CN101976677B - ZnO Schottky diode-based phase-change random access memory array and manufacturing method - Google Patents
ZnO Schottky diode-based phase-change random access memory array and manufacturing method Download PDFInfo
- Publication number
- CN101976677B CN101976677B CN2010102923037A CN201010292303A CN101976677B CN 101976677 B CN101976677 B CN 101976677B CN 2010102923037 A CN2010102923037 A CN 2010102923037A CN 201010292303 A CN201010292303 A CN 201010292303A CN 101976677 B CN101976677 B CN 101976677B
- Authority
- CN
- China
- Prior art keywords
- layer
- zno
- phase
- change
- schottky diode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Semiconductor Memories (AREA)
Abstract
Description
技术领域 technical field
本发明属于半导体技术领域,涉及一种相变随机存储器(PCRAM)及其制造方法,尤其是一种基于低温下形成的ZnO肖特基二极管选通的高密度相变随机存储器阵列及其制造方法。The invention belongs to the technical field of semiconductors, and relates to a phase-change random access memory (PCRAM) and a manufacturing method thereof, in particular to a high-density phase-change random access memory array based on ZnO Schottky diode gating formed at a low temperature and a manufacturing method thereof .
背景技术 Background technique
相变随机存储技术是基于Ovshinsky在20世纪60年代末(Phys.Rev.Lett.,21,1450~1453,1968)和70年代初(Appl.Phys.Lett.,18,254~257,1971)提出的相变薄膜可以应用于相变存储介质的构想建立起来的,是一种成本低、速度快、存储密度高、制造工艺简单和性能稳定的电存储器件,并且它的制备与现有的标准CMOS工艺相兼容,因此受到全世界的广泛关注。Phase-change random storage technology is based on Ovshinsky's research in the late 1960s (Phys. Rev. Lett., 21, 1450-1453, 1968) and early 1970s (Appl. Phys. Lett., 18, 254-257, 1971) The proposed phase-change thin film can be applied to the idea of phase-change storage media, and it is an electric storage device with low cost, high speed, high storage density, simple manufacturing process and stable performance, and its preparation is similar to that of existing Compatibility with standard CMOS processes has drawn worldwide attention.
相变随机存储器(简称PCRAM)的基本原理是利用电脉冲信号作用于器件单元电极上,使相变材料在非晶态与多晶态之间发生可逆相变,通过分辨非晶态高电阻值与多晶态低电阻值,实现“0”和“1”状态的存储,从而完成信息的写入、擦除和读出操作。相变随机存储器由于具有高速读取、高循环次数、非易失性、器件尺寸小、功耗低、抗强震动和抗辐射等优点,被国际半导体工业协会认为最有可能取代目前的闪存存储器而成为未来存储器主流产品,尤其在国防和航天航空领域有重大的应用前景。The basic principle of phase change random access memory (referred to as PCRAM) is to use electric pulse signals to act on the device unit electrodes to make phase change materials undergo reversible phase transitions between amorphous and polycrystalline states. By distinguishing the high resistance value of the amorphous state With the low resistance value of the polycrystalline state, the storage of "0" and "1" states is realized, thereby completing the writing, erasing and reading operations of information. Due to the advantages of high-speed reading, high cycle times, non-volatility, small device size, low power consumption, strong vibration resistance and radiation resistance, phase change RAM is considered by the International Semiconductor Industry Association to be the most likely to replace the current flash memory And it will become the mainstream product of memory in the future, especially in the fields of national defense and aerospace, which has great application prospects.
在对相变随机存储器存储单元实施电操作过程中,一般认为在SET(设定)过程中(对应于结晶化),施加一个低而宽的电脉冲对相变材料进行加热,当材料的温度高于结晶温度(650K)而又低于熔化温度(893K)时,相变材料就会结晶,从而形成具有较低电阻值的多晶态;而在RESET(重新设定)过程中(对应于非晶化),则需要施加一个高而窄的电脉冲进行加热,使材料的温度高于相变材料的熔化温度以打断多晶材料中原有的化学键,随后经过一个骤冷的淬火过程(降温速度达到1011K/s)使材料中的原子来不及重新成键排列,形成了短程有序长程无序的非晶态,而这种非晶态相对于多晶态具有很高的电阻率,电阻值很高。相变随机存储器就是利用能够可逆转变的非晶态和多晶态的高、低电阻值的差异来实现数据“0”和“1”的存储。在读取(READ)过程中,电脉冲很弱,时间很短,不足以引起相变材料中的发生任何相变,故不会破坏其中存储的信息。During the electrical operation of the phase-change random access memory unit, it is generally believed that during the SET (setting) process (corresponding to crystallization), a low and wide electric pulse is applied to heat the phase-change material. When the temperature of the material When it is higher than the crystallization temperature (650K) but lower than the melting temperature (893K), the phase change material will crystallize, thus forming a polycrystalline state with a lower resistance value; and during the RESET (reset) process (corresponding to Amorphization), you need to apply a high and narrow electric pulse for heating, so that the temperature of the material is higher than the melting temperature of the phase change material to break the original chemical bonds in the polycrystalline material, followed by a quenching process of quenching ( The cooling rate reaches 1011K/s), so that the atoms in the material have no time to re-bond and arrange, forming an amorphous state with short-range order and long-range disorder, and this amorphous state has a high resistivity compared with the polycrystalline state. The value is high. Phase-change random access memory is to use the difference between the high and low resistance values of the amorphous state and the polycrystalline state that can be reversibly changed to realize the storage of data "0" and "1". In the process of reading (READ), the electric pulse is very weak and the time is very short, which is not enough to cause any phase change in the phase change material, so the information stored in it will not be destroyed.
目前世界上从事相变随机存储器研发工作的机构大多数是半导体行业的大公司(Ovonyx,Intel,Samsung,IBM和AMD等),他们关注的焦点都集中在如何尽快实现相变随机存储器的商业化上。其中,实现高密度,高速的海量存储阵列是研究的方向。相比以往的MOSFET(互补型金属氧化物场效应晶体管)驱动相变存储单元的1T1R结构而言,采用二极管驱动相变单元的1D1R结构,具有面积小,功耗低,电路速度快等优势。鉴于此,本发明将针对实现高速,高密度,低功耗海量存储阵列而提出一种低温下制作的基于ZnO肖特基二极管选通相变随机存储器阵列。At present, most of the institutions engaged in the research and development of phase change random access memory in the world are large companies in the semiconductor industry (Ovonyx, Intel, Samsung, IBM and AMD, etc.), and their focus is on how to realize the commercialization of phase change random access memory as soon as possible. superior. Among them, the realization of high-density, high-speed mass storage array is the research direction. Compared with the previous 1T1R structure of MOSFET (complementary metal oxide field effect transistor) driving phase change memory unit, the 1D1R structure of diode driving phase change unit has the advantages of small area, low power consumption and fast circuit speed. In view of this, the present invention proposes a ZnO Schottky diode-based phase-change random access memory array fabricated at a low temperature for realizing high-speed, high-density, low-power mass storage arrays.
发明内容 Contents of the invention
本发明主要解决的技术问题在于提供一种基于ZnO肖特基二极管的相变随机存储器阵列及其制作方法。The technical problem mainly solved by the present invention is to provide a ZnO Schottky diode-based phase-change random access memory array and a manufacturing method thereof.
为了解决上述技术问题,本发明采用如下技术方案:In order to solve the above technical problems, the present invention adopts the following technical solutions:
一种基于ZnO肖特基二极管的相变随机存储器阵列,包括:A phase-change random access memory array based on ZnO Schottky diodes, comprising:
第一导电类型的半导体衬底;a semiconductor substrate of the first conductivity type;
位于所述半导体衬底之上的绝缘缓冲层;an insulating buffer layer over the semiconductor substrate;
位于所述绝缘缓冲层之上的多条相互平行的第二导电类型的字线;a plurality of word lines of the second conductivity type parallel to each other located on the insulating buffer layer;
位于所述字线之上,电连接于所述字线的多个ZnO肖特基二极管,所述ZnO肖特基二极管由第一导体层和与之相连的n型ZnO多晶态薄膜组成;A plurality of ZnO Schottky diodes located on the word line and electrically connected to the word line, the ZnO Schottky diodes are composed of a first conductor layer and an n-type ZnO polycrystalline thin film connected thereto;
分别位于每个所述ZnO肖特基二极管之上的第二导体层;a second conductor layer respectively located on each of said ZnO Schottky diodes;
分别位于每个第二导体层之上的相变存储层;phase change storage layers respectively located on each second conductor layer;
位于所述相变存储层之上,电连接于所述相变存储层的多条位线,所述位线空间垂直于所述字线。Located on the phase-change storage layer and electrically connected to a plurality of bit lines of the phase-change storage layer, the bit lines are spatially perpendicular to the word lines.
其中,所述第一导电类型为p型,第二导电类型为n型。Wherein, the first conductivity type is p-type, and the second conductivity type is n-type.
多条所述字线之间填充有绝缘隔离层,优选为TEOS(正硅酸乙酯)材料。An insulating isolation layer, preferably made of TEOS (tetraethyl silicate) material, is filled between the plurality of word lines.
所述ZnO肖特基二极管中的第一导体层采用较大的金属公函数材料,如铜、铂或银;所述ZnO肖特基二极管之上的第二导体层采用铝或铝铜合金材料。The first conductor layer in the ZnO Schottky diode is made of larger metal function material, such as copper, platinum or silver; the second conductor layer above the ZnO Schottky diode is made of aluminum or aluminum-copper alloy material .
在所述ZnO肖特基二极管及其上的第二导体层周围设有第一介电隔离结构,所述第一介电隔离结构与所述ZnO肖特基二极管及其上的第二导体层之间设有第一介质障壁层;所述相变存储层周围设有第二介电隔离结构,所述第二介电隔离结构与所述相变存储层之间设有第二介质障壁层。所述第一介电隔离结构和第二介电隔离结构采用SiO2或SiON等介电材料。所述第一介质障壁层和第二介质障壁层采用氮化硅或SiON等材料。A first dielectric isolation structure is provided around the ZnO Schottky diode and the second conductor layer thereon, and the first dielectric isolation structure is connected to the ZnO Schottky diode and the second conductor layer thereon A first dielectric barrier layer is provided between them; a second dielectric isolation structure is provided around the phase change storage layer, and a second dielectric barrier layer is provided between the second dielectric isolation structure and the phase change storage layer . The first dielectric isolation structure and the second dielectric isolation structure use dielectric materials such as SiO 2 or SiON. Materials such as silicon nitride or SiON are used for the first dielectric barrier layer and the second dielectric barrier layer.
优选地,所述字线和位线的上下表面分别设有阻挡层,所述阻挡层采用TaN,TiN或者Ti/TiN等材料,以确保金属导体的可靠性。Preferably, the upper and lower surfaces of the word line and the bit line are respectively provided with barrier layers, and the barrier layers are made of materials such as TaN, TiN or Ti/TiN to ensure the reliability of metal conductors.
此外,本发明还提供一种基于ZnO肖特基二极管的相变随机存储器阵列的制作方法,包括如下步骤:In addition, the present invention also provides a method for manufacturing a phase-change random access memory array based on ZnO Schottky diodes, comprising the following steps:
(1)在半导体衬底上形成绝缘缓冲层;(1) forming an insulating buffer layer on the semiconductor substrate;
(2)利用沉积和光刻刻蚀工艺在所述绝缘缓冲层上形成多条相互平行的字线,并在多条所述字线之间填充绝缘隔离层,然后进行化学机械抛光使表面平坦化;(2) Form a plurality of word lines parallel to each other on the insulating buffer layer by deposition and photolithography, and fill an insulating isolation layer between the plurality of word lines, and then carry out chemical mechanical polishing to make the surface flat change;
(3)在所述字线上形成第一导体层,然后利用原子层沉积(ALD)技术将ZnO以单原子形式一层一层的镀在第一导体层表面形成n型ZnO多晶态薄膜,沉积温度不高于200℃;再在n型ZnO多晶态薄膜之上形成第二导体层,通过刻蚀工艺从而形成多个包括第一导体层、n型ZnO多晶态薄膜和第二导体层的柱状单元,多个所述柱状单元组成柱状阵列;(3) Form a first conductor layer on the word line, and then use atomic layer deposition (ALD) technology to plate ZnO layer by layer in the form of single atoms on the surface of the first conductor layer to form an n-type ZnO polycrystalline film , the deposition temperature is not higher than 200°C; then a second conductor layer is formed on the n-type ZnO polycrystalline film, and a plurality of layers including the first conductor layer, n-type ZnO polycrystalline film and second A columnar unit of the conductor layer, a plurality of the columnar units form a columnar array;
(4)在该柱状阵列的间隙内壁表面先制备第一介质障壁层,然后利用介电材料将间隙填满以形成第一介电隔离结构,之后进行化学机械抛光使表面平坦化;(4) first preparing a first dielectric barrier layer on the surface of the inner wall of the gap of the columnar array, and then filling the gap with a dielectric material to form a first dielectric isolation structure, and then performing chemical mechanical polishing to planarize the surface;
(5)在所述第一介电隔离结构上制备一层介电材料,然后利用光刻刻蚀工艺开设多个通孔,分别使其下柱状单元的第二导体层露出,并在通孔内壁表面制备第二介质障壁层,之后在通孔内填充相变材料形成相变存储层,相变存储层及第二介质障壁层周围的介电材料成为第二介电隔离结构;(5) Prepare a layer of dielectric material on the first dielectric isolation structure, and then use a photolithography etching process to open a plurality of through holes to expose the second conductor layer of the lower columnar unit respectively, and make the second conductor layer in the through hole preparing a second dielectric barrier layer on the surface of the inner wall, and then filling the through hole with a phase-change material to form a phase-change storage layer, and the phase-change storage layer and the dielectric material around the second dielectric barrier layer form a second dielectric isolation structure;
(6)利用化学机械抛光平坦化相变存储层表面,然后在其上制作位线,所述位线空间垂直于所述字线。(6) Using chemical mechanical polishing to planarize the surface of the phase change storage layer, and then fabricating bit lines thereon, the space of the bit lines being perpendicular to the word lines.
其中,步骤(3)利用原子层沉积技术形成n型ZnO多晶态薄膜时,衬底温度为60~200℃,腔体真空度为4x10-9~6x10-9Torr,气体流量为0.06~0.08L/s;前驱体为二乙基锌和H2O,化学反应式为:Wherein, when the n-type ZnO polycrystalline thin film is formed by atomic layer deposition technology in step (3), the substrate temperature is 60-200°C, the vacuum degree of the chamber is 4x10-9-6x10-9 Torr, and the gas flow rate is 0.06-0.08 L/s; the precursors are diethyl zinc and H 2 O, and the chemical reaction formula is:
Zn(C2H5)2+H2O→ZnO+2C2H6 Zn(C 2 H 5 ) 2 +H 2 O→ZnO+2C 2 H 6
优选地,沉积速率为0.12~0.16nm/周期,沉积循环周期包括:引入前驱体H2O的脉冲时间14~16ms,对于H2O的清洗时间8~20s,引入前驱体二乙基锌的脉冲时间20~90ms,对于二乙基锌的清洗时间7~9s。Preferably, the deposition rate is 0.12-0.16 nm/cycle, and the deposition cycle includes: the pulse time for introducing the precursor H 2 O is 14-16 ms, the cleaning time for H 2 O is 8-20 s, and the time for introducing the precursor diethyl zinc The pulse time is 20-90ms, and the cleaning time for diethyl zinc is 7-9s.
优选地,制作字线和位线时,分别在其上下表面制备阻挡层。Preferably, barrier layers are prepared on the upper and lower surfaces of the word lines and bit lines, respectively.
作为本发明的优选方案,在每条字线上制作导电插塞将字线引出,实现位线与字线位于衬底之上。As a preferred solution of the present invention, a conductive plug is made on each word line to lead out the word line, so that the bit line and the word line are located on the substrate.
相较于现有技术,本发明的有益效果在于:Compared with the prior art, the beneficial effects of the present invention are:
在众多种类的二极管当中,ZnO肖特基二极管常被用于光电器件领域,属于多数载流子器件,具有开启电压低、响应速度快等特点。研究发现,由于未掺杂的ZnO半导体材料本身就具有n型导电性,将ZnO半导体薄膜沉积在金属导体上可以直接形成肖特基二极管,从而避免了扩散或者离子注入的掺杂和退火等高温工艺过程。因此,利用ZnO半导体与金属形成的肖特基二极管与选择性外延工艺形成的二极管相比,工艺温度更低。而且采用ZnO半导体形成的二极管,其特征尺寸可以达到2F2,明显小于外延工艺形成的二极管,其开启电压也比pn结二极管的开启电压低。Among many types of diodes, ZnO Schottky diodes are often used in the field of optoelectronic devices. They belong to majority carrier devices and have the characteristics of low turn-on voltage and fast response speed. The study found that since the undoped ZnO semiconductor material itself has n-type conductivity, depositing ZnO semiconductor thin film on the metal conductor can directly form a Schottky diode, thus avoiding high temperature such as diffusion or ion implantation and annealing. crafting process. Therefore, the process temperature of the Schottky diode formed by using ZnO semiconductor and metal is lower than that of the diode formed by the selective epitaxial process. Moreover, the characteristic size of the diode formed by ZnO semiconductor can reach 2F 2 , which is obviously smaller than that of the diode formed by the epitaxial process, and its turn-on voltage is also lower than that of the pn junction diode.
本发明的相变随机存储器阵列采用一种直接由ZnO半导体和金属层形成的ZnO肖特基二极管作为选通元件,实现二极管驱动相变单元的1D1R结构,具有面积小,功耗低,电路速度快等优势。此外,由于ZnO半导体薄膜可以在金属字线上直接沉积形成二极管,在该相变存储器阵列形成期间,处理温度不超过350℃,这种低温工艺有利于将多个存储阵列堆叠起来,实现三维的堆叠结构,从而进一步提高器件密度。因此,本发明可以使相变随机存储器具有更高的密度,更低的功耗和更高的性能。The phase-change random memory array of the present invention adopts a ZnO Schottky diode directly formed by ZnO semiconductor and metal layer as a gating element to realize the 1D1R structure of the diode-driven phase-change unit, which has small area, low power consumption, and high circuit speed. Fast and other advantages. In addition, since the ZnO semiconductor film can be directly deposited on the metal word line to form diodes, the processing temperature does not exceed 350°C during the formation of the phase change memory array. This low-temperature process is conducive to stacking multiple memory arrays to achieve three-dimensional stacked structure to further increase device density. Therefore, the invention can make the phase-change random access memory have higher density, lower power consumption and higher performance.
本发明还提供了这种基于ZnO肖特基二极管的相变随机存储器阵列的低温制作工艺,研究发现只有采用原子层沉积(ALD)的特定工艺条件,在较低的生长温度(200℃)下才能得到n型低电导率的ZnO半导体材料,进而与特定金属形成肖特基势垒。本发明通过低温条件下原子层沉积n型ZnO多晶态薄膜的工艺制造肖特基二极管,在成本上具有竞争力,更有望在三维的立体相变存储器电路中得到广泛应用,对相变随机存储器的发展具有重要意义。The present invention also provides the low-temperature manufacturing process of this ZnO Schottky diode-based phase-change random access memory array. It is found that only the specific process conditions of atomic layer deposition (ALD) can be used at a relatively low growth temperature (200°C). In order to obtain n-type low-conductivity ZnO semiconductor material, and then form a Schottky barrier with specific metals. The present invention manufactures Schottky diodes through the process of atomic layer deposition of n-type ZnO polycrystalline thin films under low temperature conditions, which is competitive in cost and is expected to be widely used in three-dimensional phase change memory circuits. The development of memory is of great significance.
附图说明 Description of drawings
图1为ZnO肖特基二极管选通的第一相变随机存储单元(1D1R)结构示意图。FIG. 1 is a schematic structural diagram of a first phase-change random memory cell (1D1R) gated by a ZnO Schottky diode.
图2为1D1R的三维结构示意图。Figure 2 is a schematic diagram of the three-dimensional structure of 1D1R.
图3为相变存储阵列的三维结构示意图。FIG. 3 is a schematic diagram of a three-dimensional structure of a phase change memory array.
图4为1D1R 4x4存储单元阵列电路原理图。Figure 4 is a schematic diagram of the 1D1R 4x4 memory cell array circuit.
图5为实施例中ZnO肖特基二极管特性曲线(电流密度和电压的关系曲线)。Fig. 5 is the characteristic curve (relationship curve between current density and voltage) of ZnO Schottky diode in the embodiment.
图6为实施例中相变随机存储器阵列的剖视图。FIG. 6 is a cross-sectional view of a phase-change random access memory array in an embodiment.
图7为沿图6中AA’方向的相变随机存储器阵列的剖视图。Fig. 7 is a cross-sectional view of the phase-change random access memory array along the direction AA' in Fig. 6 .
图8为实施例中相变随机存储器三维结构示意图。Fig. 8 is a schematic diagram of a three-dimensional structure of a phase-change random access memory in an embodiment.
具体实施方式 Detailed ways
在下文中结合附图在参考实施例中更完全地描述本发明。在此附图是本发明的理想化实施例的示意图,本发明所示的实施例不应该被认为仅限于图中所示的区域的特定形状,而是包括得到的形状,比如制造引起的偏差,例如干法刻蚀得到的曲线通常具有弯曲或圆润的特点,但在本发明实施例图示中,均以矩形或者立方体表示,图中的表示是示意性的,但这不应该被认为限制本发明的范围。图中相似的参考标号可以表示相似的结构部分。Hereinafter, the present invention is more fully described in reference examples with reference to the accompanying drawings. Where the drawings are schematic illustrations of idealized embodiments of the invention, the illustrated embodiments of the invention should not be construed as limited to the particular shapes of the regions shown in the drawings, but to include resulting shapes, such as manufacturing-induced deviations For example, the curves obtained by dry etching usually have curved or rounded features, but in the illustrations of the embodiments of the present invention, they are all represented by rectangles or cubes, and the representations in the figures are schematic, but this should not be considered as a limitation scope of the invention. Like reference numerals in the figures may denote like structural parts.
本发明采用一种ZnO肖特基二极管构成二极管驱动相变单元的1D1R结构,如图1所示,ZnO肖特基二极管选通相变材料,第二导体主要起连接二极管和相变存储层的作用。在本发明的实施方式中,1D1R结构的三维示意图如图2所示,平行于位线的延伸方向为x方向,平行于字线的延伸方向为y方向,向上的堆叠方向为z方向。图3为相变存储阵列的三维结构示意图,在x方向多条平行的位线与在y方向上多条平行的字线相互垂直,连接位线和字线的为ZnO肖特基二极管和相变存储层构成的柱状结构。图4是对应于图3的4x4的1D1R结构等效电路图。The present invention adopts a ZnO Schottky diode to form a 1D1R structure of a diode-driven phase-change unit. As shown in FIG. 1, the ZnO Schottky diode gates the phase-change material, and the second conductor is mainly used to connect the diode and the phase-change storage layer. effect. In an embodiment of the present invention, a three-dimensional schematic diagram of the 1D1R structure is shown in FIG. 2 , the extending direction parallel to the bit line is the x direction, the extending direction parallel to the word line is the y direction, and the upward stacking direction is the z direction. Figure 3 is a schematic diagram of a three-dimensional structure of a phase-change memory array. Multiple parallel bit lines in the x direction and multiple parallel word lines in the y direction are perpendicular to each other. ZnO Schottky diodes and phase A columnar structure composed of variable storage layers. FIG. 4 is an equivalent circuit diagram of the 4x4 1D1R structure corresponding to FIG. 3 .
图5是一种ZnO肖特基二极管的电流密度和电压的测试曲线,其中该ZnO肖特基二极管由n型ZnO多晶态薄膜和第一导体层组成,第一导体层采用Ag,在Ag和ZnO的界面上形成肖特基势垒,第二导体层为Al。在1伏的电压下,通过二极管的电流密度达到了100A/cm2。电流密度随上下电极之间加的电压呈指数性增加,可实现驱动相变存储单元的作用。Fig. 5 is the test curve of the current density and the voltage of a kind of ZnO Schottky diode, and wherein this ZnO Schottky diode is made up of n-type ZnO polycrystalline thin film and the first conductor layer, and the first conductor layer adopts Ag, in Ag A Schottky barrier is formed on the interface with ZnO, and the second conductor layer is Al. At a voltage of 1 volt, the current density through the diode reaches 100 A/cm 2 . The current density increases exponentially with the voltage applied between the upper and lower electrodes, which can realize the function of driving the phase change memory unit.
本发明实施方式中的这种基于ZnO肖特基二极管的相变随机存储器阵列的具体结构如图6所示,其为xz方向上的剖视图,该结构包括:The specific structure of this ZnO Schottky diode-based phase-change random access memory array in the embodiment of the present invention is shown in Figure 6, which is a cross-sectional view in the xz direction, and the structure includes:
第一导电类型(本实施例优选为p型)的Si衬底100;
位于Si衬底100之上的绝缘缓冲层102;an insulating
位于绝缘缓冲层102之上的多条互相平行的第二导电类型(本实施例为n型)的字线208;A plurality of
位于字线208之上,电连接于字线208的多个ZnO肖特基二极管,所述ZnO肖特基二极管由第一导体层113和与之相连的n型ZnO多晶态薄膜114组成;Located above the
分别位于每个所述ZnO肖特基二极管之上的第二导体层112;a
分别位于每个第二导体层112之上的相变存储层218;a phase-
位于相变存储层218之上,电连接于所述相变存储层218的多条位线209,所述位线209空间垂直于所述字线208。Located on the phase
其中,多条字线208之间填充有绝缘隔离层202,优选为TEOS材料。所述ZnO肖特基二极管中的第一导体层113采用较大的金属公函数材料,如铜、铂或银;所述ZnO肖特基二极管之上的第二导体层114采用铝或铝铜合金材料。在第一导体层113、n型ZnO多晶态薄膜114及其上的第二导体层112周围设有由介电材料108形成的第一介电隔离结构,在第一介电隔离结构与该ZnO肖特基二极管及其上的第二导体层112之间设有第一介质障壁层212。在相变存储层218周围设有由介电材料108形成的第二介电隔离结构,所述第二介电隔离结构与相变存储层218之间设有第二介质障壁层210。所述第一介电隔离结构和第二介电隔离结构采用SiO2或SiON等介电材料。所述第一介质障壁层212和第二介质障壁层210采用氮化硅或SiON等材料。在字线208和位线209的上下表面分别设有阻挡层204,所述阻挡层204采用TaN,TiN或者Ti/TiN等材料,以确保金属导体的可靠性。Wherein, an insulating isolation layer 202, preferably made of TEOS material, is filled between the plurality of word lines 208 . The
图7是根据本发明实施方式,沿AA’方向看进去,包括金属ZnO肖特基二极管和相变存储层的存储单元的yz方向剖视图。Fig. 7 is a cross-sectional view in the yz direction of a memory cell including a metal ZnO Schottky diode and a phase-change memory layer, viewed along the direction AA' according to an embodiment of the present invention.
上述相变随机存储器阵列的制作方法,包括如下步骤:The manufacturing method of the above-mentioned phase-change random access memory array includes the following steps:
(1)在p型的Si衬底100上沉积一层绝缘缓冲层102。(1) An insulating
(2)在绝缘缓冲层102的上表层沉积第一刻蚀停留层201,该第一刻蚀停留层201可以是SiN或者SiON等材料,通过物理气相沉积(PVD)等方法形成字线层,并在字线层上下表面制备阻挡层204;其中字线层可以为铜或者铝铜合金,工艺温度不超过350℃。利用光刻等工艺形成多条互相平行的字线208,并在多条所述字线208之间填充绝缘隔离层202,可以为TEOS,然后进行化学机械抛光(CMP)使表面平坦化。(2) Depositing a first
(3)在所述字线208上形成一层第一导体材料,然后利用原子层沉积(ALD)技术将ZnO以单原子形式一层一层的镀在第一导体材料表面形成n型ZnO多晶态薄膜,沉积温度不高于200℃;在n型ZnO多晶态薄膜之上形成一层第二导体材料;然后对所述第一导体材料、n型ZnO多晶态薄膜和第二导体材料进行通过光刻工艺和干法刻蚀工艺,例如可以采用电子束曝光工艺形成图形,以形成柱状阵列,该柱状阵列的每个单元包括第一导体层113、n型ZnO多晶态薄膜114和第二导体层112。其中,也可以采用电镀等方式形成高密度,小尺寸的第一导体层113。第一导体层113需要与字线208对准,以形成电连接。(3) Form a layer of first conductor material on the
(4)在该柱状阵列的间隙内壁表面先制备第一介质障壁层212,例如可利用PVD技术制备;然后利用介电材料108将间隙填满以形成第一介电隔离结构,之后利用CMP技术将间隙以外的介质去除,暴露出第二导体层112;(4) First prepare the first
(5)在步骤(4)所得结构表面制作第二刻蚀停留层213,材料可为Si3N4,再制备一层介电材料108,然后利用光刻刻蚀工艺开设多个通孔,分别使其下柱状单元的第二导体层112露出,并在通孔内壁表面制备第二介质障壁层210,之后采用磁控溅射的方法在通孔内填充相变材料108形成相变存储层218,相变存储层218及第二介质障壁层210周围的介电材料成为第二介电隔离结构。第二介质障壁层210可以是Si3N4或者SiON材料,该结构有利于相变材料形状固定,同时防止磁控溅射沉积相变材料时Te向介电材料108的渗透。介电材料108可以是SiO2或者SiON。(5) A second
(6)利用化学机械抛光平坦化相变存储层表面,通孔以外的相变材料需要CMP方法去除。然后在其上制作位线209,所述位线209空间垂直于所述字线208。位线109的上下表层分别沉积Ti/TiN阻挡层204,以确保位线209金属导体的可靠性。(6) Chemical-mechanical polishing is used to planarize the surface of the phase-change storage layer, and the phase-change material outside the through holes needs to be removed by CMP. A
其中,步骤(3)利用原子层沉积技术形成ZnO多晶态薄膜,膜厚不超过100nm,且沉积参数(膜厚,成分,结构)易控制,平整的薄膜界面与第二导体可以形成良好接触。Among them, step (3) utilizes atomic layer deposition technology to form a ZnO polycrystalline thin film, the film thickness does not exceed 100nm, and the deposition parameters (film thickness, composition, structure) are easy to control, and the flat film interface can form a good contact with the second conductor .
利用原子层沉积技术形成ZnO多晶态薄膜时,衬底温度为60~200℃,腔体真空度为4x10-9~6x10-9Torr,气体流量为0.06~0.08L/s;前驱体为二乙基锌(化学式Zn(C2H5)2,亦作DEZn)和H2O,化学反应式为:When using atomic layer deposition technology to form ZnO polycrystalline thin film, the substrate temperature is 60-200°C, the chamber vacuum is 4x10 -9 -6x10 -9 Torr, the gas flow rate is 0.06-0.08L/s; the precursor is two Ethyl zinc (chemical formula Zn(C 2 H 5 ) 2 , also known as DEZn) and H 2 O, the chemical reaction formula is:
Zn(C2H5)2+H2O→ZnO+2C2H6 Zn(C 2 H 5 ) 2 +H 2 O→ZnO+2C 2 H 6
优选地,沉积速率为0.12~0.16nm/周期,沉积循环周期包括引入前驱体H2O的脉冲时间14~16ms,对于H2O的清洗时间为8~20s,引入前驱体二乙基锌的脉冲时间20~90ms,对于二乙基锌的清洗时间为7~9s。该工艺条件中较长的清洗时间使得所沉积的ZnO薄膜自由电子浓度小,具有高迁移率的适于做肖特基二极管的n型半导体材料。此外选择二甲基锌(DMZn)作为锌前驱体源时,ZnO薄膜的生长温度为室温。这样在特定金属和ZnO半导体薄膜的界面上形成肖特基势垒,其正向偏压下的整流特性如图5所示。Preferably, the deposition rate is 0.12-0.16nm/cycle, the deposition cycle includes the pulse time of 14-16ms for introducing the precursor H 2 O, the cleaning time for H 2 O is 8-20s, and the introduction of the precursor diethyl zinc The pulse time is 20-90ms, and the cleaning time for diethyl zinc is 7-9s. The longer cleaning time in this process condition makes the deposited ZnO thin film have a low free electron concentration and a high mobility n-type semiconductor material suitable for Schottky diodes. In addition, when dimethyl zinc (DMZn) is selected as the zinc precursor source, the growth temperature of the ZnO thin film is room temperature. In this way, a Schottky barrier is formed on the interface between the specific metal and the ZnO semiconductor thin film, and its rectification characteristics under forward bias are shown in FIG. 5 .
在一具体实施例中,采用ALD沉积n型ZnO多晶态薄膜优选的工艺温度为100℃,衬底温度为60到200℃,腔体真空度为5x10-9Torr,气体流量为0.07L/s。沉积速率约为0.14nm/周期,沉积循环周期包括引入前驱体H2O的脉冲时间为15ms,对于H2O的清洗时间为8~20s,引入前驱体DEZn的脉冲时间为20~90ms以及对于DEZn的清洗时间为8s。In a specific embodiment, the preferred process temperature for depositing an n-type ZnO polycrystalline film by ALD is 100°C, the substrate temperature is 60 to 200°C, the chamber vacuum is 5x10 -9 Torr, and the gas flow rate is 0.07L/ s. The deposition rate is about 0.14nm/cycle, and the deposition cycle period includes the pulse time of introducing the precursor H 2 O is 15ms, the cleaning time of H 2 O is 8-20s, the pulse time of introducing the precursor DEZn is 20-90ms and for The cleaning time of DEZn is 8s.
图8是本发明的一种优选方案的相变随机存储器三维结构示意图,在每条字线上制作导电插塞将字线引出,与位线在硅衬底的同侧。所引出的字线和位线与外围驱动电路相连接。FIG. 8 is a schematic diagram of a three-dimensional structure of a phase-change random access memory in a preferred solution of the present invention. Conductive plugs are made on each word line to lead out the word line, and the bit line is on the same side of the silicon substrate. The extracted word lines and bit lines are connected with peripheral driving circuits.
上文已在ZnO肖特基二极管选通相变随机存储器阵列的背景下阐述了本发明的非易失性相变存储单元,其在低制造温度的背景下有利于三维堆叠结构的应用。The non-volatile phase-change memory cell of the present invention has been described above in the context of a ZnO Schottky diode-gated phase-change RAM array, which facilitates the application of a three-dimensional stack structure in the context of low manufacturing temperature.
本文已阐述了详细的制造方法,可使用其他相似结构和不同材料实现的相变随机存储器阵列均属于本发明范围内。The detailed manufacturing method has been described herein, and other phase-change RAM arrays that can be realized with similar structures and different materials are within the scope of the present invention.
本发明中涉及的其他工艺条件为常规工艺条件,属于本领域技术人员熟悉的范畴,在此不再赘述。上述实施例仅用以说明而非限制本发明的技术方案。任何不脱离本发明精神和范围的技术方案均应涵盖在本发明的专利申请范围当中。Other process conditions involved in the present invention are conventional process conditions, which belong to the category familiar to those skilled in the art, and will not be repeated here. The above embodiments are only used to illustrate but not limit the technical solution of the present invention. Any technical solutions that do not deviate from the spirit and scope of the present invention shall be included in the patent application scope of the present invention.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2010102923037A CN101976677B (en) | 2010-09-26 | 2010-09-26 | ZnO Schottky diode-based phase-change random access memory array and manufacturing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2010102923037A CN101976677B (en) | 2010-09-26 | 2010-09-26 | ZnO Schottky diode-based phase-change random access memory array and manufacturing method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101976677A CN101976677A (en) | 2011-02-16 |
CN101976677B true CN101976677B (en) | 2012-04-18 |
Family
ID=43576545
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2010102923037A Expired - Fee Related CN101976677B (en) | 2010-09-26 | 2010-09-26 | ZnO Schottky diode-based phase-change random access memory array and manufacturing method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101976677B (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103560205B (en) * | 2013-11-04 | 2015-10-14 | 中国科学院上海微系统与信息技术研究所 | Phase change storage structure and manufacture method |
CN112309440B (en) * | 2020-10-21 | 2022-04-26 | 西北工业大学 | Optical storage device and storage method based on platinum-two-dimensional indium selenide-few-layer graphite Schottky diode |
TWI838615B (en) * | 2021-03-22 | 2024-04-11 | 凌北卿 | Non-volatile memory device having schottky diode |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101667460A (en) * | 2009-10-12 | 2010-03-10 | 中国科学院微电子研究所 | One-time programming memory based on resistive variable memory and preparation method thereof |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100790882B1 (en) * | 2006-07-10 | 2008-01-03 | 삼성전자주식회사 | Nonvolatile Memory Devices Including Variable Resistance Materials |
KR101019707B1 (en) * | 2009-02-16 | 2011-03-07 | 주식회사 하이닉스반도체 | Phase change memory device and manufacturing method thereof |
-
2010
- 2010-09-26 CN CN2010102923037A patent/CN101976677B/en not_active Expired - Fee Related
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101667460A (en) * | 2009-10-12 | 2010-03-10 | 中国科学院微电子研究所 | One-time programming memory based on resistive variable memory and preparation method thereof |
Non-Patent Citations (1)
Title |
---|
JP特开2008-22007A 2008.01.31 |
Also Published As
Publication number | Publication date |
---|---|
CN101976677A (en) | 2011-02-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN100550409C (en) | Phase transition storage and manufacture method thereof based on the diode gating | |
US8513636B2 (en) | Vertical diodes for non-volatile memory device | |
TWI415220B (en) | Buried silicide structure and method for making | |
CN101814521B (en) | Polysilicon plug bipolar transistor of phase change memory and its manufacturing method | |
TWI433276B (en) | Memory cell that employs a selectively deposited reversible resistance-switching element and methods of forming the same | |
WO2022021014A1 (en) | New cell structure with reduced programming current and thermal cross talk for 3d x-point memory | |
CN101807545B (en) | Diode and producing method of resistance converting storage | |
CN102810632A (en) | A kind of parallel resistive memory and its preparation method | |
CN111029362B (en) | A method for preparing a high-density phase-change memory three-dimensional integrated circuit structure | |
CN101976677B (en) | ZnO Schottky diode-based phase-change random access memory array and manufacturing method | |
CN101339921B (en) | Method for manufacturing bipolar transistor array with double shallow trench isolation | |
KR20100137627A (en) | Phase Change Memory and Formation Method with Nanowire Network Unitary Phase Change Layer in Porous Oxide | |
US20130292629A1 (en) | Phase change memory cell and fabrication method thereof | |
CN110931637B (en) | Preparation method of gate tube | |
CN101916823A (en) | Phase change memory device based on antimony telluride composite phase change material and its preparation method | |
CN101826596B (en) | Production method of phase-change memory | |
CN104078563A (en) | Phase change memory, forming method of phase change memory and phase change memory array | |
CN100442566C (en) | Phase change memory and manufacturing method thereof | |
CN106997924B (en) | Phase transition storage and its manufacturing method and electronic equipment | |
CN101414481B (en) | Phase-change memory cell based on SiSb composite material | |
WO2022115984A1 (en) | Novel recess liner confined cell structure and fabrication method with reduced programming current and thermal cross talk for 3d x-point memory | |
WO2022115986A1 (en) | New liner electrode cell structure and fabrication method with reduced programming current and thermal cross talk for 3d x-point memory | |
TW201027818A (en) | Integrated circuit device with single crystal silicon on silicide and manufacturing method | |
WO2022115985A1 (en) | A novel liner confined cell structure and fabrication method with reduced programming current and thermal cross talk for 3d x-point memory | |
CN103325940B (en) | Phase-change memory cell and manufacturing method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20120418 |