CN101986622B - A kind of automatic identifying method of PCE status attribute and system - Google Patents
A kind of automatic identifying method of PCE status attribute and system Download PDFInfo
- Publication number
- CN101986622B CN101986622B CN201010536625.1A CN201010536625A CN101986622B CN 101986622 B CN101986622 B CN 101986622B CN 201010536625 A CN201010536625 A CN 201010536625A CN 101986622 B CN101986622 B CN 101986622B
- Authority
- CN
- China
- Prior art keywords
- pce
- state
- control plane
- plane node
- status attribute
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 22
- 230000007246 mechanism Effects 0.000 claims abstract description 19
- 230000008859 change Effects 0.000 claims description 18
- 230000001360 synchronised effect Effects 0.000 claims description 17
- 238000006424 Flood reaction Methods 0.000 claims description 8
- 238000004458 analytical method Methods 0.000 claims description 3
- 230000000644 propagated effect Effects 0.000 claims description 3
- 238000009792 diffusion process Methods 0.000 claims 1
- 238000004364 calculation method Methods 0.000 description 31
- 230000003287 optical effect Effects 0.000 description 5
- 238000012217 deletion Methods 0.000 description 3
- 230000037430 deletion Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 230000000977 initiatory effect Effects 0.000 description 3
- 238000011084 recovery Methods 0.000 description 3
- 230000001960 triggered effect Effects 0.000 description 3
- 235000008694 Humulus lupulus Nutrition 0.000 description 2
- 108091034117 Oligonucleotide Proteins 0.000 description 2
- 230000002159 abnormal effect Effects 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L45/00—Routing or path finding of packets in data switching networks
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Data Exchanges In Wide-Area Networks (AREA)
Abstract
本发明公开了一种PCE状态属性的自动识别方法,路径计算单元(PCE)在自动发现信息中添加PCE的状态属性表示能力,PCE通过链路状态路由协议的泛洪机制扩散和传播PCE的状态属性;控制平面节点通过链路状态路由协议收到所述自动发现信息,通过对自动发现信息的解析和比对识别出PCE的状态属性。本发明还公开了一种PCE状态属性的自动识别系统,系统中的识别单元用于控制平面节点通过链路状态路由协议收到自动发现信息,通过对自动发现信息的解析和比对识别出PCE的状态属性。采用本发明的方法及系统,由PCE自动发现机制能自动识别出PCE状态属性。
The invention discloses a method for automatically identifying PCE state attributes. A path computation unit (PCE) adds the state attribute representation capability of the PCE to the automatic discovery information, and the PCE diffuses and propagates the state of the PCE through the flooding mechanism of the link state routing protocol. Attribute: the control plane node receives the automatic discovery information through the link state routing protocol, and identifies the state attribute of the PCE by parsing and comparing the automatic discovery information. The invention also discloses an automatic identification system of PCE state attributes, the identification unit in the system is used to control plane nodes to receive automatic discovery information through the link state routing protocol, and to identify the PCE by analyzing and comparing the automatic discovery information the status attribute. By adopting the method and system of the present invention, the PCE state attribute can be automatically identified by the PCE automatic discovery mechanism.
Description
技术领域 technical field
本发明涉及智能承载网络中路径计算单元(PCE,Path ComputationElement)的控制技术,尤其涉及一种PCE状态属性的自动识别方法及系统。The present invention relates to the control technology of Path Computation Element (PCE, Path ComputationElement) in intelligent bearer network, especially relates to a kind of automatic identification method and system of PCE status attribute.
背景技术 Background technique
随着IP业务的快速增长,对网络带宽的需求不仅变得越来越大,而且由于IP业务量本身的不确定性和不可预见性,对网络带宽的动态分配需求也越来越迫切。传统的主要靠人工设置网络连接的原始方法耗时费力易出错,不仅难以适应现代网络和新业务提供拓展的需要,也难以适应市场竞争的需要。一种能够自动完成网络连接的新型网络概念--自动交换光网络(ITU-T SG15命名为ASON)应运而生。这是一种利用独立ASON控制平面通过各种传送网(包括SDH、PTN或OTN)来实施自动连接管理的网络,这种具有独立控制平面的光网络称为智能光网络。With the rapid growth of IP services, the demand for network bandwidth is not only increasing, but also due to the uncertainty and unpredictability of IP traffic itself, the demand for dynamic allocation of network bandwidth is becoming more and more urgent. The traditional original method, which mainly relies on manually setting network connections, is time-consuming, labor-intensive and error-prone. It is not only difficult to adapt to the needs of modern networks and new business expansion, but also difficult to meet the needs of market competition. A new network concept that can automatically complete network connections - Automatically Switched Optical Network (named ASON in ITU-T SG15) came into being. This is a network that uses an independent ASON control plane to implement automatic connection management through various transport networks (including SDH, PTN or OTN). This optical network with an independent control plane is called an intelligent optical network.
智能光网络具有自动发现功能,包括能够自动地发现业务、拓扑、资源的变化;具有强大的计算功能,能够根据网络环境的这些变化,进行计算、分析、推理和判断,根据资源有效配置这一原则最终做出决定;具有快速的动态的连接建立能力,并能为需要的业务提供保护和恢复功能;能够提供不同类型的、不同优先级的服务等。The intelligent optical network has the function of automatic discovery, including the ability to automatically discover changes in services, topology, and resources; it has powerful computing functions, and can perform calculations, analysis, reasoning, and judgments based on these changes in the network environment, and effectively allocate resources according to this The principle finally makes the decision; it has the ability to establish fast and dynamic connections, and can provide protection and recovery functions for the required services; it can provide different types of services with different priorities, etc.
随着多协议标签交换(MPLS)/通用多协议标签交换(GMPLS)网络的发展,网络拓扑越来越复杂,路由量非常巨大,路径计算也越来越复杂。而流量工程的部署,需要网络设备在复杂的约束条件下计算路由,这些约束条件不仅仅包含静态的约束,如路由器节点间的距离、带宽,光网络设备的线路容量等,也包括动态的约束条件,如网络故障状态、网络拥塞信息等。基于约束的路径计算,是MPLS/GMPLS网络流量工程中的一个基本功能模块,尤其是在大型的多域多级MPLS/GMPLS网络中,针对数量庞大的路径以及复杂的约束条件,流量工程所要求的路径计算需要协调不同的网络域及特别的计算功能。例如在一个n个节点单域单级全互联网络中,网络中路径的数量是n×(n-1)/2,为了在网络故障或者网络流量异常变化的情况下,通过流量工程能迅速恢复或疏通网络业务,要求在故障节点或者异常流量的输入节点网络设备在尽可能短的时间内根据各种约束条件计算出最佳恢复或者迂回路径,计算时间的缩短意味着恢复速度的提高,最佳的路径意味着网络利用效率的提高,这种复杂的计算往往需要对网络全局拓扑结构和约束条件的了解,需要大量的CPU计算资源来运行复杂的算法,而当大量CPU资源运用到路径计算中时,对网络设备的稳定性以及整个网络的稳定都造成了一定的冲击,所有这些对于网络设备来说是一个极大的挑战。With the development of Multi-Protocol Label Switching (MPLS)/General Multi-Protocol Label Switching (GMPLS) networks, the network topology is becoming more and more complex, the amount of routing is very large, and the path calculation is becoming more and more complicated. The deployment of traffic engineering requires network devices to calculate routes under complex constraints. These constraints include not only static constraints, such as the distance between router nodes, bandwidth, and line capacity of optical network equipment, but also dynamic constraints. Conditions, such as network failure status, network congestion information, etc. Constraint-based path calculation is a basic functional module in MPLS/GMPLS network traffic engineering, especially in large-scale multi-domain multi-level MPLS/GMPLS networks, for a large number of paths and complex constraints, traffic engineering requires Path computation requires the coordination of different network domains and special computation functions. For example, in an n-node single-domain single-level fully interconnected network, the number of paths in the network is n×(n-1)/2, in order to recover quickly through traffic engineering in the event of network failure or abnormal network traffic changes Or dredging the network business, it is required that the network equipment at the faulty node or the input node of the abnormal traffic calculate the best recovery or detour path in the shortest possible time according to various constraints. The shortening of the calculation time means the improvement of the recovery speed. The best path means the improvement of network utilization efficiency. This complex calculation often requires the understanding of the global topology and constraints of the network, and requires a large amount of CPU computing resources to run complex algorithms. When a large amount of CPU resources are used for path calculation During the middle period, it has a certain impact on the stability of network equipment and the stability of the entire network, all of which are a great challenge to network equipment.
为了解决这个问题,IETF PCE工作组提出了基于PCE的MPLS/GMPLS网络结构,在这种结构中,PCE是网络中专门负责路径计算的功能实体,它基于已知的网络拓扑结构和约束条件,根据路径计算客户的请求计算出一条满足约束条件的最佳路径。PCE可以位于网络中的任何地方,可以集成在网络设备内部,如集成在标记交换路由器(LSR)内部,也可以是一个独立的设备。路径计算客户(PCC,Path Computation Clients)和PCE之间、以及PCE与PCE之间通过专门的路径计算协议(PCE Communication Protocol)通信,提交路径计算请求并获得路径计算结果。PCC可以是MPLS/GMPLS网络中的LSR或者是网络管理系统(NMS)。In order to solve this problem, the IETF PCE working group proposed a PCE-based MPLS/GMPLS network structure. In this structure, PCE is a functional entity responsible for path calculation in the network. It is based on known network topology and constraints. According to the request of the path calculation client, an optimal path that satisfies the constraints is calculated. The PCE can be located anywhere in the network, and can be integrated inside a network device, for example, inside a Label Switching Router (LSR), or it can be an independent device. Path Computation Clients (PCC, Path Computation Clients) and PCE, and between PCE and PCE communicate through a special path computation protocol (PCE Communication Protocol), submit path computation requests and obtain path computation results. The PCC can be an LSR or a network management system (NMS) in the MPLS/GMPLS network.
根据RFC 4655的定义,PCE可分为有状态和无状态两种。无状态的PCE只使用流量工程数据库(TED)中的信息进行路径计算,而有状态的PCE在路径计算时不仅基于流量工程数据库(TED)中的拓扑信息,还要利用网络中已有路径和已占用资源的信息。由于有状态PCE拥有更多的信息,一方面具有强于无状态PCE的路径计算能力,同等条件下应当优选有状态PCE,在某些情况下,甚至只能使用有状态PCE进行路径计算;另一方面也对资源信息的同步有不同于无状态PCE的附加需求,因此,PCE的状态属性(即PCE是否为有状态PCE)就很有必要被PCC和域内的其它PCE所识别,见下述场景描述:According to the definition of RFC 4655, PCE can be divided into stateful and stateless. The stateless PCE only uses the information in the traffic engineering database (TED) for path calculation, while the stateful PCE is not only based on the topology information in the traffic engineering database (TED), but also uses the existing paths and Information about occupied resources. Since the stateful PCE has more information, on the one hand, it has stronger path calculation capability than the stateless PCE. Under the same conditions, the stateful PCE should be preferred. In some cases, even the stateful PCE can only be used for path calculation; on the other hand On the one hand, the synchronization of resource information has additional requirements different from stateless PCE. Therefore, the state attribute of PCE (that is, whether the PCE is a stateful PCE) must be recognized by the PCC and other PCEs in the domain. See the following Scenario description:
场景一:控制平面与PCE间同步。有状态的PCE需要保存现网中已有业务的路径信息,因此当业务状态发生变化(建立、删除)时,业务变更信息必须及时同步到有状态的PCE。为达到此目的,控制平面节点需要识别出与自身有会话关系的PCE的状态属性。Scenario 1: Synchronization between the control plane and the PCE. The stateful PCE needs to save the path information of existing services in the live network, so when the service state changes (establishment, deletion), the service change information must be synchronized to the stateful PCE in time. To achieve this purpose, the control plane node needs to identify the status attribute of the PCE that has a session relationship with itself.
场景二:单域多PCE场景下,PCE间同步。在与控制平面有会话关系的情况下,有状态的PCE通过与控制平面节点的同步机制保证自身状态信息准确性。当域内有多个PCE时,不能保证所有的PCE与所有的控制平面节点都随时保持正常的会话关系。为此,需要在有状态的PCE之间建立同步关系,当一个PCE得到业务状态变化通知时,应当把这一信息及时扩散到邻接的有状态PCE,以保证域内所有有状态PCE业务状态的一致性和正确性,即当域内有多个PCE时,有状态的PCE之间需要彼此识别出其状态属性,才能建立状态同步关系。Scenario 2: Synchronization between PCEs in a single-domain multi-PCE scenario. In the case of a session relationship with the control plane, the stateful PCE ensures the accuracy of its own state information through a synchronization mechanism with the control plane nodes. When there are multiple PCEs in the domain, it cannot be guaranteed that all PCEs and all control plane nodes maintain normal session relationships at any time. To this end, it is necessary to establish a synchronization relationship between stateful PCEs. When a PCE is notified of a service state change, it should spread this information to adjacent stateful PCEs in time to ensure the consistency of service states of all stateful PCEs in the domain. and correctness, that is, when there are multiple PCEs in the domain, the stateful PCEs need to recognize each other's state attributes to establish a state synchronization relationship.
场景三:优先选择有状态的PCE。由于有状态PCE的路径计算质量优于无状态PCE,故同等条件下PCC应当优先选择有状态PCE进行路径计算。因此,当PCC获知PCE的状态属性后,可以有目的地选择有状态PCE进行路径计算,从而得到更理想的路径计算结果。Scenario 3: Stateful PCEs are preferred. Since the path calculation quality of the stateful PCE is better than that of the stateless PCE, the PCC should preferentially select the stateful PCE for path calculation under the same conditions. Therefore, when the PCC knows the state attribute of the PCE, it can purposely select the stateful PCE for path calculation, so as to obtain a more ideal path calculation result.
由上述场景的功能需求可以看出:控制平面节点以及域内其它有状态PCE需要能识别出PCE的状态属性,以便实现有状态的PCE功能。基于以上描述可知:作为PCE的一项重要属性,PCE的状态属性应当及时准确地被PCC和其它PCE所识别出来。From the functional requirements of the above scenarios, it can be seen that the control plane nodes and other stateful PCEs in the domain need to be able to identify the state attributes of the PCE in order to realize the stateful PCE function. Based on the above description, it can be known that, as an important attribute of the PCE, the status attribute of the PCE should be recognized by the PCC and other PCEs in a timely and accurate manner.
作为控制平面自动发现机制的一部分,PCE的自动发现机制用于使PCC了解其存在以及能力属性。为了支持PCE的自动发现,PCE工作组扩展了相关路由协议,增加一种名为PCE发现的TLV(PCE Discovery TLV),PCE Discovery可简称为PCED,则PCE发现的TLV可简称为PCED TLV,这种TLV用于将PCE信息泛洪到整个域内以向域内成员通知该PCE的相关信息,如PCE位置、PCE路径计算的范围(域间、AS域间、跨网络层等)、针对一个或多个域的PCE的可见性、相邻PCE、通信能力和路径计算能力等信息。As part of the automatic discovery mechanism of the control plane, the automatic discovery mechanism of the PCE is used to make the PCC aware of its existence and capability attributes. In order to support the automatic discovery of PCE, the PCE working group expanded the relevant routing protocols and added a TLV called PCE Discovery (PCE Discovery TLV). This TLV is used to flood the PCE information to the entire domain to inform members in the domain of the relevant information of the PCE, such as the location of the PCE, the scope of PCE path calculation (inter-domain, AS inter-domain, cross-network layer, etc.), for one or more Information such as the visibility of PCEs in a domain, adjacent PCEs, communication capabilities, and path computation capabilities.
PCED TLV由一系列子TLV组成,子TLV可以按照任意顺序放置在PCEDTLV中。采用开放最短路径优先(OSPF)路由协议时,已定义的子TLV如下表1所示:A PCED TLV consists of a series of sub-TLVs, and sub-TLVs can be placed in a PCED TLV in any order. When the Open Shortest Path First (OSPF) routing protocol is used, the defined sub-TLVs are shown in Table 1 below:
表1Table 1
采用中间系统到中间系统(IS-IS)路由协议时,已定义的子TLV如下表2所示:When the intermediate system to intermediate system (IS-IS) routing protocol is used, the defined sub-TLVs are shown in Table 2 below:
表2Table 2
其中第5类子TLV用于表示PCE的能力信息,属可选的子TLV。一条PCEDTLV中最多只能存在一条PCE-CAP-FLAGS sub-TLV。如果存在多条,则只有第一条有效。PCE-CAP-FLAGS sub-TLV格式如图1所示,其中,类型(Type)取值为5,长度(Length)取值为4的倍数,PCE Capability Flags表示PCE能力标识位。The fifth type of sub-TLV is used to represent the capability information of the PCE, which is an optional sub-TLV. There can be at most one PCE-CAP-FLAGS sub-TLV in one PCEDTLV. If there are multiple entries, only the first entry is valid. The PCE-CAP-FLAGS sub-TLV format is shown in Figure 1, where the value of Type (Type) is 5, the value of Length (Length) is a multiple of 4, and PCE Capability Flags represents the PCE capability flag.
PCE能力标识位中定义了以下标识位(标识位编号从高到低),如以下表3所示:The following identification bits are defined in the PCE capability identification bit (the identification bit numbers are from high to low), as shown in Table 3 below:
表3table 3
由于能力标识位中并未标识PCE状态属性(即是否为有状态PCE),因此,外界无从由PCE自动发现机制自动识别出PCE状态属性,即自动识别出一个PCE是否为有状态的PCE,这对PCC选择PCE以及有状态PCE间同步等场景造成了影响。目前迫切需要一种PCE状态属性的自动识别方案。Since the PCE status attribute (that is, whether it is a stateful PCE) is not identified in the capability identification bit, the outside world has no way of automatically identifying the PCE status attribute by the PCE automatic discovery mechanism, that is, automatically identifying whether a PCE is a stateful PCE. It affects scenarios such as PCC selection of PCE and synchronization between stateful PCEs. There is an urgent need for an automatic identification scheme of PCE state attributes.
发明内容 Contents of the invention
有鉴于此,本发明的主要目的在于提供一种PCE状态属性的自动识别方法及系统,由PCE自动发现机制能自动识别出PCE状态属性。In view of this, the main purpose of the present invention is to provide a method and system for automatically identifying PCE status attributes, which can automatically identify PCE status attributes through a PCE automatic discovery mechanism.
为达到上述目的,本发明的技术方案是这样实现的:In order to achieve the above object, technical solution of the present invention is achieved in that way:
一种PCE状态属性的自动识别方法,该方法包括:路径计算单元(PCE)在自动发现信息中添加PCE的状态属性表示能力,PCE通过链路状态路由协议的泛洪机制扩散和传播PCE的状态属性;控制平面节点通过链路状态路由协议收到所述自动发现信息,通过对自动发现信息的解析和比对识别出所述PCE的状态属性。A method for automatically identifying PCE state attributes, the method comprising: a path computation element (PCE) adds the state attribute representation capability of the PCE to the automatic discovery information, and the PCE diffuses and propagates the state of the PCE through the flooding mechanism of the link state routing protocol Attribute: the control plane node receives the automatic discovery information through the link state routing protocol, and identifies the state attribute of the PCE by analyzing and comparing the automatic discovery information.
其中,该方法还包括:控制平面节点根据识别出的所述PCE的状态属性,触发控制平面节点与有状态PCE间的状态同步。Wherein, the method further includes: the control plane node triggers state synchronization between the control plane node and the stateful PCE according to the identified state attribute of the PCE.
其中,当所述PCE的状态属性表示能力采用能力标识位的形式时,所述控制平面节点识别所述PCE的状态属性具体包括:如果PCE泛洪的所述自动发现信息中的状态属性能力标识位,标识所述PCE为有状态PCE,则控制平面节点接收到PCE泛洪的所述自动发现信息后,根据自动发现信息中承载的状态属性能力标识位,识别出所述PCE的状态属性为有状态PCE。Wherein, when the state attribute of the PCE indicates that the capability is in the form of a capability flag, the control plane node identifying the state attribute of the PCE specifically includes: if the state attribute capability flag in the automatic discovery information of PCE flooding bit to identify the PCE as a stateful PCE, and after receiving the auto-discovery information flooded by the PCE, the control plane node recognizes that the state attribute of the PCE is Stateful PCEs.
其中,触发的控制平面节点与有状态PCE间的状态同步具体包括:当连接状态发送变化时,所述控制平面节点将连接状态的变化,通知与自己有会话关系、且识别出PCE的状态属性为有状态PCE的PCE,进行状态同步;Wherein, the triggered state synchronization between the control plane node and the stateful PCE specifically includes: when the connection state transmission changes, the control plane node notifies the change of the connection state with itself and recognizes the state attribute of the PCE Perform state synchronization for the PCE of the stateful PCE;
其中,所述连接状态包括:控制平面节点有新连接建立、或控制平面节点有连接被删除。Wherein, the connection state includes: the control plane node has a new connection established, or the control plane node has a connection deleted.
其中,该方法还包括:控制平面节点根据识别出的PCE的状态属性,触发有状态PCE间的状态同步。Wherein, the method further includes: the control plane node triggers state synchronization between stateful PCEs according to the identified state attributes of the PCEs.
其中,当所述PCE的状态属性表示能力采用能力标识位的形式时,所述控制平面节点识别所述PCE的状态属性具体包括:如果PCE泛洪的所述自动发现信息中的状态属性能力标识位,标识所述PCE为有状态PCE,则控制平面节点接收到PCE泛洪的所述自动发现信息后,根据自动发现信息中承载的状态属性能力标识位,识别出所述PCE的状态属性为有状态PCE。Wherein, when the state attribute of the PCE indicates that the capability is in the form of a capability flag, the control plane node identifying the state attribute of the PCE specifically includes: if the state attribute capability flag in the automatic discovery information of PCE flooding bit to identify the PCE as a stateful PCE, and after receiving the auto-discovery information flooded by the PCE, the control plane node recognizes that the state attribute of the PCE is Stateful PCEs.
其中,触发的有状态PCE间的状态同步具体包括:在识别出PCE的状态属性都为有状态PCE的PCE间建立状态同步关系;当连接状态发送变化时,控制平面节点将连接状态的变化,通知与自己有会话关系、且识别出PCE的状态属性为有状态PCE的PCE,进行状态同步;根据PCE间建立的状态同步关系,获知需进行状态同步的PCE将连接状态的变化,通知与其建立状态同步关系的PCE;Among them, the state synchronization between the triggered stateful PCEs specifically includes: establishing a state synchronization relationship between the PCEs whose state attributes of the identified PCEs are stateful PCEs; Notify the PCE that has a session relationship with itself and recognizes that the state attribute of the PCE is a stateful PCE, and perform state synchronization; according to the state synchronization relationship established between the PCEs, it is known that the PCE that needs to perform state synchronization will change the connection state, and notify it to establish PCE of the state synchronization relationship;
其中,所述连接状态包括:控制平面节点有新连接建立、或控制平面节点有连接被删除。Wherein, the connection state includes: the control plane node has a new connection established, or the control plane node has a connection deleted.
一种PCE状态属性的自动识别系统,该系统包括:识别单元,用于PCE在自动发现信息中添加PCE的状态属性表示能力,PCE通过链路状态路由协议的泛洪机制扩散和传播PCE的状态属性的情况下,控制平面节点通过链路状态路由协议收到所述自动发现信息,通过对自动发现信息的解析和比对识别出所述PCE的状态属性。An automatic identification system of PCE state attributes, the system includes: an identification unit, used for the PCE to add the state attribute representation capability of the PCE in the automatic discovery information, and the PCE diffuses and propagates the state of the PCE through the flooding mechanism of the link state routing protocol In the case of attributes, the control plane node receives the automatic discovery information through the link state routing protocol, and identifies the status attribute of the PCE by analyzing and comparing the automatic discovery information.
其中,该系统还包括:第一状态同步单元,用于控制平面节点根据识别出的所述PCE的状态属性,触发控制平面节点与有状态PCE间的状态同步。Wherein, the system further includes: a first state synchronization unit, configured for the control plane node to trigger state synchronization between the control plane node and the stateful PCE according to the identified state attribute of the PCE.
其中,该系统还包括:第二状态同步单元,用于控制平面节点根据识别出的PCE的状态属性,触发有状态PCE间的状态同步。Wherein, the system further includes: a second state synchronization unit, configured to control plane nodes to trigger state synchronization between stateful PCEs according to the identified state attributes of the PCEs.
本发明的PCE在自动发现信息中添加PCE的状态属性表示能力,PCE通过链路状态路由协议的泛洪机制扩散和传播PCE的状态属性;控制平面节点通过链路状态路由协议收到自动发现信息,通过对自动发现信息的解析和比对识别出PCE的状态属性。The PCE of the present invention adds the state attribute representation capability of the PCE to the automatic discovery information, and the PCE diffuses and propagates the state attribute of the PCE through the flooding mechanism of the link state routing protocol; the control plane node receives the automatic discovery information through the link state routing protocol , identify the status attribute of the PCE by analyzing and comparing the auto-discovery information.
采用本发明,增加了PCE状态属性的表示能力,传播该PCE状态属性,最终比对该PCE状态属性识别出有状态PCE。从而由PCE自动发现机制能自动识别出PCE状态属性。By adopting the present invention, the expressive ability of the PCE state attribute is increased, the PCE state attribute is propagated, and the stateful PCE is finally identified by comparing the PCE state attribute. Therefore, the PCE status attribute can be automatically identified by the PCE automatic discovery mechanism.
附图说明 Description of drawings
图1为本发明涉及的PCE-CAP-FLAGS sub-TLV结构示意图;Fig. 1 is the PCE-CAP-FLAGS sub-TLV structure schematic diagram that the present invention relates to;
图2为本发明实施例一的实现流程示意图;FIG. 2 is a schematic diagram of an implementation flow of Embodiment 1 of the present invention;
图3为本发明实施例二的实现流程示意图。FIG. 3 is a schematic diagram of an implementation flow of Embodiment 2 of the present invention.
具体实施方式 Detailed ways
本发明的基本思想是:PCE在自动发现信息中添加PCE的状态属性表示能力,PCE通过链路状态路由协议的泛洪机制扩散和传播PCE的状态属性;控制平面节点通过链路状态路由协议收到自动发现信息,通过对自动发现信息的解析和比对识别出PCE的状态属性。The basic idea of the present invention is: the PCE adds the state attribute representation capability of the PCE in the automatic discovery information, and the PCE diffuses and propagates the state attribute of the PCE through the flooding mechanism of the link state routing protocol; To the automatic discovery information, the status attribute of the PCE is identified by analyzing and comparing the automatic discovery information.
下面结合附图对技术方案的实施作进一步的详细描述。The implementation of the technical solution will be further described in detail below in conjunction with the accompanying drawings.
本发明的方案增加了PCE的状态属性表示能力(例如可以采用能力标识位的方式对PCE状态属性进行标识),并将PCE的状态属性(即是否为有状态PCE)通过PCE自动发现机制传播到PCC和其它PCE,最终比对该PCE状态属性识别出有状态PCE,从而实现有状态PCE的自动识别功能。The solution of the present invention increases the state attribute representation capability of PCE (for example, the PCE state attribute can be identified in the mode of capability identification bit), and the state attribute of PCE (that is, whether it is a stateful PCE) is propagated to PCE through the PCE automatic discovery mechanism The PCC and other PCEs finally compare the state attributes of the PCE to identify the stateful PCE, thereby realizing the automatic identification function of the stateful PCE.
一种PCE状态属性的自动识别方法,该方法主要包括以下内容:An automatic identification method of a PCE state attribute, the method mainly includes the following contents:
一、本发明扩充了现有的PCE-CAP-FLAGS sub-TLV,在其能力标识位中增加以下内容:1. The present invention expands the existing PCE-CAP-FLAGS sub-TLV, and adds the following content in its capability identification bit:
扩充后的PCE-CAP-FLAGS sub-TLV,其PCE能力标识位中定义了以下标识位(标识位编号从高到低),如以下表4所示:In the expanded PCE-CAP-FLAGS sub-TLV, the following flags are defined in the PCE capability flags (the flags are numbered from high to low), as shown in Table 4 below:
表4Table 4
二、本发明的实施步骤如下:Two, the implementation steps of the present invention are as follows:
1.PCE在自动发现信息中添加PCE的状态属性的表示能力,表示出PCE自身的状态属性(即PCE是否为有状态PCE)。1. The PCE adds the expressive capability of the state attribute of the PCE to the automatic discovery information to indicate the state attribute of the PCE itself (that is, whether the PCE is a stateful PCE).
这里,可以通过PCED TLV表示PCE的状态属性,通过PCE-CAP-FLAGSsub-TLV承载PCE的状态属性。Here, the status attribute of the PCE can be represented by the PCED TLV, and the status attribute of the PCE can be carried by the PCE-CAP-FLAGSsub-TLV.
2.PCE通过链路状态路由协议的泛洪机制扩散和传播PCE的状态属性。2. The PCE diffuses and disseminates the state attributes of the PCE through the flooding mechanism of the link state routing protocol.
3.控制平面节点如PCC通过链路状态路由协议收到自动发现信息,自动发现信息中包括PCE的状态属性。3. A control plane node such as the PCC receives the auto-discovery information through the link state routing protocol, and the auto-discovery information includes the status attribute of the PCE.
4.控制平面节点如PCC,根据协议的事先预定能解析出PCE的状态属性,并对状态属性进行比对后识别出PCE的状态属性。4. The control plane node, such as the PCC, can analyze the status attribute of the PCE according to the pre-determined protocol, and identify the status attribute of the PCE after comparing the status attributes.
5、控制平面节点如PCC根据PCE的状态属性触发其它功能。5. A control plane node such as the PCC triggers other functions according to the status attribute of the PCE.
这里,触发的其它功能包括:1)控制平面节点与有状态PCE间应用本发明进行状态同步;以及2)有状态PCE间应用本发明进行状态同步。Here, other functions to be triggered include: 1) applying the present invention to perform state synchronization between control plane nodes and stateful PCEs; and 2) applying the present invention to perform state synchronization between stateful PCEs.
综上所述,本发明的实施主要包括对PCE状态属性的标识、散播、识别等步骤。具体的,针对标识而言,对PCE状态属性的标识是通过对PCE-CAP-FLAGS sub-TLV的扩充实现的。通过增加该PCE-CAP-FLAGSsub-TLV中PCE能力标识位(BIT位置9增加PCE状态属性标识位),使该PCE-CAP-FLAGS sub-TLV具备了PCE是否为有状态PCE的PCE状态属性表示能力,如图1和表4所示。针对散播而言,PCE状态属性的散播是通过链路状态路由协议的泛洪机制进行的。针对识别而言,PCE状态属性的识别是通过对PCE-CAP-FLAGS sub-TLV的解析和比对完成的。可见:与现有技术相比较,本发明通过扩充PCE-CAP-FLAGS子TLV的能力标识位,使得外界可以通过PCE自动发现机制获知一个PCE是否为有状态PCE的能力属性信息,提高了路径计算质量和效率,并增强了基于有状态PCE的其它功能的实现的灵活性,例如:使得PCC对PCE的选择更具有针对性,简化PCE状态同步流程。To sum up, the implementation of the present invention mainly includes steps such as identification, dissemination, and identification of PCE status attributes. Specifically, for the identification, the identification of the PCE status attribute is realized by extending the PCE-CAP-FLAGS sub-TLV. By increasing the PCE capability identification bit in the PCE-CAP-FLAGS sub-TLV (BIT position 9 increases the PCE status attribute identification bit), so that the PCE-CAP-FLAGS sub-TLV has the PCE status attribute representation of whether the PCE is a stateful PCE capabilities, as shown in Figure 1 and Table 4. For dissemination, the dissemination of PCE state attributes is carried out through the flooding mechanism of the link state routing protocol. For identification, the identification of PCE status attributes is completed by parsing and comparing PCE-CAP-FLAGS sub-TLV. It can be seen that compared with the prior art, the present invention enables the outside world to know whether a PCE is the capability attribute information of a stateful PCE through the PCE automatic discovery mechanism by expanding the capability identification bit of the PCE-CAP-FLAGS sub-TLV, thereby improving path calculation Quality and efficiency, and enhance the flexibility of implementing other functions based on the stateful PCE, for example: make the selection of the PCE by the PCC more targeted, and simplify the PCE state synchronization process.
以下对本发明进行举例阐述。The present invention is described with examples below.
实施例一:控制平面节点与有状态PCE间状态同步(即上述场景一)。Embodiment 1: State synchronization between the control plane node and the stateful PCE (that is, the above scenario 1).
如图2所示,本实施例包括以下步骤:As shown in Figure 2, this embodiment includes the following steps:
步骤101、PCE-A泛洪自动发现信息。自动发现信息中添加PCE的状态属性表示能力,具体为在自动发现信息中携带PCE状态属性标识,该标识用于标识“PCE-A为有状态PCE”。Step 101, PCE-A floods the automatic discovery information. The state attribute representation capability of the PCE is added to the automatic discovery information, specifically, the PCE state attribute identifier is carried in the automatic discovery information, and the identifier is used to identify "PCE-A is a stateful PCE".
步骤102、控制平面节点接收到PCE-A泛洪的自动发现信息,根据该自动发现信息中PCE-CAP-FLAGS sub-TLV中相关比特位的定义,识别出PCE-A的状态属性为有状态PCE。Step 102, the control plane node receives the automatic discovery information of PCE-A flooding, and according to the definition of relevant bits in the PCE-CAP-FLAGS sub-TLV in the automatic discovery information, recognizes that the state attribute of PCE-A is stateful PCE.
步骤103、控制平面节点发起与PCE-A建立PCEP会话(此处仅考虑PCC发起会话情况)。Step 103, the control plane node initiates to establish a PCEP session with PCE-A (here only the case of PCC initiating a session is considered).
步骤104、与PCE-A的PCEP会话建立成功。Step 104, the PCEP session with PCE-A is established successfully.
步骤105、PCE-B泛洪自动发现信息,PCE状态属性标识为“无状态PCE”。Step 105, PCE-B floods the automatic discovery information, and the PCE status attribute is marked as "stateless PCE".
步骤106、控制平面节点接收到PCE-B泛洪的自动发现信息,根据该信息中PCE-CAP-FLAGS sub-TLV中相关比特位的定义,识别出PCE-B的状态属性为无状态PCE。Step 106, the control plane node receives the automatic discovery information of PCE-B flooding, and according to the definition of relevant bits in the PCE-CAP-FLAGS sub-TLV in the information, recognizes that the state attribute of PCE-B is a stateless PCE.
步骤107、控制平面节点发起与PCE-B建立PCEP会话(此处仅考虑PCC发起会话情况)。Step 107, the control plane node initiates the establishment of a PCEP session with the PCE-B (here only considers the case where the PCC initiates the session).
步骤108、与PCE-B的PCEP会话建立成功。Step 108, the PCEP session with PCE-B is established successfully.
步骤109、控制平面节点有新连接建立。Step 109, the control plane node has a new connection established.
步骤110、控制平面节点将新连接建立信息通知到与自己有会话关系的有状态PCE,其原因在于:PCE-A是有状态PCE,故通知到PCE-A。PCE-B是无状态PCE,因此得不到通知。Step 110 , the control plane node notifies the stateful PCE of the new connection establishment information with itself, and the reason is that PCE-A is a stateful PCE, so it notifies PCE-A. PCE-B is a stateless PCE, so it is not notified.
步骤111、PCE-A根据通知消息增加连接路径状态信息。Step 111, PCE-A adds connection path state information according to the notification message.
步骤112、控制平面节点有连接被删除。Step 112, the connection of the control plane node is deleted.
步骤113、控制平面节点将连接删除信息通知到与自己有会话关系的有状态PCE,其原因在于:PCE-A是有状态PCE,故通知到PCE-A。PCE-B是无状态PCE,因此得不到通知。Step 113 , the control plane node notifies the stateful PCE that has a session relationship with itself of the connection deletion information. The reason is that PCE-A is a stateful PCE, so it notifies PCE-A. PCE-B is a stateless PCE, so it is not notified.
步骤114、PCE-A根据通知消息删除连接路径状态信息。Step 114, PCE-A deletes the connection path state information according to the notification message.
上述步骤中,步骤101、步骤102、步骤105、步骤106、步骤109、步骤110~步骤114尤为关键。Among the above steps, step 101, step 102, step 105, step 106, step 109, step 110-step 114 are particularly critical.
实施例二:有状态PCE间的状态同步(即上述场景二)。Embodiment 2: state synchronization among stateful PCEs (that is, the above-mentioned scenario 2).
如图3所示,本实施例包括以下步骤:As shown in Figure 3, this embodiment includes the following steps:
步骤201、PCE-A泛洪自动发现信息。自动发现信息中添加PCE的状态属性表示能力,具体为在自动发现信息中携带PCE状态属性标识,该标识用于标识“PCE-A为有状态PCE”。Step 201, PCE-A floods the automatic discovery information. The state attribute representation capability of the PCE is added to the automatic discovery information, specifically, the PCE state attribute identifier is carried in the automatic discovery information, and the identifier is used to identify "PCE-A is a stateful PCE".
步骤202、控制平面节点a接收到PCE-A泛洪的自动发现信息,根据该信息中PCE-CAP-FLAGS sub-TLV中相关比特位的定义,识别出PCE-A的状态属性为有状态PCE。Step 202, the control plane node a receives the automatic discovery information of PCE-A flooding, and according to the definition of relevant bits in the PCE-CAP-FLAGS sub-TLV in the information, recognizes that the state attribute of PCE-A is a stateful PCE .
步骤203、控制平面节点a发起与PCE-A建立PCEP会话(此处仅考虑PCC发起会话情况)。Step 203, the control plane node a initiates the establishment of a PCEP session with PCE-A (here only the case of PCC initiating a session is considered).
步骤204、控制平面节点a与PCE-A的PCEP会话建立成功。Step 204, the PCEP session between control plane node a and PCE-A is established successfully.
步骤205、PCE-B泛洪自动发现信息。Step 205, PCE-B floods the automatic discovery information.
步骤206、控制平面节点b接收到PCE-B泛洪的自动发现信息,根据该信息中PCE-CAP-FLAGS sub-TLV中相关比特位的定义,识别出PCE-B的状态属性为有状态PCE。Step 206, the control plane node b receives the automatic discovery information of PCE-B flooding, and according to the definition of relevant bits in the PCE-CAP-FLAGS sub-TLV in the information, recognizes that the status attribute of PCE-B is a stateful PCE .
步骤207、控制平面节点b发起与PCE-B建立PCEP会话(此处仅考虑PCC发起会话情况)。Step 207, the control plane node b initiates the establishment of a PCEP session with PCE-B (here only the case of PCC initiating a session is considered).
步骤208、控制平面节点b与PCE-B的PCEP会话建立成功。Step 208, the PCEP session between control plane node b and PCE-B is established successfully.
步骤209、PCE-B接收到PCE-A泛洪的自动发现信息,根据该信息中PCE-CAP-FLAGS sub-TLV中相关比特位的定义,识别出PCE-A的状态属性为有状态PCE。Step 209, PCE-B receives the automatic discovery information flooded by PCE-A, and recognizes that the status attribute of PCE-A is a stateful PCE according to the definition of relevant bits in the PCE-CAP-FLAGS sub-TLV in the information.
步骤210、PCE-B发起与PCE-A建立PCEP会话(此处仅考虑PCE-B主动发起会话情况)。Step 210, PCE-B initiates to establish a PCEP session with PCE-A (here only considers the case where PCE-B actively initiates the session).
步骤211、PCE-A与PCE-B间的PCEP会话建立完成。Step 211, the establishment of the PCEP session between PCE-A and PCE-B is completed.
步骤212、由于PCE-A为有状态PCE,故PCE-B发起与PCE-A建立状态同步关系。Step 212, since PCE-A is a stateful PCE, PCE-B initiates establishment of a state synchronization relationship with PCE-A.
步骤213、从PCE-B到PCE-A的状态同步关系建立成功。Step 213, the state synchronization relationship from PCE-B to PCE-A is established successfully.
步骤214、PCE-A接收到PCE-B泛洪的自动发现信息,根据该信息中PCE-CAP-FLAGS sub-TLV中相关比特位的定义,识别出PCE-B的状态属性为有状态PCE。Step 214, PCE-A receives PCE-B flooded automatic discovery information, and according to the definition of relevant bits in the PCE-CAP-FLAGS sub-TLV in the information, recognizes that the state attribute of PCE-B is a stateful PCE.
步骤215、由于PCE-B为有状态PCE,故PCE-A发起与PCE-B建立状态同步关系。Step 215. Since PCE-B is a stateful PCE, PCE-A initiates establishment of a state synchronization relationship with PCE-B.
步骤216、从PCE-A到PCE-B的状态同步关系建立成功。Step 216, the state synchronization relationship from PCE-A to PCE-B is established successfully.
步骤217、控制平面节点a发生连接状态变化(建立或删除)。Step 217, the control plane node a changes (establishes or deletes) the connection state.
步骤218、控制平面节点a将连接状态变化信息通知到与自己有会话关系的有状态PCE,PCE-A是有状态PCE,故通知到PCE-A。PCE-B与节点a无会话关系,因此得不到通知。Step 218 , the control plane node a notifies the stateful PCE of the connection state change information with itself, and PCE-A is a stateful PCE, so it notifies PCE-A. PCE-B has no session relationship with node a, so it cannot be notified.
步骤219、PCE-A根据连接状态变化通知消息更新连接路径状态信息。Step 219, PCE-A updates the connection path state information according to the connection state change notification message.
步骤220、由于存在从PCE-A到PCE-B的状态同步关系,因此PCE-A将状态变化信息通知到PCE-B。Step 220, since there is a state synchronization relationship from PCE-A to PCE-B, PCE-A notifies PCE-B of state change information.
步骤221、PCE-B根据连接状态变化通知消息更新连接路径状态信息。Step 221, PCE-B updates the connection path state information according to the connection state change notification message.
步骤222、控制平面节点b发生连接状态变化(建立或删除)。Step 222, the control plane node b undergoes a connection state change (establishment or deletion).
步骤223、控制平面节点b将连接状态变化信息通知到与自己有会话关系的有状态PCE,PCE-B是有状态PCE,故通知到PCE-B。PCE-A与节点b无会话关系,因此得不到通知。Step 223 , the control plane node b notifies the stateful PCE of the connection state change information with itself, and PCE-B is a stateful PCE, so it notifies PCE-B. PCE-A has no session relationship with node b, so it cannot be notified.
步骤224、PCE-B根据连接状态变化通知消息更新连接路径状态信息。Step 224, PCE-B updates the connection path state information according to the connection state change notification message.
步骤225、由于存在从PCE-B到PCE-A的状态同步关系,因此PCE-B将状态变化信息通知到PCE-A。Step 225 , since there is a state synchronization relationship from PCE-B to PCE-A, PCE-B notifies PCE-A of state change information.
步骤226、PCE-A根据连接状态变化通知消息更新连接路径状态信息。Step 226, PCE-A updates the connection path state information according to the connection state change notification message.
上述步骤中,步骤201、步骤202、步骤206、步骤209、步骤212~步骤226尤为关键。Among the above steps, step 201, step 202, step 206, step 209, step 212-step 226 are particularly critical.
一种PCE状态属性的自动识别系统,该系统包括:识别单元,识别单元用于PCE在自动发现信息中添加PCE的状态属性表示能力,PCE通过链路状态路由协议的泛洪机制扩散和传播PCE的状态属性的情况下,控制平面节点通过链路状态路由协议收到自动发现信息,通过对自动发现信息的解析和比对识别出PCE的状态属性。An automatic identification system of PCE state attributes, the system includes: identification unit, the identification unit is used for PCE to add the state attribute representation capability of PCE in the automatic discovery information, and the PCE diffuses and propagates the PCE through the flooding mechanism of the link state routing protocol In the case of the status attribute of the PCE, the control plane node receives the automatic discovery information through the link state routing protocol, and identifies the status attribute of the PCE by analyzing and comparing the automatic discovery information.
这里,该系统还包括:第一状态同步单元,第一状态同步单元用于控制平面节点根据识别出的所述PCE的状态属性,触发控制平面节点与有状态PCE间的状态同步。Here, the system further includes: a first state synchronization unit, configured for the control plane node to trigger state synchronization between the control plane node and the stateful PCE according to the identified state attribute of the PCE.
里,该系统还包括:第二状态同步单元,第二状态同步单元用于控制平面节点根据识别出的PCE的状态属性,触发有状态PCE间的状态同步。Here, the system further includes: a second state synchronization unit, the second state synchronization unit is used for the control plane node to trigger state synchronization between stateful PCEs according to the identified state attributes of the PCEs.
以上所述,仅为本发明的较佳实施例而已,并非用于限定本发明的保护范围。The above descriptions are only preferred embodiments of the present invention, and are not intended to limit the protection scope of the present invention.
Claims (8)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201010536625.1A CN101986622B (en) | 2010-11-08 | 2010-11-08 | A kind of automatic identifying method of PCE status attribute and system |
PCT/CN2011/073814 WO2012062091A1 (en) | 2010-11-08 | 2011-05-09 | Method and system for automatically identifying status attribute of path commputation element (pce) |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201010536625.1A CN101986622B (en) | 2010-11-08 | 2010-11-08 | A kind of automatic identifying method of PCE status attribute and system |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101986622A CN101986622A (en) | 2011-03-16 |
CN101986622B true CN101986622B (en) | 2015-08-12 |
Family
ID=43710926
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201010536625.1A Active CN101986622B (en) | 2010-11-08 | 2010-11-08 | A kind of automatic identifying method of PCE status attribute and system |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN101986622B (en) |
WO (1) | WO2012062091A1 (en) |
Families Citing this family (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101986622B (en) * | 2010-11-08 | 2015-08-12 | 中兴通讯股份有限公司 | A kind of automatic identifying method of PCE status attribute and system |
CN106161243B (en) * | 2015-04-10 | 2020-11-24 | 中兴通讯股份有限公司 | State reporting control method and device |
CN108574636B (en) * | 2017-03-13 | 2022-04-05 | 中兴通讯股份有限公司 | A kind of tunnel authorization information processing method and path calculation unit |
CN108737127B (en) * | 2017-04-13 | 2022-07-22 | 中兴通讯股份有限公司 | Information notification method and device |
US12316403B2 (en) | 2022-05-20 | 2025-05-27 | Rockwell Collins, Inc. | Situational awareness (SA) in radio silence (spatial awareness) |
US12366625B2 (en) | 2019-11-27 | 2025-07-22 | Rockwell Collins, Inc. | System and method using passive spatial awareness for GEO network routing |
US12326506B2 (en) | 2019-11-27 | 2025-06-10 | Rockwell Collins, Inc. | DNS spatial discoveries with on-going traffic |
US11977173B2 (en) | 2019-11-27 | 2024-05-07 | Rockwell Collins, Inc. | Spoofing and denial of service detection and protection with doppler nulling (spatial awareness) |
US11737121B2 (en) | 2021-08-20 | 2023-08-22 | Rockwell Collins, Inc. | System and method to compile and distribute spatial awareness information for network |
US12137048B2 (en) | 2019-11-27 | 2024-11-05 | Rockwell Collins, Inc. | System and method for spatial awareness network routing |
US12050279B2 (en) | 2019-11-27 | 2024-07-30 | Rockwell Collins, Inc. | Doppler nulling spatial awareness (DNSA) solutions for non-terrestrial networks |
US11290942B2 (en) | 2020-08-07 | 2022-03-29 | Rockwell Collins, Inc. | System and method for independent dominating set (IDS) based routing in mobile AD hoc networks (MANET) |
US12153150B2 (en) | 2019-11-27 | 2024-11-26 | Rockwell Collins, Inc. | Doppler nulling scanning (DNS) security (spatial awareness) |
US11726162B2 (en) | 2021-04-16 | 2023-08-15 | Rockwell Collins, Inc. | System and method for neighbor direction and relative velocity determination via doppler nulling techniques |
US12335138B2 (en) | 2019-11-27 | 2025-06-17 | Rockwell Collins, Inc. | Spatial awareness navigation techniques on unmanned aerial vehicles (spatial awareness) |
US11296966B2 (en) | 2019-11-27 | 2022-04-05 | Rockwell Collins, Inc. | System and method for efficient information collection and distribution (EICD) via independent dominating sets |
US11665658B1 (en) | 2021-04-16 | 2023-05-30 | Rockwell Collins, Inc. | System and method for application of doppler corrections for time synchronized transmitter and receiver |
US12111406B2 (en) | 2019-11-27 | 2024-10-08 | Rockwell Collins, Inc. | Adaptive doppler-nulling digitization for high-resolution |
US11646962B1 (en) | 2020-10-23 | 2023-05-09 | Rockwell Collins, Inc. | Zero overhead efficient flooding (ZOEF) oriented hybrid any-cast routing for mobile ad hoc networks (MANET) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101102325A (en) * | 2006-11-09 | 2008-01-09 | 华为技术有限公司 | Method and device for announcing autonomous system boundary connection information |
CN101155135A (en) * | 2006-09-28 | 2008-04-02 | 华为技术有限公司 | A method and device for flooding autonomous system border router capability information |
CN101432720A (en) * | 2004-11-05 | 2009-05-13 | 思科技术公司 | Technique for selecting a path computation element |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101986622B (en) * | 2010-11-08 | 2015-08-12 | 中兴通讯股份有限公司 | A kind of automatic identifying method of PCE status attribute and system |
-
2010
- 2010-11-08 CN CN201010536625.1A patent/CN101986622B/en active Active
-
2011
- 2011-05-09 WO PCT/CN2011/073814 patent/WO2012062091A1/en active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101432720A (en) * | 2004-11-05 | 2009-05-13 | 思科技术公司 | Technique for selecting a path computation element |
CN101155135A (en) * | 2006-09-28 | 2008-04-02 | 华为技术有限公司 | A method and device for flooding autonomous system border router capability information |
CN101102325A (en) * | 2006-11-09 | 2008-01-09 | 华为技术有限公司 | Method and device for announcing autonomous system boundary connection information |
Also Published As
Publication number | Publication date |
---|---|
WO2012062091A1 (en) | 2012-05-18 |
CN101986622A (en) | 2011-03-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101986622B (en) | A kind of automatic identifying method of PCE status attribute and system | |
CN107566274B (en) | Method, router and controller for bandwidth management | |
US7593340B2 (en) | Method and system for multi-domain route computation | |
US8737394B2 (en) | Route computation method and system, and path computation element | |
CN104521194B (en) | The system and method for managing MPLS TE overloads | |
TWI499237B (en) | Synchronization of label distribution protocols for broadcast networks with internal gateway agreements | |
CN101155135B (en) | Method and device for flooding autonomous system border router ability information | |
CN100454830C (en) | A Method for Realizing Path Computation in Network Domain | |
CN102123088B (en) | Set up the method and apparatus of traffic engineering tunnel | |
US9843502B2 (en) | Routing of point-to-multipoint services in a multi-domain network | |
CN101640637B (en) | Resource reservation protocol tunnel management method based on flow rate engineering and system thereof | |
CN100512209C (en) | Method for solving resource conflict in distribution route counting | |
US7826394B2 (en) | Method, system and device for implementing traffic engineering | |
CN101159695A (en) | Link selecting method and apparatus | |
CN105939273A (en) | Router method, router and router system | |
EP2997700B1 (en) | Method for assured network state configuration and rollback in link-state packet networks | |
CN101325542A (en) | Inter-domain PCE capability information acquisition method, PCE and capability acquisition device | |
WO2009106012A1 (en) | Method, system and device for advertising ds-te information of remote network domain | |
CN112803995B (en) | Resource sharing method, network node and related equipment | |
CN109150716A (en) | Change in topology response method, path calculating client and path computing system | |
WO2012079421A1 (en) | Method for processing inter-domain link state information and path computation element | |
CN101621453A (en) | Method and system for ensuring consistency of differentiated services-aware traffic engineering network configuration parameters | |
JP6377738B2 (en) | Method and system for processing RSVP-TE signaling | |
CN101005493A (en) | Method and system for saving network node resource | |
CN109729006B (en) | Message processing method and device and computer readable storage medium |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |