CN102006636B - Method for controlling speed rate of reverse link based on channel quality - Google Patents
Method for controlling speed rate of reverse link based on channel quality Download PDFInfo
- Publication number
- CN102006636B CN102006636B CN2010105684061A CN201010568406A CN102006636B CN 102006636 B CN102006636 B CN 102006636B CN 2010105684061 A CN2010105684061 A CN 2010105684061A CN 201010568406 A CN201010568406 A CN 201010568406A CN 102006636 B CN102006636 B CN 102006636B
- Authority
- CN
- China
- Prior art keywords
- reverse link
- value
- rate control
- frab
- channel quality
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 230000002441 reversible effect Effects 0.000 title claims abstract description 106
- 238000000034 method Methods 0.000 title claims abstract description 37
- 230000005540 biological transmission Effects 0.000 claims abstract description 30
- 238000013468 resource allocation Methods 0.000 claims abstract description 13
- 238000013507 mapping Methods 0.000 claims abstract description 4
- 230000007774 longterm Effects 0.000 claims description 10
- 230000003595 spectral effect Effects 0.000 claims description 8
- 238000005516 engineering process Methods 0.000 description 5
- 230000007246 mechanism Effects 0.000 description 5
- 230000008569 process Effects 0.000 description 4
- 230000007423 decrease Effects 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 230000011664 signaling Effects 0.000 description 2
- 241000143437 Aciculosporium take Species 0.000 description 1
- 241001448301 Ficus variegata Blume, 1825 Species 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000007726 management method Methods 0.000 description 1
- 238000010295 mobile communication Methods 0.000 description 1
- 230000008092 positive effect Effects 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Images
Classifications
-
- Y02B60/50—
Landscapes
- Mobile Radio Communication Systems (AREA)
Abstract
本发明涉及一种基于信道质量的反向链路速率控制方法,在由接入终端、无线接入网、分组核心网和IP网络组成的系统中,通过将激活接入终端依导频功率划分等级,并引入加权因子的方法,灵活调整T2P流的分配,包括以下步骤:1)预设系统负载门限值,计算反向链路负载因子;2)将计算的反向链路负载因子与负载门限值进行比较,得出RAB值;3)接入终端通过当前RAB值和接入终端反向信道质量好坏情况,调整T2P资源分配;4)接入终端依分配的T2P资源与数据速率的映射表调整传输速率。有着更高的系统吞吐量、更低的终端传输功率和更小的系统负载,提高了资源利用率;同时避免了信道质量较差的终端因提高发射功率而造成系统的不稳定。
The present invention relates to a reverse link rate control method based on channel quality. In a system composed of an access terminal, a wireless access network, a packet core network and an IP network, the active access terminal is divided according to the pilot power level, and introduce a weighting factor method to flexibly adjust the distribution of T2P flows, including the following steps: 1) Preset the system load threshold and calculate the reverse link load factor; 2) Combine the calculated reverse link load factor with The load threshold value is compared to obtain the RAB value; 3) The access terminal adjusts the T2P resource allocation according to the current RAB value and the quality of the reverse channel of the access terminal; 4) The access terminal adjusts the T2P resource allocation according to the allocated T2P resources and data The rate mapping table adjusts the transmission rate. With higher system throughput, lower terminal transmission power and smaller system load, resource utilization is improved; at the same time, it avoids system instability caused by terminals with poor channel quality due to increased transmission power.
Description
技术领域 technical field
本发明涉及一种基于信道质量的反向链路速率控制方法,适用于第三代移动通信技术cdma2000 1x EV-DO(Evolution-Data Optimized,标准—数据优化)反向链路速率控制。The invention relates to a reverse link rate control method based on channel quality, which is suitable for the third generation mobile communication technology cdma2000 1x EV-DO (Evolution-Data Optimized, standard-data optimized) reverse link rate control.
背景技术 Background technique
cdma2000是3G三大主流技术之一,随着Internet与信息技术的高速发展,人们对无线数据业务的需求日益增长,数据业务向多样性、大容量性和非对称性方向快速发展,而cdma2000 1x的数据业务能力非常有限,不能满足未来业务需求。cdma2000 1x EV-DO主要完成cdma2000 1x系统的高速数据传输功能,能够解决高速不对称分组数据业务的无线传输问题,1x EV-DO作为cdma2000在数据功能方向上的延伸,其关键技术——速率控制技术受到关注。cdma2000 is one of the three mainstream technologies of 3G. With the rapid development of Internet and information technology, people's demand for wireless data services is increasing day by day, and data services are developing rapidly in the direction of diversity, large capacity and asymmetry. The data business capabilities of the company are very limited and cannot meet future business needs. cdma2000 1x EV-DO mainly completes the high-speed data transmission function of the cdma2000 1x system, and can solve the problem of wireless transmission of high-speed asymmetric packet data services. 1x EV-DO is an extension of cdma2000 in the direction of data functions. Its key technology - rate control Technology gets attention.
CDMA是自干扰系统,为保证基站的成功解调,就必须对所有用户的发射功率进行控制。由于1x EV-DO反向业务信道的发射功率由终端的传输速率和事先确定好的业务信道与导频信道的功率比来确定,终端的反向数据传输速率与对应的发射功率成线性关系。因此,通过反向速率控制可确保系统反向正常工作。1x EV-DO反向链路速率控制过程由基站和终端相互配合完成。基站侧通过反向链路负载的测量和过载判决生成RAB(ReverseActivity Bit,反向激活比特)值,终端侧根据更新的RAB值和当前速率进行速率控制。1xEV-DO RTCMAC子类型3速率控制算法的控制对象是T2P。反向链路的功率控制保证了到达基站接收机的各终端的导频强度基本一致,通过T2P来确定终端的发射功率,将T2P作为控制变量可以更直接地控制终端的反向发射功率,从而更为精细地控制扇区的反向负载。T2P机制将扇区长期的负载情况考虑在内,不仅可以将反向负载稳定地保持在一个较高水平,而且能够在系统负载较轻时,使终端快速提高自身传输速率,从而有效地降低延迟并提高扇区的吞吐量。CDMA is a self-interference system. In order to ensure the successful demodulation of the base station, it is necessary to control the transmission power of all users. Since the transmission power of the 1x EV-DO reverse traffic channel is determined by the transmission rate of the terminal and the power ratio between the traffic channel and the pilot channel determined in advance, the reverse data transmission rate of the terminal has a linear relationship with the corresponding transmission power. Therefore, reverse rate control ensures that the system works properly in reverse. The 1x EV-DO reverse link rate control process is completed by the cooperation between the base station and the terminal. The base station side generates a RAB (ReverseActivity Bit, reverse activation bit) value through reverse link load measurement and overload judgment, and the terminal side performs rate control based on the updated RAB value and the current rate. The control object of the 1xEV-DO RTCMAC subtype 3 rate control algorithm is T2P. The power control of the reverse link ensures that the pilot strength of each terminal arriving at the base station receiver is basically the same, and the transmit power of the terminal is determined by T2P. Using T2P as a control variable can more directly control the reverse transmit power of the terminal, thereby More fine-grained control over reverse loading of sectors. The T2P mechanism takes the sector's long-term load into consideration, not only can keep the reverse load at a high level stably, but also enables the terminal to quickly increase its transmission rate when the system load is light, thereby effectively reducing the delay And improve the throughput of the sector.
在T2P令牌桶机制下,终端反向传输速率受令牌桶控制函数gu(.)和gd(.)的影响。gu(.)和gd(.)函数为分段双线性插值函数,该函数与T2PInflow和FRAB取值相关。因此,gd(.),gu(.)的管理是信道资源分配的关键。T2PInflow值确定时,gu(.)随FRAB单调递减,gd(.)随FRAB单调递增。FRAB值确定时,gd(.)/gu(.)随T2PInflow单调递减。这些特性导致最初T2PInflow值不同的终端趋向于相同的T2PInflow值,传输资源均等分配。然而,从系统吞吐量和功率利用率角度考虑,均等分配策略并不是一个好的策略。Under the T2P token bucket mechanism, the reverse transmission rate of the terminal is affected by the token bucket control functions gu(.) and gd(.). The gu(.) and gd(.) functions are piecewise bilinear interpolation functions, which are related to the values of T2PInflow and FRAB. Therefore, the management of gd(.), gu(.) is the key to channel resource allocation. When the T2PInflow value is determined, gu(.) decreases monotonically with FRAB, and gd(.) increases monotonically with FRAB. When the FRAB value is determined, gd(.)/gu(.) decreases monotonically with T2PInflow. These characteristics cause terminals with different initial T2PInflow values to tend to the same T2PInflow value, and the transmission resources are allocated equally. However, from the point of view of system throughput and power utilization, the equal allocation strategy is not a good strategy.
因此,现有技术仍有进一步的改善空间。Therefore, there is still room for further improvement in the prior art.
发明内容 Contents of the invention
本发明针对现有技术不足,提出一种基于信道质量的反向链路速率控制方法,解决了cdma2000 1x EV-DO反向链路T2P机制下速率控制算法信道资源分配不合理、系统效率低的问题。Aiming at the deficiencies in the prior art, the present invention proposes a reverse link rate control method based on channel quality, which solves the problem of unreasonable channel resource allocation and low system efficiency of the rate control algorithm under the cdma2000 1x EV-DO reverse link T2P mechanism question.
本发明的技术方案如下:Technical scheme of the present invention is as follows:
一种基于信道质量的反向链路速率控制方法,在由接入终端、无线接入网、分组核心网和IP网络组成的系统中,通过将激活接入终端依导频功率划分等级,并引入加权因子的方法,调整T2P流的分配,为反向信道质量较好的终端提供更好的数据传输空间,其步骤包括:A reverse link rate control method based on channel quality, in a system composed of an access terminal, a wireless access network, a packet core network and an IP network, by classifying the activated access terminals according to the pilot power, and The method of introducing a weighting factor adjusts the allocation of T2P streams to provide better data transmission space for terminals with better reverse channel quality. The steps include:
1)预设系统负载门限值,测量系统参数,计算反向链路负载因子;1) Preset the system load threshold, measure system parameters, and calculate the reverse link load factor;
2)将计算的反向链路负载因子与负载门限值进行比较,得出RAB值,当反向链路负载因子大于等于负载门限时,设RAB=1;当反向链路负载因子小于负载门限时,设RAB=0;2) Compare the calculated reverse link load factor with the load threshold to obtain the RAB value. When the reverse link load factor is greater than or equal to the load threshold, set RAB=1; when the reverse link load factor is less than When the load threshold is reached, set RAB=0;
3)接入终端通过当前RAB值和接入终端反向信道质量,调整T2P资源分配,具体步骤为:3) The access terminal adjusts the T2P resource allocation through the current RAB value and the reverse channel quality of the access terminal. The specific steps are:
(1)接入终端统计4时隙自身发射导频功率的均值;(1) The access terminal counts the average value of its own transmit pilot power in 4 time slots;
(2)接入终端将上述统计均值与导频门限进行比较,取其差值;(2) The access terminal compares the above statistical mean value with the pilot threshold, and takes the difference;
(3)为该差值赋予加权因子m;(3) Assign a weighting factor m to the difference;
(4)将步骤(3)结果与RTCMAC子类型3速率控制算法计算出的FRAB取和,共同生成新的长期系统负载参考mFRAB;(4) Sum the result of step (3) with the FRAB calculated by the RTCMAC subtype 3 rate control algorithm to jointly generate a new long-term system load reference mFRAB;
当步骤(3)结果与RTCMAC子类型3速率控制算法计算出的FRAB之和小于-1时,取值为-1;When the sum of the result of step (3) and the FRAB calculated by the RTCMAC subtype 3 rate control algorithm is less than -1, the value is -1;
当步骤(3)结果与RTCMAC子类型3速率控制算法计算出的FRAB之和大于1时,取值为1;When the sum of the result of step (3) and the FRAB calculated by the RTCMAC subtype 3 rate control algorithm is greater than 1, the value is 1;
(5)将mFRAB代替原FRAB,作为终端T2P流调整量的参考因素;(5) Replace the original FRAB with mFRAB as a reference factor for terminal T2P flow adjustment;
(6)本轮T2P流分配结束后,返回到步骤1),进行下一子帧T2P流分配;(6) After the current round of T2P stream allocation ends, return to step 1) to allocate the next subframe T2P stream;
4)接入终端依分配的T2P资源与数据速率的映射表调整传输速率。4) The access terminal adjusts the transmission rate according to the allocated T2P resource and data rate mapping table.
所述的基于信道质量的反向链路速率控制方法,其中测量系统参数,计算反向链路负载因子具体采用下述方法实现:在扇区的所有天线处或其中的M个天线处分别测量每码片的导频能量与噪声功率谱密度,每时隙测量一次,并结合不同速率等级对应的数据信道增益,分别计算出各天线处所对应的反向链路负载因子值,取其中的最大值作为最终的反向链路负载因子值,M为大于2的自然数。The method for controlling the rate of the reverse link based on channel quality, wherein the system parameters are measured, and the load factor of the reverse link is calculated by the following method: measure at all antennas in the sector or at the M antennas in the sector respectively The pilot energy and noise power spectral density of each chip are measured once per time slot, and combined with the data channel gains corresponding to different rate levels, the corresponding reverse link load factor values at each antenna are calculated, and the maximum value is taken The value is used as the final reverse link load factor value, and M is a natural number greater than 2.
一种基于信道质量的反向链路速率控制方法,在由接入终端、无线接入网、分组核心网和IP网络组成的系统中,通过将激活接入终端依导频功率划分等级,并引入加权因子的方法,调整T2P流的分配,为反向信道质量较好的终端提供更好的数据传输空间,其步骤包括:A reverse link rate control method based on channel quality, in a system composed of an access terminal, a wireless access network, a packet core network and an IP network, by classifying the activated access terminals according to the pilot power, and The method of introducing a weighting factor adjusts the allocation of T2P streams to provide better data transmission space for terminals with better reverse channel quality. The steps include:
1)预设系统负载门限值,测量系统参数,计算反向链路负载因子;1) Preset the system load threshold, measure system parameters, and calculate the reverse link load factor;
2)将计算的反向链路负载因子与负载门限值进行比较,得出RAB值,当反向链路负载因子大于等于负载门限时,设RAB=1;当反向链路负载因子小于负载门限时,设RAB=0;2) Compare the calculated reverse link load factor with the load threshold to obtain the RAB value. When the reverse link load factor is greater than or equal to the load threshold, set RAB=1; when the reverse link load factor is less than When the load threshold is reached, set RAB=0;
3)接入终端通过当前RAB值和接入终端反向信道质量,调整T2P资源分配,具体步骤为:a、取4时隙RAB统计值生成QRAB,取384时隙RAB统计值生成FRAB;3) The access terminal adjusts the T2P resource allocation according to the current RAB value and the reverse channel quality of the access terminal. The specific steps are: a. Take the RAB statistics of 4 slots to generate QRAB, and take the RAB statistics of 384 slots to generate FRAB;
b、终端统计4时隙自身发射导频功率的均值;b. The terminal counts the average value of its own transmit pilot power in 4 time slots;
c、终端将上述统计均值与导频门限进行比较,取其差值;c. The terminal compares the statistical mean value with the pilot threshold and takes the difference;
d、为该差值赋予加权因子m;d. Assign a weighting factor m to the difference;
f、将所得结果与RTCMAC子类型3速率控制算法计算出的FRAB取和,共同生成新的长期系统负载mFRAB;f. Sum the obtained result with the FRAB calculated by the RTCMAC subtype 3 rate control algorithm to jointly generate a new long-term system load mFRAB;
当所得结果与RTCMAC子类型3速率控制算法计算出的FRAB之和小于-1时,取值为-1;When the sum of the obtained result and the FRAB calculated by the RTCMAC subtype 3 rate control algorithm is less than -1, the value is -1;
当所得结果与RTCMAC子类型3速率控制算法计算出的FRAB之和大于1时,取值为1;When the sum of the obtained result and the FRAB calculated by the RTCMAC subtype 3 rate control algorithm is greater than 1, the value is 1;
g、将mFRAB代替原FRAB,作为终端T2P流调整量的参考因素;g. Replace the original FRAB with mFRAB as a reference factor for the terminal T2P flow adjustment;
h、本轮T2P流分配结束后,返回,进行下一子帧T2P流分配。h. After the current round of T2P flow allocation is completed, return and perform next subframe T2P flow allocation.
所述的基于信道质量的反向链路速率控制方法,1)接入终端统计4时隙自身发射导频功率的均值并与导频门限Pth进行比较,取其差值,得 In the reverse link rate control method based on channel quality, 1) the access terminal counts the average value of its own transmit pilot power in 4 time slots And compare it with the pilot threshold P th , take the difference, get
2)为步骤1)结果赋予加权因子m,得ΔP(i),并与QRAB值相结合;2) Assign a weighting factor m to the result of step 1) to obtain ΔP(i), and combine it with the QRAB value;
3)将步骤2)结果与RTCMAC子类型3速率控制算法计算出的FRAB取和,共同生成新的长期系统负载参考mFRAB;3) Sum the results of step 2) and the FRAB calculated by the RTCMAC subtype 3 rate control algorithm to jointly generate a new long-term system load reference mFRAB;
当步骤2)结果与RTCMAC子类型3速率控制算法计算出的FRAB之和小于-1时,取值为-1;When the sum of the result of step 2) and the FRAB calculated by the RTCMAC subtype 3 rate control algorithm is less than -1, the value is -1;
当步骤2)结果与RTCMAC子类型3速率控制算法计算出的FRAB之和大于1时,取值为1;When the sum of the result of step 2) and the FRAB calculated by the RTCMAC subtype 3 rate control algorithm is greater than 1, the value is 1;
4)将mFRAB代替原FRAB,进行T2P资源分配。4) Replace the original FRAB with mFRAB for T2P resource allocation.
所述的基于信道质量的反向链路速率控制方法,其中测量系统参数,计算反向链路负载因子具体采用下述方法实现:在扇区的所有天线处或其中的M个天线处分别测量每码片的导频能量与噪声功率谱密度,每时隙测量一次,并结合不同速率等级对应的数据信道增益,分别计算出各天线处所对应的反向链路负载因子值,取其中的最大值作为最终的反向链路负载因子值,M为大于2的自然数。The method for controlling the rate of the reverse link based on channel quality, wherein the system parameters are measured, and the load factor of the reverse link is calculated by the following method: measure at all antennas in the sector or at the M antennas in the sector respectively The pilot energy and noise power spectral density of each chip are measured once per time slot, and combined with the data channel gains corresponding to different rate levels, the corresponding reverse link load factor values at each antenna are calculated, and the maximum value is taken The value is used as the final reverse link load factor value, and M is a natural number greater than 2.
本发明的有益积极效果:Beneficial positive effect of the present invention:
1、本发明基于信道质量的反向链路速率控制方法,比现有反向链路速率控制方法有着更高的系统吞吐量、更低的终端传输功率和更小的系统负载,提高了资源利用率。本发明考虑到1x EV-DO反向链路的自干扰特性以及功率控制对终端发射功率的影响,对信道资源的分配策略影响系统效率和反向吞吐量,对反向信道质量较好终端分配的T2P资源相对较少,会浪费有效的数据传输空间,不利于系统效率和反向吞吐量的提高;对反向信道质量较差终端分配的T2P资源相对较多,该终端会为维持数据传输速率而调高发射功率,进而对系统产生较强干扰,影响系统性能的稳定。在1x EV-DO反向链路闭环功率控制的补偿下,终端的导频功率基本反映了信道的质量:较低的导频功率对应较高的信道质量,较高的导频功率对应较低的信道质量。1. The reverse link rate control method based on channel quality of the present invention has higher system throughput, lower terminal transmission power and smaller system load than the existing reverse link rate control method, and improves resource utilization. utilization rate. The present invention takes into account the self-interference characteristics of the 1x EV-DO reverse link and the influence of power control on terminal transmission power, and the channel resource allocation strategy affects system efficiency and reverse throughput. The relatively few T2P resources of the reverse channel will waste effective data transmission space, which is not conducive to the improvement of system efficiency and reverse throughput; relatively more T2P resources are allocated to terminals with poor reverse channel quality, and the terminal will maintain data transmission. Increase the transmission power due to the increase of transmission rate, which will cause strong interference to the system and affect the stability of system performance. Under the compensation of 1x EV-DO reverse link closed-loop power control, the pilot power of the terminal basically reflects the quality of the channel: lower pilot power corresponds to higher channel quality, and higher pilot power corresponds to lower channel quality. channel quality.
2、本发明基于信道质量的反向链路速率控制方法,同时避免了反向信道质量较差的终端因调高发射功率而对系统产生较强干扰,使系统的干扰控制在一定范围之内。本发明通过采用上述机制,通过将激活终端依导频功率划分等级,并引入加权因子,灵活调整T2P流的分配,使得反向信道质量较好的终端有更好的数据传输空间,同时避免了反向信道质量较差的终端因调高发射功率而对系统产生较强干扰。该机制方法可提高系统吞吐量、降低终端传输功率和系统负载。为信道质量较好的终端提供更好的数据传输空间,同时避免了信道质量较差的终端因提高发射功率而造成系统的不稳定。2. The reverse link rate control method based on channel quality of the present invention avoids strong interference to the system caused by terminals with poor reverse channel quality due to increased transmission power, so that the interference of the system is controlled within a certain range . By adopting the above mechanism, the present invention divides the activated terminals into grades according to the pilot power and introduces weighting factors to flexibly adjust the distribution of T2P streams, so that terminals with better reverse channel quality have better data transmission space, and at the same time avoid Terminals with poor reverse channel quality will cause strong interference to the system by increasing the transmit power. The mechanism method can improve system throughput, reduce terminal transmission power and system load. It provides better data transmission space for terminals with better channel quality, and at the same time avoids system instability caused by increasing transmit power for terminals with poor channel quality.
附图说明 Description of drawings
图1为应用本发明的系统网络结构示意图;Fig. 1 is a schematic diagram of a system network structure applying the present invention;
图2为本发明基于信道质量的反向链路速率控制方法流程图。FIG. 2 is a flow chart of the reverse link rate control method based on channel quality in the present invention.
具体实施方式 Detailed ways
实施例一:参见图1、图2。本发明基于信道质量的反向链路速率控制方法应用的系统网络结构如图1所示,该系统主要由接入终端102、无线接入网104、分组核心网106和IP网络108组成。接入终端是为用户提供数据连接的设备;无线接入网提供分组核心网与接入终端之间的无线承载,传送用户数据和非接入层面的信令消息,接入终端通过这些信令消息与分组核心网进行业务信息的交互;分组核心网主要用于提供接入终端接入到IP网。Embodiment 1: see Fig. 1, Fig. 2. The system network structure of the present invention based on the reverse link rate control method based on channel quality is shown in FIG. The access terminal is a device that provides data connection for users; the wireless access network provides the wireless bearer between the packet core network and the access terminal, and transmits user data and non-access level signaling messages, and the access terminal passes these signaling Messages interact with the packet core network for service information; the packet core network is mainly used to provide access terminals to access the IP network.
本发明基于信道质量的反向链路速率控制方法,主要用于控制cdma2000 1x EV-DO反向链路的速率,使系统的干扰控制在一定范围之内,并有效提高资源利用率。其包括以下步骤:The channel quality-based reverse link rate control method of the present invention is mainly used to control the rate of the cdma2000 1x EV-DO reverse link, so that the interference of the system is controlled within a certain range, and the resource utilization rate is effectively improved. It includes the following steps:
A、测量系统参数,计算反向链路负载因子;A. Measure system parameters and calculate reverse link load factor;
B、将计算的反向链路负载因子与负载门限进行比较,得出RAB值;B. Comparing the calculated reverse link load factor with the load threshold to obtain the RAB value;
C、终端通过当前RAB值和终端反向信道质量好坏情况,调整T2P资源分配;C. The terminal adjusts the T2P resource allocation according to the current RAB value and the quality of the terminal reverse channel;
D、终端依分配的T2P资源与数据速率的映射表调整传输速率。D. The terminal adjusts the transmission rate according to the allocated T2P resource and data rate mapping table.
其中,所述测量系统参数,预置系统门限值,计算反向链路负载因子过程,具体可以采用多种方法来实现。例如,可以通过在扇区的两个天线处分别测量每码片的导频能量与噪声功率谱密度,并结合不同速率等级对应的数据信道增益,分别计算出各自的反向链路负载因子值,取二者中的最大值作为最终的反向链路负载因子值。测量周期为每时隙(1.667ms);或者,在扇区的所有天线处分别测量每码片的导频能量与噪声功率谱密度,并结合不同速率等级对应的数据信道增益,计算出各天线处所对应的反向链路负载因子值,取其中的最大值作为最终的反向链路负载因子值。Wherein, the process of measuring system parameters, presetting the system threshold value, and calculating the load factor of the reverse link can be implemented in various ways. For example, by measuring the pilot energy and noise power spectral density per chip at the two antennas of the sector, and combining the data channel gains corresponding to different rate levels, the respective reverse link load factor values can be calculated respectively , taking the maximum value of the two as the final reverse link load factor value. The measurement cycle is every time slot (1.667ms); or, measure the pilot energy and noise power spectral density of each chip at all antennas of the sector, and combine the data channel gains corresponding to different rate levels to calculate the The reverse link load factor value corresponding to the location, take the maximum value as the final reverse link load factor value.
其中,所述将反向链路负载因子与负载门限进行比较,得出RAB值过程,具体包括以下步骤:当反向链路负载因子大于等于负载门限时,设RAB=1;当反向链路负载因子小于负载门限时,设RAB=0。Wherein, the process of comparing the reverse link load factor with the load threshold to obtain the RAB value specifically includes the following steps: when the reverse link load factor is greater than or equal to the load threshold, set RAB=1; when the reverse link When the road load factor is less than the load threshold, set RAB=0.
实施例二:参见图1、图2。本实施例基于信道质量的反向链路速率控制方法,与实施例一不同的是,其中步骤C具体包括以下步骤:Embodiment two: see Fig. 1, Fig. 2. The reverse link rate control method based on channel quality in this embodiment is different from
C1、终端统计4时隙自身发射导频功率的均值;C1. The terminal counts the average value of its own transmission pilot power in 4 time slots;
C2、终端将上述统计均值与导频门限进行比较,取其差值;C2. The terminal compares the statistical mean value with the pilot threshold, and takes the difference;
C3、为该差值赋予加权因子m;C3. Assign a weighting factor m to the difference;
C4、将步骤C3结果与RTCMAC子类型3速率控制算法计算出的FRAB取和,共同生成新的长期系统负载参考mFRAB;当步骤C3结果与RTCMAC子类型3速率控制算法计算出的FRAB之和小于-1时,取值为-1;当步骤C3结果与RTCMAC子类型3速率控制算法计算出的FRAB之和大于1时,取值为1;C4. Sum the result of step C3 and the FRAB calculated by the RTCMAC subtype 3 rate control algorithm to jointly generate a new long-term system load reference mFRAB; when the sum of the result of step C3 and the FRAB calculated by the RTCMAC subtype 3 rate control algorithm is less than When -1, the value is -1; when the sum of the result of step C3 and the FRAB calculated by the RTCMAC subtype 3 rate control algorithm is greater than 1, the value is 1;
C5、将mFRAB代替原FRAB,作为终端T2P流调整量的参考因素;C5. Replace the original FRAB with mFRAB as a reference factor for the terminal T2P flow adjustment amount;
C6、本轮T2P流分配结束后,重新返回到步骤C1,进行下一子帧T2P流分配。C6. After the current round of T2P flow allocation ends, return to step C1 to perform next subframe T2P flow allocation.
实施例三:参见图1、图2。本实施例基于信道质量的反向链路速率控制方法,与实施例二稍有不同,具体包括以下步骤:Embodiment three: see Fig. 1, Fig. 2. The reverse link rate control method based on channel quality in this embodiment is slightly different from Embodiment 2, and specifically includes the following steps:
1、预设系统负载门限值以及加权因子m值的大小;1. Preset the system load threshold and the value of the weighting factor m;
2、在扇区的所有天线处分别测量每码片的导频能量与噪声功率谱密度,每时隙测量一次。结合不同速率等级对应的数据信道增益,计算出各天线处所对应的反向链路负载因子值,取其中的最大值作为最终的反向链路负载因子值;2. Measure the pilot energy and noise power spectral density of each chip at all antennas of the sector, and measure once for each time slot. Combining the data channel gains corresponding to different rate levels, calculate the corresponding reverse link load factor value at each antenna, and take the maximum value as the final reverse link load factor value;
3、将反向链路负载因子与负载门限进行比较,得出RAB值;3. Comparing the reverse link load factor with the load threshold to obtain the RAB value;
4、取4时隙RAB统计值生成QRAB,取384时隙RAB统计值生成FRAB;4. Take the RAB statistics of 4 time slots to generate QRAB, and take the RAB statistics of 384 time slots to generate FRAB;
5、终端统计4时隙自身发射导频功率的均值;5. The terminal counts the average value of its own transmission pilot power in 4 time slots;
6、终端将上述统计均值与导频门限进行比较,取其差值;6. The terminal compares the above statistical mean with the pilot threshold, and takes the difference;
7、为该差值赋予加权因子m;7. Assign a weighting factor m to the difference;
8、将步骤C3结果与RTCMAC子类型3速率控制算法计算出的FRAB取和,共同生成新的长期系统负载参考mFRAB;8. Sum the result of step C3 and the FRAB calculated by the RTCMAC subtype 3 rate control algorithm to jointly generate a new long-term system load reference mFRAB;
9、将mFRAB代替原FRAB,作为终端T2P流调整量的参考因素;9. Replace the original FRAB with mFRAB as a reference factor for terminal T2P flow adjustment;
10、本轮T2P流分配结束后,重新返回到步骤C1,进行下一子帧T2P流分配。10. After the current round of T2P stream allocation ends, return to step C1 to allocate the next subframe T2P stream.
在上述步骤中,步骤8:当步骤7结果与RTCMAC子类型3速率控制算法计算出的FRAB之和小于-1时,取值为-1;当步骤7结果与RTCMAC子类型3速率控制算法计算出的FRAB之和大于1时,取值为1。In the above steps, step 8: when the sum of the result of step 7 and the FRAB calculated by the RTCMAC subtype 3 rate control algorithm is less than -1, the value is -1; when the result of step 7 and the FRAB calculated by the RTCMAC subtype 3 rate control algorithm When the sum of the output FRAB is greater than 1, the value is 1.
实施例四:本实施例结合图2,进一步详细描述了本发明在cdma2000 1x EV-DO反向链路中进行速率控制的过程:Embodiment four: this embodiment further describes in detail the process that the present invention carries out rate control in the cdma2000 1x EV-DO reverse link in conjunction with Fig. 2:
步骤201:首先,在扇区的所有天线处分别测量每码片的导频能量与噪声功率谱密度,每时隙测量一次。结合不同速率等级对应的数据信道增益,计算出各天线处所对应的反向链路负载因子值,取其中的最大值作为最终的反向链路负载因子值;Step 201: First, measure pilot energy and noise power spectral density per chip at all antennas of the sector, and measure once per time slot. Combining the data channel gains corresponding to different rate levels, calculate the corresponding reverse link load factor value at each antenna, and take the maximum value as the final reverse link load factor value;
步骤202:其次,将反向链路负载因子与负载门限进行比较。如果在步骤202中确定的反向链路负载因子大于等于负载门限,则设RAB=1。如果在步骤202中确定的反向链路负载因子小于负载门限,则设RAB=0;Step 202: Second, compare the reverse link load factor with a load threshold. If the reverse link load factor determined in
步骤203:取4时隙RAB统计值生成QRAB,取384时隙RAB统计值生成FRAB;Step 203: take 4 time slot RAB statistical values to generate QRAB, and take 384 time slot RAB statistical values to generate FRAB;
步骤204:接入终端统计4时隙自身发射导频功率的均值并与导频门限Pth进行比较,取其差值,得 Step 204: The access terminal counts the mean value of its own transmit pilot power in 4 time slots And compare it with the pilot threshold P th , take the difference, get
步骤205:为步骤204结果赋予加权因子m,得ΔP(i),并与QRAB值相结合;Step 205: assign a weighting factor m to the result of
步骤206:将步骤205结果与RTCMAC子类型3速率控制算法计算出的FRAB取和,共同生成新的长期系统负载参考mFRAB;Step 206: Summing the result of
在步骤206中,当步骤205结果与RTCMAC子类型3速率控制算法计算出的FRAB之和小于-1时,取值为-1;当步骤205结果与RTCMAC子类型3速率控制算法计算出的FRAB之和大于1时,取值为1;In
步骤207:将mFRAB代替原FRAB,作为终端T2P流调整量的参考因素,进行T2P资源分配。Step 207: Replace the original FRAB with mFRAB as a reference factor for the T2P flow adjustment of the terminal, and perform T2P resource allocation.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2010105684061A CN102006636B (en) | 2010-12-01 | 2010-12-01 | Method for controlling speed rate of reverse link based on channel quality |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2010105684061A CN102006636B (en) | 2010-12-01 | 2010-12-01 | Method for controlling speed rate of reverse link based on channel quality |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102006636A CN102006636A (en) | 2011-04-06 |
CN102006636B true CN102006636B (en) | 2012-12-19 |
Family
ID=43813610
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2010105684061A Expired - Fee Related CN102006636B (en) | 2010-12-01 | 2010-12-01 | Method for controlling speed rate of reverse link based on channel quality |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102006636B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103179668B (en) * | 2011-12-26 | 2015-12-16 | 中国电信股份有限公司 | Reverse link transmission resource system of selection, device and mobile terminal |
CN107294694B (en) * | 2016-04-06 | 2022-05-24 | 马克西姆综合产品公司 | Configurable bi-directional transceiver for full duplex serial link communication system |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101702814A (en) * | 2009-11-25 | 2010-05-05 | 中国人民解放军信息工程大学 | A reverse link rate control method, system, base station and terminal |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7072630B2 (en) * | 2003-03-06 | 2006-07-04 | Qualcomm, Inc. | Adaptive data rate determination for a reverse link communication in a communication system |
-
2010
- 2010-12-01 CN CN2010105684061A patent/CN102006636B/en not_active Expired - Fee Related
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101702814A (en) * | 2009-11-25 | 2010-05-05 | 中国人民解放军信息工程大学 | A reverse link rate control method, system, base station and terminal |
Non-Patent Citations (2)
Title |
---|
1x EV-DO反向链路概率自适应速率控制算法;张伟,柴远波,谷立鹏,张鑫;《信息工程大学学报》;20101031;第11卷(第5期);600-603 * |
张伟,柴远波,谷立鹏,张鑫.1x EV-DO反向链路概率自适应速率控制算法.《信息工程大学学报》.2010,第11卷(第5期),600-603. |
Also Published As
Publication number | Publication date |
---|---|
CN102006636A (en) | 2011-04-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109905918B (en) | NOMA cellular Internet of vehicles dynamic resource scheduling method based on energy efficiency | |
CN102791002B (en) | Based on the resource allocation methods of efficiency in LTE network | |
TW484334B (en) | Closed loop resource allocation | |
WO2012113183A1 (en) | Uplink resource configuration method and apparatus | |
CN102111775A (en) | Base station for realizing inter-cell interference coordination and method for realizing inter-cell interference coordination | |
Tsiropoulou et al. | Energy-efficient subcarrier allocation in SC-FDMA wireless networks based on multilateral model of bargaining | |
CN103281703A (en) | Cognitive radio network spectrum allocation method based on game theory | |
CN106658679A (en) | Energy efficiency-based base station power control method | |
JP5630906B2 (en) | Transmission power control apparatus and method in wireless communication system | |
Furuskar et al. | Performance of WCDMA high speed packet data | |
CN105406945A (en) | Multicast resource distribution and transmission method for scalable video in system with multiple base stations | |
CN105072677A (en) | Power control using bit rate and outstanding user traffic | |
CN103517279A (en) | Method for combining dynamic radio resource allocation and mobility load balancing in LTE system | |
CN104883727B (en) | Power distribution method for maximizing D2D user rate in cellular heterogeneous network | |
CN104902574B (en) | A kind of day line options and power distribution method based on efficiency | |
CN101877913B (en) | User scheduling method in LTE (Long Term Evolution) system | |
CN102006636B (en) | Method for controlling speed rate of reverse link based on channel quality | |
CN102404778B (en) | Load estimation method | |
CN101568156B (en) | Method and device for radio resource scheduling and base station | |
CN103052165B (en) | A kind of wireless resource allocation methods of multiple services Home eNodeB | |
CN102802162B (en) | Distributed interference coordination method for improving performance of cell edge users | |
TWI358218B (en) | Cooperative autonomous and scheduled resource allo | |
CN100377617C (en) | Dynamic Channel Allocation Method for Wideband Code Division Multiple Access Mobile Communication System | |
CN102932815A (en) | Load capacity-based dynamic disturbance coordination algorithm in LTE (long term evolution) system | |
Zhang et al. | Optimization of coverage and throughput in single-cell eMBMS |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20121219 |