CN102005908B - Pulse switch control device and control method - Google Patents
Pulse switch control device and control method Download PDFInfo
- Publication number
- CN102005908B CN102005908B CN201010553269.4A CN201010553269A CN102005908B CN 102005908 B CN102005908 B CN 102005908B CN 201010553269 A CN201010553269 A CN 201010553269A CN 102005908 B CN102005908 B CN 102005908B
- Authority
- CN
- China
- Prior art keywords
- pulse
- switch
- control
- switching
- unit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000000034 method Methods 0.000 title claims abstract description 22
- 230000018044 dehydration Effects 0.000 claims description 12
- 238000006297 dehydration reaction Methods 0.000 claims description 12
- 238000010612 desalination reaction Methods 0.000 claims description 12
- 238000001514 detection method Methods 0.000 claims description 10
- 238000007599 discharging Methods 0.000 claims description 9
- 239000010779 crude oil Substances 0.000 claims description 5
- 238000001914 filtration Methods 0.000 claims description 4
- 239000003990 capacitor Substances 0.000 claims 8
- 238000012544 monitoring process Methods 0.000 claims 1
- 230000005540 biological transmission Effects 0.000 abstract description 2
- 230000001939 inductive effect Effects 0.000 description 26
- 238000010586 diagram Methods 0.000 description 22
- 230000008569 process Effects 0.000 description 7
- 230000005684 electric field Effects 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 238000004804 winding Methods 0.000 description 3
- 230000008859 change Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000003044 adaptive effect Effects 0.000 description 1
- 230000000739 chaotic effect Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
Landscapes
- Electronic Switches (AREA)
- Driving Mechanisms And Operating Circuits Of Arc-Extinguishing High-Tension Switches (AREA)
Abstract
本发明涉及一种脉冲开关控制装置及控制方法。脉冲开关控制装置包括由第一开关单元、第二开关单元、第三开关单元和第四开关单元组成的H型桥式发射脉冲模块,第一和第四开关单元、第二和第三开关单元组成对角开关组,第一和第三开关单元、第二和第四开关单元组成相对开关组,还包括一控制模块,控制模块分别与每个开关单元连接,用于在发射脉冲时控制一个对角开关组中的开关单元导通,另一个对角开关组中的开关单元关断,形成脉冲回路,在发射脉冲停止时,控制一个相对开关组中的开关单元导通,另一个相对开关组中的开关单元关断,形成放电回路。本发明通过形成放电回路,有效消除了脉冲电流或电压拖尾,有效减小了脉冲电流或电压的波形失真。
The invention relates to a pulse switch control device and a control method. The pulse switch control device includes an H-type bridge transmitting pulse module composed of a first switch unit, a second switch unit, a third switch unit and a fourth switch unit, the first and fourth switch units, the second and the third switch unit Form a diagonal switch group, the first and third switch units, the second and the fourth switch unit form a relative switch group, and also include a control module, the control module is connected with each switch unit respectively, and is used to control a The switch unit in the diagonal switch group is turned on, and the switch unit in the other diagonal switch group is turned off, forming a pulse loop. When the transmission pulse stops, the switch unit in one opposite switch group is controlled to be turned on, and the other opposite switch unit is turned on. The switching units in the group are turned off, forming a discharge circuit. The invention effectively eliminates the pulse current or voltage tailing and effectively reduces the waveform distortion of the pulse current or voltage by forming a discharge circuit.
Description
技术领域 technical field
本发明涉及一种脉冲发射技术,具体涉及一种脉冲开关控制装置及控制方法。The invention relates to a pulse emission technology, in particular to a pulse switch control device and a control method.
背景技术 Background technique
由于具有控制简单、切换速度快、双极式输出等诸多优点,H型桥式发射脉冲电路被广泛应用于各种装置中作为开关变换器进行电能转换。例如,在原油电脱水脱盐高频高压脉冲电源中,脉冲开关控制装置是比较重要的部件之一,脉冲开关控制装置以开关变换器为核心进行电能转换,实现电功率输出。又如,在海底油气资源勘探发射装置中,采用脉冲开关控制装置输出理想的电流方波。Due to the advantages of simple control, fast switching speed, and bipolar output, the H-bridge transmitting pulse circuit is widely used in various devices as a switching converter for power conversion. For example, in the high-frequency high-voltage pulse power supply for electric dehydration and desalination of crude oil, the pulse switch control device is one of the more important components. The pulse switch control device uses the switching converter as the core to convert electric energy and realize electric power output. As another example, in the submarine oil and gas resource exploration launch device, the pulse switch control device is used to output the ideal current square wave.
图1为现有H型桥式发射脉冲电路的结构示意图。如图1所示,H型桥式发射脉冲电路的主体结构包括4个等效开关器件K1、K2、K3和K4,每个等效开关器件可以由多个单开关器件串并联而成。在控制方式上,现有H型桥式发射脉冲电路采用成对控制方式,即:等效开关器件K1和K4、等效开关器件K2和K3分别受控制信号u14和u23的控制。当控制信号u14为导通控制信号、控制信号u23为关断控制信号时,等效开关器件K1和K4导通,电流由电源正极经过等效开关器件K1、负载RL、等效开关器件K4流入电源负极,在负载RL上电流流向为从节点A至节点B,此时的负载状态规定为正向电压脉冲。在正向电压脉冲向零向电压切换时,需要将等效开关器件K1和K4关断,即此时4个等效开关器件都处于关断状态。当控制信号u23为导通控制信号、控制信号u14为关断控制信号时,等效开关器件K2和K3导通,电流由电源经过等效开关器件K3、负载RL、等效开关器件K2流入电源负极,在负载RL上电流流向为从节点B至节点A,此时的负载状态规定为负向电压脉冲。FIG. 1 is a schematic structural diagram of an existing H-bridge transmitting pulse circuit. As shown in Figure 1, the main structure of the H-type bridge transmitting pulse circuit includes four equivalent switching devices K 1 , K 2 , K 3 and K 4 , and each equivalent switching device can be connected in series and parallel by multiple single switching devices made. In terms of control mode, the existing H-bridge transmitting pulse circuit adopts a paired control mode, namely: equivalent switching devices K 1 and K 4 , equivalent switching devices K 2 and K 3 are controlled by control signals u 14 and u 23 respectively control. When the control signal u 14 is the on control signal and the control signal u 23 is the off control signal, the equivalent switching devices K 1 and K 4 are turned on, and the current flows from the positive pole of the power supply through the equivalent switching device K 1 , load R L , The equivalent switching device K 4 flows into the negative pole of the power supply, and the current flow direction on the load RL is from node A to node B, and the load state at this time is defined as a positive voltage pulse. When the positive voltage pulse is switched to the zero voltage, the equivalent switching devices K 1 and K 4 need to be turned off, that is, the four equivalent switching devices are all in the off state at this time. When the control signal u 23 is the on control signal and the control signal u 14 is the off control signal, the equivalent switching devices K 2 and K 3 are turned on, and the current flows from the power supply through the equivalent switching device K 3 , the load RL , etc. The effective switching device K 2 flows into the negative pole of the power supply, and the current flow direction on the load RL is from node B to node A, and the load state at this time is defined as a negative voltage pulse.
实际使用表明,随着系统运行状况不同,负载RL具有不同的特性,是一种非常复杂的等效负载。在某种工况下,负载RL呈阻性,但在其它多数工况下,负载RL呈感性或呈容性。图2a和图2b分别为理想和实际电压或电流波形的示意图。在负载呈阻性的理想情况下,负载上施加的是双极性矩形波,如图2a所示。而负载呈感性或呈容性时,负载上施加的电流或电压波形严重失真,波形前沿呈指数上升,后沿呈斜阶跃下降而使波形拖尾,如图2b所示。另外,即使在负载呈阻性的情况下,由于脉冲电子开关器件关断延时,负载上施加的电流或电压也同样会出现如图2b所示的波形。研究表明,后沿下降拖尾波形将严重影响负载的工作性能。实际使用中,希望后沿波形拖尾的时间越短越好。Actual use shows that with the different operating conditions of the system, the load RL has different characteristics, which is a very complex equivalent load. In some working conditions, the load RL is resistive, but in most other working conditions, the load RL is inductive or capacitive. Figure 2a and Figure 2b are schematic diagrams of ideal and actual voltage or current waveforms, respectively. In the ideal case where the load is resistive, a bipolar rectangular wave is applied to the load, as shown in Figure 2a. However, when the load is inductive or capacitive, the waveform of the current or voltage applied to the load is seriously distorted, and the front edge of the waveform rises exponentially, and the trailing edge declines obliquely, causing the waveform to tail, as shown in Figure 2b. In addition, even when the load is resistive, due to the off-delay of the pulse electronic switching device, the current or voltage applied to the load will also have a waveform as shown in Figure 2b. Research shows that trailing edge falling tail waveform will seriously affect the working performance of the load. In actual use, it is hoped that the shorter the tailing time of the trailing edge waveform, the better.
以原油电脱水脱盐应用为例,后沿下降拖尾波形影响负载工作性能具体体现在:Taking the application of crude oil electric dehydration and desalination as an example, the impact of trailing edge and trailing waveform on load performance is specifically reflected in:
(1)当电脱水脱盐负载呈感性时,电流不能突变,负载储存的磁场能量需要合适的回路释放。二极管为线圈绕组提供续流回路,因为电源的内阻相对负载阻抗很小,所以线圈向电源放电。在产生负向脉冲过程中,电流回路为:节点A→等效开关器件K2→电源负极→电源正极→等效开关器件K3→节点B→负载RL→节点A。在负向脉冲电压向零向电压切换时,电流回路为:节点A→等效开关器件K1→电源正极→电源负极→等效开关器件K4→节点B→负载RL→节点A。由此可见,当电脱水脱盐负载呈感性时,由于负载的能量在短时间内难以释放,因此会影响电脱水脱盐电源脉冲的频率、占空比以及脉冲宽度,无法提供高频脉冲电场。(1) When the electric dehydration and desalination load is inductive, the current cannot change suddenly, and the magnetic field energy stored in the load needs to be released by a suitable circuit. The diode provides a freewheeling circuit for the coil winding, and because the internal resistance of the power supply is small relative to the load impedance, the coil discharges to the power supply. In the process of generating negative pulses, the current loop is: node A→equivalent switching device K 2 →power negative pole→power positive pole→equivalent switching device K 3 →node B→load RL →node A. When the negative-going pulse voltage switches to zero-going voltage, the current loop is: node A→equivalent switching device K 1 →positive power supply→negative power supply→equivalent switching device K 4 →node B→load RL →node A. It can be seen that when the electric dehydration and desalination load is inductive, because the energy of the load is difficult to release in a short time, it will affect the frequency, duty cycle and pulse width of the electric dehydration and desalination power supply pulse, and cannot provide a high-frequency pulse electric field.
(2)当电脱水脱盐负载呈容性时,负载电压不能突变,容性负载储存的电场能量需要合适的回路释放。但由于H型桥式发射脉冲电路的现有成对控制方式无法提供合适的放电回路,因此也会影响电脱水脱盐电源脉冲的频率、占空比以及脉冲宽度,无法提供高频脉冲电场。(2) When the electric dehydration and desalination load is capacitive, the load voltage cannot change suddenly, and the electric field energy stored in the capacitive load needs to be released by a suitable circuit. However, because the existing paired control method of the H-bridge transmitting pulse circuit cannot provide a suitable discharge circuit, it will also affect the frequency, duty cycle and pulse width of the electric dehydration and desalination power supply pulse, and cannot provide a high-frequency pulse electric field.
(3)前面分析表明,由于需要向电源放电,因此在放电过程中会对电源中的电子器件产生冲击,不仅降低了电源的工作可靠性,而且缩短了电源的使用寿命。(3) The previous analysis shows that due to the need to discharge to the power supply, the electronic devices in the power supply will be impacted during the discharge process, which not only reduces the reliability of the power supply, but also shortens the service life of the power supply.
(4)同时,向电源放电时对直流电源的冲击会耦合到开关电源变压器的其它绕组上,造成多路变压器及其绕组的电压不稳定。(4) At the same time, the impact on the DC power supply when discharging to the power supply will be coupled to other windings of the switching power supply transformer, causing the voltage instability of the multi-channel transformer and its windings.
发明内容 Contents of the invention
本发明要解决的技术问题是提供一种脉冲开关控制装置及控制方法,有效消除由呈感性负载、呈容性负载及脉冲电子开关器件关断延时带来的脉冲电流或电压拖尾,减小脉冲电流或电压的波形失真。The technical problem to be solved by the present invention is to provide a pulse switch control device and control method, which can effectively eliminate the pulse current or voltage tailing caused by the inductive load, the capacitive load, and the turn-off delay of the pulse electronic switching device, and reduce the Waveform distortion of small pulses of current or voltage.
为解决上述技术问题,本发明提供了一种脉冲开关控制装置,包括由第一开关单元、第二开关单元、第三开关单元和第四开关单元组成的H型桥式发射脉冲模块,所述第一开关单元和第四开关单元、第二开关单元和第三开关单元组成对角开关组,所述第一开关单元和第三开关单元、第二开关单元和第四开关单元组成相对开关组;还包括一控制模块,所述控制模块分别与每个开关单元连接,用于在发射脉冲时控制一个对角开关组中的开关单元导通,另一个对角开关组中的开关单元关断,形成脉冲回路,在发射脉冲停止时,控制一个相对开关组中的开关单元导通,另一个相对开关组中的开关单元关断,形成放电回路。In order to solve the above technical problems, the present invention provides a pulse switch control device, including an H-bridge transmitting pulse module composed of a first switch unit, a second switch unit, a third switch unit and a fourth switch unit, the The first switch unit and the fourth switch unit, the second switch unit and the third switch unit form a diagonal switch group, and the first switch unit and the third switch unit, the second switch unit and the fourth switch unit form an opposite switch group ; Also includes a control module, the control module is respectively connected with each switch unit, for controlling the conduction of the switch unit in one diagonal switch group when transmitting the pulse, and the switch unit in the other diagonal switch group is turned off , forming a pulse loop, when the emission pulse stops, the switch unit in one relative switch group is controlled to be turned on, and the switch unit in the other relative switch group is turned off, forming a discharge circuit.
进一步地,所述控制模块包括第一控制端、第二控制端、第三控制端和第四控制端,其中,第一控制端,用于控制所述第一开关单元在发射正向脉冲时导通,在发射正向脉冲停止时关断;第二控制端,用于控制所述第二开关单元在发射正向脉冲时关断,在发射正向脉冲停止时导通;第三控制端,用于控制所述第三开关单元在发射正向脉冲和发射正向脉冲停止时关断;第四控制端,用于控制所述第四开关单元在发射正向脉冲和发射正向脉冲停止时导通。Further, the control module includes a first control terminal, a second control terminal, a third control terminal and a fourth control terminal, wherein the first control terminal is used to control the first switch unit to transmit positive pulses Turn on, turn off when the forward pulse is stopped; the second control terminal is used to control the second switch unit to turn off when the forward pulse is sent, and turn on when the forward pulse stops; the third control terminal , used to control the third switch unit to turn off when transmitting forward pulses and stopping sending forward pulses; the fourth control terminal is used to control the fourth switching unit to turn off when transmitting forward pulses and stopping sending forward pulses time conduction.
进一步地,所述控制模块包括第一控制端、第二控制端、第三控制端和第四控制端,其中,第一控制端,用于控制所述第一开关单元在发射正向脉冲和发射正向脉冲停止时导通;第二控制端,用于控制所述第二开关单元在发射正向脉冲和发射正向脉冲停止关断;第三控制端,用于控制所述第三开关单元在发射正向脉冲时关断,在发射正向脉冲停止时导通;第四控制端,用于控制所述第四开关单元在发射正向脉冲时导通,在发射正向脉冲停止时关断。Further, the control module includes a first control terminal, a second control terminal, a third control terminal and a fourth control terminal, wherein the first control terminal is used to control the first switch unit to transmit forward pulses and Turning on when transmitting positive pulses stops; the second control terminal is used to control the second switch unit to turn off when transmitting positive pulses and stopping transmitting positive pulses; the third control terminal is used to control the third switch The unit is turned off when transmitting positive pulses, and is turned on when transmitting positive pulses stops; the fourth control terminal is used to control the fourth switch unit to be turned on when transmitting positive pulses, and is turned on when transmitting positive pulses. off.
进一步地,所述控制模块包括第一控制端、第二控制端、第三控制端和第四控制端,其中,第一控制端,用于控制所述第一开关单元在发射负向脉冲和发射负向脉冲停止时关断;第二控制端,用于控制所述第二开关单元在发射负向脉冲和发射负向脉冲停止时导通;第三控制端,用于控制所述第三开关单元在发射负向脉冲时导通,在发射负向脉冲停止时关断;第四控制端,用于控制所述第四开关单元在发射负向脉冲时关断,在发射负向脉冲停止时导通。Further, the control module includes a first control terminal, a second control terminal, a third control terminal and a fourth control terminal, wherein the first control terminal is used to control the first switch unit to transmit negative pulses and turn off when the emission of negative pulses stops; the second control terminal is used to control the second switch unit to be turned on when the emission of negative pulses and the emission of negative pulses stop; the third control terminal is used to control the third The switch unit is turned on when the negative pulse is emitted, and is turned off when the negative pulse is stopped; the fourth control terminal is used to control the fourth switch unit to be turned off when the negative pulse is emitted, and is turned off when the negative pulse is stopped. time conduction.
进一步地,所述控制模块包括第一控制端、第二控制端、第三控制端和第四控制端,其中,第一控制端,用于控制所述第一开关单元在发射负向脉冲时关断,在发射负向脉冲停止时导通;第二控制端,用于控制所述第二开关单元在发射负向脉冲时导通,在发射负向脉冲停止时关断;第三控制端,用于控制所述第三开关单元在发射负向脉冲和发射负向脉冲停止时导通;第四控制端,用于控制所述第三开关单元在发射负向脉冲和发射负向脉冲停止时关断。Further, the control module includes a first control terminal, a second control terminal, a third control terminal and a fourth control terminal, wherein the first control terminal is used to control the first switch unit to transmit negative pulses Turn off, turn on when the emission of negative pulses stops; the second control terminal is used to control the second switch unit to turn on when the emission of negative pulses stops, and turn off when the emission of negative pulses stops; the third control terminal , used to control the third switch unit to be turned on when the negative pulse is transmitted and the negative pulse is stopped; the fourth control terminal is used to control the third switch unit to be turned on when the negative pulse is transmitted and the negative pulse is stopped off.
在上述技术方案基础上,所述第一开关单元与第二开关单元的一端通过第一节点连接,另一端分别连接电源的正负极,所述第三开关单元与第四开关单元的一端通过第二节点连接,另一端分别连接电源的正负极,所述第一节点与第二节点之间设置负载,所述放电回路上设置放电负载。On the basis of the above technical solution, one end of the first switch unit and the second switch unit are connected through the first node, and the other ends are respectively connected to the positive and negative poles of the power supply, and one end of the third switch unit and the fourth switch unit are connected through The second node is connected, the other end is respectively connected to the positive and negative poles of the power supply, a load is set between the first node and the second node, and a discharge load is set on the discharge circuit.
为解决上述技术问题,本发明还提供了一种脉冲开关控制方法,脉冲开关包括由第一开关单元、第二开关单元、第三开关单元和第四开关单元组成的H型桥式发射脉冲电路,所述第一开关单元和第四开关单元、第二开关单元和第三开关单元组成对角开关组,所述第一开关单元和第三开关单元、第二开关单元和第四开关单元组成相对开关组;所述方法包括:In order to solve the above technical problems, the present invention also provides a pulse switch control method, the pulse switch includes an H-type bridge transmitting pulse circuit composed of a first switch unit, a second switch unit, a third switch unit and a fourth switch unit , the first switch unit and the fourth switch unit, the second switch unit and the third switch unit form a diagonal switch group, the first switch unit and the third switch unit, the second switch unit and the fourth switch unit form Relative switch group; said method includes:
在发射脉冲时,向一个对角开关组中的开关单元发送导通控制信号、向另一个对角开关组中的开关单元发送关断控制信号,形成脉冲回路;When transmitting pulses, send a turn-on control signal to the switch unit in one diagonal switch group, and send a turn-off control signal to the switch unit in the other diagonal switch group to form a pulse loop;
在发射脉冲停止时,向一个相对开关组中的开关单元发送导通控制信号、向另一个相对开关组中的开关单元发送关断控制信号,形成放电回路。When the transmitting pulse stops, a turn-on control signal is sent to the switch unit in one opposite switch group, and a turn-off control signal is sent to the switch unit in the other opposite switch group, forming a discharge circuit.
进一步地,所述向一个对角开关组中的开关单元发送导通控制信号、向另一个对角开关组中的开关单元发送关断控制信号具体为:Further, the sending a turn-on control signal to a switch unit in one diagonal switch group and sending a turn-off control signal to a switch unit in another diagonal switch group is specifically:
向所述第一开关单元和第四开关单元发送导通控制信号,向所述第二开关单元和第三开关单元发送关断控制信号;或sending a turn-on control signal to the first switch unit and the fourth switch unit, and sending a turn-off control signal to the second switch unit and the third switch unit; or
向所述第一开关单元和第四开关单元发送关断控制信号,向所述第二开关单元和第三开关单元发送导通控制信号。Sending a turn-off control signal to the first switch unit and the fourth switch unit, and sending a turn-on control signal to the second switch unit and the third switch unit.
进一步地,所述向一个相对开关组中的开关单元发送导通控制信号、向另一个相对开关组中的开关单元发送关断控制信号具体为:Further, the sending a turn-on control signal to a switch unit in one relative switch group and sending a turn-off control signal to a switch unit in another relative switch group is specifically:
向所述第一开关单元和第三开关单元发送关断控制信号,向所述第二开关单元和第四开关单元发送导通控制信号;或sending a turn-off control signal to the first switch unit and the third switch unit, and sending a turn-on control signal to the second switch unit and the fourth switch unit; or
向所述第一开关单元和第三开关单元发送导通控制信号,向所述第二开关单元和第四开关单元发送关断控制信号。Sending a turn-on control signal to the first switch unit and the third switch unit, and sending a turn-off control signal to the second switch unit and the fourth switch unit.
本发明还提供了一种采用本发明脉冲开关控制装置的高频高压脉冲电源,包括低压直流电源装置、大功率逆变装置、脉冲变压器装置、控制装置和检测装置,其中,The present invention also provides a high-frequency high-voltage pulse power supply adopting the pulse switch control device of the present invention, including a low-voltage DC power supply device, a high-power inverter device, a pulse transformer device, a control device and a detection device, wherein,
所述低压直流电源装置用于对低压交流电进行整流滤波处理,输出幅值经过调整的低压直流电源;The low-voltage DC power supply device is used for rectifying and filtering low-voltage AC power, and outputting a low-voltage DC power supply with adjusted amplitude;
所述大功率逆变装置与所述低压直流电源装置连接,用于对所述低压直流电源进行逆变处理,通过占空比调制输出幅值经过调整的双极性低压脉冲电源;The high-power inverter device is connected to the low-voltage DC power supply device, and is used to invert the low-voltage DC power supply, and output a bipolar low-voltage pulse power supply with adjusted amplitude through duty ratio modulation;
所述脉冲变压器装置与所述大功率逆变装置连接,用于对所述双极性低压脉冲电源进行升压和整流滤波处理,输出高压直流电源;The pulse transformer device is connected with the high-power inverter device, and is used for boosting, rectifying and filtering the bipolar low-voltage pulse power supply, and outputting a high-voltage DC power supply;
所述脉冲开关控制装置与所述脉冲变压器装置连接,向负载输出频率经过调整的高压高频脉冲电源;The pulse switch control device is connected to the pulse transformer device, and outputs a high-voltage and high-frequency pulse power supply with adjusted frequency to the load;
所述检测装置用于监测所述脉冲开关控制装置输出高压高频脉冲电源的电流和电压,获取输出参数;The detection device is used to monitor the current and voltage of the high-voltage and high-frequency pulse power output by the pulse switch control device to obtain output parameters;
所述控制装置分别与所述低压直流电源装置、大功率逆变装置、脉冲开关控制装置和检测装置连接,用于根据所述输出参数调节所述低压直流电源的幅值、所述双极性低压脉冲电源的幅值和所述高压高频脉冲电源的频率。The control device is respectively connected with the low-voltage DC power supply device, high-power inverter device, pulse switch control device and detection device, and is used to adjust the amplitude of the low-voltage DC power supply, the bipolar The amplitude of the low-voltage pulse power supply and the frequency of the high-voltage high-frequency pulse power supply.
本发明提供了一种脉冲开关控制装置及控制方法,通过在向负载施加正向或反向脉冲停止时形成放电回路,有效消除了由呈感性负载、呈容性负载及脉冲电子开关器件关断延时带来的脉冲电流或电压拖尾,有效减小了脉冲电流或电压的波形失真。The invention provides a pulse switch control device and a control method. By forming a discharge circuit when the forward or reverse pulse is applied to the load, it effectively eliminates the switching off of the inductive load, the capacitive load, and the pulse electronic switching device. The pulse current or voltage tail caused by the delay effectively reduces the waveform distortion of the pulse current or voltage.
附图说明 Description of drawings
图1为现有H型桥式发射脉冲电路的结构示意图;Fig. 1 is the structural representation of existing H-type bridge type transmitting pulse circuit;
图2a和图2b分别为理想和实际电压或电流波形的示意图;Figure 2a and Figure 2b are schematic diagrams of ideal and actual voltage or current waveforms, respectively;
图3为本发明脉冲开关控制装置的结构示意图;Fig. 3 is the structural representation of pulse switch control device of the present invention;
图4a~图4c为本发明脉冲开关控制装置第一实施例的工作原理图;4a to 4c are working principle diagrams of the first embodiment of the pulse switch control device of the present invention;
图5a~图5c为本发明脉冲开关控制装置第二实施例的工作原理图;5a to 5c are working principle diagrams of the second embodiment of the pulse switch control device of the present invention;
图6a和图6b为本发明脉冲开关控制装置第三实施例的工作原理图;Figure 6a and Figure 6b are working principle diagrams of the third embodiment of the pulse switch control device of the present invention;
图7a和图7b为本发明脉冲开关控制装置第四实施例的工作原理图;Fig. 7a and Fig. 7b are working schematic diagrams of the fourth embodiment of the pulse switch control device of the present invention;
图8a~图8c为本发明脉冲开关控制装置第五实施例的工作原理图;8a to 8c are working principle diagrams of the fifth embodiment of the pulse switch control device of the present invention;
图9a~图9c为本发明脉冲开关控制装置第六实施例的工作原理图;9a to 9c are working principle diagrams of the sixth embodiment of the pulse switch control device of the present invention;
图10a和图10b为本发明脉冲开关控制装置第七实施例的工作原理图;Fig. 10a and Fig. 10b are working principle diagrams of the seventh embodiment of the pulse switch control device of the present invention;
图11a和图11b为本发明脉冲开关控制装置第八实施例的工作原理图;Fig. 11a and Fig. 11b are working principle diagrams of the eighth embodiment of the pulse switch control device of the present invention;
图12为本发明高频高压脉冲电源的结构示意图。Fig. 12 is a schematic structural diagram of the high-frequency high-voltage pulse power supply of the present invention.
具体实施方式 Detailed ways
下面结合附图,对本发明技术方案做进一步详细说明。The technical solution of the present invention will be described in further detail below in conjunction with the accompanying drawings.
经本申请发明人的深入研究表明,由于现有成对控制方式缺乏良好的放电回路,在脉冲状态切换时产生虚电压,因此导致脉冲电流或电压波形严重失真。为此,本发明提供了一种根据负载情况自适应地脉冲截尾控制方案,通过在脉冲状态切换时形成放电回路,有效消除由呈感性负载、呈容性负载及脉冲电子开关器件关断延时带来的脉冲电流或电压波形拖尾,有效减小脉冲电流或电压波形失真。In-depth research by the inventors of the present application shows that due to the lack of a good discharge circuit in the existing paired control mode, a virtual voltage is generated when the pulse state is switched, thus causing serious distortion of the pulse current or voltage waveform. For this reason, the present invention provides an adaptive pulse truncation control scheme according to load conditions. By forming a discharge circuit when the pulse state is switched, it can effectively eliminate delays caused by inductive loads, capacitive loads, and pulse electronic switching devices. The pulse current or voltage waveform smearing brought by the time can effectively reduce the distortion of pulse current or voltage waveform.
图3为本发明脉冲开关控制装置的结构示意图。如图3所示,本发明脉冲开关控制装置的主体结构包括H型桥式发射脉冲模块和控制模块,控制模块与H型桥式发射脉冲模块连接,用于控制H型桥式发射脉冲模块向负载施加正向脉冲或反向脉冲,在施加正向脉冲或反向脉冲停止时,控制模块控制H型桥式发射脉冲模块形成放电回路,通过快速放电回路有效截掉由呈感性负载、呈容性负载及脉冲电子开关器件关断延时带来的脉冲电流或电压波形拖尾。Fig. 3 is a schematic structural diagram of the pulse switch control device of the present invention. As shown in Figure 3, the main structure of the pulse switch control device of the present invention comprises an H-type bridge-type transmitting pulse module and a control module, and the control module is connected with the H-type bridge-type transmitting pulse module for controlling the H-type bridge-type transmitting pulse module to The load applies a forward pulse or a reverse pulse. When the forward pulse or reverse pulse is applied, the control module controls the H-bridge transmitting pulse module to form a discharge circuit. Pulse current or voltage waveform tailing caused by the turn-off delay of permanent loads and pulse electronic switching devices.
具体地,本发明H型桥式发射脉冲模块包括第一开关单元S1(VT1和VD1)、第二开关单元S2(VT2和VD2)、第三开关单元S3(VT3和VD3)和第四开关单元S4(VT4和VD4)。在图3所示结构中,每个开关单元的等效电路为开关管VT和二极管VD,实际应用中,作为等效开关器件的开关单元可以由多个单开关器件串并联而成。第一开关单元S1与第二开关单元S2串接在电源正负极之间,第三开关单元S3与第四开关单元S4串接在电源正负极之间,即第一开关单元S1与第二开关单元S2的一端通过第一节点A连接,另一端分别连接电源的正负极,第三开关单元S3与第四开关单元S4的一端通过第二节点B连接,另一端分别连接电源的正负极,负载RL设置在第一节点A与第二节点B之间,构成H型桥式电路结构。为了更清楚地描述本发明的技术方案,将位于对角位置的开关单元称之为对角开关组,将位于相对位置的开关单元称之为相对开关组,即将第一开关单元S1和第四开关单元S4称之为一个对角开关组,第二开关单元S2和第三开关单元S3称之为另一个对角开关组;将位于负载RL一侧的第一开关单元S1和第三开关单元S2称之为一个相对开关组,位于负载RL另一侧的第二开关单元S2和第四开关单元S4称之为另一个相对开关组。Specifically, the H-bridge transmitting pulse module of the present invention includes a first switch unit S 1 (V T1 and V D1 ), a second switch unit S 2 (V T2 and V D2 ), a third switch unit S 3 (V T3 and V D3 ) and the fourth switching unit S 4 (V T4 and V D4 ). In the structure shown in FIG. 3 , the equivalent circuit of each switching unit is a switching tube V T and a diode V D . In practical applications, a switching unit serving as an equivalent switching device can be composed of multiple single switching devices connected in series and parallel. The first switch unit S 1 and the second switch unit S 2 are connected in series between the positive and negative poles of the power supply, and the third switch unit S 3 and the fourth switch unit S 4 are connected in series between the positive and negative poles of the power supply, that is, the first switch One end of the unit S1 and the second switching unit S2 is connected through the first node A, and the other end is respectively connected with the positive and negative poles of the power supply, and one end of the third switching unit S3 and the fourth switching unit S4 is connected through the second node B , the other ends are respectively connected to the positive and negative poles of the power supply, and the load RL is set between the first node A and the second node B, forming an H-type bridge circuit structure. In order to describe the technical solution of the present invention more clearly, the switch unit located at the diagonal position is called the diagonal switch group, and the switch unit located at the opposite position is called the opposite switch group, that is, the first switch unit S1 and the second switch unit The four switch units S 4 are called a diagonal switch group, the second switch unit S 2 and the third switch unit S 3 are called another diagonal switch group; the first switch unit S located on the load RL side 1 and the third switch unit S2 are called an opposite switch group, and the second switch unit S2 and the fourth switch unit S4 located on the other side of the load RL are called another opposite switch group.
本发明控制模块包括第一控制端u1、第二控制端u2、第三控制端u3和第四控制端u4,第一控制端u1与第一开关单元S1连接,第二控制端u2与第二开关单元S2连接,第三控制端u3与第三开关单元S3连接,第四控制端u4与第四开关单元S4连接,每个控制端控制相应的开关单元导通或关断,使H型桥式发射脉冲模块向负载施加正向脉冲或反向脉冲,在施加正向脉冲或反向脉冲停止时,控制H型桥式发射脉冲模块形成放电回路,通过快速放电回路有效截掉由呈感性负载、呈容性负载及脉冲电子开关器件关断延时带来的脉冲电流或电压波形拖尾。具体地,在发射脉冲时,控制模块中的控制端控制一个对角开关组中的开关单元导通,另一个对角开关组中的开关单元关断,形成脉冲回路,向负载施加正向脉冲或反向脉冲;在发射脉冲停止时,控制模块中的控制端控制一个相对开关组中的开关单元导通,另一个相对开关组中的开关单元关断,形成放电回路,有效截掉由呈感性负载、呈容性负载及脉冲电子开关器件关断延时带来的脉冲电流或电压波形拖尾。上述控制端与开关单元的连接实际上是控制端与开关单元中的开关管连接。The control module of the present invention includes a first control terminal u 1 , a second control terminal u 2 , a third control terminal u 3 and a fourth control terminal u 4 , the first control terminal u 1 is connected to the first switch unit S 1 , and the second The control terminal u2 is connected to the second switch unit S2, the third control terminal u3 is connected to the third switch unit S3, the fourth control terminal u4 is connected to the fourth switch unit S4, and each control terminal controls a corresponding The switch unit is turned on or off, so that the H-bridge transmitting pulse module applies forward or reverse pulses to the load. When the forward pulse or reverse pulse is applied, the H-bridge transmitting pulse module is controlled to form a discharge circuit. , The pulse current or voltage waveform tail caused by the inductive load, the capacitive load and the turn-off delay of the pulse electronic switching device is effectively cut off through the fast discharge circuit. Specifically, when transmitting pulses, the control terminal in the control module controls the switch units in one diagonal switch group to turn on, and the switch units in the other diagonal switch group to turn off, forming a pulse loop and applying positive pulses to the load Or reverse pulse; when the emission pulse stops, the control terminal in the control module controls the switch unit in one relative switch group to be turned on, and the other relative switch unit in the switch group is turned off to form a discharge circuit, which effectively cuts off the Pulse current or voltage waveform tailing caused by inductive load, capacitive load and off-delay of pulse electronic switching devices. The above connection between the control terminal and the switch unit is actually the connection between the control terminal and the switch tube in the switch unit.
下面通过具体实施例详细说明本发明的技术方案。The technical solution of the present invention will be described in detail below through specific examples.
第一实施例first embodiment
图4a~图4c为本发明脉冲开关控制装置第一实施例的工作原理图,本发明控制模块由控制端u1、u2、u3和u4示意。4a to 4c are working principle diagrams of the first embodiment of the pulse switch control device of the present invention, and the control module of the present invention is represented by control terminals u 1 , u 2 , u 3 and u 4 .
在向负载施加正向脉冲时,控制单元中的第一控制端u1和第四控制端u4分别向第一开关单元S1的开关管VT1和第四开关单元S4的开关管VT4发送导通控制信号,控制第一开关单元S1和第四开关单元S4导通,控制单元中的第二控制端u2和第三控制端u3分别向第二开关单元S2的开关管VT2和第三开关单元S3的开关管VT3发送关断控制信号,控制第二开关单元S2和第三开关单元S3关断,形成施加正向脉冲回路。正向电流回路LP1为:直流电源正极→第一开关单元S1的开关管VT1→第一节点A→负载RL→第二节点B→第四开关单元S4的开关管VT4→直流电源负极,向负载RL施加正向脉冲,如图4a所示。When a forward pulse is applied to the load, the first control terminal u 1 and the fourth control terminal u 4 in the control unit respectively supply the switching tube V T1 of the first switching unit S 1 and the switching tube V of the fourth switching unit S 4 T4 sends a conduction control signal to control the conduction of the first switch unit S 1 and the fourth switch unit S 4 , and the second control terminal u 2 and the third control terminal u 3 in the control unit are respectively sent to the second switch unit S 2 The switch tube V T2 and the switch tube V T3 of the third switch unit S3 send a turn-off control signal to control the second switch unit S2 and the third switch unit S3 to turn off, forming a loop for applying forward pulses. The forward current loop LP 1 is: the positive pole of the DC power supply → the switching tube V T1 of the first switching unit S 1 → the first node A → the load RL → the second node B → the switching tube V T4 of the fourth switching unit S 4 → The negative pole of the DC power supply applies positive pulses to the load RL , as shown in Figure 4a.
在向负载施加正向脉冲停止时,控制单元中的第一控制端u1和第三控制端u3分别向第一开关单元S1的开关管VT1和第三开关单元S3的开关管VT3发送关断控制信号,控制第一开关单元S1和第三开关单元S3关断,控制单元中的第二控制端u2和第四控制端u4分别向第二开关单元S2的开关管VT2和第四开关单元S4的开关管VT4发送导通控制信号,控制第二开关单元S2和第四开关单元S4导通,形成放电回路。如果负载呈感性,电感电流的快速放电回路LP2为:负载RL→第二节点B→第四开关单元S4的开关管VT4→第二开关单元S2的二极管VD2→第一节点A→负载RL,从而截掉由感性负载及脉冲电子开关器件关断延时带来的脉冲电流波形拖尾,如图4b所示。如果负载呈容性,电容电流的快速放电回路LP3为:负载RL→第一节点A→第二开关单元S2的开关管VT2→第四开关单元S4的二极管VD4→第二节点B→负载RL,从而截掉由容性负载及脉冲电子开关器件关断延时带来的脉冲电压波形拖尾,如图4c所示。When the positive pulse is applied to the load and stops, the first control terminal u1 and the third control terminal u3 in the control unit respectively send the switching tube V T1 of the first switching unit S1 and the switching tube of the third switching unit S3 V T3 sends a turn-off control signal to control the first switch unit S 1 and the third switch unit S 3 to turn off, and the second control terminal u 2 and the fourth control terminal u 4 in the control unit respectively send signals to the second switch unit S 2 The switch tube V T2 of the fourth switch unit S4 and the switch tube V T4 of the fourth switch unit S4 send a conduction control signal to control the conduction of the second switch unit S2 and the fourth switch unit S4 to form a discharge circuit. If the load is inductive, the fast discharge loop LP 2 of the inductor current is: load RL → the second node B → the switching tube V T4 of the fourth switching unit S 4 → the diode V D2 of the second switching unit S 2 → the first node A→load RL , so as to cut off the tail of the pulse current waveform caused by the inductive load and the turn-off delay of the pulse electronic switching device, as shown in Figure 4b. If the load is capacitive, the fast discharge loop LP 3 of the capacitive current is: load RL → first node A → switching tube V T2 of the second switching unit S 2 → diode V D4 of the fourth switching unit S 4 → second Node B → load RL , so as to cut off the tail of the pulse voltage waveform caused by the capacitive load and the turn-off delay of the pulse electronic switching device, as shown in Fig. 4c.
第二实施例second embodiment
图5a~图5c为本发明脉冲开关控制装置第二实施例的工作原理图,本发明控制模块由控制端u1、u2、u3和u4示意。在前述第一实施例技术方案基础上,本实施例在放电回路上设置有放电负载R,通过放电负载R降低放电电流,有效保护开关管。具体地,本实施例放电负载R设置在第一节点A与第二开关单元S2之间。实际应用中,放电负载R可以设置在与第二开关单元S2串接的线路上,即可以设置在第二开关单元S2的任意一侧。Figures 5a to 5c are working principle diagrams of the second embodiment of the pulse switch control device of the present invention, and the control module of the present invention is represented by control terminals u 1 , u 2 , u 3 and u 4 . On the basis of the above-mentioned technical solution of the first embodiment, the present embodiment is provided with a discharge load R on the discharge circuit, and the discharge current is reduced through the discharge load R to effectively protect the switch tube. Specifically, in this embodiment, the discharge load R is set between the first node A and the second switch unit S2. In practical applications, the discharge load R can be set on the line connected in series with the second switch unit S2, that is, it can be set on any side of the second switch unit S2.
在向负载施加正向脉冲时,本实施例工作原理与第一实施例相同,正向电流回路LP1为:直流电源正极→第一开关单元S1的开关管VT1→第一节点A→负载RL→第二节点B→第四开关单元S4的开关管VT4→直流电源负极,向负载RL施加正向脉冲,如图5a所示。When a positive pulse is applied to the load, the working principle of this embodiment is the same as that of the first embodiment, and the forward current loop LP 1 is: the positive pole of the DC power supply → the switching tube V T1 of the first switching unit S 1 → the first node A → Load RL →second node B→switching tube V T4 of the fourth switch unit S4→negative pole of DC power supply, apply positive pulse to load RL , as shown in FIG. 5a.
在向负载施加正向脉冲停止时,本实施例各控制端的控制过程与第一实施例相同,形成包括第二开关单元S2和第四开关单元S4的放电回路。如果负载呈感性,电感电流的快速放电回路LP2为:负载RL→第二节点B→第四开关单元S4的开关管VT4→第二开关单元S2的二极管VD2→放电负载R→第一节点A→负载RL,从而截掉由感性负载及脉冲电子开关器件关断延时带来的脉冲电流波形拖尾,如图5b所示。如果负载呈容性,电容电流的快速放电回路LP3为:负载RL→第一节点A→放电负载R→第二开关单元S2的开关管VT2→第四开关单元S4的二极管VD4→第二节点B→负载RL,从而截掉由容性负载及脉冲电子开关器件关断延时带来的脉冲电压波形拖尾,如图5c所示。When the application of positive pulses to the load stops, the control process of each control terminal in this embodiment is the same as that in the first embodiment, forming a discharge circuit including the second switch unit S2 and the fourth switch unit S4. If the load is inductive, the fast discharge loop LP 2 of the inductor current is: load RL → second node B → switch tube V T4 of the fourth switch unit S 4 → diode V D2 of the second switch unit S 2 → discharge load R → the first node A → the load RL , so as to cut off the tail of the pulse current waveform caused by the inductive load and the turn-off delay of the pulse electronic switching device, as shown in Fig. 5b. If the load is capacitive, the fast discharge loop LP 3 of the capacitive current is: load RL → first node A → discharge load R → switching tube V T2 of the second switching unit S 2 → diode V of the fourth switching unit S 4 D4 →second node B→load RL , so as to cut off the tail of the pulse voltage waveform caused by the capacitive load and the turn-off delay of the pulse electronic switching device, as shown in FIG. 5c.
第三实施例third embodiment
图6a和图6b为本发明脉冲开关控制装置第三实施例的工作原理图,本发明控制模块由控制端u1、u2、u3和u4示意。Fig. 6a and Fig. 6b are working principle diagrams of the third embodiment of the pulse switch control device of the present invention, and the control module of the present invention is represented by control terminals u 1 , u 2 , u 3 and u 4 .
在向负载施加正向脉冲时,本实施例工作原理与第一实施例相同,正向电流回路LP1为:直流电源正极→第一开关单元S1的开关管VT1→第一节点A→负载RL→第二节点B→第四开关单元S4的开关管VT4→直流电源负极,向负载RL施加正向脉冲,如图4a所示。When a positive pulse is applied to the load, the working principle of this embodiment is the same as that of the first embodiment, and the forward current loop LP 1 is: the positive pole of the DC power supply → the switching tube V T1 of the first switching unit S 1 → the first node A → Load RL →second node B→switching tube V T4 of the fourth switch unit S4→negative pole of DC power supply, apply positive pulse to load RL , as shown in FIG. 4a.
在向负载施加正向脉冲停止时,控制单元中的第一控制端u1和第三控制端u3分别向第一开关单元S1的开关管VT1和第三开关单元S3的开关管VT3发送导通控制信号,控制第一开关单元S1和第三开关单元S3导通,控制单元中的第二控制端u2和第四控制端u4分别向第二开关单元S2的开关管VT2和第四开关单元S4的开关管VT4发送关断控制信号,控制第二开关单元S2和第四开关单元S4关断,形成放电回路。如果负载呈感性,电感电流的快速放电回路LP4为:负载RL→第二节点B→第三开关单元S3的二极管VD3→第一开关单元S1的开关管VT1→第一节点A→负载RL,从而截掉由感性负载及脉冲电子开关器件关断延时带来的脉冲电流波形拖尾,如图6a所示。如果负载呈容性,电容电流的快速放电回路LP5为:负载RL→第一节点A→第一开关单元S1的二极管VD1→第三开关单元S3的开关管VT3→第二节点B→负载RL,从而截掉由容性负载及脉冲电子开关器件关断延时带来的脉冲电压波形拖尾,如图6b所示。When the positive pulse is applied to the load and stops, the first control terminal u1 and the third control terminal u3 in the control unit respectively send the switching tube V T1 of the first switching unit S1 and the switching tube of the third switching unit S3 V T3 sends a conduction control signal to control the conduction of the first switch unit S 1 and the third switch unit S 3 , and the second control terminal u 2 and the fourth control terminal u 4 in the control unit are respectively connected to the second switch unit S 2 The switching tube V T2 of the fourth switching unit S4 and the switching tube V T4 of the fourth switching unit S4 send a shutdown control signal to control the switching off of the second switching unit S2 and the fourth switching unit S4 to form a discharge circuit. If the load is inductive, the fast discharge loop LP 4 of the inductor current is: load RL → the second node B → the diode V D3 of the third switching unit S 3 → the switching tube V T1 of the first switching unit S 1 → the first node A→load RL , so as to cut off the tail of the pulse current waveform caused by the inductive load and the turn-off delay of the pulse electronic switching device, as shown in Figure 6a. If the load is capacitive, the fast discharge circuit LP 5 of the capacitive current is: load RL → first node A → diode V D1 of the first switching unit S 1 → switching tube V T3 of the third switching unit S 3 → second Node B→load RL , so as to cut off the tail of the pulse voltage waveform caused by the capacitive load and the turn-off delay of the pulse electronic switching device, as shown in Figure 6b.
第四实施例Fourth embodiment
图7a和图7b为本发明脉冲开关控制装置第四实施例的工作原理图,本发明控制模块由控制端u1、u2、u3和u4示意。在前述第三实施例技术方案基础上,本实施例在放电回路上设置有放电负载R,通过放电负载R降低放电电流,有效保护开关管。具体地,本实施例放电负载R设置在第二节点B与第三开关单元S3之间。实际应用中,放电负载R可以设置在与第三开关单元S3串接的线路上,即可以设置在第三开关单元S3的任意一侧。Fig. 7a and Fig. 7b are working principle diagrams of the fourth embodiment of the pulse switch control device of the present invention, and the control module of the present invention is represented by control terminals u 1 , u 2 , u 3 and u 4 . On the basis of the technical solution of the aforementioned third embodiment, this embodiment is provided with a discharge load R on the discharge circuit, and the discharge current is reduced through the discharge load R to effectively protect the switch tube. Specifically, in this embodiment, the discharge load R is set between the second node B and the third switch unit S3. In practical applications, the discharge load R can be set on the line connected in series with the third switch unit S3, that is, it can be set on any side of the third switch unit S3.
在向负载施加正向脉冲时,本实施例工作原理与第三实施例相同,正向电流回路LP1为:直流电源正极→第一开关单元S1的开关管VT1→第一节点A→负载RL→第二节点B→第四开关单元S4的开关管VT4→直流电源负极,向负载RL施加正向脉冲,如图4a所示。When a forward pulse is applied to the load, the working principle of this embodiment is the same as that of the third embodiment, and the forward current loop LP 1 is: the positive pole of the DC power supply → the switching tube V T1 of the first switching unit S 1 → the first node A → Load RL →second node B→switching tube V T4 of the fourth switch unit S4→negative pole of DC power supply, apply positive pulse to load RL , as shown in FIG. 4a.
在向负载施加正向脉冲停止时,本实施例各控制端的控制过程与第三实施例相同,形成包括第一开关单元S1和第三开关单元S3的放电回路。如果负载呈感性,电感电流的快速放电回路LP4为:负载RL→第二节点B→放电负载R→第三开关单元S3的二极管VD3→第一开关单元S1的开关管VT1→第一节点A→负载RL,从而截掉由感性负载及脉冲电子开关器件关断延时带来的脉冲电流波形拖尾,如图7a所示。如果负载呈容性,电容电流的快速放电回路LP5为:负载RL→第一节点A→第一开关单元S1的二极管VD1→第三开关单元S3的开关管VT3→放电负载R→第二节点B→负载RL,从而截掉由容性负载及脉冲电子开关器件关断延时带来的脉冲电压波形拖尾,如图7b所示。When the application of positive pulses to the load stops, the control process of each control terminal of this embodiment is the same as that of the third embodiment, forming a discharge circuit including the first switch unit S1 and the third switch unit S3. If the load is inductive, the fast discharge loop LP 4 of the inductor current is: load RL → second node B → discharge load R → diode V D3 of the third switching unit S 3 → switching tube V T1 of the first switching unit S 1 → the first node A → the load RL , so as to cut off the tail of the pulse current waveform caused by the inductive load and the turn-off delay of the pulse electronic switching device, as shown in Fig. 7a. If the load is capacitive, the fast discharge loop LP 5 of the capacitive current is: load RL → first node A → diode V D1 of the first switch unit S 1 → switch tube V T3 of the third switch unit S 3 → discharge load R→second node B→load RL , so as to cut off the tail of the pulse voltage waveform caused by the capacitive load and the turn-off delay of the pulse electronic switching device, as shown in FIG. 7b.
第五实施例fifth embodiment
图8a~图8c为本发明脉冲开关控制装置第五实施例的工作原理图,本发明控制模块由控制端u1、u2、u3和u4示意。Figures 8a to 8c are working principle diagrams of the fifth embodiment of the pulse switch control device of the present invention, and the control module of the present invention is represented by control terminals u 1 , u 2 , u 3 and u 4 .
在向负载施加反向脉冲时,控制单元中的第二控制端u2和第三控制端u3分别向第二开关单元S2的开关管VT2和第三开关单元S3的开关管VT3发送导通控制信号,控制第二开关单元S2和第三开关单元S3导通,控制单元中的第一控制端u1和第四控制端u4分别向第一开关单元S1的开关管VT1和第四开关单元S4的开关管VT4发送关断控制信号,控制第一开关单元S1和第四开关单元S4关断,形成施加反向脉冲回路。反向电流回路LN1为:直流电源正极→第三开关单元S3的开关管VT3→第二节点B→负载RL→第一节点A→第二开关单元S2的开关管VT2→直流电源负极,向负载RL施加反向脉冲,如图8a所示。When the reverse pulse is applied to the load, the second control terminal u 2 and the third control terminal u 3 in the control unit respectively supply the switching tube V T2 of the second switching unit S 2 and the switching tube V of the third switching unit S 3 T3 sends a conduction control signal to control the conduction of the second switch unit S2 and the third switch unit S3, and the first control terminal u1 and the fourth control terminal u4 in the control unit are respectively connected to the first switch unit S1 The switching tube V T1 and the switching tube V T4 of the fourth switching unit S 4 send a turn-off control signal to control the first switching unit S 1 and the fourth switching unit S 4 to turn off, forming a reverse pulse application loop. The reverse current loop LN 1 is: the positive pole of the DC power supply → the switch tube V T3 of the third switch unit S 3 → the second node B → the load RL → the first node A → the switch tube V T2 of the second switch unit S 2 → Negative pole of the DC power supply, apply a reverse pulse to the load RL , as shown in Figure 8a.
在向负载施加反向脉冲停止时,控制单元中的第一控制端u1和第三控制端u3分别向第一开关单元S1的开关管VT1和第三开关单元S3的开关管VT3发送关断控制信号,控制第一开关单元S1和第三开关单元S3关断,控制单元中的第二控制端u2和第四控制端u4分别向第二开关单元S2的开关管VT2和第四开关单元S4的开关管VT4发送导通控制信号,控制第二开关单元S2和第四开关单元S4导通,形成放电回路。如果负载呈感性,电感电流的快速放电回路LN2为:负载RL→第一节点A→第二开关单元S2的开关管VT2→第四开关单元S4的二极管VD4→第二节点B→负载RL,从而截掉由感性负载及脉冲电子开关器件关断延时带来的脉冲电流波形拖尾,如图8b所示。如果负载呈容性,电容电流的快速放电回路LN3为:负载RL→第二节点B→第四开关单元S4的开关管VT4→第二开关单元S2的二极管VD2→第一节点A→负载RL,从而截掉由容性负载及脉冲电子开关器件关断延时带来的脉冲电压波形拖尾,如图8c所示。When the reverse pulse is applied to the load and stops, the first control terminal u1 and the third control terminal u3 in the control unit respectively send the switching tube V T1 of the first switching unit S1 and the switching tube of the third switching unit S3 V T3 sends a turn-off control signal to control the first switch unit S 1 and the third switch unit S 3 to turn off, and the second control terminal u 2 and the fourth control terminal u 4 in the control unit respectively send signals to the second switch unit S 2 The switch tube V T2 of the fourth switch unit S4 and the switch tube V T4 of the fourth switch unit S4 send a conduction control signal to control the conduction of the second switch unit S2 and the fourth switch unit S4 to form a discharge circuit. If the load is inductive, the fast discharge loop LN 2 of the inductor current is: load RL → the first node A → the switching tube V T2 of the second switching unit S 2 → the diode V D4 of the fourth switching unit S 4 → the second node B→load RL , so as to cut off the tail of the pulse current waveform caused by the inductive load and the turn-off delay of the pulse electronic switching device, as shown in Figure 8b. If the load is capacitive, the fast discharge loop LN 3 of the capacitive current is: load RL → the second node B → the switching tube V T4 of the fourth switching unit S 4 → the diode V D2 of the second switching unit S 2 → the first Node A→load RL , so as to cut off the tail of the pulse voltage waveform caused by the capacitive load and the turn-off delay of the pulse electronic switching device, as shown in Figure 8c.
第六实施例Sixth embodiment
图9a~图9c为本发明脉冲开关控制装置第六实施例的工作原理图,本发明控制模块由控制端u1、u2、u3和u4示意。在前述第五实施例技术方案基础上,本实施例在放电回路上设置有放电负载R,通过放电负载R降低放电电流,有效保护开关管。具体地,本实施例放电负载R设置在第二节点B与第四开关单元S4之间。实际应用中,放电负载R可以设置在与第四开关单元S4串接的线路上,即可以设置在第四开关单元S4的任意一侧。Figures 9a to 9c are working principle diagrams of the sixth embodiment of the pulse switch control device of the present invention, and the control module of the present invention is represented by control terminals u 1 , u 2 , u 3 and u 4 . On the basis of the technical solution of the fifth embodiment described above, this embodiment is provided with a discharge load R on the discharge circuit, and the discharge current is reduced through the discharge load R to effectively protect the switch tube. Specifically, in this embodiment, the discharge load R is set between the second node B and the fourth switch unit S4. In practical applications, the discharge load R can be set on a line connected in series with the fourth switch unit S4, that is, it can be set on any side of the fourth switch unit S4.
在向负载施加反向脉冲时,本实施例工作原理与第五实施例相同,反向电流回路LN1为:直流电源正极→第三开关单元S3的开关管VT3→第二节点B→负载RL→第一节点A→第二开关单元S2的开关管VT2→直流电源负极,向负载RL施加反向脉冲,如图9a所示。When a reverse pulse is applied to the load, the working principle of this embodiment is the same as that of the fifth embodiment, and the reverse current loop LN 1 is: the positive pole of the DC power supply → the switching tube V T3 of the third switching unit S 3 → the second node B → Load RL →first node A→switching tube V T2 of the second switch unit S2→negative pole of DC power supply, apply reverse pulse to load RL , as shown in FIG. 9a.
在向负载施加反向脉冲停止时,本实施例各控制端的控制过程与第五实施例相同,形成包括第二开关单元S2和第四开关单元S4的放电回路。如果负载呈感性,电感电流的快速放电回路LN2为:负载RL→第一节点A→第二开关单元S2的开关管VT2→第四开关单元S4的二极管VD4→放电负载R→第二节点B→负载RL,从而截掉由感性负载及脉冲电子开关器件关断延时带来的脉冲电流波形拖尾,如图9b所示。如果负载呈容性,电容电流的快速放电回路LN3为:负载RL→第二节点B→放电负载R→第四开关单元S4的开关管VT4→第二开关单元S2的二极管VD2→第一节点A→负载RL,从而截掉由容性负载及脉冲电子开关器件关断延时带来的脉冲电压波形拖尾,如图9c所示。When the application of the reverse pulse to the load stops, the control process of each control terminal of this embodiment is the same as that of the fifth embodiment, forming a discharge circuit including the second switch unit S2 and the fourth switch unit S4. If the load is inductive, the fast discharge loop LN 2 of the inductor current is: load RL → first node A → switch tube V T2 of the second switch unit S 2 → diode V D4 of the fourth switch unit S 4 → discharge load R → second node B → load RL , so as to cut off the tail of the pulse current waveform caused by the inductive load and the turn-off delay of the pulse electronic switching device, as shown in Fig. 9b. If the load is capacitive, the fast discharge loop LN 3 of the capacitive current is: load RL → second node B → discharge load R → switching tube V T4 of the fourth switching unit S 4 → diode V of the second switching unit S 2 D2 → first node A → load RL , thereby cutting off the tail of the pulse voltage waveform caused by the capacitive load and the turn-off delay of the pulse electronic switching device, as shown in FIG. 9c.
第七实施例Seventh embodiment
图10a和图10b为本发明脉冲开关控制装置第七实施例的工作原理图,本发明控制模块由控制端u1、u2、u3和u4示意。Fig. 10a and Fig. 10b are working principle diagrams of the seventh embodiment of the pulse switch control device of the present invention, and the control module of the present invention is represented by control terminals u 1 , u 2 , u 3 and u 4 .
在向负载施加反向脉冲时,本实施例工作原理与第五实施例相同,反向电流回路LN1为:直流电源正极→第三开关单元S3的开关管VTT3→第二节点B→负载RL→第一节点A→第二开关单元S2的开关管VT2→直流电源负极,向负载RL施加反向脉冲,如图8a所示。When a reverse pulse is applied to the load, the working principle of this embodiment is the same as that of the fifth embodiment, and the reverse current loop LN 1 is: the positive pole of the DC power supply → the switching tube V T T 3 of the third switching unit S 3 → the second node B→load RL →first node A→switching tube V T2 of the second switch unit S2→negative pole of DC power supply, apply reverse pulse to load RL , as shown in Figure 8a.
在向负载施加反向脉冲停止时,控制单元中的第一控制端u1和第三控制端u3分别向第一开关单元S1的开关管VT1和第三开关单元S3的开关管VT3发送导通控制信号,控制第一开关单元S1和第三开关单元S3导通,控制单元中的第二控制端u2和第四控制端u4分别向第二开关单元S2的开关管VT2和第四开关单元S4的开关管VT4发送关断控制信号,控制第二开关单元S2和第四开关单元S4关断,形成放电回路。When the reverse pulse is applied to the load and stops, the first control terminal u1 and the third control terminal u3 in the control unit respectively send the switching tube V T1 of the first switching unit S1 and the switching tube of the third switching unit S3 V T3 sends a conduction control signal to control the conduction of the first switch unit S 1 and the third switch unit S 3 , and the second control terminal u 2 and the fourth control terminal u 4 in the control unit are respectively connected to the second switch unit S 2 The switching tube V T2 of the fourth switching unit S4 and the switching tube V T4 of the fourth switching unit S4 send a shutdown control signal to control the switching off of the second switching unit S2 and the fourth switching unit S4 to form a discharge circuit.
如果负载呈感性,电感电流的快速放电回路LN4为:负载RL→第一节点A→第一开关单元S1的二极管VD1→第三开关单元S3的开关管VT3→第二节点B→负载RL,从而截掉由感性负载及脉冲电子开关器件关断延时带来的脉冲电流波形拖尾,如图10a所示。如果负载呈容性,电容电流的快速放电回路LN5为:负载RL→第二节点B→第三开关单元S3的二极管VD3→第一开关单元S1的开关管VT1→第一节点A→负载RL,从而截掉由容性负载及脉冲电子开关器件关断延时带来的脉冲电压波形拖尾,如图10b所示。If the load is inductive, the fast discharge loop LN 4 of the inductor current is: load RL → first node A → diode V D1 of the first switching unit S 1 → switching tube V T3 of the third switching unit S 3 → second node B→load RL , so as to cut off the tail of the pulse current waveform caused by the inductive load and the turn-off delay of the pulse electronic switching device, as shown in Figure 10a. If the load is capacitive, the fast discharge loop LN5 of the capacitive current is: load RL →second node B→diode V D3 of the third switch unit S3 →switch tube V T1 of the first switch unit S1→ first Node A→load RL , so as to cut off the tail of the pulse voltage waveform caused by the capacitive load and the turn-off delay of the pulse electronic switching device, as shown in Figure 10b.
第八实施例Eighth embodiment
图11a和图11b为本发明脉冲开关控制装置第八实施例的工作原理图,本发明控制模块由控制端u1、u2、u3和u4示意。在前述第七实施例技术方案基础上,本实施例在放电回路上设置有放电负载R,通过放电负载R降低放电电流,有效保护开关管。具体地,本实施例放电负载R设置在第一节点A与第一开关单元S1之间。实际应用中,放电负载R可以设置在与第一开关单元S1串接的线路上,即可以设置在第一开关单元S1的任意一侧。Fig. 11a and Fig. 11b are working principle diagrams of the eighth embodiment of the pulse switch control device of the present invention, and the control module of the present invention is represented by control terminals u 1 , u 2 , u 3 and u 4 . On the basis of the technical solution of the foregoing seventh embodiment, this embodiment is provided with a discharge load R on the discharge circuit, and the discharge current is reduced through the discharge load R, thereby effectively protecting the switch tube. Specifically, in this embodiment, the discharge load R is set between the first node A and the first switch unit S1. In practical applications, the discharge load R can be set on a line connected in series with the first switch unit S1, that is, it can be set on any side of the first switch unit S1.
在向负载施加反向脉冲时,本实施例工作原理与第七实施例相同,反向电流回路LN1为:直流电源正极→第三开关单元S3的开关管VT3→第二节点B→负载RL→第一节点A→第二开关单元S2的开关管VT2→直流电源负极,向负载RL施加反向脉冲,如图8a所示。When a reverse pulse is applied to the load, the working principle of this embodiment is the same as that of the seventh embodiment, and the reverse current loop LN1 is: the positive pole of the DC power supply → the switching tube V T3 of the third switching unit S3 → the second node B → Load RL →first node A→switching tube V T2 of the second switch unit S2→negative pole of DC power supply, apply reverse pulse to load RL , as shown in FIG. 8a.
在向负载施加反向脉冲停止时,本实施例各控制端的控制过程与第七实施例相同,形成包括第一开关单元S1和第三开关单元S3的放电回路。如果负载呈感性,电感电流的快速放电回路LN4为:负载RL→第一节点A→放电负载R→第一开关单元S1的二极管VD1→第三开关单元S3的开关管VT3→第二节点B→负载RL,从而截掉由感性负载及脉冲电子开关器件关断延时带来的脉冲电流波形拖尾,如图11a所示。如果负载呈容性,电容电流的快速放电回路LN5为:负载RL→第二节点B→第三开关单元S3的二极管VD3→第一开关单元S1的开关管VT1→放电负载R→第一节点A→负载RL,从而截掉由容性负载及脉冲电子开关器件关断延时带来的脉冲电压波形拖尾,如图11b所示。When the application of the reverse pulse to the load stops, the control process of each control terminal of this embodiment is the same as that of the seventh embodiment, forming a discharge circuit including the first switch unit S1 and the third switch unit S3. If the load is inductive, the fast discharge circuit LN 4 of the inductor current is: load RL → first node A → discharge load R → diode V D1 of the first switching unit S 1 → switching tube V T3 of the third switching unit S 3 → the second node B → the load RL , so as to cut off the tail of the pulse current waveform caused by the inductive load and the turn-off delay of the pulse electronic switching device, as shown in Fig. 11a. If the load is capacitive, the fast discharge loop LN 5 of the capacitive current is: load RL → second node B → diode V D3 of the third switching unit S 3 → switching tube V T1 of the first switching unit S 1 → discharge load R→first node A→load RL , so as to cut off the tail of the pulse voltage waveform caused by the capacitive load and the turn-off delay of the pulse electronic switching device, as shown in FIG. 11b.
通过上述实施例可以看出,在向负载施加正向或反向脉冲停止时,即在脉冲状态切换时,本发明通过形成放电回路,有效消除了由呈感性负载、呈容性负载及脉冲电子开关器件关断延时带来的脉冲电流或电压波形拖尾,有效减小了脉冲电流或电压波形失真。It can be seen from the above embodiments that when the forward or reverse pulses are applied to the load and stop, that is, when the pulse state is switched, the present invention effectively eliminates the problems caused by inductive loads, capacitive loads and pulsed electrons by forming a discharge circuit. The tailing of the pulse current or voltage waveform caused by the turn-off delay of the switching device effectively reduces the distortion of the pulse current or voltage waveform.
图12为本发明高频高压脉冲电源的结构示意图。如图12所示,本发明高频高压脉冲电源的主体结构包括低压直流电源装置、大功率逆变装置、脉冲变压器装置、脉冲开关控制装置、电脱盐脱水负载、控制装置和检测装置,其中脉冲开关控制装置采用前述第一实施例~第八实施例的结构。具体地,低压直流电源装置用于对低压交流电进行整流滤波处理,输出幅值经过调整的低压直流电源;大功率逆变装置与低压直流电源装置连接,用于对低压直流电源进行逆变处理,通过占空比调制输出幅值经过调整的双极性低压脉冲电源;脉冲变压器装置与大功率逆变装置连接,用于对双极性低压脉冲电源进行升压和整流滤波处理,输出高压直流电源;脉冲开关控制装置与脉冲变压器装置连接,用于对高压直流电源进行处理,向负载输出频率经过调整的高压高频脉冲电源;检测装置连接在负载的两端,用于监测脉冲开关控制装置输出高压高频脉冲电源的电流和电压,获取输出参数;控制装置分别与低压直流电源装置、大功率逆变装置、脉冲开关控制装置和检测装置连接,用于根据检测装置监测到的输出参数调节低压直流电源装置输出的低压直流电源的幅值、大功率逆变装置输出的双极性低压脉冲电源的幅值和脉冲开关控制装置输出的高压高频脉冲电源的频率。Fig. 12 is a schematic structural diagram of the high-frequency high-voltage pulse power supply of the present invention. As shown in Figure 12, the main structure of the high-frequency and high-voltage pulse power supply of the present invention includes a low-voltage DC power supply device, a high-power inverter device, a pulse transformer device, a pulse switch control device, an electric desalination and dehydration load, a control device and a detection device, wherein the pulse The switch control device adopts the structures of the aforementioned first to eighth embodiments. Specifically, the low-voltage DC power supply device is used to rectify and filter the low-voltage AC power, and output a low-voltage DC power supply with an adjusted amplitude; The bipolar low-voltage pulse power supply with adjusted output amplitude is modulated by the duty ratio; the pulse transformer device is connected with the high-power inverter device, which is used to boost and rectify and filter the bipolar low-voltage pulse power supply, and output high-voltage DC power supply The pulse switch control device is connected with the pulse transformer device, which is used to process the high-voltage DC power supply, and output the high-voltage high-frequency pulse power supply with adjusted frequency to the load; the detection device is connected to both ends of the load, and is used to monitor the output of the pulse switch control device The current and voltage of the high-voltage and high-frequency pulse power supply are used to obtain the output parameters; the control device is respectively connected with the low-voltage DC power supply device, the high-power inverter device, the pulse switch control device and the detection device, and is used to adjust the low voltage according to the output parameters monitored by the detection device. The amplitude of the low-voltage DC power output by the DC power supply device, the amplitude of the bipolar low-voltage pulse power output by the high-power inverter device, and the frequency of the high-voltage high-frequency pulse power output by the pulse switch control device.
本发明还提供了一种脉冲开关控制方法,脉冲开关采用前述本发明H型桥式发射脉冲模块结构,包括由第一开关单元、第二开关单元、第三开关单元和第四开关单元组成的H型桥式发射脉冲电路,第一开关单元和第四开关单元、第二开关单元和第三开关单元分别组成对角开关组,第一开关单元和第三开关单元、第二开关单元和第四开关单元分别组成相对开关组。脉冲开关控制方法包括:The present invention also provides a pulse switch control method. The pulse switch adopts the aforementioned H-bridge transmission pulse module structure of the present invention, including a first switch unit, a second switch unit, a third switch unit and a fourth switch unit. H-type bridge transmitting pulse circuit, the first switch unit and the fourth switch unit, the second switch unit and the third switch unit respectively form a diagonal switch group, the first switch unit and the third switch unit, the second switch unit and the third switch unit The four switch units respectively form relative switch groups. Pulse switch control methods include:
在发射脉冲时,向一个对角开关组中的开关单元发送导通控制信号、向另一个对角开关组中的开关单元发送关断控制信号,形成脉冲回路;When transmitting pulses, send a turn-on control signal to the switch unit in one diagonal switch group, and send a turn-off control signal to the switch unit in the other diagonal switch group to form a pulse loop;
在发射脉冲停止时,向一个相对开关组中的开关单元发送导通控制信号、向另一个相对开关组中的开关单元发送关断控制信号,形成放电回路。When the transmitting pulse stops, a turn-on control signal is sent to the switch unit in one opposite switch group, and a turn-off control signal is sent to the switch unit in the other opposite switch group, forming a discharge circuit.
其中,所述向一个对角开关组中的开关单元发送导通控制信号、向另一个对角开关组中的开关单元发送关断控制信号具体为:向所述第一开关单元和第四开关单元发送导通控制信号,向所述第二开关单元和第三开关单元发送关断控制信号;或向所述第一开关单元和第四开关单元发送关断控制信号,向所述第二开关单元和第三开关单元发送导通控制信号。Wherein, the sending a turn-on control signal to the switch unit in one diagonal switch group and sending a turn-off control signal to the switch unit in another diagonal switch group specifically includes: sending the first switch unit and the fourth switch unit The unit sends a turn-on control signal, and sends a turn-off control signal to the second switch unit and the third switch unit; or sends a turn-off control signal to the first switch unit and the fourth switch unit, and sends a turn-off control signal to the second switch unit. The unit and the third switch unit send a conduction control signal.
其中,所述向一个相对开关组中的开关单元发送导通控制信号、向另一个相对开关组中的开关单元发送关断控制信号具体为:向所述第一开关单元和第三开关单元发送关断控制信号,向所述第二开关单元和第四开关单元发送导通控制信号;或向所述第一开关单元和第三开关单元发送导通控制信号,向所述第二开关单元和第四开关单元发送关断控制信号。Wherein, the sending a turn-on control signal to a switch unit in one relative switch group and sending a turn-off control signal to a switch unit in another relative switch group specifically includes: sending a switch control signal to the first switch unit and the third switch unit Turn off the control signal, send the conduction control signal to the second switch unit and the fourth switch unit; or send the conduction control signal to the first switch unit and the third switch unit, and send the conduction control signal to the second switch unit and the second switch unit The fourth switch unit sends a shutdown control signal.
本发明脉冲开关控制方法的处理流程已在前述本发明脉冲开关控制装置的技术方案中详细说明,这里不再赘述。The processing flow of the pulse switch control method of the present invention has been described in detail in the aforementioned technical solution of the pulse switch control device of the present invention, and will not be repeated here.
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。The above descriptions are only preferred embodiments of the present invention, and are not intended to limit the present invention. For those skilled in the art, the present invention may have various modifications and changes. Any modifications, equivalent replacements, improvements, etc. made within the spirit and principles of the present invention shall be included within the protection scope of the present invention.
本发明得到国家高技术研究发展计划(863计划)支持,项目名称为:高效节能环保原油混沌脉冲电脱水器产业化关键技术研究,项目编号为:2007AA05Z230。本发明得到北京市教育委员会共建项目专项资助。本发明得到中国石油大学(北京)前瞻导向项目资助,批准号为:2010QZ03。The invention is supported by the national high-tech research and development plan (863 plan). The project name is: research on key technology of industrialization of high-efficiency, energy-saving and environment-friendly crude oil chaotic pulse electric dehydrator, and the project number is: 2007AA05Z230. The invention has received special funding from the Beijing Municipal Education Commission's co-construction project. The present invention is funded by the forward-looking project of China University of Petroleum (Beijing), and the approval number is: 2010QZ03.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201010553269.4A CN102005908B (en) | 2010-11-22 | 2010-11-22 | Pulse switch control device and control method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201010553269.4A CN102005908B (en) | 2010-11-22 | 2010-11-22 | Pulse switch control device and control method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102005908A CN102005908A (en) | 2011-04-06 |
CN102005908B true CN102005908B (en) | 2015-10-07 |
Family
ID=43813043
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201010553269.4A Expired - Fee Related CN102005908B (en) | 2010-11-22 | 2010-11-22 | Pulse switch control device and control method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102005908B (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2979771B1 (en) * | 2011-09-01 | 2013-09-13 | Converteam Technology Ltd | HIGH POWER CONVERTER COMPRISING LOW POWER SWITCHES AND A SWITCH CONTROL DEVICE FOR GENERATING AN IMPULSE WITH A REFERENCE VALUE AND AT LEAST TWO CONTROL VALUES |
CN102647105B (en) * | 2012-04-26 | 2014-09-10 | 华南理工大学 | High-power direct current/square wave changing circuit and control method therefor |
CN103391079A (en) * | 2013-07-29 | 2013-11-13 | 中国石油大学(华东) | Device for fast closing sound wave excitation signal tailing |
CN103532424B (en) * | 2013-10-28 | 2015-09-30 | 重庆大学 | Based on the high-voltage pulse superposition DC electric field generator of IGBT series connection |
CN106154341B (en) * | 2016-06-21 | 2018-10-12 | 山东大学 | A kind of nuclear magnetic resonance and transient electromagnetic integrative detection instrument and working method |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101345492A (en) * | 2008-08-28 | 2009-01-14 | 中国石油大学(北京) | Crude oil electric dehydration energy-saving high-power pulse power supply and its generation method |
CN101889387A (en) * | 2007-12-07 | 2010-11-17 | 法雷奥电机控制系统公司 | Circuit for controlling the current in an electrical control member or the voltage across the terminals of the said electrical control member |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7697253B1 (en) * | 2007-06-01 | 2010-04-13 | The Electric Controller and Manufacturing Company, LLC | Method and apparatus for controlling a lifting magnet of a materials handling machine |
-
2010
- 2010-11-22 CN CN201010553269.4A patent/CN102005908B/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101889387A (en) * | 2007-12-07 | 2010-11-17 | 法雷奥电机控制系统公司 | Circuit for controlling the current in an electrical control member or the voltage across the terminals of the said electrical control member |
CN101345492A (en) * | 2008-08-28 | 2009-01-14 | 中国石油大学(北京) | Crude oil electric dehydration energy-saving high-power pulse power supply and its generation method |
Also Published As
Publication number | Publication date |
---|---|
CN102005908A (en) | 2011-04-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111130353B (en) | Switching power supply device | |
CN102130596B (en) | Switching converter with wide input voltage range | |
CN103269163B (en) | Isolated power circuit and control signal transmission circuit thereof and method | |
CN103337983B (en) | A kind of repeated frequency high-voltage microsecond pulse power supply | |
CN107124163B (en) | Composite mode solid-state pulse source | |
CN102005908B (en) | Pulse switch control device and control method | |
CN108964289B (en) | ECPT system with double-T resonant network and its parameter design method | |
CN106602880A (en) | Large power high efficiency thermal equilibrium LLC resonant converter and control method thereof | |
CN104868746A (en) | Electromagnetic transmitter | |
CN103391078A (en) | Small and efficient high-power solid-state modulator | |
CN109450418A (en) | A kind of the IGBT isolated drive circuit and its control method of belt switch control unit | |
JP2005522978A (en) | Multi-function power converter | |
CN201418184Y (en) | Constant-current driving power for high-power LED | |
CN105811745B (en) | A kind of driving method of switch controlled pulse | |
CN201550090U (en) | Pulse modulator | |
CN203590071U (en) | Magnetron modulator of pulse transformer | |
CN202872641U (en) | Double bridge phase shift series-parallel resonance high-voltage direct-current power source | |
CN103647437A (en) | High-voltage high-current IGBT driving system | |
CN104702141B (en) | High-voltage pulse ignition power source driving circuit used for Hall thruster | |
CN103501124A (en) | Low-voltage and high-current switching power supply | |
CN112769337B (en) | Modulation type transformer isolation driving circuit independent of switching frequency | |
CN103475198B (en) | Constant on-time mode feedback control circuit for dual-transistor soft-switching converters | |
CN210041672U (en) | High-power high-energy pulse power supply main circuit | |
CN110429926B (en) | Modularized pulse high-voltage power supply based on single chip microcomputer | |
CN209299231U (en) | A kind of IGBT isolated drive circuit of belt switch control unit |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20151007 Termination date: 20181122 |
|
CF01 | Termination of patent right due to non-payment of annual fee |