CN102007679A - 振动发电器、振动发电装置及搭载了振动发电装置的通信装置 - Google Patents
振动发电器、振动发电装置及搭载了振动发电装置的通信装置 Download PDFInfo
- Publication number
- CN102007679A CN102007679A CN200980113307XA CN200980113307A CN102007679A CN 102007679 A CN102007679 A CN 102007679A CN 200980113307X A CN200980113307X A CN 200980113307XA CN 200980113307 A CN200980113307 A CN 200980113307A CN 102007679 A CN102007679 A CN 102007679A
- Authority
- CN
- China
- Prior art keywords
- electrode
- substrate
- vibration
- axis direction
- generation device
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02N—ELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
- H02N1/00—Electrostatic generators or motors using a solid moving electrostatic charge carrier
- H02N1/06—Influence generators
- H02N1/08—Influence generators with conductive charge carrier, i.e. capacitor machines
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Micromachines (AREA)
- General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)
- Apparatuses For Generation Of Mechanical Vibrations (AREA)
Abstract
提高可在两个轴方向上振动发电的振动发电装置的发电效率。振动发电器包括:第1基板(101)与第2基板(106)、在第1基板上形成的第1电极(104)、固定结构体(103)、连接第1基板与固定结构体的弹性结构体(102X、102Y)以及在第2基板上形成的第2电极(105);通过将第1电极的矩形以至正方形的导体部(104a)以及第2电极的矩形以至正方形的导体部(105a)配置为交错格子状,使电极的重合面积变大,因此能够增加由于振动而发电的区域。
Description
技术领域
本发明涉及振动发电器、振动发电装置以及搭载了振动发电装置的通信装置,尤其涉及使用了驻极体的静电感应型振动发电器、振动发电装置以及搭载了该振动发电装置的通信装置。
背景技术
对可变容量的一个电极提供电荷,利用静电感应将电荷引导至相向的电极,利用容量的变化,使引导产生的电荷发生变化,将该电荷变化作为电能取出的静电感应型振动发电装置已经被提出(例如参照专利文献1)。
图14表示所述专利文献1中记载的静电感应型振动发电器。图14是使用驻极体的振动发电器10的概略剖视图。
该静电感应型发电器10由具备多个导电性表面区域13的第1基板11和具备多个驻极体材料区域15的第2基板16构成。所述第1基板11与所述第2基板16相互隔开指定间隔配置。包括驻极体材料区域15的第2基板16被固定。包括导电性表面区域13的第1基板11经由弹簧19与固定结构17连接。弹簧19与第1基板11的两个侧面连接,并且与固定结构17连接。利用该弹簧19,第1基板11能够返回固定位置,或者第1基板11能够进行侧向运动(例如X轴方向运动)并返回固定位置。利用该运动,产生驻极体材料区域15与相向的导电性表面区域13的重合面积的增减,导电性表面区域13上产生电荷的变化。静电感应型发电器将该电荷变化作为电能取出,据此进行发电。
但是,在图14的静电感应型振动发电器中,控制使得第1基板在X轴方向(图中箭头18的方向)以外的方向上不进行振动。因此,该静电感应型振动发电器100无法将X轴方向以外的方向的外部振动作为电能取出。为了解决该问题,提出了能够将多方向的外部振动用于发电的静电感应型振动发电器(例如参照专利文献2)。
图15表示所述专利文献2中记载的静电感应型振动发电器。图15是使用驻极体的振动发电器的概略剖视图。
在图15所示的振动发电器20中,驻极体电极22C以及可动电极25C分别包括以二维阵列配置的多个电极焊盘22L、25L。因此,比较容易做到使可动电极25C仅在X轴方向(箭头27a)上移动一定距离时产生的可动电极25c与驻极体电极22C的重合面积的变化量与可动电极25C仅在Y轴方向(箭头27b)上移动所述一定距离时产生的所述重合面积的变化量相同。另外,图15所示的振动发电器是能够使关于X轴方向与Y轴方向移位相互相同的距离时的发电量相等,不仅能对X轴方向,也能对Y轴方向的外部振动进行发电的结构。
驻极体本身已经是公知的技术。例如,作为驻极体的材料已经知道有机系统的高分子聚合体(FEP(四氟乙烯与六氟丙烯的共聚物))。另外,作为无机材料已知硅氧化膜,另外,提出了使用绝缘膜覆盖硅氧化膜以防止电荷逃逸的结构(例如专利文献3)。
专利文献1:特表2005-529574号公报(第10-11页、图4)
专利文献2:特开2008-86190号公报(第6-7页、图6)
专利文献3:国际公开第2005/050680号小册子(第2页、图3)
发明内容
但是,在所述专利文献2所示的振动发电器中,为了将XY平面内的任意方向的振动转换为电力,采用在驻极体电极22C的周围不配置驻极体电极的结构。其结果是,与相同大小的振动发电器相比,驻极体电极的可配置区域(驻极体电极的总面积)减少。因此,具有如下问题,即与一个振动方向(仅X轴或Y轴方向)上的发电量相比,发电量比专利文献1中记载的结构的装置有所减少。
另外,在专利文献2记载的振动发电器中,为了分割驻极体电极,必须进行穿透布线等。这也产生了结构以及加工变得复杂等问题。
本发明为了解决上述以往的振动发电器的问题而作。本发明的目的尤其在于增加配置驻极体电极的区域(即驻极体电极的总面积),提供一种增加了发电量的振动发电器。并且,本发明的目的在于提供一种改善了发电效率的振动发电器。并且,本发明的目的在于使用这种振动发电器,提供一种振动发电装置以及搭载了振动发电装置的通信装置。
本发明提供一种振动发电器,包括:
在第1基板上形成的第1电极,以及
在第2基板上形成的第2电极;
所述第1电极以及所述第2电极中的任意一者能够在与所述第1以及第2基板平行的平面内的第1轴方向以及与所述第1轴方向垂直的第2轴方向上振动;
所述第1电极具有在所述第1基板上具有与所述第1轴方向以及所述第2轴方向平行的边的长方形或正方形的导体部配置为交错格子状的结构;
所述第2电极具有在所述第2基板上具有与所述第1轴方向以及所述第2轴方向平行的边的长方形或正方形的导体部配置为交错格子状的结构;
所述第1电极以及所述第2电极中的任意一者包括保持电荷的膜;
所述第1电极与所述第2电极以在它们之间具有间隙的状态相互相向。
在本发明的振动发电器中,作为驻极体电极的第1电极以及作为检测电极的第2电极具有长方形或正方形的导体部配置为交错格子状的结构。本发明的振动发电器中,在与基板平行的面中的第1轴方向(例如X轴方向)或与第1轴方向垂直的方向(例如Y轴方向)上,第1以及第2电极中的任意一者由于外部施加的力而振动,由此第1电极的导体部与第2电极的导体部的重合面积发生变化,据此进行发电。通过本结构,能够增加驻极体电极与检测电极的重合面积,其结果是,能够增加可因振动而发电的区域,进而能够增加发电量。另外,根据本结构,能够将构成驻极体电极的导电部在基板上简单容易地进行电连接,能够减少制作工作量。
本发明的振动发电器可以具有如下结构,即还包括固定结构体;
所述固定结构体与所述第1基板利用弹性结构体连接;
所述第2基板与所述固定结构体被固定;
在与所述第1轴方向平行的方向上使所述第1基板振动的弹性结构体的所述第1轴方向的弹性常数与在与所述第2轴方向平行的方向上使所述第1基板振动的弹性结构体的所述第2轴方向的弹性常数相互不同。
根据本结构,第1基板的振动的共振频率在第1轴方向(X轴方向)与第2轴方向(Y轴方向)上为不同的值,能够防止第1基板在第1轴方向以及第2轴方向以外的方向(例如,与第1轴方向所成的锐角为45度的倾斜方向)上移位。其结果是,能够在本发明的振动发电器中防止发电量的降低。在利用弹性结构体将固定结构体与第2基板连接的情况下,也能通过与上述方式相同地选择弹性体的弹性常数,得到相同的效果。
本发明还提供一种振动发电器,包括:
在第1基板上形成的第1电极,以及
在第2基板上形成的第2电极;
所述第1电极以及所述第2电极中的任意一者能够在与所述第1以及第2基板平行的平面内的第1轴方向以及与所述第1轴方向垂直的第2轴方向中的至少一者上振动;
所述第1电极具有在所述第1基板上配置多个导体部的结构;
所述第2电极具有在所述第2基板上配置多个导体部的结构;
所述第1电极以及所述第2电极中的任意一者包括保持电荷的膜;
所述第1电极与所述第2电极以在它们之间具有间隙的状态相互相向;
所述第2基板中形成所述第2电极的区域的外接面积大于所述第1基板中形成所述第1电极的区域的外接面积。
根据该结构,即使在第1电极对第2电极大幅移位的情况下,驻极体电极与检测电极的重合面积相对于初始状态(即不振动的状态)的面积也不发生变化,能够保持恒定。其结果是,无论第1基板的移位量(或振幅)的大小为多少,都能将发电量保持恒定。
本发明还提供一种包括所述本发明的振动发电器的振动发电装置。与以往的振动发电装置和包括具有相同尺寸(尤其是形成电极的区域的外接面积)的振动发电器的振动发电装置相比,本发明的振动发电装置的发电量更大。
本发明的振动发电装置可以包括蓄电电路。通过包括蓄电电路,在来自振动发电器的输出电力较大的情况下,能够在蓄电电路中积蓄电力。在蓄电电路中积蓄的电力在来自发电器的输出电力降低的情况下被供给,据此能够使振动发电装置的输出保持稳定。
本发明还提供一种包括本发明的振动发电装置的通信装置。与仅用电池驱动的通信装置相比,本发明的通信装置能够实现电池更换次数的减少,或者在某些用途下能够消除电池更换的必要。
(发明效果)
根据本发明的振动发电器,能够在不降低发电效率的情况下,使相向的两个电极中的一者受到来自外部的力后在X轴方向以及与X轴方向垂直的方向(Y轴方向)上振动,并将该振动转换为电力。另外,本发明的振动发电装置包括本发明的振动发电器,能够供给较高输出的电力。另外,在本发明的振动发电装置包括蓄电电路的情况下,能够使输出电压较为稳定。本发明的振动发电器能够作为通信装置的电源起作用。本发明的振动发电装置能够使用从外部提供的力(例如,人步行时施加的力,或者驾驶车辆期间施加的振动等)进行发电,因此使用本发明的振动发电装置的通信装置在能够减少电池更换等的维护次数等节省资源以及环境保护的方面是有利的。
附图说明
图1(a)是本发明的实施方式1的振动发电器的俯视图,(b)是表示(a)所示的振动发电器的第2电极的配置的俯视图。
图2是表示在图1所示的振动发电器中,沿着A-A截断的第1电极结构的剖视图。
图3是表示本发明的实施方式1的振动发电器的另一电极结构的俯视图。
图4是说明本发明的实施方式1的振动发电器的第1电极与第2电极的关系的图。
图5是表示本发明的实施方式1的振动发电器的另一结构的俯视图。
图6是本发明的实施方式2的振动发电器的图。
图7是表示由步行产生的振动的加速度功率谱的测量结果的例子的曲线。
图8是本发明的实施方式3的振动发电器的图。
图9是本发明的实施方式3的变形例的振动发电器的图。
图10是包括弹性结构体的具体例子的、发明的实施方式3的变形例的振动发电器的图。
图11是表示本发明的实施方式3的振动发电装置的模块图。
图12是表示本发明的实施方式3的振动发电装置的各部分的电压波形的图。
图13是表示本发明的实施方式4的通信装置的图。
图14是以往的静电感应型振动发电器的俯视图。
图15是以往的将多轴方向的振动转换为电力的静电感应型振动发电器的俯视图。
具体实施方式
下面,参照附图说明本发明的实施方式。
(实施方式1)
图1表示本发明的实施方式1的振动发电器,(a)是振动发电器100的俯视图,(b)是构成振动发电器100的、包括形成第2电极105的第2基板106的第2结构体108的俯视图。在图1的(a)中,为了便于理解,示出了在第1基板101上形成的第1电极104。在实际的振动发电器中,第1电极与第2电极是相向的,因此不会显露在外面。
振动发电器100由第1结构体107与第2结构体108构成。第1结构体107包括第1基板101以及固定结构体103,第1电极104在第1基板101上形成。第1基板101利用弹性结构体102X、102Y与固定结构体103连接,能够在图示的X轴方向以及Y轴方向上振动。
弹性结构体102X、102Y具有利用从外部提供的力进行伸缩,以使第1基板101振动的性质。弹性结构体具体而言可以是使用了弹簧或弹性体(elastomer)材料(例如派瑞林(parylene)树脂)的结构体。或者,弹性结构体可以是在加工(例如深反应离子蚀刻(deep RIE))一片硅半导体基板以制作固定结构体103与第1基板101时在两者之间以桥的形状留下一部分半导体基板而形成的。通过适当选择桥状部分的形状以及尺寸,能够使硅半导体基板作为弹性结构体起作用。
第2结构体108包括第2电极105,第2电极105在第2基板106上形成于与第1电极104相向的位置。
第1结构体107与第2结构体108以使第1电极104与第2电极105相互面对的方式决定位置,并相互连接。更具体而言,在图1所示的方式中,第1电极104的导体部104a不存在的部分(大致正方形的空白部)与第2电极105的导体部105a重合,并且,以形成第2电极105的区域不从形成第1电极104的区域中露出的方式,决定两个结构体100以及108的位置。
两个结构体107以及108的连接以固定结构体103的一部分或全部区域与第2基板106连接的方式进行。连接可以使用粘合剂等进行,或者可以利用共晶连接进行。或者,只要能够以所需的方式控制两个相向电极间的距离,可以使用其他连接手段(例如焊锡)。通过以此方式固定第2基板106与固定结构体103,成为形成于第1基板101上的第1电极104能够对第2基板进行相对移位的结构。
第1电极104与第2电极105之间的距离还依赖于固定结构体103以及后述的驻极体的尺寸,但一般而言设定为数μm~数100μm,尤其设定为数μm~30μm左右。在构成各电极的导体部或其上面形成其他层的情况下,两个电极间的距离是该层的表面间的距离。
第1基板101以及第2基板106可以利用例如玻璃基板或半导体基板。半导体基板可以使用例如高阻抗硅半导体基板或SOI基板。
接着,进行关于电极配置的说明。第1电极104以及第2电极105具有多个大致正方形的导体部104a以及105a。这些导体部104a以及105a如图1(a)以及(b)所示配置为交错格子状(或者方格图案)。即,在一行上交互配置大致正方形的导体部104a(或105a)与空白部(无导体部104a(或105a)的部分),在下一行上,前一行的导体部104a(或105a)处配置空白部,前一行的空白部的相邻处配置导体部104a(或105a)。在第1电极104中,导体部104a在其四角(4个角落)处与其他导体部104a电连接。在第2电极105中,与第1电极104不同,导体部105a的面积小于位于上下左右的不存在导体的部分(在图1中是位于阴影部分之间的白色部分)的面积,因此通过使用较细的导体部(布线电极)连接四角中的至少一个,确保导体部105a整体的电连接。在图示的方式中,导体部105a与在X轴以及Y轴方向上延伸的公共布线105b连接,公共布线105b用于向外部输出电力。
第1电极104以及第2电极105(即它们的导体部104a以及105a)由具有导电性的材料形成。具有导电性的材料可以是铜、银、金、铁或铝,或者由这些金属形成的合金,或者掺杂了杂质的硅或多晶硅。第1电极104以及第2电极105的导体部可以利用布线基板的领域中使用的图案形成(patterning)的方法(包括导电膜的形成与通过蚀刻进行的指定图案的形成)形成。或者,电极的导体部可以使用例如使用了掩膜的溅射法、蒸镀法或CVD法形成。
接着,进行关于构成第1电极104的、保持电荷的膜(即驻极体)的说明。第1电极104具有导体部104a,并且具有保持电荷的膜状的驻极体。作为构成驻极体的材料,可以举出聚丙烯、聚对苯二甲酸乙二醇酯(polyester terephthalate,PET)、以及聚氯乙烯(polyvinylchlorid,PVC)等高分子材料,或者氧化硅等无机材料。在包括图示方式的本发明的振动发电器中,较为理想的是,作为驻极体的材料,使用绝缘耐压以及耐热性优异的氧化硅。
另外,为了提高耐湿性,较为理想的是,通过硅氮化膜等绝缘膜,使氧化硅的周围完全被覆盖。即,较为理想的是,使用绝缘膜密封氧化硅膜,从而使氧化硅的膜的任意面(上面、下面以及侧面)均不露出,并且与其他膜或基板不直接接触。该结构的详细情况在后面描述。
进行关于以上述方式构成的振动发电器的动作的说明。
在施加来自外部的力或振动后,振动发电器100的弹性结构体102X及/或102Y进行伸缩,据此第1基板101在X轴方向或Y轴方向上振动,对第2基板106进行相对移位。该相对移位带来第1电极104的导体部104a与第2电极105的导体部105a的重合面积的增减。利用该重合面积的增减,被引导至第2电极105的电荷量发生增减。将该电荷的增减作为电能取出,以产生电力。另外,只要第1基板101持续振动,该重合面积的增减便会持续。
根据本发明的实施方式涉及的振动发电器100,能够取得以下效果。
(1)从外部施加力或振动后,能够在不降低发电效率的情况下,将X轴方向以及与X轴垂直的方向(Y轴方向)上的基板的振动转换为电力。
(2)易于进行驻极体电极的电连接。
对上述(1)的效果进行详细说明。第1电极104以及第2电极105具有其导体部104a以及105b配置为交错格子状(方格图案状)的图案。另外,第1基板101在X轴方向上振动时导体部的重合面积的增减与在Y轴方向上振动时重合面积的增减大致相同。因此,在X轴方向上振动时的发电量与在与X轴方向垂直的方向(Y轴方向)上振动时的发电量相同。
为了进行简化,假设在两个基板上对发电做出贡献的电极区域的X轴方向以及Y轴方向的尺寸相同(即,将导体部配置为交错格子状的、电极整体的形状为大致正方形),由驻极体电极产生的电荷的引导仅在两个电极的导体部位于相向的位置时发生。在本实施方式的振动发电器中,在使电极的重合面积最大(即,第1电极104的导体部104a与第2电极105的导体部105a完全重合)时的值为100,最小时(即,第1电极104的导体部104a与不存在第2电极105的导体部105a的格子重合)时的值为0的情况下,第1基板101在X轴方向以及Y轴方向中的任意一个方向上振动,重合面积的最大值均为100,最小值均为0。换言之,根据本实施方式的振动发电器能够在不降低发电效率的情况下,将两个轴方向的来自外部的振动转换为电力。
接着,参照图2对上述(2)的效果进行说明。第1电极104中,例如在基板上将膜状的导电部111(相当于图1的104a)配置为交错格子状,配置为图2所示的交错格子状的导电部111的四角与其他导电部111接触,因此相互电连接。或者,在导电部如图1(b)所示那样四角相互不接触的情况下,可以经由较细的导体部(布线电极)连接导电部。在导电部111上,硅氮化膜112、硅氧化膜113和硅氮化膜114层积配置。关于作为驻极体的硅氧化膜113,较为理想的是,在硅氧化膜113的形成之前先形成硅氮化膜112,在形成硅氧化膜113之后形成硅氮化膜114,由此利用硅氮化膜113完全覆盖。据此,提高硅氧化膜的耐湿性,防止驻极体中所带的电荷的逃逸。
仅仅使用上述材料形成膜,还无法作为驻极体起作用。为了使之作为驻极体起作用,在使用驻极体的材料形成膜之后,需要在该膜中注入电荷的步骤(上电)。在上电时,如果将导电部形成为具有共同电位,则能够取得良好的器件特性。
虽然图2中并未示出,但硅氮化膜112、114以导电部111能够与外部端子进行电连接的方式形成。只要以至少覆盖硅氧化膜113的方式形成硅氮化膜112、114,硅氮化膜112、114不必在基板的整个面上成膜,可以按照使导电部的一部分露出的方式形成。
硅氧化膜(驻极体)112与导电部111同样形成为交错格子状,并且如图示的那样以覆盖导电部111的一部分的方式(即,从上面观察时,具有比导电部111小的面积)形成。从加工以及器件特性的稳定性的角度来说,以这种方式形成驻极体是较为理想的。
在图1中,导电部配置为交错格子状的第2电极在基板上配置了一组。在变形例中,如图3所示,第2电极可以配置两组。在图3中,符号125a指电极群A,符号125b指电极群B。电极群A以及B均具有导电部配置为交错格子状的结构,电极群A 125a的导电部配置在未设置电极群B 125b的导电部的格子中。由此,如图示的那样,在第2基板中,由导电部覆盖的面积是图1所示方式的面积的大约两倍。
以此方式配置两个电极群后,从电极群A 125a输出电压相位与从电极群B 125b输出的电力的电压相位相差180度的电力。另外,将电极群A125a与电极群B 125b的各自的电极端子与全波整流电路连接后,能够得到使用一个电极群时的电压的两倍的直流电压。
另外,若将来自各电极群的输出进行DC转换后在电路上汇总为一个,则能取出两倍的电荷。这样,使用多个电极群构成第2电极所产生的应用上的效果较大。
在图1所示的方式中,第2电极以形成其的区域的外接面积与第1电极大致相同的方式形成。此处,所谓“形成第2电极的区域的外接面积”,即,从上面观察时全部包含构成第2电极的导体部的矩形或正方形中,具有最小面积的上述矩形或正方形的面积。换言之,第2电极整体的概略形状以及构成第2电极的导体部的数目与第1电极相同。
在图1所示方式的理想变形例中,形成第2电极的区域的外接面积大于形成第1电极的区域的外接面积。在图4中表示这种变形例。如图4所示,较为理想的是,在超出形成第1电极的区域的区域中,在第2基板205上形成第2电极206。最为理想的是,形成第2电极的区域的外接面积达到第1基板201的振动边界。
通过以此方式构成,能够取得以下效果。
(3)能够使重合面积的有效区域保持恒定。
在第1基板以较大振幅进行振动的情况下,若采用图1所示的电极结构,则在未形成第2电极的区域中不发生电极的重合,因此产生重合面积的有效面积减少的问题。但是,如图4所示,通过使形成第2电极的区域的外接面积大于形成第1电极的区域的外接面积,能够使重合面积的有效区域始终保持恒定。其结果是,能够将所述重合面积的最大值维持为100,最小值维持为0。
图4所示的结构不仅在具有可在X轴方向及Y轴方向上振动的第1基板的方式中有效,在第1基板仅能在一个轴方向上振动的振动发电器中也是有效的。尤其是,在弹性结构体具有较小的弹性常数,通过极小的力进行较大变形的振动发电器的情况下,该结构是有效的。另外,在第1基板在第1轴方向及/或第2轴方向上比振动方向的导电部的尺寸更大幅度地移位振动的振动发电器中,该结构也是有效的。因此,该结构也能适用于例如所述专利文献1以及2中记载的振动发电器。
在本实施方式中,表示了在第1基板上构成包括膜状驻极体的电极的方式。在第2基板上构成包括膜状驻极体的电极也能取得相同的效果,这一点自不待言。另外,无论是否有驻极体,都可以利用弹性结构体将第2基板连接到固定结构体。在此情况下,较为理想的是,以形成第1电极的区域的外接面积大于形成第2电极的区域的外接面积的方式构成两个电极。
另外,如图5所示的振动发电器300那样,第1基板301可以是矩形(长方形)。在此情况下,较为理想的是,第2基板同样也是矩形。或者,只要导电部配置为交错格子状,第1基板也可以是其他形状,在此情况下也能取得与本实施方式相同的效果,这一点自不待言。
此外,在本实施方式中,示出了驻极体采用硅氧化膜的例子。硅氧化膜既能带有正电荷,也能带有负电荷。因此,通过将第1电极如图2所示那样配置两组,并且使属于一个电极群的驻极体带有正电荷,使属于另一个电极群的驻极体带有负电荷,则能够进一步提高振动产生的输出电力,是较为有用的。
另外,导电部也可以不是正方形,而是长方形。在此情况下,为了在X轴方向以及Y轴方向上得到相同的发电量,根据长方形的长边或短边的长度,选择第1基板(或第2基板)的X轴方向以及Y轴方向的振动振幅,以使重合面积的最大值为100,最小值为0。
本发明的振动发电器也可以是如下装置,即在第1及第2电极中,在一个轴方向(轴方向α)以及与其不同的轴方向(轴方向β)上分别具有一定的宽度的几何学图形(例如菱形以及平行四边形)的导电部配置为交错格子状。在此情况下,使用弹性结构体将第1基板或第2基板以可在轴方向α以及β上振动的方式连接到固定结构体上。
(实施方式2)
图6表示本发明的实施方式2的振动发电器400的俯视图、沿着A-A截断的剖视图以及沿着B-B截断的剖视图。本实施方式与实施方式1的不同点在于,使第1基板在X轴方向上振动的弹性结构体402X的X轴方向的弹性常数与使第1基板在Y轴方向上振动的弹性结构体402Y的Y轴方向的弹性常数不同。为了在概念上示意弹性常数的不同,以弹性结构体402X的弹簧个数与弹性结构体402Y的弹簧个数不同的方式进行图示。弹性结构体不一定必需是弹簧,也可以使用弹性体材料形成,或者可以利用半导体基板的加工形成,这与前文所述相同。
对于如本实施方式这样负责X轴方向的振动的弹性结构体的弹性常数kX与负责Y轴方向的振动的弹性结构体的弹性常数kY不同的振动发电器的动作,在下面进行说明。
在振动发电器400中,受到来自外部的力或振动后第1基板进行振动,据此第1基板对第2基板移位,作为移位的结果,产生的电荷变化由第2电极检测并进行发电。此时,对于由第1基板与弹性结构体决定的共振频率的外部振动,第1基板以尤其大的振幅进行振动。如果使弹性结构体402X以及402Y的弹性常数相互不同,则振动发电器400的X轴方向以及Y轴方向的共振频率为不同的值。其结果是,例如在倾斜方向(与X轴形成90度之外的角度的方向)上施加某个频率的外部振动时,也能在X轴方向或Y轴方向中的某一个方向上强制性地使第1基板振动。
因此,图4所示方式的结构带来以下效果。
(4)防止发电量的降低,扩大振动发电器的可利用范围。
对上述(4)的效果进行说明。首先,如对本实施方式的振动发电器的动作已经说明的那样,通过使弹性结构体402X的X轴方向的弹性常数与弹性结构体402Y的Y轴方向的弹性常数相互不同,能够使X轴方向以及Y轴方向的共振频率不同。由于振动发电器利用来自外部的力或振动使第1基板振动从而发电,所以若使共振频率不同,则对相同频率的振动,在某一个方向上进行强制激振。其结果是,在采用将导电部配置为交错格子状的电极结构的情况下,从外部施加使第1基板在倾斜方向上移位的力时,发电量也不会极端降低。这能减少在特定的频率范围或特定方向的外部振动之外的范围中发电量的降低,能够进一步扩大可利用范围。
在本实施方式中,形成第2电极的区域的外接面积也大于形成第1电极的区域的外接面积,第2电极形成为达到振动边界。通过以此方式构成电极,该方式的振动发电器在第1基板以较大振幅振动时也能在发电量不降低的情况下进行动作。
使第1基板在X轴方向上振动的弹性结构体402X的X轴方向的弹性常数kX与使第1基板在Y轴方向上振动的弹性结构体402Y的Y轴方向的弹性常数kY不同,对于这样做的技术意义在下面更具体地进行说明。
图7是表示以指定条件步行时产生的X轴方向振动的加速度功率谱(power spectrum)与Y轴方向的加速度功率谱的测量例的曲线。如图中所示,上面的频谱对应于X轴方向的振动,下面的频谱对应于Y轴方向的振动。
曲线的横轴是以任意单位表示的频率,纵轴是以任意单位表示的加速度的功率谱,横轴和纵轴为对数表示。
X轴方向的振动在图7中“基本频率”表示的频率处具有加速度功率谱的最大峰值,另一方面,Y轴方向的振动在图中“基本频率×2”表示的基本频率的2倍频率处具有加速度功率谱的最大峰值。即,在X轴方向与Y轴方向上加速度功率谱达到最大的频率不同。
但是,在X轴方向的振动的加速度功率谱达到最大的基本频率处,Y轴方向的振动也具有功率谱的较大峰值。另外,在Y轴方向的振动的加速度功率谱达到最大的基本频率的2倍频率处,Y轴方向的振动也具有功率谱的较大峰值。
表1表示在以X轴方向振动的基本频率处的加速度功率谱为100时,X轴方向、Y轴方向各自的基本频率以及基本频率的2倍频率(图7的“基本频率×2”)处的加速度频谱的大小。
表1
上述结果显示,例如以在Y轴方向的振动加速度功率谱达到最大的基本频率的2倍频率处发生共振的方式设定弹性结构体402X的弹性常数kX与弹性结构体402Y的弹性常数kY,则第1基板在X轴以及Y轴这两个方向上共振,与作为本申请发明的特征的通过仅在X轴方向或Y轴方向的某一个方向上振动来提高发电效率的目的相反,发电效率会降低。
同样,以在X轴方向的振动加速度功率谱达到最大的基本频率处发生共振的方式设定弹性结构体402X的弹性常数kX与弹性结构体402Y的弹性常数kY时,第1基板也会在X轴以及Y轴这两个方向上共振,使发电效率降低。
从图7的曲线可知,X轴方向以及Y轴方向的基本频率以及基本频率的2倍频率处的加速度功率谱的较大峰值的半值宽度均在该频率的大概30%以内。因此,对于X轴方向以及Y轴方向中的某一个方向的共振频率,使另一个方向的共振频率与之相差±15%以上,以此方式设定弹性结构体402X的弹性常数kX与弹性结构体402Y的弹性常数kY,由此使共振发生在X轴方向以及Y轴方向中的某一个方向上,能够大幅提高发电效率。
为了将共振的发生更可靠地限制在X轴方向以及Y轴方向中的某一个方向上,对于X轴方向以及Y轴方向中的某一个方向的共振频率,使另一个方向的共振频率与之相差±20%以上,以此方式设定弹性结构体402X的弹性常数kX与弹性结构体402Y的弹性常数kY是较为理想的。
更具体而言,对于X轴方向以及Y轴方向中的某一个方向的共振频率的常数倍频率,使共振频率与之相差±15%以上,或者为了更可靠地限制在某一个方向上使共振频率与之相差±20%以上,以此方式进行设定。
此外,如上所述,对于X轴方向以及Y轴方向中的某一个方向的共振频率,使另一个方向的共振频率与之相差±15%以上或±20%以上,以此方式设定引起X轴方向振动的弹性结构体的弹性常数kX与引起Y轴方向振动的弹性结构体的弹性常数kY,这种做法显然可以适用于实施方式1所示的所有振动发电器中。
(实施方式3)
图8是本发明的实施方式3涉及的振动发电器700的第1结构体707的俯视图。
与图1相同,在图8中,为了便于理解,示出了形成于第1结构体707的第1电极704。在实际的振动发电器中,第1电极704与配置在第1基板下面的第2电极是相向的,因此不会显露在从上面观察时的外表面上。
省略图8中振动发电器700使用的第2结构体的记载。振动发电器700的第2结构体例如可以使用本说明书中所示的任意一种第2结构体,包括与图1所示的振动发电器100的第2结构体108具有相同结构的结构体在内。
在本实施方式中,与实施方式1的不同点在于,固定结构体703与第1基板701之间具有可动结构体705。
可动结构体705经由对Y轴方向振动做出贡献的弹性结构体702Y大致平行于Y轴地与固定结构体703连接,并且经由对X轴方向振动做出贡献的弹性结构体702X大致平行于X轴地与第1基板701连接。
通过具有这种结构,振动发电器700在弹性结构体702X与弹性结构体702Y的弹性常数相同的情况下也能使X轴方向的共振频率与Y轴方向的共振频率不同,因而能够以高效率进行发电。
即,在X轴方向振动的情况下,弹性结构体702X使第1基板701振动。另一方面,在Y轴方向振动的情况下,弹性结构体702Y除了使第1基板701振动外,还使弹性结构体702X与可动结构体705振动。即,例如弹性结构体702X与弹性结构体702Y的弹性常数相同时,由于使之振动的对象物的质量(合计质量)不同,所以也能使X轴方向振动的共振频率与Y轴方向振动的共振频率不同。
通过使振动发电器700采用这种结构,能够将第1基板701(即第1电极704)的振动方向明确地限制(分离)为X轴方向或Y轴方向中的某一个方向。
此外,较为理想的是,通过例如调整弹性结构体702X与702Y的弹性常数或可动结构体705的质量等操作,对于X轴方向以及Y轴方向中的某一个方向的共振频率,使另一个方向的共振频率与之相差±15%以上,以此方式构成振动发电器700。更为理想的是,对于X轴方向以及Y轴方向中的某一个方向的共振频率,使另一个方向的共振频率与之相差±20%以上。
另外,弹性结构体702X以及弹性结构体702Y可以由与实施方式1的弹性结构体102X以及102Y相同的结构以及相同的材料构成。
另外,诸如电极的配置、第1结构体707与第2结构体(例如第2结构体108)的连接、第1电极704与第2电极(例如第2电极105)之间的距离、构成第1基板701以及第2基板(例如第2基板106)的材料以及第1电极704这样的,振动发电器700的上述以外的结构可以使用第1实施方式或第2实施方式所示的结构。
弹性结构体702X与弹性结构体702Y的弹性常数可以如上所述相同,或者,如果构成为对于X轴方向以及Y轴方向中的某一个方向的共振频率,使另一个方向的共振频率与之相差±15%以上,则也可以不同。
进行关于以上述方式构成的振动发电器700的动作的说明。
在施加来自外部的力或振动后,振动发电器700的弹性结构体702X及/或702Y进行伸缩,据此第1基板701在X轴方向或Y轴方向上振动,对第2基板(此处将第2基板106作为例子使用)进行相对移位。
该相对移位带来第1电极704的导体部704a与第2电极105的导体部105a的重合面积的增减。利用该重合面积的增减,被引导至第2电极105的电荷量发生增减。将该电荷的增减作为电能取出,以产生电力。另外,只要第1基板701持续振动,该重合面积的增减便会持续。
实施方式3涉及的振动发电器700与实施方式1涉及的振动发电器相比,能够取得以下更为优异的效果。
(1)能够分离地向振动体施加X轴方向以及与X轴垂直的方向(Y轴方向)的振动,能够不易受到另一个方向的振动(或弹性结构体)的影响。
(2)X轴方向以及Y轴方向的一个方向的振动对另一个方向的振动而言,移位受到限定,因此在振动能量与电能的转换时不易受到另一个方向的振动的影响。
对上述(1)的效果在下面进行更加详细的说明。
在从外部提供了X轴方向的振动的情况下,振动经由固定结构体703、弹性结构体702Y传递到可动结构体705。但是,弹性结构体702Y是在Y轴方向上强制性弹性变形的结构,因此弹性结构体702Y几乎不进行由外部提供的振动引起的弹性变形,由外部提供的振动经由弹性结构体702Y以及可动结构体705原样传递到弹性结构体702X。并且,使弹性结构体702X振动(在某些频率处使之共振),以使该振动传递到第1基板701。即,通过使第1基板701不受弹性结构体702Y影响地振动,振动发电器700犹如仅以X轴方向的振动进行动作的发电器那样动作。
相反,在从外部提供了Y轴方向的振动的情况下,振动经由固定结构体703传递到弹性结构体702Y。并且使弹性结构体702Y振动(在某些频率处使之共振),该振动传递到可动结构体705。此处,通过使弹性结构体702X采用在X轴方向上强制性弹性变形的结构,传递到可动结构体705的振动经由弹性结构体702X原样传递到第1基板701,犹如可动结构体705、弹性结构体702X、第1基板701为一个基板那样成为一体而振动。
即,通过使第1基板701不受弹性结构体702X影响地振动,振动发电器700作为仅以Y轴方向的振动进行动作的发电器动作。
换言之,与实施方式1的振动发电器相比,本实施方式的振动发电器700能够更明确地分离X轴方向、Y轴方向的振动地进行动作。
此外,对于如上所述仅在X轴方向或Y轴方向中的某一个方向上强制性弹性变形的弹性结构体的一例,使用图10在后文中描述。
接着,对上述(2)的效果进行说明。
如图8所示,固定结构体703与可动结构体705在X轴方向上以狭窄间隔配置。另外,可动结构体705与第1基板701在Y轴方向上以狭窄间隔配置。通过以此方式进行配置,即使X轴方向以及Y轴方向中的一个方向的振动受到另一个方向的振动的影响,也能使另一个方向的振动的移位较小,能够确保电极的重合程度,防止发电效率降低。
另外,与实施方式1(图5)所示的相同,第1基板701也可以是矩形(长方形)。在此情况下,较为理想的是,第2基板同样也是矩形。或者,只要导电部配置为交错格子状,第1基板701也可以是其他形状,在此情况下也能取得与本实施方式相同的效果,这一点自不待言。
此外,在本实施方式中,较为理想的是,驻极体采用硅氧化膜。这是因为,硅氧化膜既能带有正电荷,也能带有负电荷。因此,通过将第1电极704例如如图2所示那样配置两组,并且使属于一个电极群的驻极体带有正电荷,使属于另一个电极群的驻极体带有负电荷,则能够进一步提高振动产生的输出电力。
另外,导电部也可以不是正方形,而是长方形。在此情况下,为了在X轴方向以及Y轴方向上得到相同的发电量,根据长方形的长边或短边的长度,选择第1基板(或第2基板)的X轴方向以及Y轴方向的振动振幅,以使重合面积的最大值为100,最小值为0。
在图8所示的实施方式中,使具有驻极体的第1基板701振动,固定第2基板。但是,将具有驻极体的第1基板固定在固定结构体703上,将第2基板(例如第2基板106)与弹性结构体702X连接并使之振动的实施方式当然也包括在本实施方式中。
变形例
图9是作为本发明的实施方式3的变形例的振动发电器800的第1结构体807的俯视图。
与图8相同,在图9中,为了便于理解,示出了形成于第1结构体807的第1电极804。在实际的振动发电器800中,第1电极804与配置在第1基板下面的第2电极是相向的,因此不会显露在从上面观察时的外表面上。
省略图9中振动发电器800使用的第2结构体的记载。振动发电器800的第2结构体例如可以使用本说明书中所示的任意一种第2结构体,包括与图1所示的振动发电器100的第2结构体108具有相同结构的结构体在内。
与振动发电机700不同的是,振动发电器800中,固定结构体803与第1基板801之间具有第1可动结构体805a与第2可动结构体805b这两个可动结构体。
第1可动结构体805a经由对Y轴方向振动做出贡献的弹性结构体802Y2大致平行于Y轴地与固定结构体803连接,并且经由对Y轴方向振动做出贡献的另一弹性结构体802Y1大致平行于Y轴地与第2可动结构体805b连接。
第2可动结构体805b经由对X轴方向振动做出贡献的弹性结构体802X大致平行于X轴地与位于内侧的第1基板801连接。
上述结构以外的包括第1基板801以及第1电极804在内的振动发电器800的其他结构与振动发电机700相同便可。
除了振动发电器700具有的优点之外,振动发电器800具有能够增加在Y轴方向的振动中共振的频率的数目的优点。
对于Y轴方向的振动,弹性结构体802Y1与弹性结构体802Y2这两个弹性结构体做出贡献。
因此,关于Y轴方向的振动,能够具有两个不同的共振频率。
这是因为,对于Y轴方向,由第1基板801、弹性结构体802X、可动结构体805b构成的质点与由可动结构体805a构成的质点通过弹性结构体802Y1、802Y2连接,由此两个质点能够独立振动。
在Y轴方向上具有两个不同频率意味着,从外部对振动发电器800施加振动时,对于来自外部的振动,在更广的频域中产生Y轴方向的共振。因此,能够在更广的频域中对外部振动进行发电。
关于Y轴方向的两个共振频率,较为理想的是,例如以图7的步行的例子为基础,通过调整弹性结构体802Y1、802Y2的弹性常数,或者可动结构体805a、805b的质量,将共振频率设定为与基本频率和基本频率×2这两个频率一致。通过以此方式进行设定,能够使第1基板801幅度更大地进行移位,能够从振动发电器800输出更多的电力。
另外,以图7的步行时的振动例为基础,通过调整弹性结构体802Y1、802Y2的弹性常数,或者可动结构体805a、805b的质量,可以将由第1基板801、弹性结构体802X、可动结构体805b的质量与弹性结构体802Y1的弹性常数决定的共振频率设定为不同于由第1基板801、弹性结构体802X、802Y1、可动结构体805a、805b的质量与弹性结构体802Y2的弹性常数决定的共振频率。通过以此方式进行设定,能够使第1基板801对于多个来自外部的振动进行移位,能够在更广的频域中从振动发电器800输出电力。
此外,还可以通过例如增加可动结构体的数目等方法,配置在X轴方向上配置的弹性结构体,使X轴方向振动的共振频率为两个以上。另外,还可以通过例如增加可动结构体、弹性结构体的数目等方法,使Y轴方向的共振频率为三个以上。
图10是包括仅在X轴方向或Y轴方向中的某一个方向上弹性变形的弹性结构体的具体例子的、振动发电器810的第1结构体817的俯视图。
振动发电器810具有与图9所示的振动发电器800相同的结构,对于具有相同结构的部件附加与图9相同的编号。
另外,为了使下面详细描述的弹性结构体的配置容易识别,在图10中,对固定结构体803、第1可动结构体805a、第2可动结构体805b以及弹性结构体812X、812Y1、812Y2附加阴影以进行显示。
弹性结构体812X具有在Y轴方向上延伸的细长的梁结构(在图10的例子中配置在4个位置处),弹性结构体812Y1以及弹性结构体812Y2具有在X轴方向上延伸的细长的梁结构(在图10的例子中弹性结构体812Y1以及弹性结构体812Y2分别配置在4个位置处)。
通过这种梁结构发生弯曲,弹性结构体812X能够在X轴方向上弹性变形,但在Y轴方向上几乎不会弹性变形。同样,弹性结构体812Y1、812Y2能够在X轴方向上Y轴方向上弹性变形,但在X轴方向上几乎不会弹性变形。另外,弹性结构体812X、812Y1、812Y2对于Z轴方向,通过例如使梁的厚度(Z方向的宽度)相对于X轴方向(关于812X)或Y轴方向(关于812Y1以及812Y2)的梁的宽度而言非常地大,能够使弹性变形较小。
(实施方式4)
作为本发明的实施方式3,说明振动发电装置。图11是振动发电装置500的模块图。在图11中,振动发电器是实施方式1至实施方式3中任一个所示的振动发电器。
在图11中,振动发电装置500包括振动发电器501、整流电路502、电压转换电路503、输出切换电路504、蓄电电路505以及电压控制电路506。从振动发电器501输出的交流电压由整流电路502转换为直流电压。直流电压被输入电压转换电路503,进行电压转换,从而达到振动发电装置500的输出电压水平。转换后的电压由输出切换电路504输入电压控制电路506或蓄电电路505。在电压控制电路506中,以保持输出电压恒定为目的进行电压控制并输出。
参照图12对以上述方式构成的振动发电装置500的动作进行说明。图12表示从振动发电装置500的各电路输出的电压波形。图12(a)是振动发电器501的输出电压波形。在本实施方式中,为了简单起见,假定在第1基板的移位方向发生变化时也效率较好地进行发电,利用由振动产生的重合面积的增减输出正弦波电压。此处,振动发电器501的输出电压的电压振幅Vg根据第1基板的振动振幅、第1基板与第2基板之间的间隙、驻极体的保持电荷量以及从振动发电器501的角度看的外部阻抗的大小等而不同。从振动发电器501输出的交流电压由整流电路502转换为直流电压VDC1(图12(b))。VDC1由电压转换电路503进行电压转换,从而达到振动发电装置500的输出电压水平VDC2。
输出切换电路504在无须从振动发电装置500输出电压的情况下,起到将来自电压转换电路503的输出不发送到电压控制电路506,而是发送到蓄电电路505的作用。蓄电电路505积蓄发电产生的电力。输出切换电路504在需要来自振动发电装置500的电压输出的情况下切换电路,以从电压控制电路506输出电力。输出切换电路504还在发电量较小的情况下切换电路,以输出蓄电电路505中积蓄的电力。来自输出切换电路504的输出由电压控制电路506控制为所需的输出电压VOUT,向振动发电装置500外部输出(图12(c))。
如前所述,振动发电器500的输出电压由于各种原因而发生变动。为了与此对应,较为理想的是,将VDC2设定为比最终输出的电压VOUT高若干值的电压。通过以此方式进行设定,对于微小的电压变动,仍能将输出电压保持恒定。作为例子,对以1.8V的电压输出电力的情况进行说明。在此情况下,将VDC2设定为1.8V,并且振动发电器的输出电压减少后,振动发电器500的输出电压也会减少。但是,例如,若将VDC2设定为2V,则对于0.2V的电压减少仍能进行足够控制。因此,通过设定为VDC2>VOUT,能够使输出电压保持恒定,稳定地供给电力。
(实施方式5)
图13是搭载于汽车的车胎气压监视系统中使用的通信装置的模块图。在图13中,发电装置表示实施方式4的振动发电装置。
在图13中,通信装置600包括:利用振动进行发电的发电装置601、作为通信装置的主电源或发电装置601的辅助电源的电池602、切换来自发电装置601的输出与来自电池602的输出并对电路部进行供给的电源控制部603、测量车胎的气压的压力传感器604、处理来自压力传感器的输出并传递给通信部的处理部605、将来自处理部605的输入信号转换为高频信号后传递到天线607的通信部606、以及天线607。
对以上述方式构成的通信装置600的动作进行说明。
压力传感器604、处理部605以及通信部606动作所需的电力经由电源控制部603从发电装置601或电池602供给。压力传感器604测量车胎的气压,将测量结果转换为电压信号后向处理部605输入。由处理部605处理后的信号向通信部606输入,作为高频信号从天线607传播。
在以此方式工作的通信装置中,在将振动发电装置作为通信装置的电源利用的情况下,能够减少电池更换等维护工作的次数,或者能够无须进行电池更换。这提高了通信装置本身的便利性,并且对节省资源以及环境保护也做出了贡献。
在本实施方式中,示意了振动发电装置与电池共同使用的例子。来自振动发电装置的输出电力若能足以提供压力传感器、处理部、通信部等电路中消耗的电力以及通信所需的电力,则可仅使用振动发电装置作为电源。在此情况下,不需要电池以及电源控制部,在设备的小型化方面是有利的。
在本实施方式中,示意了使用实施方式1至3所示的振动发电器以及振动发电装置的例子。只要振动发电器能够将来自外部的力或振动转换为电力,也可以是其他振动发电器,在此情况下能够取得相同的效果,这一点自不待言。
本发明的振动发电器以及振动发电装置也可以在通信装置以外的电设备中作为主电源或副电源使用。具体而言,具体而言,能够在手表、体温计、温度计、计步器、遥控器、便携音频产品、无钥匙进入(keyless entry)用便携设备、助听器、心脏起搏器、便携电话以及游戏机中使用。
在本说明书公开的实施方式中,应当认为,所有的结构要素均为例示而非限制。本发明的范围并不由上述说明表示,而是由权利要求的范围表示,意图包括与权利要求的范围同等的意义以及范围内的所有变形。
产业上的利用可能性
本发明的振动发电器能够在X轴方向以及Y轴方向这两个方向上振动以进行发电,并且,在任一方向上都能以与以往的一轴方向的振动发电器相同的输出进行发电,因此作为静电感应型振动发电器是有用的。另外,本发明的振动发电器在小电力的无线通信模块等的用途中是非常有用的。
符号说明:
100振动发电装置;101第1基板;102X、102Y弹性结构体;103固定结构体;104第1电极;105第2电极;106第2基板;107第1结构体;108第2结构体;500振动发电装置;600通信装置。
Claims (19)
1.一种振动发电器,其特征在于包括:
在第1基板上形成的第1电极,以及
在第2基板上形成的第2电极;
所述第1电极以及所述第2电极中的任意一者能够在与所述第1基板以及第2基板平行的平面内的第1轴方向以及与所述第1轴方向垂直的第2轴方向上振动;
所述第1电极具有在所述第1基板上具有与所述第1轴方向以及所述第2轴方向平行的边的长方形或正方形的导体部配置为交错格子状的结构;
所述第2电极具有在所述第2基板上具有与所述第1轴方向以及所述第2轴方向平行的边的长方形或正方形的导体部配置为交错格子状的结构;
所述第1电极以及所述第2电极中的任意一者包括保持电荷的膜;
所述第1电极与所述第2电极以在它们之间具有间隙的状态相互相向。
2.根据权利要求1所述的振动发电器,其特征在于:
所述第2电极由所述导体部配置为交错格子状的电极群A以及电极群B构成,所述电极群B在所述电极群A中所述导体部不存在的各个格子中,具有与所述第1轴方向以及所述第2轴方向平行的边的长方形或正方形的导体部配置为交错格子状;
所述电极群A与所述电极群B不进行电连接。
3.根据权利要求1或2中任一项所述的振动发电器,其特征在于:
还包括固定结构体;
所述固定结构体与所述第1基板利用弹性结构体连接;
所述第2基板与所述固定结构体被固定;
在与所述第1轴方向平行的方向上使所述第1基板振动的弹性结构体的所述第1轴方向的弹性常数与在与所述第2轴方向平行的方向上使所述第1基板振动的弹性结构体的所述第2轴方向的弹性常数相互不同。
4.根据权利要求1或2中任一项所述的振动发电器,其特征在于:
还包括固定结构体;
所述固定结构体与所述第2基板利用弹性结构体连接;
所述第1基板与所述固定结构体被固定;
在与所述第1轴方向平行的方向上使所述第2基板振动的弹性结构体的所述第1轴方向的弹性常数与在与所述第2轴方向平行的方向上使所述第2基板振动的弹性结构体的所述第2轴方向的弹性常数相互不同。
5.根据权利要求1或2中任一项所述的振动发电器,其特征在于:
还包括固定结构体和配置在所述固定结构体与所述第1基板之间的可动结构体;
所述可动结构体与所述第1基板利用第1弹性结构体在与所述第1轴方向平行的方向上连接;
所述固定结构体与所述可动结构体利用第2弹性结构体在与所述第2轴方向平行的方向上连接;
所述第2基板与所述固定结构体被固定。
6.根据权利要求1至5中任一项所述的振动发电器,其特征在于:
所述第1电极或所述第2电极中的任意一者的所述第1轴方向的振动的共振频率即第1共振频率与所述任意一者的电极的所述第2轴方向的振动的共振频率即第2共振频率不同。
7.根据权利要求6所述的振动发电器,其特征在于:
所述第1共振频率与所述第2共振频率至少相差20%。
8.根据权利要求1至7中任一项所述的振动发电器,其特征在于:
所述第2基板中形成所述第2电极的区域的外接面积大于所述第1基板中形成所述第1电极的区域的外接面积。
9.一种振动发电器,其特征在于包括:
在第1基板上形成的第1电极,以及
在第2基板上形成的第2电极;
所述第1电极以及所述第2电极中的任意一者能够在与所述第1基板以及第2基板平行的平面内的第1轴方向以及与所述第1轴方向垂直的第2轴方向中的至少一者上振动;
所述第1电极具有在所述第1基板上配置多个导体部的结构;
所述第2电极具有在所述第2基板上配置多个导体部的结构;
所述第1电极以及所述第2电极中的任意一者包括保持电荷的膜;
所述第1电极与所述第2电极以在它们之间具有间隙的状态相互相向;
所述第2基板中形成所述第2电极的区域的外接面积大于所述第1基板中形成所述第1电极的区域的外接面积。
10.一种振动发电器,其特征在于包括:
在第1基板上形成的第1电极,以及
在第2基板上形成的第2电极;
所述第1电极以及所述第2电极中的任意一者能够在与所述第1基板以及第2基板平行的平面内的第1轴方向以及与所述第1轴方向垂直的第2轴方向中的至少一者上振动;
所述第1电极具有在所述第1基板上配置多个导体部的结构;
所述第2电极具有在所述第2基板上配置多个导体部的结构;
所述第1电极以及所述第2电极中的任意一者包括保持电荷的膜;
所述第1电极与所述第2电极以在它们之间具有间隙的状态相互相向;
所述第1基板中形成所述第1电极的区域的外接面积大于所述第2基板中形成所述第2电极的区域的外接面积。
11.根据权利要求1至10中任一项所述的振动发电器,其特征在于:
所述第1电极或第2电极至少包括膜状导电部与硅氧化膜,所述膜状导电部作为所述导电部,所述硅氧化膜作为所述保持电荷的膜;
所述膜状导电部在所述第1基板或所述第2基板上形成;
所述硅氧化膜的上面、下面以及侧面被绝缘膜覆盖;
所述导电部全部电连接。
12.根据权利要求11所述的振动发电器,其特征在于:
在包括所述硅氧化膜的所述第1电极或所述第2电极中,所述硅氧化膜作为多个独立的带电部形成,所述第1电极或所述第2电极由包括保持正电荷的带电部的电极群以及包括保持负电荷的带电部的电极群构成。
13.根据权利要求1至12中任一项所述的振动发电器,其特征在于:
所述第1基板与所述第2基板之间的所述间隙的距离小于构成所述第1电极的所述导体部以及构成所述第2电极的所述导体部中最小的导体部的短边。
14.一种发电装置,其特征在于:
包括权利要求1至13中任一项所述的振动发电器。
15.一种发电装置,其特征在于:
包括权利要求2所述的振动发电器;
来自所述电极群A的输出端子与来自所述电极群B的输出端子分别与全波整流电路连接。
16.一种振动发电装置,其特征在于包括:
权利要求1至13中任一项所述的振动发电器;
对来自所述振动发电器的交流输出电压进行整流并转换为直流电压的整流电路;
将从所述整流电路输出的直流电压转换为指定的电压水平的电压转换电路;
在不需要来自振动发电装置的输出的情况下,积蓄由振动发电器发电产生的电力的蓄电电路;
将来自所述电压转换电路或所述蓄电电路的输出电压控制为指定的电压的电压控制电路;以及
将来自所述电压转换电路的输出被送往的电路切换为蓄电电路或电压控制电路的输出切换电路。
17.根据权利要求16所述的振动发电装置,其特征在于:
来自所述电压转换电路的输出电压被设定为高于来自所述电压控制电路的输出电压。
18.一种通信装置,其特征在于:
包括权利要求14至17中任一项所述的发电装置。
19.根据权利要求18所述的通信装置,其特征在于:
还包括电池。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008249823 | 2008-09-29 | ||
JP2008-249823 | 2008-09-29 | ||
PCT/JP2009/004983 WO2010035507A1 (ja) | 2008-09-29 | 2009-09-29 | 振動発電器、振動発電装置及び振動発電装置を搭載した通信装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN102007679A true CN102007679A (zh) | 2011-04-06 |
Family
ID=42059518
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN200980113307XA Pending CN102007679A (zh) | 2008-09-29 | 2009-09-29 | 振动发电器、振动发电装置及搭载了振动发电装置的通信装置 |
Country Status (4)
Country | Link |
---|---|
US (1) | US8674582B2 (zh) |
JP (1) | JP4663035B2 (zh) |
CN (1) | CN102007679A (zh) |
WO (1) | WO2010035507A1 (zh) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102297068A (zh) * | 2011-07-25 | 2011-12-28 | 深圳大学 | 波浪能发电装置 |
CN105898661A (zh) * | 2016-06-14 | 2016-08-24 | 电子科技大学 | 一种可自发充电的助听器 |
CN110546875A (zh) * | 2017-04-05 | 2019-12-06 | 三角力量管理株式会社 | 发电元件以及发电装置 |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011151944A (ja) | 2010-01-21 | 2011-08-04 | Panasonic Corp | 発電装置 |
JP5703627B2 (ja) * | 2010-08-23 | 2015-04-22 | セイコーエプソン株式会社 | 静電誘導発電デバイス、静電誘導発電機器 |
JP5844741B2 (ja) * | 2010-11-25 | 2016-01-20 | 日本碍子株式会社 | 静電誘導型機械電気変換素子 |
JP2012138514A (ja) * | 2010-12-27 | 2012-07-19 | Asahi Glass Co Ltd | 携帯装置 |
WO2013057897A1 (ja) * | 2011-10-19 | 2013-04-25 | パナソニック株式会社 | 振動発電器、回転体および通信装置 |
JP5504298B2 (ja) | 2012-02-22 | 2014-05-28 | アオイ電子株式会社 | 振動発電素子およびその製造方法 |
JP6214054B2 (ja) * | 2012-04-17 | 2017-10-18 | 国立大学法人埼玉大学 | エレクトレット構体及びその製造方法並びに静電誘導型変換素子 |
DE102012215600B4 (de) * | 2012-09-03 | 2019-10-31 | Institut für Mikroelektronik- und Mechatronik-Systeme gGmbH | Kapazitiver Energiewandler und Verfahren zum Betreiben eines kapazitiven Energiewandlers |
JP2017210167A (ja) * | 2016-05-26 | 2017-11-30 | スター精密株式会社 | 振動発電装置 |
JP6677125B2 (ja) * | 2016-08-24 | 2020-04-08 | 株式会社デンソー | 半導体装置 |
JP6932378B2 (ja) * | 2017-04-05 | 2021-09-08 | 株式会社トライフォース・マネジメント | 発電素子および発電装置 |
CN109511261B (zh) * | 2017-07-14 | 2021-05-04 | 株式会社村田制作所 | 振动构造、振动装置和触觉提示装置 |
EP3733312B1 (en) * | 2018-12-27 | 2023-08-23 | Murata Manufacturing Co., Ltd. | Vibrating structure and vibration generating device |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002209298A (ja) * | 2001-01-11 | 2002-07-26 | Seiko Epson Corp | コンデンサマイクロホンの製造方法、コンデンサマイクロホンおよび電子機器 |
US6657442B1 (en) * | 1998-06-24 | 2003-12-02 | Valtion Teknillinen Tutkimuskeskus | Micromechanical alternating and direct voltage reference apparatus |
CN1883020A (zh) * | 2003-11-20 | 2006-12-20 | 松下电器产业株式会社 | 驻极体和驻极体电容器 |
US20080048521A1 (en) * | 2006-07-28 | 2008-02-28 | Sanyo Electric Co., Ltd. | Electric power generator |
Family Cites Families (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4509527A (en) * | 1983-04-08 | 1985-04-09 | Timex Medical Products Corporation | Cardio-respiration transducer |
AU649894B2 (en) * | 1991-11-25 | 1994-06-02 | Shigeyuki Yasuda | Electric power generating element |
JP3019248B2 (ja) * | 1995-11-17 | 2000-03-13 | 重雄 山本 | バッテリーチャージャー付ポータブル電源装置 |
EP1512216A2 (en) * | 2002-06-07 | 2005-03-09 | California Institute Of Technology | Electret generator apparatus and method |
AU2003238881A1 (en) | 2002-06-07 | 2003-12-22 | California Institute Of Technology | Method and resulting device for fabricating electret materials on bulk substrates |
JP4264103B2 (ja) * | 2004-03-03 | 2009-05-13 | パナソニック株式会社 | エレクトレットコンデンサーマイクロホン |
JP2006161036A (ja) * | 2004-11-09 | 2006-06-22 | Kanazawa Univ | 共重合法による変性フェノール樹脂の製造方法及び変性フェノール樹脂 |
JP4670050B2 (ja) * | 2004-11-26 | 2011-04-13 | 国立大学法人 東京大学 | エレクトレット及び静電誘導型変換素子 |
JP4871642B2 (ja) * | 2006-05-19 | 2012-02-08 | 国立大学法人 東京大学 | 静電誘導型変換素子 |
JP4229970B2 (ja) * | 2006-07-28 | 2009-02-25 | 三洋電機株式会社 | 発電装置、発電装置を搭載した電気機器、及び発電装置を搭載した通信装置 |
US7956497B2 (en) * | 2006-09-29 | 2011-06-07 | Sanyo Electric Co., Ltd. | Electret device and electrostatic induction conversion apparatus comprising the same |
JP2008131753A (ja) * | 2006-11-21 | 2008-06-05 | Alps Electric Co Ltd | 静電アクチュエータおよびその制御方法 |
JP2008191780A (ja) * | 2007-02-01 | 2008-08-21 | Matsunaga Seisakusho:Kk | 自然エネルギーによって発電された電力の変換装置 |
JP5033561B2 (ja) * | 2007-09-26 | 2012-09-26 | 三洋電機株式会社 | 静電発電装置 |
US7880246B2 (en) * | 2007-11-29 | 2011-02-01 | Stichting Imec Nederland | Microstructure with enlarged mass and electrode area for kinetic to electrical energy conversion |
US8076893B2 (en) * | 2008-09-04 | 2011-12-13 | The Board Of Trustees Of The University Of Illinois | Displacement actuation and sensing for an electrostatic drive |
JP5205193B2 (ja) * | 2008-09-25 | 2013-06-05 | 三洋電機株式会社 | 静電誘導型発電装置 |
-
2009
- 2009-09-29 JP JP2010530750A patent/JP4663035B2/ja not_active Expired - Fee Related
- 2009-09-29 US US12/937,766 patent/US8674582B2/en active Active
- 2009-09-29 CN CN200980113307XA patent/CN102007679A/zh active Pending
- 2009-09-29 WO PCT/JP2009/004983 patent/WO2010035507A1/ja active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6657442B1 (en) * | 1998-06-24 | 2003-12-02 | Valtion Teknillinen Tutkimuskeskus | Micromechanical alternating and direct voltage reference apparatus |
JP2002209298A (ja) * | 2001-01-11 | 2002-07-26 | Seiko Epson Corp | コンデンサマイクロホンの製造方法、コンデンサマイクロホンおよび電子機器 |
CN1883020A (zh) * | 2003-11-20 | 2006-12-20 | 松下电器产业株式会社 | 驻极体和驻极体电容器 |
US20080048521A1 (en) * | 2006-07-28 | 2008-02-28 | Sanyo Electric Co., Ltd. | Electric power generator |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102297068A (zh) * | 2011-07-25 | 2011-12-28 | 深圳大学 | 波浪能发电装置 |
CN102297068B (zh) * | 2011-07-25 | 2013-03-20 | 深圳大学 | 波浪能发电装置 |
CN105898661A (zh) * | 2016-06-14 | 2016-08-24 | 电子科技大学 | 一种可自发充电的助听器 |
CN110546875A (zh) * | 2017-04-05 | 2019-12-06 | 三角力量管理株式会社 | 发电元件以及发电装置 |
Also Published As
Publication number | Publication date |
---|---|
US20110109195A1 (en) | 2011-05-12 |
WO2010035507A1 (ja) | 2010-04-01 |
JPWO2010035507A1 (ja) | 2012-02-23 |
JP4663035B2 (ja) | 2011-03-30 |
US8674582B2 (en) | 2014-03-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102007679A (zh) | 振动发电器、振动发电装置及搭载了振动发电装置的通信装置 | |
CN102197449B (zh) | 驻极体电极、使用了它的促动器、振动发电器及振动发电装置、以及安装了振动发电装置的通信装置 | |
US8803401B2 (en) | Vibration power generator, vibration power generating device, and electronic device and communication device that have the vibration power generating device installed | |
JP5063816B2 (ja) | 振動発電器、振動発電装置、及び振動発電装置を搭載した電子機器と通信装置 | |
US11552579B2 (en) | Vibrational energy harvester element | |
US8716916B2 (en) | Vibration generator, vibration generation device, and electronic equipment and communication device provided with vibration generation device | |
JP5703627B2 (ja) | 静電誘導発電デバイス、静電誘導発電機器 | |
US10734922B2 (en) | Power generating element and power generating device | |
CN102959851B (zh) | 振动发电器、振动发电装置、及搭载有振动发电装置的电气设备和通信装置 | |
US20140339954A1 (en) | Vibration power generator | |
JP2013198314A (ja) | 振動発電器 | |
JP2013188080A (ja) | 振動発電器 | |
CN112042105B (zh) | 振动发电装置 | |
JP2014128040A (ja) | エレクトレット電極、それを用いた振動発電器および振動発電装置、ならびに振動発電装置を搭載した通信装置と、エレクトレット電極の製造方法 | |
JP2014075951A (ja) | エレクトレット電極、それを用いた振動発電器および振動発電装置、ならびに振動発電装置を搭載した通信装置と、エレクトレット電極の製造方法 | |
WO2013145553A1 (ja) | 振動発電器 | |
JP2022082718A (ja) | 振動発電素子 | |
Häggström et al. | Interleaved Switch Harvesting on Inductor: Non-linear extraction, action and reaction |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20110406 |