFFAOYSA-L 0.000 claims description 5
- 229910052697 platinum Inorganic materials 0.000 claims description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 5
- 238000000137 annealing Methods 0.000 claims description 3
- 239000010949 copper Substances 0.000 claims description 3
- 239000011148 porous material Substances 0.000 claims description 3
- MCAHWIHFGHIESP-UHFFFAOYSA-N selenous acid Chemical compound O[Se](O)=O MCAHWIHFGHIESP-UHFFFAOYSA-N 0.000 claims description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 2
- 229910052802 copper Inorganic materials 0.000 claims description 2
- 238000011049 filling Methods 0.000 claims description 2
- 239000011259 mixed solution Substances 0.000 claims description 2
- 230000001105 regulatory effect Effects 0.000 claims description 2
- 239000002904 solvent Substances 0.000 claims description 2
- HZAXFHJVJLSVMW-UHFFFAOYSA-N 2-Aminoethan-1-ol Chemical compound NCCO HZAXFHJVJLSVMW-UHFFFAOYSA-N 0.000 claims 2
- 238000009413 insulation Methods 0.000 abstract description 2
- 238000000465 moulding Methods 0.000 abstract description 2
- 230000015572 biosynthetic process Effects 0.000 description 7
- 238000004070 electrodeposition Methods 0.000 description 7
- 238000003786 synthesis reaction Methods 0.000 description 7
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 6
- 238000003491 array Methods 0.000 description 5
- 238000011160 research Methods 0.000 description 4
- 230000006399 behavior Effects 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 238000001451 molecular beam epitaxy Methods 0.000 description 3
- 239000002070 nanowire Substances 0.000 description 3
- 229940082569 selenite Drugs 0.000 description 3
- MCAHWIHFGHIESP-UHFFFAOYSA-L selenite(2-) Chemical compound [O-][Se]([O-])=O MCAHWIHFGHIESP-UHFFFAOYSA-L 0.000 description 3
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000002848 electrochemical method Methods 0.000 description 2
- 238000005265 energy consumption Methods 0.000 description 2
- 239000012634 fragment Substances 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 2
- 238000001878 scanning electron micrograph Methods 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 238000004002 angle-resolved photoelectron spectroscopy Methods 0.000 description 1
- 230000005492 condensed matter physics Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000001027 hydrothermal synthesis Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012805 post-processing Methods 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 230000005476 size effect Effects 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Images
Landscapes
- Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
Abstract
本发明提供了一种拓扑绝缘体材及其制备方法,属于新材料的制备领域。该拓扑绝缘体材料是由尺寸均一的竹节状硒化铋纳米结构组成的竹节状硒化铋纳米结构阵列。本发明采用模板辅助的方法,在模板上直接得到规整的竹节状硒化铋(铜掺杂)纳米结构阵列,制得的纳米材料具有调控材料的拓扑绝缘性能。较之于传统硒化铋材料的制备,本发明具有工艺简单、成本低廉和一次性成型等特点。
The invention provides a topological insulator material and a preparation method thereof, belonging to the field of preparation of new materials. The topological insulator material is a bamboo-shaped bismuth selenide nanostructure array composed of bamboo-shaped bismuth selenide nanostructures with uniform size. The invention adopts a template-assisted method to directly obtain a regular bamboo-shaped bismuth selenide (copper-doped) nanostructure array on the template, and the prepared nanomaterial has the topological insulation performance of the control material. Compared with the preparation of traditional bismuth selenide materials, the invention has the characteristics of simple process, low cost, one-time molding and the like.
Description
技术领域technical field
本发明属于纳米材料的制备领域,具体涉及一种拓扑绝缘体材及其制备方法。The invention belongs to the field of preparation of nanometer materials, and in particular relates to a topological insulator material and a preparation method thereof.
背景技术Background technique
按照电子态结构的不同,传统意义上的材料被分为“金属”和“绝缘体”两大类。而拓扑绝缘体是一种新的量子物质态,这种物质态的体电子态是有能隙的绝缘体,而其表面则是无能隙的金属态。不同于一般意义上的由于表面未饱和键或者是表面重构导致的表面态,拓扑绝缘体的表面金属态完全是由材料的体电子态的拓扑结构所决定,受对称性保护,因此基本不受到杂质与无序的影响。正是由于这些重要特征保证了拓扑绝缘体将有可能在未来的电子技术发展中获得重要的应用,有着巨大的应用潜在。寻找具有足够大的体能隙并且具有化学稳定性的强拓扑绝缘体材料成为了人们目前关注的重要焦点和难点。According to the different electronic state structures, materials in the traditional sense are divided into two categories: "metals" and "insulators". The topological insulator is a new quantum state of matter. The bulk electronic state of this state of matter is an insulator with an energy gap, while its surface is a metal state without an energy gap. Different from surface states caused by surface unsaturated bonds or surface reconstruction in the general sense, the surface metal state of topological insulators is completely determined by the topology of the bulk electronic state of the material, which is protected by symmetry, so it is basically not affected by Effects of impurities and disorder. It is precisely because of these important characteristics that topological insulators will be likely to obtain important applications in the development of electronic technology in the future, and have huge application potential. Finding a strong topological insulator material with a sufficiently large bulk energy gap and chemical stability has become an important focus and difficulty of people's attention.
2009年,中国科学院物理研究所/北京凝聚态物理国家实验室与美国斯坦福大学深入合作,预言了一类新的强拓扑绝缘体材料系统(主要为V-VI族材料,如Bi2Se3,Bi2Te3和Sb2Te3)。他们从理论和计算上系统地探讨了这类材料成为强拓扑绝缘体的物理机制,给出了描述该狄拉克点的KP哈密顿量,并且计算了类APRES电子谱图。这类拓扑绝缘体材料有着独特的优点,即该类材料表面态中只有一个狄拉克点存在,是最简单的强拓扑绝缘体,这种简单性为理论模型的研究提供了很好的平台。此外,该类材料的体能隙很大,尤其是Bi2Se3(0.3电子伏),远远超出室温能量尺度,这也意味着有可能实现室温低能耗的自旋电子器件(Zhong Fang,Shou-Cheng Zhang,et al.,Nature Physics,2009(5):438-442)。In 2009, the Institute of Physics of the Chinese Academy of Sciences/Beijing National Laboratory of Condensed Matter Physics cooperated deeply with Stanford University to predict a new class of strong topological insulator material systems (mainly V-VI materials, such as Bi 2 Se 3 , Bi 2 Te 3 and Sb 2 Te 3 ). They systematically explored the physical mechanism of this kind of material becoming a strong topological insulator theoretically and computationally, gave the KP Hamiltonian describing the Dirac point, and calculated the APRES-like electron spectrum. This type of topological insulator material has unique advantages, that is, there is only one Dirac point in the surface state of this type of material, and it is the simplest strong topological insulator. This simplicity provides a good platform for the study of theoretical models. In addition, the bulk energy gap of this type of material is very large, especially Bi 2 Se 3 (0.3 electron volts), which is far beyond the room temperature energy scale, which also means that it is possible to realize spintronic devices with low energy consumption at room temperature (Zhong Fang, Shou - Cheng Zhang, et al., Nature Physics, 2009(5): 438-442).
在理论研究的同时,相关的实验工作也取得重要进展。美国普林斯顿大学的M.Z.Hasan与R.J.Cava教授在Bi2Se3中观察到了表面态狄拉克点的存在(Y.Xia,D.Qian,D.Hsieh,L.Wray,A.Pal,H.Lin,A.Bansil,D.Grauer,Y.S.Hor,R.J.Cava,et al.,Nature Physics,2009(5):398-402)。中科院物理所方忠、戴希研究组与斯坦福大学的Z.X.Shen教授研究组合作,利用ARPES观察到了Bi2Te3材料中的表面单个狄拉克点(Y.L.Chen,J.G.Analytis,J.-H.Chu,Z.K.Liu,S.-K.Mo,X.L.Qi,H.J.Zhang,D.H.Lu,X.Dai,Z.Fang,S.C.Zhang,I.R.Fisher,Z.Hussain,and Z.-X.Shen,Science,2009(325):178-181)。除了对体相材料拓扑绝缘性质的研究,小尺度低维结构材料的设计合成及由尺寸效应引入的对电子自旋等性质的影响,则是人们关注该领域发展的另一重要方面。V-VI族纳米材料的合成,主要包括溶液相合成,如水热合成(Hongjie Zhang,et al.,J.AM.CHEM.SOC.,2006(128):16490-16491)、微波合成(R.Harpeness,A.Gedanken,New J.Chem.,2003(27):1191-1193)、电化学沉积(Xiaoguang Li,et al.,J.Phys.Chem.B,2005(109):1430-1432)及超声电化学沉积(Xiaofeng Qiu,Clemens Burda,Ruiling Fu,Lin Pu,Hongyuan Chen,and Junjie Zhu,J.AM.CHEM.SOC.,2004(126):16276-16277),以及气相合成,如化学气相沉积(Hongkun Park,et al.,J.AM.CHEM.SOC.,2008,130,6252)及分子束外延生长(Molecular Beam Epitaxy,简称MBE)(Kehui Wu,et al.,Appl.Phys.Lett,2009(95):053114-1~3)。传统的分子束外延生长及化学气相沉积法中,由于受复杂的制备工艺、昂贵的材料成本以及困难的后加工过程等因素的限制,往往难以高效的合成大量的小尺寸低维拓扑绝缘体材料,而由于电化学方法具有装置简易、材料成本低、耗能少,且易于通过调节电压等参数实现设计合成各种复杂的结构,在V-VI族低维小尺寸超晶格结构的合成中受到越来越广泛的重视(Wei Wang,Xiaoguang Li,et al.,J.Am.Chem.Soc.2007(129):6702-6703;Xincun Dou,Guanghai Li,et al.,Nano Lett.,2008(8):1286-1290;Wei Wang,Xiaoguang Li,et al.,J.Phys.Chem.C,2008(112):15190-15194;F.H.Xue,G.T.Fei,B.Wu,P.Cui,and L.D.Zhang,J.Am.Chem.Soc.2005,127(44),15348-15349)。然而,目前的电化学方法所合成的超晶格结构(主要为模板辅助电化学沉积V-VI族超晶格纳米线阵列),仅能实现对材料径向尺寸(沿纳米线生长方向)的调控,对于不同片段轴向尺寸(垂直纳米线生长方向)的调控,乃至某一片段的选择性制备,是未见报道的。而这部分工作对材料拓扑绝缘性质的研究是十分重要的。At the same time of theoretical research, relevant experimental work has also made important progress. Professor MZ Hasan and RJ Cava of Princeton University in the United States observed the existence of surface state Dirac points in Bi 2 Se 3 (Y. Xia, D. Qian, D. Hsieh, L. Wray, A. Pal, H. Lin, A. Bansil, D. Grauer, YS Hor, RJ Cava, et al., Nature Physics, 2009(5): 398-402). Fang Zhong and Dai Xi's research group from Institute of Physics, Chinese Academy of Sciences cooperated with Professor ZXShen's research group from Stanford University to observe a single Dirac point on the surface of Bi 2 Te 3 material by using ARPES (YLChen, JGAnalytis, J.-H.Chu, ZKLiu, S.-K. Mo, XL Qi, HJ Zhang, DH Lu, X. Dai, Z. Fang, SC Zhang, IR Fisher, Z. Hussain, and Z.-X. Shen, Science, 2009(325): 178-181). In addition to the research on the topological insulating properties of bulk materials, the design and synthesis of small-scale and low-dimensional structure materials and the influence of size effects on electron spin and other properties are another important aspect of the development of this field. The synthesis of V-VI nanomaterials mainly includes solution phase synthesis, such as hydrothermal synthesis (Hongjie Zhang, et al., J.AM.CHEM.SOC., 2006 (128): 16490-16491), microwave synthesis (R. Harpeness, A.Gedanken, New J.Chem., 2003(27):1191-1193), electrochemical deposition (Xiaoguang Li, et al., J.Phys.Chem.B, 2005(109):1430-1432) and sonoelectrochemical deposition (Xiaofeng Qiu, Clemens Burda, Ruiling Fu, Lin Pu, Hongyuan Chen, and Junjie Zhu, J.AM.CHEM.SOC., 2004(126): 16276-16277), and gas phase synthesis, such as chemical Vapor deposition (Hongkun Park, et al., J.AM.CHEM.SOC., 2008, 130, 6252) and molecular beam epitaxy (MBE for short) (Kehui Wu, et al., Appl.Phys. Lett, 2009(95): 053114-1~3). In the traditional molecular beam epitaxy and chemical vapor deposition methods, due to the limitations of complex preparation processes, expensive material costs, and difficult post-processing processes, it is often difficult to efficiently synthesize a large number of small-sized low-dimensional topological insulator materials. Due to the advantages of simple devices, low material cost, low energy consumption, and easy design and synthesis of various complex structures by adjusting parameters such as voltage, the electrochemical method has been favored in the synthesis of V-VI low-dimensional and small-sized superlattice structures. More and more widespread attention (Wei Wang, Xiaoguang Li, et al., J.Am.Chem.Soc.2007(129): 6702-6703; Xincun Dou, Guanghai Li, et al., Nano Lett., 2008( 8): 1286-1290; Wei Wang, Xiaoguang Li, et al., J. Phys. Chem. C, 2008(112): 15190-15194; FH Xue, GT Fei, B. Wu, P. Cui, and LD Zhang, J . Am. Chem. Soc. 2005, 127(44), 15348-15349). However, the superlattice structures synthesized by current electrochemical methods (mainly template-assisted electrochemical deposition V-VI superlattice nanowire arrays) can only realize the radial dimension of the material (along the direction of nanowire growth). Regulation, the regulation of the axial size of different fragments (perpendicular to the growth direction of the nanowire), and even the selective preparation of a certain fragment have not been reported. And this part of the work is very important for the study of topological insulating properties of materials.
发明内容Contents of the invention
本发明的目的是提供一种拓扑绝缘体材料及其制备方法,该拓扑绝缘体材料为竹节状硒化铋纳米结构阵列。The object of the present invention is to provide a topological insulator material and a preparation method thereof. The topological insulator material is a bamboo-shaped bismuth selenide nanostructure array.
竹节状硒化铋纳米结构阵列由尺寸均一的竹节状硒化铋纳米结构组成,竹节状硒化铋纳米结构阵列厚度(即竹节状硒化铋(铜掺杂)纳米结构的长度)可为0.5-50μm,其中竹节状硒化铋纳米结构的外径为20-200nm,纳米结构的长径比2.5-2500。The bamboo-shaped bismuth selenide nanostructure array is composed of bamboo-shaped bismuth selenide nanostructures with uniform size, and the thickness of the bamboo-shaped bismuth selenide nanostructure array (that is, the length of the bamboo-shaped bismuth selenide (copper-doped) nanostructure ) can be 0.5-50 μm, wherein the outer diameter of the bamboo-shaped bismuth selenide nanostructure is 20-200nm, and the aspect ratio of the nanostructure is 2.5-2500.
竹节状硒化铋纳米结构掺杂有铜元素。Bamboo-like bismuth selenide nanostructures doped with copper.
本发明提供的竹节状硒化铋(铜掺杂)纳米结构阵列的制备包括:The preparation of bamboo-shaped bismuth selenide (copper-doped) nanostructure array provided by the invention comprises:
A.电解液的配制:溶质为硫酸铋、硫酸铜和亚硒酸,溶剂可为三乙醇胺(Triethanolamine,缩写为TEA)和乙二胺四乙酸二钠盐(Ethylenediaminetetraacetic acid disodium salt,缩写为EDTA-2Na)与水的混合液。主要反应物的组成如下表所示:A. The preparation of the electrolyte: the solute is bismuth sulfate, copper sulfate and selenous acid, and the solvent can be triethanolamine (Triethanolamine, abbreviated as TEA) and ethylenediaminetetraacetic acid disodium salt (abbreviated as EDTA- 2Na) mixed with water. The composition of the main reactants is shown in the table below:
B.电化学装置:以背面镀金的阳极氧化铝模板(Anodic Aluminum Oxide,简称AAO,但是并不局限于该模板)为工作电极,阳极选用铂电极,参比电极为饱和甘汞电极;B. Electrochemical device: the gold-plated anodized aluminum template (Anodic Aluminum Oxide, referred to as AAO, but not limited to the template) on the back is used as the working electrode, the anode is a platinum electrode, and the reference electrode is a saturated calomel electrode;
C.沉积策略:采用多步电流脉冲沉积法(Multi Current Steps),设计I1=1×10-6~9×10-6A/mm2及I2=1×10-5~9×10-5A/mm2两段沉积过程(如图1,T1∶T2=1∶1~4∶1,其中T1由1~6个电流脉冲组成),在模板孔道内部填充硒化铋(Bi2Se3)及铜掺杂硒化铋(Bi2-xCuxSe3)交替结构,沉积时间为0.5~5小时;C. Deposition strategy: adopt multi-step current pulse deposition method (Multi Current Steps), design I 1 =1×10 -6 ~ 9×10 -6 A/mm 2 and I 2 =1×10 -5 ~ 9×10 -5 A/mm 2 Two-stage deposition process (as shown in Figure 1, T 1 : T 2 = 1: 1 to 4: 1, where T 1 is composed of 1 to 6 current pulses), filling bismuth selenide inside the template pores Alternating structure of (Bi 2 Se 3 ) and copper-doped bismuth selenide (Bi 2-x Cu x Se 3 ), the deposition time is 0.5-5 hours;
D.模板除去,得到竹节状硒化铋(铜掺杂)纳米结构阵列。D. The template is removed to obtain a bamboo-shaped bismuth selenide (copper-doped) nanostructure array.
将采用上述方法制备得到的竹节状硒化铋(铜掺杂)纳米结构阵列进行退火处理可得到单晶结构。Annealing the bamboo-shaped bismuth selenide (copper-doped) nanostructure array prepared by the above method can obtain a single crystal structure.
所述退火温度由下述升温和恒温阶段调控:The annealing temperature is regulated by the following heating and constant temperature stages:
1)所述升温阶段的起始温度选自10℃-25℃之间的任一温度,终止温度选自300-600℃之间的任一温度;所述升温阶段中的升温速率为1-20℃/min;1) The starting temperature of the heating stage is selected from any temperature between 10°C and 25°C, and the termination temperature is selected from any temperature between 300-600°C; the heating rate in the heating stage is 1- 20℃/min;
2)所述恒温阶段的温度为1)中所述的终止温度;所述恒温阶段的时间为0.5-10小时。2) The temperature of the constant temperature stage is the termination temperature described in 1); the time of the constant temperature stage is 0.5-10 hours.
本发明具有以下优点:The present invention has the following advantages:
采用模板辅助的方法,在模板上直接得到规整的竹节状硒化铋(铜掺杂)纳米结构阵列,较之于传统硒化铋材料的制备,具有工艺简单、成本低廉、一次性成型等特点;通过对发明工艺的调节,可以得到不同长径比和晶型的竹节状硒化铋(铜掺杂)纳米结构阵列层,并以此调控材料的拓扑绝缘性能。Using the template-assisted method, the regular bamboo-shaped bismuth selenide (copper-doped) nanostructure array is directly obtained on the template. Compared with the preparation of traditional bismuth selenide materials, it has simple process, low cost, and one-time molding. Features: By adjusting the inventive process, bamboo-shaped bismuth selenide (copper-doped) nanostructure array layers with different aspect ratios and crystal forms can be obtained, and the topological insulation properties of the material can be adjusted accordingly.
附图说明Description of drawings
图1为该发明所述电化学沉积方法所采用的沉积策略;Fig. 1 is the deposition strategy adopted by the electrochemical deposition method described in the invention;
图2为实施例1制备的竹节状硒化铋(铜掺杂)纳米结构的扫描电子显微镜照片;Fig. 2 is the scanning electron micrograph of the bamboo-shaped bismuth selenide (copper-doped) nanostructure prepared in embodiment 1;
图3为实施例2制备的竹节状硒化铋(铜掺杂)纳米结构的扫描电子显微镜照片。3 is a scanning electron micrograph of the bamboo-shaped bismuth selenide (copper-doped) nanostructure prepared in Example 2.
具体实施方式Detailed ways
以下实施例仅是对本发明的详细描述,而不应理解为对本发明的限定。The following examples are only a detailed description of the present invention, and should not be construed as limiting the present invention.
本发明实施例中制备竹节状硒化铋(铜掺杂)纳米结构阵列的主要步骤如下:The main steps of preparing the bamboo-shaped bismuth selenide (copper-doped) nanostructure array in the embodiment of the present invention are as follows:
以背面镀有10-100nm厚的金膜、长宽约1厘米、厚度为5-50微米的氧化铝模板为工作电极,铂片为对电极,饱和甘汞电极为参比电极,以浓度分别为0.001~0.02mol/L、0.001~0.02mol/L和0.003~0.06mol/L的硫酸铋、硫酸铜和亚硒酸的三乙醇胺(0.015~0.3mol/L)和乙二胺四乙酸二钠盐(0.0035~0.07mol/L)与水的混合液为电解液,设计两段不同的沉积行为的条件下沉积铜掺杂硒化铋0.5~5小时,两个阶段的电流密度分别为1×10-6~9×10-6A/mm2和1×10-5~9×10-5A/mm2(T1∶T2=1∶1~4∶1,其中T1由1~6个电流脉冲组成)。沉积过程中要匀速搅拌电解液。The aluminum oxide template with a thickness of 10-100 nm on the back, a length and width of about 1 cm, and a thickness of 5-50 microns was used as the working electrode, the platinum sheet was used as the counter electrode, and the saturated calomel electrode was used as the reference electrode. 0.001~0.02mol/L, 0.001~0.02mol/L and 0.003~0.06mol/L triethanolamine (0.015~0.3mol/L) of bismuth sulfate, copper sulfate and selenite and disodium edetate The mixed solution of salt (0.0035~0.07mol/L) and water is used as the electrolyte, and the copper-doped bismuth selenide is deposited under the conditions of two different deposition behaviors for 0.5-5 hours, and the current density of the two stages is 1× 10 -6 ~9×10 -6 A/mm 2 and 1×10 -5 ~9×10 -5 A/mm 2 (T 1 : T 2 =1:1~4:1, where T 1 is from 1 to consists of 6 current pulses). During the deposition process, the electrolyte should be stirred at a constant speed.
实施例1、模板辅助电化学沉积法制备竹节状硒化铋纳米结构阵列Example 1. Preparation of Bamboo-shaped Bismuth Selenide Nanostructure Arrays by Template-Assisted Electrochemical Deposition
以背面镀有50nm厚的金膜、长宽约1厘米、厚度为30微米的氧化铝模板为工作电极,铂片为对电极,饱和甘汞电极为参比电极,以浓度分别为0.02mol/L、0.02mol/L和0.06mol/L的硫酸铋、硫酸铜和亚硒酸的三乙醇胺(0.3mol/L)和乙二胺四乙酸二钠盐(0.07mol/L)与水的混合液为电解液,设计两段不同的沉积行为的条件下沉积硒化铋或掺铜硒化铋,两个阶段的电流密度分别为9×10-6A/mm2和9×10-5A/mm2(T1∶T2=2∶1,其中T1由2个电流脉冲组成)。1.5小时沉积过程中要匀速搅拌电解液。电化学沉积结束后,氧化铝模板内部均匀填充了一层硒化铋或掺铜硒化铋,厚约10微米(见图2),组成竹节状结构阵列的外径为50nm,长径比为200。由图可知在氧化铝模板孔道内部均匀填充了竹节状掺铜硒化铋纳米结构阵列。A 50nm-thick gold film on the back, an alumina template with a length and width of about 1 cm, and a thickness of 30 microns was used as the working electrode, the platinum sheet was used as the counter electrode, and the saturated calomel electrode was used as the reference electrode. L, 0.02mol/L and 0.06mol/L bismuth sulfate, copper sulfate and selenite triethanolamine (0.3mol/L) and edetate disodium salt (0.07mol/L) mixed with water As the electrolyte, two stages of different deposition behaviors are designed to deposit bismuth selenide or copper-doped bismuth selenide, and the current densities of the two stages are 9×10 -6 A/mm 2 and 9×10 -5 A/mm 2 respectively mm 2 (T 1 :T 2 =2:1, where T 1 consists of 2 current pulses). Stir the electrolyte at a constant speed during the 1.5-hour deposition process. After the electrochemical deposition is completed, a layer of bismuth selenide or copper-doped bismuth selenide is evenly filled inside the alumina template, with a thickness of about 10 microns (see Figure 2). The outer diameter of the bamboo-shaped structure array is 50nm, and the aspect ratio for 200. It can be seen from the figure that bamboo-shaped copper-doped bismuth selenide nanostructure arrays are uniformly filled inside the channels of the alumina template.
实施例2、模板辅助电化学沉积法制备竹节状硒化铋纳米结构阵列Example 2. Preparation of Bamboo-shaped Bismuth Selenide Nanostructure Arrays by Template-Assisted Electrochemical Deposition
以背面镀有50nm厚的金膜、长宽约1厘米、厚度为30微米的氧化铝模板为工作电极,铂片为对电极,饱和甘汞电极为参比电极,以浓度分别为0.001mol/L、0.001mol/L和0.003mol/L的硫酸铋、硫酸铜和亚硒酸的三乙醇胺(0.015mol/L)和乙二胺四乙酸二钠盐(0.0035mol/L)与水的混合液为电解液,设计两段不同的沉积行为的条件下沉积硒化铋或掺铜硒化铋,两个阶段的电流密度分别为1×10-6A/mm2和1×10-5 A/mm2(T1∶T2=1∶1,其中T1由6个电流脉冲组成)。5小时沉积过程中要匀速搅拌电解液。电化学沉积结束后,氧化铝模板内部均匀填充了一层硒化铋或掺铜硒化铋,厚约10微米(见图3),组成竹节状结构阵列的外径为50nm,长径比为200。由图3可知在氧化铝模板孔道内部均匀填充了竹节状掺铜硒化铋纳米结构阵列。A 50nm-thick gold film on the back, an alumina template with a length and width of about 1 cm, and a thickness of 30 microns was used as the working electrode, the platinum sheet was used as the counter electrode, and the saturated calomel electrode was used as the reference electrode. L, 0.001mol/L and 0.003mol/L of bismuth sulfate, copper sulfate and triethanolamine (0.015mol/L) of selenite and EDTA disodium salt (0.0035mol/L) mixed with water As the electrolyte, two stages of different deposition behaviors are designed to deposit bismuth selenide or copper-doped bismuth selenide, and the current densities of the two stages are 1×10 -6 A/mm 2 and 1×10 -5 A/mm 2 respectively mm 2 (T 1 :T 2 =1:1, where T 1 consists of 6 current pulses). Stir the electrolyte at a constant speed during the 5-hour deposition process. After the electrochemical deposition is completed, a layer of bismuth selenide or copper-doped bismuth selenide is evenly filled inside the alumina template, with a thickness of about 10 microns (see Figure 3). The outer diameter of the bamboo-shaped structure array is 50nm, and the aspect ratio for 200. It can be seen from Figure 3 that bamboo-shaped copper-doped bismuth selenide nanostructure arrays are uniformly filled inside the alumina template pores.
最后需要注意的是,公布实施例的目的在于帮助进一步理解本发明,但是本领域的技术人员可以理解:在不脱离本发明及所附的权利要求的精神和范围内,各种替换和修改都是可能的。因此,本发明不应局限于实施例所公开的内容,本发明要求保护的范围以权利要求书界定的范围为准。Finally, it should be noted that the purpose of the disclosed embodiments is to help further understand the present invention, but those skilled in the art can understand that various replacements and modifications can be made without departing from the spirit and scope of the present invention and the appended claims. It is possible. Therefore, the present invention should not be limited to the content disclosed in the embodiments, and the protection scope of the present invention is subject to the scope defined in the claims.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2010105370825A CN102020253B (en) | 2010-11-09 | 2010-11-09 | Topological insulator material and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2010105370825A CN102020253B (en) | 2010-11-09 | 2010-11-09 | Topological insulator material and preparation method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102020253A true CN102020253A (en) | 2011-04-20 |
CN102020253B CN102020253B (en) | 2012-01-25 |
Family
ID=43862084
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2010105370825A Expired - Fee Related CN102020253B (en) | 2010-11-09 | 2010-11-09 | Topological insulator material and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102020253B (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105483790A (en) * | 2015-12-17 | 2016-04-13 | 山东建筑大学 | Method for manufacturing bismuth selenide thermoelectric film through bismuth oxide |
CN108461382A (en) * | 2018-02-06 | 2018-08-28 | 天津理工大学 | A kind of preparation method for realizing the Cu doping of topological insulator bismuth selenide nano material |
WO2022045965A1 (en) * | 2020-08-25 | 2022-03-03 | Nanyang Technological University | A product and process of nanoforming |
CN114864927A (en) * | 2022-05-20 | 2022-08-05 | 青岛大学 | High-performance zinc ion battery positive electrode material copper-doped bismuth selenide and preparation method thereof |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030224168A1 (en) * | 2002-05-30 | 2003-12-04 | The Regents Of The University Of California | Chemical manufacture of nanostructured materials |
CN101475149A (en) * | 2009-01-20 | 2009-07-08 | 宁波大学 | Preparation of bismuth selenide nanoparticle |
CN101513994A (en) * | 2009-03-10 | 2009-08-26 | 中国科学院上海硅酸盐研究所 | Bismuth base hydrogen storage material and preparation method thereof |
CN101746738A (en) * | 2009-09-29 | 2010-06-23 | 武汉理工大学 | Preparing method of nano laminar thermoelectric Bi2Se3 compound |
-
2010
- 2010-11-09 CN CN2010105370825A patent/CN102020253B/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030224168A1 (en) * | 2002-05-30 | 2003-12-04 | The Regents Of The University Of California | Chemical manufacture of nanostructured materials |
CN101475149A (en) * | 2009-01-20 | 2009-07-08 | 宁波大学 | Preparation of bismuth selenide nanoparticle |
CN101513994A (en) * | 2009-03-10 | 2009-08-26 | 中国科学院上海硅酸盐研究所 | Bismuth base hydrogen storage material and preparation method thereof |
CN101746738A (en) * | 2009-09-29 | 2010-06-23 | 武汉理工大学 | Preparing method of nano laminar thermoelectric Bi2Se3 compound |
Non-Patent Citations (1)
Title |
---|
《材料科学与工程学报》 20100430 王娟等 无还原剂一步湿化学反应法合成Bi2Se3超薄六边形纳米片 283-286 1-10 第28卷, 第2期 2 * |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105483790A (en) * | 2015-12-17 | 2016-04-13 | 山东建筑大学 | Method for manufacturing bismuth selenide thermoelectric film through bismuth oxide |
CN105483790B (en) * | 2015-12-17 | 2018-01-12 | 山东建筑大学 | A kind of method that bismuth selenide thermal electric film is prepared with bismuth oxide |
CN108461382A (en) * | 2018-02-06 | 2018-08-28 | 天津理工大学 | A kind of preparation method for realizing the Cu doping of topological insulator bismuth selenide nano material |
CN108461382B (en) * | 2018-02-06 | 2020-06-19 | 天津理工大学 | A preparation method for realizing Cu doping of topological insulator bismuth selenide nanomaterials |
WO2022045965A1 (en) * | 2020-08-25 | 2022-03-03 | Nanyang Technological University | A product and process of nanoforming |
CN114864927A (en) * | 2022-05-20 | 2022-08-05 | 青岛大学 | High-performance zinc ion battery positive electrode material copper-doped bismuth selenide and preparation method thereof |
CN114864927B (en) * | 2022-05-20 | 2023-12-29 | 青岛大学 | High-performance zinc ion battery anode material copper-doped bismuth selenide and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
CN102020253B (en) | 2012-01-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Sun et al. | Synthesis of wafer‐scale graphene with chemical vapor deposition for electronic device applications | |
Filipič et al. | Copper oxide nanowires: a review of growth | |
Liang et al. | Controlled synthesis of one‐dimensional inorganic nanostructures using pre‐existing one‐dimensional nanostructures as templates | |
Wen et al. | Solution phase synthesis of Cu (OH) 2 nanoribbons by coordination self-assembly using Cu2S nanowires as precursors | |
Jin et al. | A new twist on nanowire formation: Screw-dislocation-driven growth of nanowires and nanotubes | |
Jin et al. | Electrochemical fabrication of large-area, ordered Bi2Te3 nanowire arrays | |
Yan et al. | Conversion of ZnO nanorod arrays into ZnO/ZnS nanocable and ZnS nanotube arrays via an in situ chemistry strategy | |
KR101680761B1 (en) | Graphene-polymer layered composite and process for preparing the same | |
Jin et al. | Large-area Sb2Te3 nanowire arrays | |
CN112758950B (en) | Boron alkene nanosheets and preparation method thereof | |
Wu et al. | Synthesis of borophene on quartz towards hydroelectric generators | |
Liang et al. | An efficient templating approach for synthesis of highly uniform CdTe and PbTe nanowires | |
CN100436008C (en) | Chemical production of metal nickel nano-line | |
Mo et al. | Preparation and characterization of CdS nanotubes and nanowires by electrochemical synthesis in ion-track templates | |
CN102560415A (en) | Three-dimensional graphene/metal line or metal wire composite structure and preparation method thereof | |
Wu et al. | Electrochemical synthesis and applications of oriented and hierarchically quasi-1D semiconducting nanostructures | |
Qi et al. | One-dimensional CuS microstructures prepared by a PVP-assisted microwave hydrothermal method | |
CN102020253B (en) | Topological insulator material and preparation method thereof | |
CN103350988B (en) | A kind of single crystal tellurium nanotube and preparation method thereof and application | |
Cho et al. | Formation of amorphous zinc citrate spheres and their conversion to crystalline ZnO nanostructures | |
CN105671491B (en) | Using the method for evaporation coating controllable preparation multilevel Bi Sb Te tilt column arrays | |
ai Hu et al. | Template preparation of high-density, and large-area Ag nanowire array by acetaldehyde reduction | |
Kang et al. | 3D graphene foam/ZnO nanorods array mixed-dimensional heterostructure for photoelectrochemical biosensing | |
CN101985774A (en) | Method for synthesizing single crystal nano wire array | |
CN102063950B (en) | Topological insulator material and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20120125 Termination date: 20171109 |