[go: up one dir, main page]

CN101976542A - Pixel driving circuit - Google Patents

Pixel driving circuit Download PDF

Info

Publication number
CN101976542A
CN101976542A CN 201010546148 CN201010546148A CN101976542A CN 101976542 A CN101976542 A CN 101976542A CN 201010546148 CN201010546148 CN 201010546148 CN 201010546148 A CN201010546148 A CN 201010546148A CN 101976542 A CN101976542 A CN 101976542A
Authority
CN
China
Prior art keywords
multiplexer
coupled
selection circuit
polarity
input terminal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN 201010546148
Other languages
Chinese (zh)
Other versions
CN101976542B (en
Inventor
吴孟儒
锺竣帆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AUO Corp
Original Assignee
AU Optronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AU Optronics Corp filed Critical AU Optronics Corp
Priority to CN2010105461487A priority Critical patent/CN101976542B/en
Publication of CN101976542A publication Critical patent/CN101976542A/en
Application granted granted Critical
Publication of CN101976542B publication Critical patent/CN101976542B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Liquid Crystal Display Device Control (AREA)

Abstract

The invention provides a pixel driving circuit, comprising: the display device comprises a first pixel, a second pixel and a data driving circuit, wherein each pixel comprises a main area and a sub-area, and the main area and the sub-area store corresponding gray scale voltages when displaying a picture. In the data driving circuit, a first selection circuit inputs a first digital data corresponding to the first pixel and a second digital data corresponding to the second pixel to the corresponding digital-to-analog converter to generate a first gray scale voltage, a second gray scale voltage, a third gray scale voltage and a fourth gray scale voltage, and a second selection circuit distributes the gray scale voltages to a main region and a sub-region of the first pixel and the second pixel. This reduces the number of digital-to-analog converters required for the data driving circuit. The invention can reduce the number of digital-to-analog converters required by the data driving circuit, save the cost of the pixel driving circuit and reduce the power consumption.

Description

像素驱动电路 Pixel drive circuit

技术领域technical field

本发明涉及一种像素驱动电路,更明确地说,本发明涉及一种可减少其数据驱动电路所需的数字模拟转换器的数目的像素驱动电路。The present invention relates to a pixel driving circuit, and more particularly, the present invention relates to a pixel driving circuit capable of reducing the number of digital-to-analog converters required for its data driving circuit.

背景技术Background technique

请参考图1。图1为说明相关技术中可减少色偏(color washout)的像素驱动电路100的示意图。像素驱动电路100包含多个像素、数据线DL1~DLM、扫描线SL1~SLN、数据驱动电路110以及扫描驱动电路120。该多个像素的结构,以像素PIX1与PIX2作举例说明。像素PIX1包含晶体管Q1与Q2、主区域MR1与子区域SR1。晶体管Q1包含第一电极(1)、第二电极(2)以及栅极(G)。晶体管Q1的第一电极耦接至数据线DLX,晶体管Q1的第二电极耦接至主区域MR1,晶体管Q1的栅极耦接至扫描线SLY。晶体管Q2包含第一电极(1)、第二电极(2)以及栅极(G)。晶体管Q2的第一电极耦接至数据线DL(X+1),晶体管Q2的第二电极耦接至子区域SR1,晶体管Q2的栅极耦接至扫描线SLY。像素PIX2包含晶体管Q3与Q4、主区域MR2与子区域SR2。晶体管Q3包含第一电极(1)、第二电极(2)以及栅极(G)。晶体管Q3的第一电极耦接至数据线DL(X+2),晶体管Q3的第二电极耦接至子区域SR2,晶体管Q3的栅极耦接至扫描线SLY。晶体管Q4包含第一电极(1)、第二电极(2)以及栅极(G)。晶体管Q4的第一电极耦接至数据线DL(X+3),晶体管Q4的第二电极耦接至主区域MR2,晶体管Q4的栅极耦接至扫描线SLY。当扫描驱动电路120驱动扫描线SLY时,晶体管Q1~Q4导通,而使主区域MR1透过晶体管Q1耦接至数据线DLX、子区域SR1透过晶体管Q2耦接至数据线DL(X+1)、子区域SR2透过晶体管Q3耦接至数据线DL(X+2),且主区域MR2透过晶体管Q4耦接至数据线DL(X+3)。假设像素PIX1欲显示对应于数字数据DA1的画面,且像素PIX2欲显示对应于数字数据DA2的画面,则此时在像素PIX1中,主区域MR1与子区域SR1分别透过数据线DX与D(X+1)从数据驱动电路110接收并存储对应于数字数据DA1的灰阶电压,且在像素PIX2中,主区域MR2与子区域SR2分别透过数据线D(X+3)与D(X+2)从数据驱动电路110接收并存储对应于数字数据DA2灰阶电压。此外,主区域MR1存储的灰阶电压的电位与与子区域SR1存储的灰阶电压的电位互相对应,且主区域MR2存储的灰阶电压的电位与子区域SR2存储的灰阶电压的电位也互相对应,因此可减少于不同视角观看像素驱动电路100时的色偏现象。Please refer to Figure 1. FIG. 1 is a schematic diagram illustrating a pixel driving circuit 100 capable of reducing color washout in the related art. The pixel driving circuit 100 includes a plurality of pixels, data lines DL 1 ˜DL M , scanning lines SL 1 ˜SL N , a data driving circuit 110 and a scanning driving circuit 120 . The structures of the plurality of pixels are illustrated by taking the pixels PIX 1 and PIX 2 as examples. The pixel PIX 1 includes transistors Q 1 and Q 2 , a main region MR 1 and a sub-region SR 1 . The transistor Q1 includes a first electrode (1), a second electrode (2) and a gate (G). A first electrode of the transistor Q 1 is coupled to the data line DL X , a second electrode of the transistor Q 1 is coupled to the main region MR 1 , and a gate of the transistor Q 1 is coupled to the scan line SL Y . The transistor Q2 includes a first electrode (1), a second electrode (2) and a gate (G). A first electrode of the transistor Q 2 is coupled to the data line DL (X+1) , a second electrode of the transistor Q 2 is coupled to the sub-region SR 1 , and a gate of the transistor Q 2 is coupled to the scan line SL Y . The pixel PIX 2 includes transistors Q 3 and Q 4 , a main region MR 2 and a sub-region SR 2 . The transistor Q3 includes a first electrode (1), a second electrode (2) and a gate (G). A first electrode of the transistor Q 3 is coupled to the data line DL (X+2 ) , a second electrode of the transistor Q 3 is coupled to the sub-region SR 2 , and a gate of the transistor Q 3 is coupled to the scan line SL Y . The transistor Q4 includes a first electrode (1), a second electrode (2) and a gate (G). A first electrode of the transistor Q 4 is coupled to the data line DL (X+3 ) , a second electrode of the transistor Q 4 is coupled to the main region MR 2 , and a gate of the transistor Q 4 is coupled to the scan line SL Y . When the scan driving circuit 120 drives the scan line SL Y , the transistors Q 1 -Q 4 are turned on, so that the main region MR 1 is coupled to the data line DL X through the transistor Q 1 , and the sub-region SR 1 is coupled to the data line DL X through the transistor Q 2 . connected to the data line DL (X+1 ), the sub-region SR 2 is coupled to the data line DL (X+2) through the transistor Q3 , and the main region MR 2 is coupled to the data line DL (X +3) . Assuming that the pixel PIX 1 intends to display an image corresponding to the digital data DA 1 , and the pixel PIX 2 intends to display an image corresponding to the digital data DA 2 , then in the pixel PIX 1 at this time, the main region MR 1 and the sub-region SR 1 are transparent respectively. The gray scale voltage corresponding to the digital data DA 1 is received and stored from the data driving circuit 110 through the data lines D X and D (X+1) , and in the pixel PIX 2 , the main region MR 2 and the sub-region SR 2 pass through the The data lines D (X+3) and D (X+2) receive and store gray scale voltages corresponding to the digital data DA 2 from the data driving circuit 110 . In addition, the potential of the grayscale voltage stored in the main region MR1 corresponds to the potential of the grayscale voltage stored in the subregion SR1 , and the potential of the grayscale voltage stored in the main region MR2 corresponds to the potential of the grayscale voltage stored in the subregion SR2 . The potentials of the voltages also correspond to each other, so the color shift phenomenon when viewing the pixel driving circuit 100 from different viewing angles can be reduced.

然而,由于在像素驱动电路100中,主区域MR1与子区域SR1存储不同的灰阶电压、主区域MR2与子区域SR2也存储不同的灰阶电压,且每个区域(MR1、MR2、SR1、SR2)的反转极性可为正或负,因此针对每一数据线DLX~DL(X+3),数据驱动电路110皆需要有一对应的数字模拟转换器与一对应的负极性数字模拟转换器,以提供正极性的灰阶电压或负极性的灰阶电压给主区域MR1、MR2与子区域SR1、SR2。换句话说,当像素驱动电路100有M条数据线时,数据驱动电路110需要有2M个数字模拟转换器。由于数字模拟转换器所占的电路面积很大,因此会造成数据驱动电路110的成本明显地上升,此外,也增加像素驱动电路100的耗电量,带给使用者极大的不便。However, in the pixel driving circuit 100, the main region MR1 and the subregion SR1 store different grayscale voltages, the main region MR2 and the subregion SR2 also store different grayscale voltages, and each region ( MR1 , MR 2 , SR 1 , SR 2 ) can be positive or negative, so for each data line DL X ˜DL (X+3) , the data driving circuit 110 needs a corresponding digital-to-analog converter A corresponding negative polarity digital-to-analog converter is used to provide positive grayscale voltages or negative grayscale voltages to the main regions MR 1 , MR 2 and the sub-regions SR 1 , SR 2 . In other words, when the pixel driving circuit 100 has M data lines, the data driving circuit 110 needs to have 2M digital-to-analog converters. Since the digital-to-analog converter occupies a large circuit area, the cost of the data driving circuit 110 will increase significantly, and the power consumption of the pixel driving circuit 100 will also be increased, which brings great inconvenience to users.

发明内容Contents of the invention

为克服上述现有技术的缺陷,本发明提供一种像素驱动电路。该像素驱动电路包含一第一像素、一第二像素,以及一数据驱动电路。该第一像素包含一第一主区域与一第一子区域。该第一主区域耦接至一第一数据线与一扫描线。该第一子区域耦接至一第二数据线与该扫描线。该第一主区域与该第一子区域分别存储对应于一第一数字数据的灰阶电压。该第二像素包含一第二主区域与一第二子区域。该第二子区域耦接至一第三数据线与该扫描线。该第二主区域耦接至一第四数据线与该扫描线。该第二主区域与该第二子区域分别存储对应于一第二数字数据的灰阶电压。该数据驱动电路包含一第一数字模拟转换器、一第二数字模拟转换器、一第三数字模拟转换器、一第四数字模拟转换器、一第一选择电路,以及一第二选择电路。该第一数字模拟转换器用来根据一正极性主区域伽玛电压,将该第一数字数据或该第二数字数据转换为一第一灰阶电压。该第二数字模拟转换器用来根据一正极性子区域伽玛电压,将该第一数字数据或该第二数字数据转换为一第二灰阶电压。该第三数字模拟转换器用来根据一负极性子区域伽玛电压,将该第一数字数据或该第二数字数据转换为一第三灰阶电压。该第四数字模拟转换器用来根据一负极性主区域伽玛电压,将该第一数字数据或该第二数字数据转换为一第四灰阶电压。该第一选择电路用来根据一伽玛电压选择信号与一极性信号,选择该第一数字数据,输入至该第一数字模拟转换器、该第二数字模拟转换器、该第三数字模拟转换器以及该第四数字模拟转换器的其中两个数字模拟转换器,并将该第二数字数据输入至另外两个数字模拟转换器。该第二选择电路用来根据该伽玛电压选择信号与该极性信号将该第一灰阶电压、该第二灰阶电压、该第三灰阶电压及该第四灰阶电压透过该第一数据线、该第二数据线、该第三数据线、与该第四数据线分配给该第一主区域、该第一子区域、该第二主区域及该第二子区域。In order to overcome the above defects in the prior art, the present invention provides a pixel driving circuit. The pixel driving circuit includes a first pixel, a second pixel, and a data driving circuit. The first pixel includes a first main area and a first sub-area. The first main area is coupled to a first data line and a scan line. The first sub-region is coupled to a second data line and the scan line. The first main area and the first sub-area respectively store gray scale voltages corresponding to a first digital data. The second pixel includes a second main area and a second sub-area. The second sub-region is coupled to a third data line and the scan line. The second main area is coupled to a fourth data line and the scan line. The second main area and the second sub-area respectively store gray scale voltages corresponding to a second digital data. The data driving circuit includes a first digital-to-analog converter, a second digital-to-analog converter, a third digital-to-analog converter, a fourth digital-to-analog converter, a first selection circuit, and a second selection circuit. The first digital-to-analog converter is used for converting the first digital data or the second digital data into a first gray scale voltage according to a positive polarity main region Gamma voltage. The second digital-to-analog converter is used to convert the first digital data or the second digital data into a second gray scale voltage according to a positive polarity sub-region Gamma voltage. The third digital-to-analog converter is used to convert the first digital data or the second digital data into a third grayscale voltage according to a negative sub-region Gamma voltage. The fourth digital-to-analog converter is used for converting the first digital data or the second digital data into a fourth gray scale voltage according to a negative main area Gamma voltage. The first selection circuit is used to select the first digital data according to a gamma voltage selection signal and a polarity signal, and input them to the first digital-to-analog converter, the second digital-to-analog converter, and the third digital-to-analog converter. converter and two DACs of the fourth DAC, and input the second digital data to the other two DACs. The second selection circuit is used for transmitting the first gray-scale voltage, the second gray-scale voltage, the third gray-scale voltage and the fourth gray-scale voltage through the gamma voltage selection signal and the polarity signal. The first data line, the second data line, the third data line, and the fourth data line are allocated to the first main area, the first sub area, the second main area and the second sub area.

本发明可减少数据驱动电路所需的数字模拟转换器的数目,以节省像素驱动电路的成本,并减少耗电量。The invention can reduce the number of digital-to-analog converters required by the data driving circuit, thereby saving the cost of the pixel driving circuit and reducing power consumption.

附图说明Description of drawings

图1为说明相关技术中的像素驱动电路的示意图。FIG. 1 is a schematic diagram illustrating a pixel driving circuit in the related art.

图2为说明本发明的像素驱动电路的一实施例的示意图。FIG. 2 is a schematic diagram illustrating an embodiment of a pixel driving circuit of the present invention.

图3为说明图2中的数据驱动电路的部分结构的示意图。FIG. 3 is a schematic diagram illustrating a partial structure of the data driving circuit in FIG. 2 .

图4与图5为说明利用图3的数据驱动电路以分配正确的灰阶电压给图2的像素驱动电路的像素的示意图。4 and 5 are schematic diagrams illustrating how to use the data driving circuit in FIG. 3 to distribute correct grayscale voltages to pixels in the pixel driving circuit in FIG. 2 .

图6为说明本发明的像素驱动电路的另一实施例的示意图。FIG. 6 is a schematic diagram illustrating another embodiment of the pixel driving circuit of the present invention.

图7与图8为说明利用图3的数据驱动电路以分配正确的灰阶电压给图6的像素驱动电路的像素的示意图。7 and 8 are schematic diagrams illustrating how to use the data driving circuit in FIG. 3 to distribute correct grayscale voltages to pixels in the pixel driving circuit in FIG. 6 .

图9为说明本发明的像素驱动电路的另一实施例的示意图。FIG. 9 is a schematic diagram illustrating another embodiment of the pixel driving circuit of the present invention.

图10为说明图9中的数据驱动电路的部分结构的示意图。FIG. 10 is a schematic diagram illustrating a partial structure of the data driving circuit in FIG. 9 .

其中,附图标记说明如下:Wherein, the reference signs are explained as follows:

1、2                                    电极1, 2 Electrodes

100、200、600、900                      像素驱动电路100, 200, 600, 900 Pixel drive circuit

120、220                                栅极驱动电路120, 220 Gate drive circuit

210、110                                数据驱动电路210, 110 Data drive circuit

211、212                                选择电路211, 212 Select circuit

2111                                         互斥或栅2111 Mutual exclusion or gate

2121、2122                                   极性选择电路2121, 2122 Polarity selection circuit

BUF1~BUF4                                   缓冲器BUF 1 ~ BUF 4 buffers

C                                            控制端C Control Terminal

DA1、DA2                                     数字数据DA 1 , DA 2 digital data

DAC1~DAC4                                   数字模拟转换器DAC 1 ~ DAC 4 digital to analog converter

DL1~DLM                                     数据线DL 1 ~ DL M data line

DH1~DH4                                     拴锁器DH 1 ~DH 4 latch

G                                            栅极G Gate

I1、12                                       输入端I 1 , 1 2 input terminals

LS1~LS4                                     电平转换器LS 1 ~ LS 4 level shifter

MUX1~MUX8                                   多路器MUX 1 ~ MUX 8 multiplexer

MR1、MR2                                     主区域MR 1 , MR 2 main area

O、O1、O2                                    输出端O, O 1 , O 2 output terminals

PIX1、PIX2                                   像素PIX 1 , PIX 2 pixels

Q1~Q4                                       晶体管Q 1 ~ Q 4 transistors

SC                                           控制信号S C control signal

SG_SEL                                       伽玛电压选择信号S G_SEL Gamma voltage selection signal

SPOL                                         极性信号S POL polarity signal

SL1~SLN                                     扫描线SL 1 ~SL N scanning line

SR1、SR2                                     子区域SR 1 , SR 2 sub-regions

VG1~VG4                                     灰阶电压V G1 ~ V G4 grayscale voltage

具体实施方式Detailed ways

请参考图2与图3。图2为说明本发明的像素驱动电路的一实施例200的示意图。图3为说明图2中的数据驱动电路210的部分结构的示意图。像素驱动电路200包含多个像素、数据线DL1~DLM、扫描线SL1~SLN、数据驱动电路210以及扫描驱动电路220。该多个像素的结构,以像素PIX1与PIX2作举例说明。像素PIX1包含晶体管Q1与Q2、主区域MR1与子区域SR1。晶体管Q1包含第一电极(1)、第二电极(2)以及栅极(G)。晶体管Q1的第一电极耦接至数据线DLX,晶体管Q1的第二电极耦接至主区域MR1,晶体管Q1的栅极耦接至扫描线SLY。晶体管Q2包含第一电极(1)、第二电极(2)以及栅极(G)。晶体管Q2的第一电极耦接至数据线DL(X+1),晶体管Q2的第二电极耦接至子区域SR1,晶体管Q2的栅极耦接至扫描线SLY。像素PIX2包含晶体管Q3与Q4、主区域MR2与子区域SR2。晶体管Q3包含第一电极(1)、第二电极(2)以及栅极(G)。晶体管Q3的第一电极耦接至数据线DL(X+2),晶体管Q3的第二电极耦接至子区域SR2,晶体管Q3的栅极耦接至扫描线SLY。晶体管Q4包含第一电极(1)、第二电极(2)以及栅极(G)。晶体管Q4的第一电极耦接至数据线DL(X+3),晶体管Q4的第二电极耦接至主区域MR2,晶体管Q4的栅极耦接至扫描线SLY。当扫描驱动电路220驱动扫描线SLY时,晶体管Q1~Q4导通,而使主区域MR1透过晶体管Q1耦接至数据线DLX、子区域SR1透过晶体管Q2耦接至数据线DL(X+1)、子区域SR2透过晶体管Q3耦接至数据线DL(X+2),且主区域MR2透过晶体管Q4耦接至数据线DL(X+3)。假设像素PIX1欲显示对应于数字数据DA1的画面,且像素PIX2欲显示对应于数字数据DA2的画面,则此时在像素PIX1中,主区域MR1与子区域SR1分别透过数据线DX与D(X+1)从数据驱动电路210接收并存储对应于数字数据DA1的灰阶电压,且在像素PIX2中,主区域MR2与子区域SR2分别透过数据线D(X+3)与D(X+2)从数据驱动电路210接收并存储对应于数字数据DA2的灰阶电压,以减少于不同视角观看像素驱动电路200时的色偏现象。Please refer to Figure 2 and Figure 3. FIG. 2 is a schematic diagram illustrating an embodiment 200 of the pixel driving circuit of the present invention. FIG. 3 is a schematic diagram illustrating a partial structure of the data driving circuit 210 in FIG. 2 . The pixel driving circuit 200 includes a plurality of pixels, data lines DL 1 ˜DL M , scanning lines SL 1 ˜SL N , a data driving circuit 210 and a scanning driving circuit 220 . The structures of the plurality of pixels are illustrated by taking the pixels PIX 1 and PIX 2 as examples. The pixel PIX 1 includes transistors Q 1 and Q 2 , a main region MR 1 and a sub-region SR 1 . The transistor Q1 includes a first electrode (1), a second electrode (2) and a gate (G). A first electrode of the transistor Q 1 is coupled to the data line DL X , a second electrode of the transistor Q 1 is coupled to the main region MR 1 , and a gate of the transistor Q 1 is coupled to the scan line SL Y . The transistor Q2 includes a first electrode (1), a second electrode (2) and a gate (G). A first electrode of the transistor Q 2 is coupled to the data line DL (X+1) , a second electrode of the transistor Q 2 is coupled to the sub-region SR 1 , and a gate of the transistor Q 2 is coupled to the scan line SL Y . The pixel PIX 2 includes transistors Q 3 and Q 4 , a main region MR 2 and a sub-region SR 2 . The transistor Q3 includes a first electrode (1), a second electrode (2) and a gate (G). A first electrode of the transistor Q 3 is coupled to the data line DL (X+2 ) , a second electrode of the transistor Q 3 is coupled to the sub-region SR 2 , and a gate of the transistor Q 3 is coupled to the scan line SL Y . The transistor Q4 includes a first electrode (1), a second electrode (2) and a gate (G). A first electrode of the transistor Q 4 is coupled to the data line DL (X+3 ) , a second electrode of the transistor Q 4 is coupled to the main region MR 2 , and a gate of the transistor Q 4 is coupled to the scan line SL Y . When the scan driving circuit 220 drives the scan line SL Y , the transistors Q 1 -Q 4 are turned on, so that the main region MR 1 is coupled to the data line DL X through the transistor Q 1 , and the sub-region SR 1 is coupled to the data line DL X through the transistor Q 2 . connected to the data line DL (X+1) , the sub-region SR 2 is coupled to the data line DL (X+2) through the transistor Q3 , and the main region MR 2 is coupled to the data line DL (X +3) . Assuming that the pixel PIX 1 intends to display an image corresponding to the digital data DA 1 , and the pixel PIX 2 intends to display an image corresponding to the digital data DA 2 , then in the pixel PIX 1 at this time, the main region MR 1 and the sub-region SR 1 are transparent respectively. The gray scale voltage corresponding to the digital data DA 1 is received and stored from the data driving circuit 210 through the data lines D X and D (X+1) , and in the pixel PIX 2 , the main region MR 2 and the sub-region SR 2 pass through the The data lines D (X+3) and D (X+2) receive and store grayscale voltages corresponding to the digital data DA 2 from the data driving circuit 210 , so as to reduce color shift when viewing the pixel driving circuit 200 from different viewing angles.

图3所示为数据驱动电路210用来驱动数据线DLX~DL(X+3)的结构,至于数据驱动电路210用来驱动其它数据线的结构则可依此类推。数据驱动电路210包含数字模拟转换器DAC1~DAC4、选择电路211与212、数据拴锁器(data latch)DH1~DH4,以及电平转换器(level shifter)LS1~LS4。选择电路211根据伽玛电压选择信号SG_SEL与极性信号SPOL,选择数字数据DA1,输入至数字模拟转换器DAC1~DAC4的其中两个数字模拟转换器,并将数字数据DA2输入至另外两个数字模拟转换器。数据拴锁器DH1~DH4用来拴锁选择电路211所输出的数字数据。电平转换器LS1~LS4用来提升数据拴锁器DH1~DH4所输出的数字数据的电位。数字模拟转换器DAC1根据正极性主区域伽玛电压VPA,将电平转换器LS1所输出的数字数据(DA1或DA2)转换为灰阶电压VG1。数字模拟转换器DAC2根据正极性子区域伽玛电压VPB,将电平耦接至多路器MUX4的输出端O。在本实施例中,当控制信号SC表示逻辑「0」时,多路器MUX1~MUX4的输入端I1分别耦接至多路器MUX1~MUX4的输出端O;当控制信号SC表示逻辑「1」时,多路器MUX1~MUX4的输入端I2分别耦接至多路器MUX1~MUX4的输出端O。FIG. 3 shows the structure of the data driving circuit 210 for driving the data lines DL X ˜DL (X+3) . As for the structure of the data driving circuit 210 for driving other data lines, the same can be deduced. The data driving circuit 210 includes digital-to-analog converters DAC 1 -DAC 4 , selection circuits 211 and 212 , data latches DH 1 -DH 4 , and level shifters LS 1 -LS 4 . The selection circuit 211 selects the digital data DA 1 according to the gamma voltage selection signal S G_SEL and the polarity signal S POL , and inputs the digital data DA 1 to two of the digital-analog converters DAC 1 -DAC 4 , and converts the digital data DA 2 Input to two other DACs. The data latches DH 1 -DH 4 are used to latch the digital data output by the selection circuit 211 . The level shifters LS 1 -LS 4 are used to increase the potential of the digital data output by the data latches DH 1 -DH 4 . The digital-to-analog converter DAC 1 converts the digital data (DA 1 or DA 2 ) output by the level shifter LS 1 into a gray scale voltage V G1 according to the positive polarity main area gamma voltage V PA . The digital-to-analog converter DAC 2 is level-coupled to the output terminal O of the multiplexer MUX 4 according to the positive polarity sub-region Gamma voltage V PB . In this embodiment, when the control signal S C represents logic "0", the input terminals I1 of the multiplexers MUX 1 -MUX 4 are respectively coupled to the output terminals O of the multiplexers MUX 1 -MUX 4 ; when the control signal When S C represents logic “1”, the input terminals I 2 of the multiplexers MUX 1 -MUX 4 are respectively coupled to the output terminals O of the multiplexers MUX 1 -MUX 4 .

数据拴锁器DH1~DH4分别耦接于选择电路211与电平转换器LS1~LS4之间,数据拴锁器DH1~DH4分别用来拴锁选择电路211输入至数字模拟转换器DAC1~DAC4的数字数据。电平转换器LS1~LS4分别透过数据拴锁器DH1~DH4耦接于选择电路211与数字模拟转换器DAC1~DAC4之间,电平转换器LS1~LS4分别用来提升选择电路211输入至数字模拟转换器DAC1~DAC4的数字数据的电位。The data latches DH 1 to DH 4 are respectively coupled between the selection circuit 211 and the level shifters LS 1 to LS 4 , and the data latches DH 1 to DH 4 are respectively used to latch the input of the selection circuit 211 to the digital analog Digital data of converters DAC 1 to DAC 4 . The level shifters LS 1 -LS 4 are respectively coupled between the selection circuit 211 and the digital-to-analog converters DAC 1 -DAC 4 through the data latches DH 1 -DH 4 , and the level shifters LS 1 -LS 4 are respectively It is used to increase the potential of the digital data input from the selection circuit 211 to the digital-to-analog converters DAC 1 -DAC 4 .

选择电路212包含多路器MUX5~MUX8、缓冲器BUF1~BUF4,以及极性选择电路2121与2122。多路器MUX5包含输入端I1用来接收灰阶电压VG2,输入端I2用来接收灰阶电压VG1,控制端C用来接收控制信号SC,以及输出端O。多路器MUX5根据控制信号SC将多路器MUX5的输入端I1或I2耦接至多路器MUX5的输出端O。多路器MUX6包含输入端I1用来接收灰阶电压VG4,输入端I2用来接收灰阶电压VG3,控制端C用来接收控制信号SC,以及输出端O。多路器MUX6根据控制信号SC将多路器MUX6的输入端I1或I2耦接至多路器MUX6的输出端O。多路器MUX7包含输入端I1用来接收灰阶电压VG1,输入端I2用来接收灰阶电压VG2,控制端C用来接收控制信号SC,以及输出端O。多路器MUX7根据控制信号SC将多路器MUX7的输入端I1或I2耦接至多路器MUX7的输出端O。多路器MUX8包含输入端I1用来接收灰阶电压VG3,输入端I2用来接收灰阶电压VG4,控制端C用来接收控制信号SC,以及输出端O。多路器MUX8根据控制信号SC将多路器MUX8的输入端I1或I2耦接至多路器MUX8的输出端O。当控制信号SC表示逻辑「0」时,多路器MUX5~MUX8的输入端I1分别耦接至多路器MUX5~MUX8的输出端O;当控制信号SC表示逻辑「1」时,多路器MUX5~MUX8的输入端I2分别耦接至多路器MUX5~MUX8的输出端O。The selection circuit 212 includes multiplexers MUX 5 -MUX 8 , buffers BUF 1 -BUF 4 , and polarity selection circuits 2121 and 2122 . The multiplexer MUX 5 includes an input terminal I 1 for receiving the gray scale voltage V G2 , an input terminal I 2 for receiving the gray scale voltage V G1 , a control terminal C for receiving the control signal S C , and an output terminal O. The multiplexer MUX 5 couples the input terminal I1 or I2 of the multiplexer MUX 5 to the output terminal O of the multiplexer MUX 5 according to the control signal SC . The multiplexer MUX 6 includes an input terminal I 1 for receiving the gray scale voltage V G4 , an input terminal I 2 for receiving the gray scale voltage V G3 , a control terminal C for receiving the control signal S C , and an output terminal O. The multiplexer MUX 6 couples the input terminal I1 or I2 of the multiplexer MUX 6 to the output terminal O of the multiplexer MUX 6 according to the control signal S C . The multiplexer MUX 7 includes an input terminal I 1 for receiving the gray scale voltage V G1 , an input terminal I 2 for receiving the gray scale voltage V G2 , a control terminal C for receiving the control signal S C , and an output terminal O. The multiplexer MUX 7 couples the input terminal I1 or I2 of the multiplexer MUX 7 to the output terminal O of the multiplexer MUX 7 according to the control signal S C . The multiplexer MUX 8 includes an input terminal I 1 for receiving the gray scale voltage V G3 , an input terminal I 2 for receiving the gray scale voltage V G4 , a control terminal C for receiving the control signal S C , and an output terminal O. The multiplexer MUX 8 couples the input terminal I1 or I2 of the multiplexer MUX 8 to the output terminal O of the multiplexer MUX 8 according to the control signal S C . When the control signal S C represents logic "0", the input terminals I1 of the multiplexers MUX 5 - MUX 8 are respectively coupled to the output terminals O of the multiplexers MUX 5 - MUX 8 ; when the control signal S C represents logic "1 ”, the input terminals I 2 of the multiplexers MUX 5 -MUX 8 are respectively coupled to the output terminals O of the multiplexers MUX 5 -MUX 8 .

极性选择电路2121包含输入端I1耦接至多路器MUX5的输出端O,输入端I2耦接至多路器MUX6的输出端O,输出端O1耦接至数据线DLX,输出端O2耦接至数据线DL(X+1),以及控制端C用来接收极性信号SPOL,极性转换器LS2所输出的数字数据(DA1或DA2)转换为灰阶电压VG2。数字模拟转换器DAC3根据负极性子区域伽玛电压VNB,将电平转换器LS3所输出的数字数据(DA1或DA2)转换为灰阶电压VG3。数字模拟转换器DAC4根据负极性主区域伽玛电压VNA,将电平转换器LS4所输出的数字数据(DA1或DA2)转换为灰阶电压VG4。选择电路212根据伽玛电压选择信号SG_SEL与极性信号SPOL将灰阶电压VG1~VG4透过数据线DLX~DL(X+3)分配给主区域MR1与MR2以及子区域SR1与SR2。在数据驱动电路210中,借由选择电路211将对应于像素PIX1的数字数据DA1与对应于像素PIX2的数字数据DA2输入至对应的数字模拟转换器,以产生灰阶电压VG1~VG4,且借由选择电路212将灰阶电压VG1~VG4分配给像素PIX1与PIX2中的主区域MR1与MR2以及子区域SR1与SR2,如此可减少数据驱动电路210所需的数字模拟转换器的数目。以下将更进一步地说明其工作原理。The polarity selection circuit 2121 includes an input terminal I1 coupled to the output terminal O of the multiplexer MUX 5 , an input terminal I2 coupled to the output terminal O of the multiplexer MUX 6 , and an output terminal O1 coupled to the data line DLx , The output terminal O 2 is coupled to the data line DL (X+1) , and the control terminal C is used to receive the polarity signal S POL , and the digital data (DA 1 or DA 2 ) output by the polarity converter LS 2 is converted into gray step voltage V G2 . The digital-to-analog converter DAC 3 converts the digital data (DA 1 or DA 2 ) output by the level shifter LS 3 into a gray scale voltage V G3 according to the negative polarity sub-region gamma voltage V NB . The digital-to-analog converter DAC 4 converts the digital data (DA 1 or DA 2 ) output by the level shifter LS 4 into a gray scale voltage V G4 according to the negative polarity main area gamma voltage V NA . The selection circuit 212 distributes the grayscale voltages V G1 -V G4 to the main regions MR 1 and MR 2 and the sub-regions MR 1 and MR 2 through the data lines DL X ˜DL (X+3) according to the gamma voltage selection signal S G_SEL and the polarity signal S POL . Region SR 1 and SR 2 . In the data driving circuit 210, the digital data DA 1 corresponding to the pixel PIX 1 and the digital data DA 2 corresponding to the pixel PIX 2 are input to corresponding digital-to-analog converters through the selection circuit 211 to generate the gray scale voltage V G1 ~V G4 , and the gray-scale voltage V G1 ~V G4 is distributed to the main regions MR 1 and MR 2 and the sub-regions SR 1 and SR 2 in the pixels PIX 1 and PIX 2 through the selection circuit 212, so that the data driving can be reduced The number of digital-to-analog converters required for circuit 210. The working principle will be further explained below.

选择电路211包含互斥或栅(XOR gate)2111以及多路器MUX1~MUX4。互斥或栅2111根据伽玛电压选择信号SG_SEL与极性信号SPOL,进行逻辑运算,以产生控制信号SC。当伽玛电压选择信号SG_SEL与极性信号SPOL皆表示逻辑「0」或皆表示逻辑「1」时,控制信号SC表示逻辑「0」;当伽玛电压选择信号SG_SEL表示逻辑「0」且极性信号SPOL表示逻辑「1」时,控制信号SC表示逻辑「1」;当伽玛电压选择信号SG_SEL表示逻辑「1」且极性信号SPOL表示逻辑「0」时,控制信号SC表示逻辑「1」。多路器MUX1包含输入端I1用来接收数字数据DA2,输入端I2用来接收数字数据DA1,以及控制端C用来接收控制信号SC。多路器MUX1根据控制信号SC将多路器MUX1的输入端I1或I2耦接至多路器MUX1的输出端O。多路器MUX2包含输入端I1用来接收数字数据DA1,输入端I2用来接收数字数据DA2,以及控制端C用来接收控制信号SC。多路器MUX2根据控制信号SC将多路器MUX2的输入端I1或I2耦接至多路器MUX2的输出端O。多路器MUX3包含输入端I1用来接收数字数据DA2,输入端I2用来接收数字数据DA1,以及控制端C用来接收控制信号SC。多路器MUX3根据控制信号SC将多路器MUX3的输入端I1或I2耦接至多路器MUX3的输出端O。多路器MUX4包含输入端I1用来接收数字数据DA1,输入端I2用来接收数字数据DA2,以及控制端C用来接收控制信号SC。多路器MUX4根据控制信号SC将多路器MUX4的输入端I1或I2选择电路2121根据极性信号SPOL将极性选择电路2121的输入端I1与I2的其中之一输入端耦接至极性选择电路2121的输出端O1,并将另一输入端耦接至极性选择电路2121的输出端O2。极性选择电路2122包含输入端I1耦接至多路器MUX7的输出端O,输入端I2耦接至多路器MUX8的输出端O,输出端O1耦接至数据线DL(X+2),输出端O2耦接至数据线DL(X+3),以及控制端C用来接收极性信号SPOL,极性选择电路2122根据极性信号SPOL将极性选择电路2122的输入端I1与I2的其中之一输入端耦接至极性选择电路2122的输出端O1,并将另一输入端耦接至极性选择电路2122的输出端O2。当极性信号SPOL表示逻辑「0」时,极性选择电路2121与2122的输入端I1分别耦接至其输出端O2,且极性选择电路2121与2122的输入端I2分别耦接至其输出端O1;当极性信号SPOL表示逻辑「1」时,极性选择电路2121与2122的输入端I1分别耦接至其输出端O1,且极性选择电路2121与2122的输入端I2分别耦接至其输出端O2The selection circuit 211 includes an exclusive OR gate (XOR gate) 2111 and multiplexers MUX 1 -MUX 4 . The exclusive OR gate 2111 performs logic operation according to the gamma voltage selection signal S G_SEL and the polarity signal S POL to generate the control signal S C . When the gamma voltage selection signal S G_SEL and the polarity signal S POL both represent logic “0” or both represent logic “1”, the control signal S C represents logic “0”; when the gamma voltage selection signal S G_SEL represents logic “ 0" and the polarity signal S POL represents logic "1", the control signal S C represents logic "1"; when the gamma voltage selection signal S G_SEL represents logic "1" and the polarity signal S POL represents logic "0" , the control signal S C represents logic "1". The multiplexer MUX 1 includes an input terminal I 1 for receiving digital data DA 2 , an input terminal I 2 for receiving digital data DA 1 , and a control terminal C for receiving a control signal S C . The multiplexer MUX 1 couples the input terminal I 1 or I 2 of the multiplexer MUX 1 to the output terminal O of the multiplexer MUX 1 according to the control signal S C . The multiplexer MUX 2 includes an input terminal I 1 for receiving digital data DA 1 , an input terminal I 2 for receiving digital data DA 2 , and a control terminal C for receiving a control signal S C . The multiplexer MUX 2 couples the input terminal I1 or I2 of the multiplexer MUX 2 to the output terminal O of the multiplexer MUX 2 according to the control signal S C . The multiplexer MUX 3 includes an input terminal I 1 for receiving digital data DA 2 , an input terminal I 2 for receiving digital data DA 1 , and a control terminal C for receiving a control signal S C . The multiplexer MUX 3 couples the input terminal I1 or I2 of the multiplexer MUX 3 to the output terminal O of the multiplexer MUX 3 according to the control signal S C . The multiplexer MUX 4 includes an input terminal I 1 for receiving digital data DA 1 , an input terminal I 2 for receiving digital data DA 2 , and a control terminal C for receiving a control signal S C . The multiplexer MUX 4 selects the input terminal I1 or I2 of the multiplexer MUX 4 according to the control signal S C. The selection circuit 2121 selects one of the input terminals I1 and I2 of the polarity selection circuit 2121 according to the polarity signal S POL One input terminal is coupled to the output terminal O 1 of the polarity selection circuit 2121 , and the other input terminal is coupled to the output terminal O 2 of the polarity selection circuit 2121 . The polarity selection circuit 2122 includes an input terminal I1 coupled to the output terminal O of the multiplexer MUX 7 , an input terminal I2 coupled to the output terminal O of the multiplexer MUX 8 , and an output terminal O1 coupled to the data line DL (X +2) , the output terminal O 2 is coupled to the data line DL (X+3) , and the control terminal C is used to receive the polarity signal S POL , the polarity selection circuit 2122 switches the polarity selection circuit 2122 according to the polarity signal S POL One of the input terminals I 1 and I 2 is coupled to the output terminal O 1 of the polarity selection circuit 2122 , and the other input terminal is coupled to the output terminal O 2 of the polarity selection circuit 2122 . When the polarity signal S POL represents logic “0”, the input terminals I 1 of the polarity selection circuits 2121 and 2122 are respectively coupled to the output terminal O 2 , and the input terminals I 2 of the polarity selection circuits 2121 and 2122 are respectively coupled to connected to its output terminal O 1 ; when the polarity signal S POL represents a logic "1", the input terminals I 1 of the polarity selection circuits 2121 and 2122 are respectively coupled to their output terminals O 1 , and the polarity selection circuits 2121 and 2122 The input terminals I 2 of the 2122 are respectively coupled to the output terminals O 2 .

缓冲器BUF1耦接于多路器MUX5的输出端O与极性选择电路2121的输入端I1之间,缓冲器BUF1用来缓冲多路器MUX5的输出端O所输出的灰阶电压。缓冲器BUF2耦接于多路器MUX6的输出端O与极性选择电路2121的输入端I2之间,缓冲器BUF2用来缓冲多路器MUX6的输出端O所输出的灰阶电压。缓冲器BUF3耦接于多路器MUX7的输出端O与极性选择电路2122的输入端I1之间,缓冲器BUF3用来缓冲多路器MUX7的输出端O所输出的灰阶电压。缓冲器BUF4耦接于多路器MUX8的输出端O与极性选择电路2122的输入端I2之间,缓冲器BUF4用来缓冲多路器MUX8的输出端O所输出的灰阶电压。The buffer BUF 1 is coupled between the output terminal O of the multiplexer MUX 5 and the input terminal I1 of the polarity selection circuit 2121, and the buffer BUF 1 is used to buffer the gray output from the output terminal O of the multiplexer MUX 5 step voltage. The buffer BUF 2 is coupled between the output terminal O of the multiplexer MUX 6 and the input terminal I 2 of the polarity selection circuit 2121, and the buffer BUF 2 is used to buffer the gray output from the output terminal O of the multiplexer MUX 6 step voltage. The buffer BUF 3 is coupled between the output terminal O of the multiplexer MUX 7 and the input terminal I1 of the polarity selection circuit 2122, and the buffer BUF 3 is used to buffer the gray output from the output terminal O of the multiplexer MUX 7 step voltage. The buffer BUF 4 is coupled between the output terminal O of the multiplexer MUX 8 and the input terminal I 2 of the polarity selection circuit 2122, and the buffer BUF 4 is used to buffer the gray output from the output terminal O of the multiplexer MUX 8 step voltage.

请参考图4。图4为说明当像素驱动电路200中的主区域MR1、子区域SR1、子区域SR2及主区域MR2的反转极性分别为正、负、正、负时,数据驱动电路210的运行的示意图。此时,伽玛电压选择信号SG_SEL表示逻辑「0」,且极性信号SPOL表示逻辑「1」,所以互斥或栅2111输出表示逻辑「1」的控制信号SC。当控制信号SC表示逻辑「1」时,多路器MUX1~MUX4的输入端I2分别耦接至多路器MUX1~MUX4的输出端O。如此,多路器MUX1透过拴锁器DH1与电平转换器LS1输出数字数据DA1至数字模拟转换器DAC1,多路器MUX2透过拴锁器DH2与电平转换器LS2输出数字数据DA2至数字模拟转换器DAC2,多路器MUX3透过拴锁器DH3与电平转换器LS3输出数字数据DA1至数字模拟转换器DAC3,且多路器MUX4透过拴锁器DH4与电平转换器LS4输出数字数据DA2至数字模拟转换器DAC4。数字模拟转换器DAC1根据正极性主区域伽玛电压VPA,将数字数据DA1转换为灰阶电压VG1。数字模拟转换器DAC2根据正极性子区域伽玛电压VPB,将数字数据DA2转换为灰阶电压VG2。数字模拟转换器DAC3根据负极性子区域伽玛电压VNB,将数字数据DA1转换为灰阶电压VG3。数字模拟转换器DAC4根据负极性主区域伽玛电压VNA,将数字数据DA2转换为灰阶电压VG4。此时,多路器MUX5~MUX8根据表示逻辑「1」的控制信号SC,分别将MUX5~MUX8的输入端I2耦接至MUX5~MUX8的输出端O。如此,多路器MUX5透过缓冲器BUF1输出灰阶电压VG1至极性选择电路2121的输入端I1,多路器MUX6透过缓冲器BUF2输出灰阶电压VG3至极性选择电路2121的输入端I2,多路器MUX7透过缓冲器BUF3输出灰阶电压VG2至极性选择电路2122的输入端I1,且多路器MUX8透过缓冲器BUF4输出灰阶电压VG4至极性选择电路2122的输入端I2。由于极性信号SPOL表示逻辑「1」,因此极性选择电路2121与2122的输入端I1分别耦接至其输出端O1,且极性选择电路2121与2122的输入端I2分别耦接至其输出端O2。如此,极性选择电路2121透过数据线DLX,将根据正极性主区域伽玛电压VPA转换数字数据DA1所得到的灰阶电压VG1输出至主区域MR1,且极性选择电路2121透过数据线DL(X+1),将根据负极性子区域伽玛电压VNB转换数字数据DA1所得到的灰阶电压VG3输出至子区域SR1。极性选择电路2122透过数据线DL(X+2),将根据正极性子区域伽玛电压VPB转换数字数据DA2所得到的灰阶电压VG2输出至子区域SR2,且极性选择电路2122透过数据线DL(X+3),将根据负极性主区域伽玛电压VNA转换数字数据DA2所得到的灰阶电压VG4输出至主区域MR2。因此,在像素驱动电路200中,当主区域MR1、子区域SR1、子区域SR2及主区域MR2的反转极性分别为正、负、正、负时,借由表示逻辑「0」的伽玛电压选择信号SG_SEL与表示逻辑「1」的极性信号SPOL,即可控制选择电路211将数字数据DA1与DA2输入至对应的数字模拟转换器,以产生灰阶电压VG1~VG4,并控制选择电路212将灰阶电压VG1~VG4正确地分配灰阶电压VG1~VG4给主区域MR1与MR2以及子区域SR1与SR2Please refer to Figure 4. FIG. 4 illustrates the data driving circuit 210 when the inversion polarities of the main region MR 1 , sub-region SR 1 , sub-region SR 2 , and main region MR 2 in the pixel driving circuit 200 are positive, negative, positive, and negative, respectively. Schematic diagram of the operation. At this time, the gamma voltage selection signal S G_SEL represents logic "0", and the polarity signal S POL represents logic "1", so the exclusive OR gate 2111 outputs the control signal S C representing logic "1". When the control signal S C represents logic “1”, the input terminals I 2 of the multiplexers MUX 1 -MUX 4 are respectively coupled to the output terminals O of the multiplexers MUX 1 -MUX 4 . In this way, the multiplexer MUX 1 outputs the digital data DA 1 to the digital-analog converter DAC 1 through the latch DH 1 and the level shifter LS 1 , and the multiplexer MUX 2 passes through the latch DH 2 and the level shifter LS 2 outputs digital data DA 2 to digital-to-analog converter DAC 2 , multiplexer MUX 3 outputs digital data DA 1 to digital-to-analog converter DAC 3 through latch DH 3 and level shifter LS 3 , and more The router MUX 4 outputs the digital data DA 2 to the digital-to - analog converter DAC 4 through the latch DH 4 and the level shifter LS 4 . The digital-to-analog converter DAC 1 converts the digital data DA 1 into a gray scale voltage V G1 according to the positive polarity main area gamma voltage V PA . The digital-to-analog converter DAC 2 converts the digital data DA 2 into a grayscale voltage V G2 according to the positive polarity sub-region Gamma voltage V PB . The digital-to-analog converter DAC 3 converts the digital data DA 1 into a grayscale voltage V G3 according to the negative polarity sub-region Gamma voltage V NB . The digital-to-analog converter DAC 4 converts the digital data DA 2 into a gray scale voltage V G4 according to the negative polarity main area gamma voltage V NA . At this time, the multiplexers MUX 5 -MUX 8 respectively couple the input terminal I 2 of MUX 5 -MUX 8 to the output terminal O of MUX 5 -MUX 8 according to the control signal Sc indicating logic "1". In this way, the multiplexer MUX 5 outputs the gray scale voltage V G1 to the input terminal I 1 of the polarity selection circuit 2121 through the buffer BUF 1 , and the multiplexer MUX 6 outputs the gray scale voltage V G3 to the polarity selection through the buffer BUF 2 The input terminal I 2 of the circuit 2121, the multiplexer MUX 7 outputs the grayscale voltage V G2 to the input terminal I 1 of the polarity selection circuit 2122 through the buffer BUF 3 , and the multiplexer MUX 8 outputs the gray scale voltage V G2 through the buffer BUF 4 The step voltage V G4 is sent to the input terminal I 2 of the polarity selection circuit 2122 . Since the polarity signal S POL represents logic “1”, the input terminals I 1 of the polarity selection circuits 2121 and 2122 are respectively coupled to their output terminals O 1 , and the input terminals I 2 of the polarity selection circuits 2121 and 2122 are respectively coupled to Connected to its output O 2 . In this way, the polarity selection circuit 2121 outputs the gray scale voltage V G1 obtained by converting the digital data DA 1 according to the positive polarity main area gamma voltage V PA to the main area MR 1 through the data line DL X , and the polarity selection circuit 2121 outputs the gray scale voltage V G3 obtained by converting the digital data DA 1 according to the negative polarity sub-region Gamma voltage V NB to the sub-region SR 1 through the data line DL (X+1) . The polarity selection circuit 2122 outputs the gray-scale voltage V G2 obtained by converting the digital data DA 2 according to the positive polarity sub-region Gamma voltage V PB to the sub-region SR 2 through the data line DL (X+2) , and polarity selection The circuit 2122 outputs the gray scale voltage V G4 obtained by converting the digital data DA 2 according to the negative main area gamma voltage V NA to the main area MR 2 through the data line DL (X+3 ) . Therefore, in the pixel driving circuit 200, when the inverted polarities of the main region MR 1 , the sub-region SR 1 , the sub-region SR 2 , and the main region MR 2 are positive, negative, positive, and negative, respectively, by representing logic “0 The gamma voltage selection signal S G_SEL of " and the polarity signal S POL representing logic "1" can control the selection circuit 211 to input the digital data DA 1 and DA 2 to the corresponding digital-to-analog converters to generate gray-scale voltages V G1 -V G4 , and control the selection circuit 212 to correctly distribute the gray-scale voltages V G1 -V G4 to the main regions MR 1 and MR 2 and the sub-regions SR 1 and SR 2 .

请参考图5。图5为说明当像素驱动电路200中的主区域MR1、子区域SR1、子区域SR2及主区域MR2的反转极性分别为负、正、负、正时,数据驱动电路210的运行的示意图。此时,伽玛电压选择信号SG_SEL表示逻辑「0」,且极性信号SPOL表示逻辑「0」,所以互斥或栅2111输出表示逻辑「0」的控制信号SC。当控制信号SC表示逻辑「0」时,多路器MUX1~MUX4的输入端I1分别耦接至多路器MUX1~MUX4的输出端O。如此,多路器MUX1透过拴锁器DH1与电平转换器LS1输出数字数据DA2至数字模拟转换器DAC1,多路器MUX2透过拴锁器DH2与电平转换器LS2输出数字数据DA1至数字模拟转换器DAC2,多路器MUX3透过拴锁器DH3与电平转换器LS3输出数字数据DA2至数字模拟转换器DAC3,且多路器MUX4透过拴锁器DH4与电平转换器LS4输出数字数据DA1至数字模拟转换器DAC4。数字模拟转换器DAC1根据正极性主区域伽玛电压VPA,将数字数据DA2转换为灰阶电压VG1。数字模拟转换器DAC2根据正极性子区域伽玛电压VPB,将数字数据DA1转换为灰阶电压VG2。数字模拟转换器DAC3根据负极性子区域伽玛电压VNB,将数字数据DA2转换为灰阶电压VG3。数字模拟转换器DAC4根据负极性主区域伽玛电压VNA,将数字数据DA1转换为灰阶电压VG4。此时,多路器MUX5~MUX8根据表示逻辑「0」的控制信号SC,分别将MUX5~MUX8的输入端I1耦接至MUX5~MUX8的输出端O。如此,多路器MUX5透过缓冲器BUF1输出灰阶电压VG2至极性选择电路2121的输入端I1,多路器MUX6透过缓冲器BUF2输出灰阶电压VG4至极性选择电路2121的输入端I2,多路器MUX7透过缓冲器BUF3输出灰阶电压VG1至极性选择电路2122的输入端I1,且多路器MUX8透过缓冲器BUF4输出灰阶电压VG3至极性选择电路2122的输入端I2。由于极性信号SPOL表示逻辑「0」,因此极性选择电路2121与2122的输入端I1分别耦接至其输出端O2,且极性选择电路2121与2122的输入端I2分别耦接至其输出端O1。如此,极性选择电路2121透过数据线DLX,将根据负极性主区域伽玛电压VNA转换数字数据DA1所得到的灰阶电压VG4输出至主区域MR1,且极性选择电路2121透过数据线DL(X+1),将根据正极性子区域伽玛电压VPB转换数字数据DA1所得到的灰阶电压VG2输出至子区域SR1。极性选择电路2122透过数据线DL(X+2),将根据负极性子区域伽玛电压VNB转换数字数据DA2所得到的灰阶电压VG3输出至子区域SR2,且极性选择电路2122透过数据线DL(X+3),将根据正极性主区域伽玛电压VPA转换数字数据DA2所得到的灰阶电压VG1输出至主区域MR2。因此,在像素驱动电路200中,当主区域MR1、子区域SR1、子区域SR2及主区域MR2的反转极性分别为负、正、负、正时,借由表示逻辑「0」的伽玛电压选择信号SG_SEL与表示逻辑「0」的极性信号SPOL,即可控制选择电路211将数字数据DA1与DA2输入至对应的数字模拟转换器,以产生灰阶电压VG1~VG4,并控制选择电路212将灰阶电压VG1~VG4正确地分配灰阶电压VG1~VG4给主区域MR1与MR2以及子区域SR1与SR2Please refer to Figure 5. FIG. 5 illustrates the data driving circuit 210 when the inversion polarities of the main region MR 1 , sub-region SR 1 , sub-region SR 2 , and main region MR 2 in the pixel driving circuit 200 are negative, positive, negative, and positive, respectively. Schematic diagram of the operation. At this time, the gamma voltage selection signal S G_SEL represents logic "0", and the polarity signal S POL represents logic "0", so the exclusive OR gate 2111 outputs the control signal S C representing logic "0". When the control signal S C represents logic “0”, the input terminals I 1 of the multiplexers MUX 1 -MUX 4 are respectively coupled to the output terminals O of the multiplexers MUX 1 -MUX 4 . In this way, the multiplexer MUX 1 outputs the digital data DA 2 to the digital-analog converter DAC 1 through the latch DH 1 and the level shifter LS 1 , and the multiplexer MUX 2 passes through the latch DH 2 and the level shifter LS 2 outputs digital data DA 1 to digital-to-analog converter DAC 2 , multiplexer MUX 3 outputs digital data DA 2 to digital-to-analog converter DAC 3 through latch DH 3 and level shifter LS 3 , and more The multiplexer MUX 4 outputs the digital data DA 1 to the digital-to - analog converter DAC 4 through the latch DH 4 and the level shifter LS 4 . The digital-to-analog converter DAC 1 converts the digital data DA 2 into a gray scale voltage V G1 according to the positive polarity main area gamma voltage V PA . The digital-to-analog converter DAC 2 converts the digital data DA 1 into a grayscale voltage V G2 according to the positive polarity sub-region Gamma voltage V PB . The digital-to-analog converter DAC 3 converts the digital data D A2 into a gray scale voltage V G3 according to the negative polarity sub-region Gamma voltage V NB . The digital-to-analog converter DAC 4 converts the digital data DA 1 into a gray scale voltage V G4 according to the negative polarity main area gamma voltage V NA . At this time, the multiplexers MUX 5 -MUX 8 respectively couple the input terminal I 1 of MUX 5 -MUX 8 to the output terminal O of MUX 5 -MUX 8 according to the control signal Sc representing logic "0". In this way, the multiplexer MUX 5 outputs the gray scale voltage V G2 to the input terminal I 1 of the polarity selection circuit 2121 through the buffer BUF 1 , and the multiplexer MUX 6 outputs the gray scale voltage V G4 to the polarity selection through the buffer BUF 2 The input terminal I 2 of the circuit 2121, the multiplexer MUX 7 outputs the grayscale voltage V G1 to the input terminal I 1 of the polarity selection circuit 2122 through the buffer BUF 3 , and the multiplexer MUX 8 outputs the grayscale voltage through the buffer BUF 4 The step voltage V G3 is sent to the input terminal I 2 of the polarity selection circuit 2122 . Since the polarity signal S POL represents logic “0”, the input terminals I 1 of the polarity selection circuits 2121 and 2122 are respectively coupled to their output terminals O 2 , and the input terminals I 2 of the polarity selection circuits 2121 and 2122 are respectively coupled to connected to its output O 1 . In this way, the polarity selection circuit 2121 outputs the gray scale voltage V G4 obtained by converting the digital data DA 1 according to the negative polarity main area gamma voltage V NA to the main area MR 1 through the data line DL X , and the polarity selection circuit The 2121 outputs the gray scale voltage V G2 obtained by converting the digital data DA 1 according to the positive polarity sub-region Gamma voltage V PB to the sub-region SR 1 through the data line DL (X+1) . The polarity selection circuit 2122 outputs the gray scale voltage V G3 obtained by converting the digital data DA 2 according to the negative polarity sub-region Gamma voltage V NB to the sub-region SR 2 through the data line DL (X+2) , and the polarity is selected The circuit 2122 outputs the gray scale voltage V G1 obtained by converting the digital data DA 2 according to the positive main area gamma voltage V PA to the main area MR 2 through the data line DL (X+3 ) . Therefore, in the pixel driving circuit 200, when the inverted polarities of the main region MR 1 , the sub-region SR 1 , the sub-region SR 2 and the main region MR 2 are respectively negative, positive, negative and positive, by representing logic “0 The gamma voltage selection signal S G_SEL of " and the polarity signal S POL representing logic "0" can control the selection circuit 211 to input the digital data DA 1 and DA 2 to the corresponding digital-to-analog converters to generate gray-scale voltages V G1 -V G4 , and control the selection circuit 212 to correctly distribute the gray-scale voltages V G1 -V G4 to the main regions MR 1 and MR 2 and the sub-regions SR 1 and SR 2 .

由上述说明可知,在本发明的像素驱动电路200中,针对数据线DLX~DL(X+3),数据驱动电路210只需要有四个数字模拟转换器(DAC1~DAC4),即可提供正确的灰阶电压给主区域MR1、MR2与子区域SR1、SR2。换句话说,当像素驱动电路200有M条数据线时,数据驱动电路210仅需要有M个数字模拟转换器。因此,相较于相关技术的像素驱动电路100,本发明的像素驱动电路200可减少所需的数字模拟转换器的数量,以节省成本,并减少耗电量。It can be seen from the above description that in the pixel driving circuit 200 of the present invention, for the data lines DL X ˜DL (X+3) , the data driving circuit 210 only needs four digital-to-analog converters (DAC 1 ˜DAC 4 ), namely The correct gray scale voltage can be provided to the main regions MR 1 , MR 2 and the sub-regions SR 1 , SR 2 . In other words, when the pixel driving circuit 200 has M data lines, the data driving circuit 210 only needs to have M digital-to-analog converters. Therefore, compared with the pixel driving circuit 100 of the related art, the pixel driving circuit 200 of the present invention can reduce the number of required digital-to-analog converters to save cost and reduce power consumption.

请参考图6。图6为说明本发明的像素驱动电路的另一实施例600的示意图。像素驱动电路600与200的不同的处在于,晶体管Q1的第二端耦接至子区域SR1,晶体管Q2的第二端耦接至主区域MR1,晶体管Q3的第二端耦接至主区域MR2,晶体管Q4的第二端耦接至子区域SR2。此时,利用数据驱动电路210仍可正确地分配给主区域MR1与MR2以及子区域SR1与SR2,以下将更进一步地说明其工作原理。Please refer to Figure 6. FIG. 6 is a schematic diagram illustrating another embodiment 600 of the pixel driving circuit of the present invention. The difference between the pixel driving circuit 600 and 200 is that the second terminal of the transistor Q 1 is coupled to the sub-region SR 1 , the second terminal of the transistor Q 2 is coupled to the main region MR 1 , and the second terminal of the transistor Q 3 is coupled to the sub-region SR 1 . Connected to the main region MR 2 , the second terminal of the transistor Q 4 is coupled to the sub-region SR 2 . At this time, the data driving circuit 210 can still be correctly allocated to the main regions MR 1 and MR 2 and the sub-regions SR 1 and SR 2 , and its working principle will be further described below.

请参考图7。图7为说明当像素驱动电路600中的子区域SR1、主区域MR1、主区域MR2及子区域SR2的反转极性分别为正、负、正、负时,数据驱动电路210的运行的示意图。此时,伽玛电压选择信号SG_SEL表示逻辑「1」,且极性信号SPOL表示逻辑「1」,所以互斥或栅2111输出表示逻辑「0」的控制信号SC。当控制信号SC表示逻辑「0」时,多路器MUX1~MUX4的输入端I1分别耦接至多路器MUX1~MUX4的输出端O。如此,多路器MUX1透过拴锁器DH1与电平转换器LS1输出数字数据DA2至数字模拟转换器DAC1,多路器MUX2透过拴锁器DH2与电平转换器LS2输出数字数据DA1至数字模拟转换器DAC2,多路器MUX3透过拴锁器DH3与电平转换器LS3输出数字数据DA2至数字模拟转换器DAC3,且多路器MUX4透过拴锁器DH4与电平转换器LS4输出数字数据DA1至数字模拟转换器DAC4。数字模拟转换器DAC1根据正极性主区域伽玛电压VPA,将数字数据DA2转换为灰阶电压VG1。数字模拟转换器DAC2根据正极性子区域伽玛电压VPB,将数字数据DA1转换为灰阶电压VG2。数字模拟转换器DAC3根据负极性子区域伽玛电压VNB,将数字数据DA2转换为灰阶电压VG3。数字模拟转换器DAC4根据负极性主区域伽玛电压VNA,将数字数据DA1转换为灰阶电压VG4。此时,多路器MUX5~MUX8根据表示逻辑「0」的控制信号SC,分别将MUX5~MUX8的输入端I1耦接至MUX5~MUX8的输出端O。如此,多路器MUX5透过缓冲器BUF1输出灰阶电压VG2至极性选择电路2121的输入端I1,多路器MUX6透过缓冲器BUF2输出灰阶电压VG4至极性选择电路2121的输入端I2,多路器MUX7透过缓冲器BUF3输出灰阶电压VG1至极性选择电路2122的输入端I1,且多路器MUX8透过缓冲器BUF4输出灰阶电压VG3至极性选择电路2122的输入端I2。由于极性信号SPOL表示逻辑「1」,因此极性选择电路2121与2122的输入端I1分别耦接至其输出端O1,且极性选择电路2121与2122的输入端I2分别耦接至其输出端O2。如此,极性选择电路2121透过数据线DLX,将根据正极性子区域伽玛电压VPB转换数字数据DA2所得到的灰阶电压VG2输出至子区域SR1,且极性选择电路2121透过数据线DL(X+1),将根据负极性主区域伽玛电压VNA转换数字数据DA1所得到的灰阶电压VG4输出至主区域MR1。极性选择电路2122透过数据线DL(X+2),将根据正极性主区域伽玛电压VPA转换数字数据DA2所得到的灰阶电压VG1输出至主区域MR2,且极性选择电路2122透过数据线DL(X+3),将根据负极性子区域伽玛电压VNB转换数字数据DA2所得到的灰阶电压VG3输出至子区域SR2。因此,在像素驱动电路600中,当子区域SR1、主区域MR1、主区域MR2及子区域SR2的反转极性分别为正、负、正、负时,借由表示逻辑「1」的伽玛电压选择信号SG_SEL与表示逻辑「1」的极性信号SPOL,即可控制选择电路211将数字数据DA1与DA2输入至对应的数字模拟转换器,以产生灰阶电压VG1~VG4,并控制选择电路212将灰阶电压VG1~VG4正确地分配灰阶电压VG1~VG4给主区域MR1与MR2以及子区域SR1与SR2Please refer to Figure 7. FIG. 7 illustrates the data driving circuit 210 when the inversion polarities of the sub-region SR 1 , the main region MR 1 , the main region MR 2 and the sub-region SR 2 in the pixel driving circuit 600 are respectively positive, negative, positive and negative. Schematic diagram of the operation. At this time, the gamma voltage selection signal S G_SEL represents logic "1", and the polarity signal S POL represents logic "1", so the exclusive OR gate 2111 outputs the control signal S C representing logic "0". When the control signal S C represents logic “0”, the input terminals I 1 of the multiplexers MUX 1 -MUX 4 are respectively coupled to the output terminals O of the multiplexers MUX 1 -MUX 4 . In this way, the multiplexer MUX 1 outputs the digital data DA 2 to the digital-analog converter DAC 1 through the latch DH 1 and the level shifter LS 1 , and the multiplexer MUX 2 passes through the latch DH 2 and the level shifter LS 2 outputs digital data DA 1 to digital-to-analog converter DAC 2 , multiplexer MUX 3 outputs digital data DA 2 to digital-to-analog converter DAC 3 through latch DH 3 and level shifter LS 3 , and more The multiplexer MUX 4 outputs the digital data DA 1 to the digital-to - analog converter DAC 4 through the latch DH 4 and the level shifter LS 4 . The digital-to-analog converter DAC 1 converts the digital data DA 2 into a gray scale voltage V G1 according to the positive polarity main area gamma voltage V PA . The digital-to-analog converter DAC 2 converts the digital data DA 1 into a grayscale voltage V G2 according to the positive polarity sub-region Gamma voltage V PB . The digital-to-analog converter DAC 3 converts the digital data DA 2 into a grayscale voltage V G3 according to the negative polarity sub-region Gamma voltage V NB . The digital-to-analog converter DAC 4 converts the digital data DA 1 into a gray scale voltage V G4 according to the negative polarity main area gamma voltage V NA . At this time, the multiplexers MUX 5 -MUX 8 respectively couple the input terminal I 1 of MUX 5 -MUX 8 to the output terminal O of MUX 5 -MUX 8 according to the control signal Sc representing logic "0". In this way, the multiplexer MUX 5 outputs the gray scale voltage V G2 to the input terminal I 1 of the polarity selection circuit 2121 through the buffer BUF 1 , and the multiplexer MUX 6 outputs the gray scale voltage V G4 to the polarity selection through the buffer BUF 2 The input terminal I 2 of the circuit 2121, the multiplexer MUX 7 outputs the grayscale voltage V G1 to the input terminal I 1 of the polarity selection circuit 2122 through the buffer BUF 3 , and the multiplexer MUX 8 outputs the grayscale voltage through the buffer BUF 4 The step voltage V G3 is sent to the input terminal I 2 of the polarity selection circuit 2122 . Since the polarity signal S POL represents logic “1”, the input terminals I 1 of the polarity selection circuits 2121 and 2122 are respectively coupled to their output terminals O 1 , and the input terminals I 2 of the polarity selection circuits 2121 and 2122 are respectively coupled to Connected to its output O 2 . In this way, the polarity selection circuit 2121 outputs the gray scale voltage V G2 obtained by converting the digital data DA 2 according to the positive polarity sub-region Gamma voltage V PB to the sub-region SR 1 through the data line DL X , and the polarity selection circuit 2121 Through the data line DL (X+1) , the gray scale voltage V G4 obtained by converting the digital data DA 1 according to the negative main area gamma voltage V NA is output to the main area MR 1 . The polarity selection circuit 2122 outputs the gray scale voltage V G1 obtained by converting the digital data DA 2 according to the positive polarity main area Gamma voltage V PA to the main area MR 2 through the data line DL (X+2) , and the polarity is The selection circuit 2122 outputs the gray scale voltage V G3 obtained by converting the digital data DA 2 according to the negative polarity sub-region Gamma voltage V NB to the sub-region SR 2 through the data line DL (X+3 ) . Therefore, in the pixel driving circuit 600, when the inverted polarities of the sub-region SR 1 , the main region MR 1 , the main region MR 2 , and the sub-region SR 2 are respectively positive, negative, positive, and negative, by representing the logic " The gamma voltage selection signal S G_SEL of 1” and the polarity signal S POL representing logic “1” can control the selection circuit 211 to input the digital data DA 1 and DA 2 to the corresponding digital-to-analog converters to generate gray scales voltages V G1 -V G4 , and control the selection circuit 212 to correctly distribute the gray-scale voltages V G1 -V G4 to the main regions MR 1 and MR 2 and the sub-regions SR 1 and SR 2 .

请参考图8。图8为说明当像素驱动电路600中的子区域SR1、主区域MR1、主区域MR2及子区域SR2的反转极性分别为负、正、负、正时,数据驱动电路210的运行的示意图。此时,伽玛电压选择信号SG_SEL表示逻辑「1」,且极性信号SPOL表示逻辑「0」,所以互斥或栅2111输出表示逻辑「1」的控制信号SC。当控制信号SC表示逻辑「1」时,多路器MUX1~MUX4的输入端I2分别耦接至多路器MUX1~MUX4的输出端O。如此,多路器MUX1透过拴锁器DH1与电平转换器LS1输出数字数据DA1至数字模拟转换器DAC1,多路器MUX2透过拴锁器DH2与电平转换器LS2输出数字数据DA2至数字模拟转换器DAC2,多路器MUX3透过拴锁器DH3与电平转换器LS3输出数字数据DA1至数字模拟转换器DAC3,且多路器MUX4透过拴锁器DH4与电平转换器LS4输出数字数据DA2至数字模拟转换器DAC4。数字模拟转换器DAC1根据正极性主区域伽玛电压VPA,将数字数据DA1转换为灰阶电压VG1。数字模拟转换器DAC2根据正极性子区域伽玛电压VPB,将数字数据DA2转换为灰阶电压VG2。数字模拟转换器DAC3根据负极性子区域伽玛电压VNB,将数字数据DA1转换为灰阶电压VG3。数字模拟转换器DAC4根据负极性主区域伽玛电压VNA,将数字数据DA2转换为灰阶电压VG4。此时,多路器MUX5~MUX8根据表示逻辑「1」的控制信号SC,分别将MUX5~MUX8的输入端I2耦接至MUX5~MUX8的输出端O。如此,多路器MUX5透过缓冲器BUF1输出灰阶电压VG1至极性选择电路2121的输入端I1,多路器MUX6透过缓冲器BUF2输出灰阶电压VG3至极性选择电路2121的输入端I2,多路器MUX7透过缓冲器BUF3输出灰阶电压VG2至极性选择电路2122的输入端I1,且多路器MUX8透过缓冲器BUF4输出灰阶电压VG4至极性选择电路2122的输入端I2。由于极性信号SPOL表示逻辑「0」,因此极性选择电路2121与2122的输入端I1分别耦接至其输出端O2,且极性选择电路2121与2122的输入端I2分别耦接至其输出端O1。如此,极性选择电路2121透过数据线DLX,将根据负极性子区域伽玛电压VNB转换数字数据DA1所得到的灰阶电压VG3输出至子区域SR1,且极性选择电路2121透过数据线DL(X+1),将根据正极性主区域伽玛电压VPA转换数字数据DA1所得到的灰阶电压VG1输出至主区域MR1。极性选择电路2122透过数据线DL(X+2),将根据负极性主区域伽玛电压VNA转换数字数据DA2所得到的灰阶电压VG4输出至主区域MR2,且极性选择电路2122透过数据线DL(X+3),将根据正极性子区域伽玛电压VPB转换数字数据DA2所得到的灰阶电压VG2输出至子区域SR2。因此,当像素驱动电路600中的子区域SR1、主区域MR1、主区域MR2及子区域SR2的反转极性分别为负、正、负、正时,借由表示逻辑「1」的伽玛电压选择信号SG_SEL与表示逻辑「0」的极性信号SPOL,即可控制选择电路211将数字数据DA1与DA2输入至对应的数字模拟转换器,以产生灰阶电压VG1~VG4,并控制选择电路212将灰阶电压VG1~VG4正确地分配灰阶电压VG1~VG4给主区域MR1与MR2以及子区域SR1与SR2Please refer to Figure 8. FIG. 8 illustrates the data driving circuit 210 when the inversion polarities of the sub-region SR 1 , the main region MR 1 , the main region MR 2 and the sub-region SR 2 in the pixel driving circuit 600 are respectively negative, positive, negative and positive. Schematic diagram of the operation. At this time, the gamma voltage selection signal S G_SEL represents logic "1", and the polarity signal S POL represents logic "0", so the exclusive OR gate 2111 outputs the control signal S C representing logic "1". When the control signal S C represents logic “1”, the input terminals I 2 of the multiplexers MUX 1 -MUX 4 are respectively coupled to the output terminals O of the multiplexers MUX 1 -MUX 4 . In this way, the multiplexer MUX 1 outputs the digital data DA 1 to the digital-analog converter DAC 1 through the latch DH 1 and the level shifter LS 1 , and the multiplexer MUX 2 passes through the latch DH 2 and the level shifter LS 2 outputs digital data DA 2 to digital-to-analog converter DAC 2 , multiplexer MUX 3 outputs digital data DA 1 to digital-to-analog converter DAC 3 through latch DH 3 and level shifter LS 3 , and more The router MUX 4 outputs the digital data DA 2 to the digital-to - analog converter DAC 4 through the latch DH 4 and the level shifter LS 4 . The digital-to-analog converter DAC 1 converts the digital data DA 1 into a gray scale voltage V G1 according to the positive polarity main area gamma voltage V PA . The digital-to-analog converter DAC 2 converts the digital data DA 2 into a grayscale voltage V G2 according to the positive polarity sub-region Gamma voltage V PB . The digital-to-analog converter DAC 3 converts the digital data DA 1 into a grayscale voltage V G3 according to the negative polarity sub-region Gamma voltage V NB . The digital-to-analog converter DAC 4 converts the digital data DA 2 into a gray scale voltage V G4 according to the negative polarity main area gamma voltage V NA . At this time, the multiplexers MUX 5 -MUX 8 respectively couple the input terminal I 2 of MUX 5 -MUX 8 to the output terminal O of MUX 5 -MUX 8 according to the control signal Sc indicating logic "1". In this way, the multiplexer MUX 5 outputs the gray scale voltage V G1 to the input terminal I 1 of the polarity selection circuit 2121 through the buffer BUF 1 , and the multiplexer MUX 6 outputs the gray scale voltage V G3 to the polarity selection through the buffer BUF 2 The input terminal I 2 of the circuit 2121, the multiplexer MUX 7 outputs the grayscale voltage V G2 to the input terminal I 1 of the polarity selection circuit 2122 through the buffer BUF 3 , and the multiplexer MUX 8 outputs the gray scale voltage V G2 through the buffer BUF 4 The step voltage V G4 is sent to the input terminal I 2 of the polarity selection circuit 2122 . Since the polarity signal S POL represents logic “0”, the input terminals I 1 of the polarity selection circuits 2121 and 2122 are respectively coupled to their output terminals O 2 , and the input terminals I 2 of the polarity selection circuits 2121 and 2122 are respectively coupled to connected to its output O 1 . In this way, the polarity selection circuit 2121 outputs the gray scale voltage V G3 obtained by converting the digital data DA 1 according to the negative polarity sub-region Gamma voltage V NB to the sub-region SR 1 through the data line DL X , and the polarity selection circuit 2121 Through the data line DL (X+1) , the gray scale voltage V G1 obtained by converting the digital data DA 1 according to the positive main area gamma voltage V PA is output to the main area MR 1 . The polarity selection circuit 2122 outputs the gray scale voltage V G4 obtained by converting the digital data DA 2 according to the negative polarity main area gamma voltage V NA to the main area MR 2 through the data line DL (X+2) , and the polarity is The selection circuit 2122 outputs the gray scale voltage V G2 obtained by converting the digital data DA 2 according to the positive polarity sub-region Gamma voltage V PB to the sub-region SR 2 through the data line DL (X+3 ) . Therefore, when the inverted polarities of the sub-region SR 1 , the main region MR 1 , the main region MR 2 , and the sub-region SR 2 in the pixel driving circuit 600 are negative, positive, negative, and positive, respectively, by representing logic "1 The gamma voltage selection signal S G_SEL of " and the polarity signal S POL representing logic "0" can control the selection circuit 211 to input the digital data DA 1 and DA 2 to the corresponding digital-to-analog converters to generate gray-scale voltages V G1 -V G4 , and control the selection circuit 212 to correctly distribute the gray-scale voltages V G1 -V G4 to the main regions MR 1 and MR 2 and the sub-regions SR 1 and SR 2 .

同理,由上述说明可知,在本发明的像素驱动电路600中,针对数据线DLX~DL(X+3),数据驱动电路210只需要有四个数字模拟转换器(DAC1~DAC4),即可提供正确的灰阶电压给主区域MR1、MR2与子区域SR1、SR2。换句话说,当像素驱动电路600有M条数据线时,数据驱动电路210仅需要有M个数字模拟转换器。因此,相较于相关技术的像素驱动电路100,本发明的像素驱动电路600可减少所需的数字模拟转换器的数量,以节省成本,并减少耗电量。Similarly, it can be known from the above description that in the pixel driving circuit 600 of the present invention, for the data lines DL X ˜DL (X+3) , the data driving circuit 210 only needs four digital-to-analog converters (DAC 1 ˜DAC 4 ), the correct gray scale voltage can be provided to the main regions MR 1 , MR 2 and the sub-regions SR 1 , SR 2 . In other words, when the pixel driving circuit 600 has M data lines, the data driving circuit 210 only needs to have M digital-to-analog converters. Therefore, compared with the pixel driving circuit 100 of the related art, the pixel driving circuit 600 of the present invention can reduce the number of required digital-to-analog converters, thereby saving costs and reducing power consumption.

此外,像素与数据线之间的耦接关系并不限定为如图2或图6所示的方式。举例而言,请参考图9与图10。图9为本发明的像素驱动电路的另一实施例900的示意图。图10为像素驱动电路900的数据驱动电路910的部分结构的示意图。相较于像素驱动电路200,在像素驱动电路900中,主区域MR1透过晶体管Q1耦接至数据线DLX,子区域SR1透过晶体管Q2耦接至数据线DL(X+1),主区域MR2透过晶体管Q3耦接至数据线DL(X+2),且子区域SR2透过晶体管Q4耦接至数据线DL(X+3)。如图10所示,数据驱动电路910与210的不同的处在于极性选择电路2122的输出端O1耦接至数据线DL(X+3),且极性选择电路2122的输出端O2耦接至数据线DL(X+2),如此一来,无论是在像素驱动电路200或900中,极性选择电路2122的输出端O1皆是耦接至子区域SR2,且极性选择电路2122的输出端O2皆是耦接至主区域MR2。因此借由图4与图5所说明的方式,数据驱动电路910即可分配正确的灰阶电压VG1~VG4给主区域MR1与MR2以及子区域SR1与SR2。换句话说,在像素驱动电路中,即使像素与数据线之间的耦接关系改变,只要数据驱动电路的结构作对应的调整,数据驱动电路即可分配正确的灰阶电压给每个像素的主区域与子区域。In addition, the coupling relationship between the pixels and the data lines is not limited to the manner shown in FIG. 2 or FIG. 6 . For example, please refer to FIG. 9 and FIG. 10 . FIG. 9 is a schematic diagram of another embodiment 900 of the pixel driving circuit of the present invention. FIG. 10 is a schematic diagram of a partial structure of the data driving circuit 910 of the pixel driving circuit 900 . Compared with the pixel driving circuit 200, in the pixel driving circuit 900, the main region MR 1 is coupled to the data line DL x through the transistor Q 1 , and the sub-region SR 1 is coupled to the data line DL (X+ 1) , the main region MR 2 is coupled to the data line DL (X+2) through the transistor Q 3 , and the sub-region SR 2 is coupled to the data line DL (X+3) through the transistor Q 4 . As shown in FIG. 10 , the difference between the data driving circuit 910 and 210 is that the output terminal O 1 of the polarity selection circuit 2122 is coupled to the data line DL (X+3) , and the output terminal O 2 of the polarity selection circuit 2122 is coupled to the data line DL (X+2) , so that no matter in the pixel driving circuit 200 or 900, the output terminal O 1 of the polarity selection circuit 2122 is coupled to the sub-region SR 2 , and the polarity The output terminals O 2 of the selection circuit 2122 are both coupled to the main region MR 2 . Therefore, by means of the method illustrated in FIG. 4 and FIG. 5 , the data driving circuit 910 can distribute correct gray scale voltages V G1 -V G4 to the main regions MR 1 and MR 2 and the sub-regions SR 1 and SR 2 . In other words, in the pixel driving circuit, even if the coupling relationship between the pixel and the data line changes, as long as the structure of the data driving circuit is adjusted accordingly, the data driving circuit can distribute the correct grayscale voltage to each pixel. Main area and sub area.

综上所述,本发明所提供的像素驱动电路包含一第一像素、一第二像素,以及一数据驱动电路,每一像素包含一主区域与一子区域,该主区域与该子区域于显示画面时存储互相对应的灰阶电压。在该数据驱动电路中,借由一第一选择电路将对应于该第一像素的一第一数字数据与对应于该第二像素的一第二数字数据输入至对应的数字模拟转换器,以产生一第一灰阶电压、一第二灰阶电压、一第三灰阶电压与一第四灰阶电压,且借由一第二选择电路将该些灰阶电压提供给该第一像素与该第二像素中的主区域与子区域。如此可减少该数据驱动电路所需的数字模拟转换器的数目,以节省像素驱动电路的成本,并减少耗电量。In summary, the pixel driving circuit provided by the present invention includes a first pixel, a second pixel, and a data driving circuit, each pixel includes a main area and a sub-area, the main area and the sub-area are separated by Gray scale voltages corresponding to each other are stored when a picture is displayed. In the data driving circuit, a first digital data corresponding to the first pixel and a second digital data corresponding to the second pixel are input to the corresponding digital-to-analog converter via a first selection circuit, so as to generating a first gray-scale voltage, a second gray-scale voltage, a third gray-scale voltage and a fourth gray-scale voltage, and providing these gray-scale voltages to the first pixel and the first pixel through a second selection circuit The main area and sub-area in the second pixel. In this way, the number of digital-to-analog converters required by the data driving circuit can be reduced, so as to save the cost of the pixel driving circuit and reduce power consumption.

以上所述仅为本发明的优选实施例,凡依本发明权利要求所做的均等变化与修饰,皆应属于本发明的涵盖范围。The above descriptions are only preferred embodiments of the present invention, and all equivalent changes and modifications made according to the claims of the present invention shall fall within the scope of the present invention.

Claims (15)

1.一种像素驱动电路,包含:1. A pixel driving circuit, comprising: 一第一像素,包含一第一主区域与一第一子区域,该第一主区域耦接至一第一数据线与一扫描线,该第一子区域耦接至一第二数据线与该扫描线,该第一主区域与该第一子区域分别存储对应于一第一数字数据的灰阶电压;A first pixel includes a first main area and a first sub-area, the first main area is coupled to a first data line and a scanning line, and the first sub-area is coupled to a second data line and a scanning line The scan line, the first main area and the first sub-area respectively store gray-scale voltages corresponding to a first digital data; 一第二像素,包含一第二主区域与一第二子区域,该第二子区域耦接至一第三数据线与该扫描线,该第二主区域耦接至一第四数据线与该扫描线,该第二主区域与该第二子区域分别存储对应于一第二数字数据的灰阶电压;以及A second pixel includes a second main area and a second sub-area, the second sub-area is coupled to a third data line and the scan line, the second main area is coupled to a fourth data line and the scanning line The scan line, the second main area and the second sub area respectively store gray scale voltages corresponding to a second digital data; and 一数据驱动电路,包含:A data driving circuit, including: 一第一数字模拟转换器,用来根据一正极性主区域伽玛电压,将该第一数字数据或该第二数字数据转换为一第一灰阶电压;a first digital-to-analog converter, used to convert the first digital data or the second digital data into a first gray scale voltage according to a positive polarity main region gamma voltage; 一第二数字模拟转换器,用来根据一正极性子区域伽玛电压,将该第一数字数据或该第二数字数据转换为一第二灰阶电压;a second digital-to-analog converter, used to convert the first digital data or the second digital data into a second gray scale voltage according to a positive polarity sub-region gamma voltage; 一第三数字模拟转换器,用来根据一负极性子区域伽玛电压,将该第一数字数据或该第二数字数据转换为一第三灰阶电压;a third digital-to-analog converter, used to convert the first digital data or the second digital data into a third gray scale voltage according to a negative polarity sub-region gamma voltage; 一第四数字模拟转换器,用来根据一负极性主区域伽玛电压,将该第一数字数据或该第二数字数据转换为一第四灰阶电压;A fourth digital-to-analog converter, used to convert the first digital data or the second digital data into a fourth gray scale voltage according to a negative polarity main region gamma voltage; 一第一选择电路,用来根据一伽玛电压选择信号与一极性信号,选择该第一数字数据,输入至该第一数字模拟转换器、该第二数字模拟转换器、该第三数字模拟转换器以及该第四数字模拟转换器的其中两个数字模拟转换器,并将该第二数字数据输入至另外两个数字模拟转换器;以及A first selection circuit, used to select the first digital data according to a gamma voltage selection signal and a polarity signal, and input it to the first digital-to-analog converter, the second digital-to-analog converter, and the third digital data an analog converter and two digital-to-analog converters of the fourth digital-to-analog converter, and input the second digital data to the other two digital-to-analog converters; and 一第二选择电路,用来根据该伽玛电压选择信号与该极性信号将该第一灰阶电压、该第二灰阶电压、该第三灰阶电压及该第四灰阶电压透过该第一数据线、该第二数据线、该第三数据线、与该第四数据线分配给该第一主区域、该第一子区域、该第二主区域及该第二子区域。a second selection circuit, used for transmitting the first gray-scale voltage, the second gray-scale voltage, the third gray-scale voltage and the fourth gray-scale voltage according to the gamma voltage selection signal and the polarity signal The first data line, the second data line, the third data line, and the fourth data line are allocated to the first main area, the first sub area, the second main area and the second sub area. 2.如权利要求1所述的像素驱动电路,其中该数据驱动电路还包含:2. The pixel driving circuit according to claim 1, wherein the data driving circuit further comprises: 一第一电平转换器,耦接于该第一选择电路与该第一数字模拟转换器之间;a first level shifter, coupled between the first selection circuit and the first digital-to-analog converter; 一第二电平转换器,耦接于该第一选择电路与该第二数字模拟转换器之间;a second level shifter, coupled between the first selection circuit and the second digital-to-analog converter; 一第三电平转换器,耦接于该第一选择电路与该第三数字模拟转换器之间;以及a third level shifter, coupled between the first selection circuit and the third digital-to-analog converter; and 一第四电平转换器,耦接于该第一选择电路与该第四数字模拟转换器之间。A fourth level shifter is coupled between the first selection circuit and the fourth digital-to-analog converter. 3.如权利要求2所述的像素驱动电路,其中该数据驱动电路还包含:3. The pixel driving circuit as claimed in claim 2, wherein the data driving circuit further comprises: 一第一数据拴锁器,耦接于该第一选择电路与该第一电平转换器之间;a first data latch, coupled between the first selection circuit and the first level shifter; 一第二数据拴锁器,耦接于该第一选择电路与该第二电平转换器之间;a second data latch coupled between the first selection circuit and the second level shifter; 一第三数据拴锁器,耦接于该第一选择电路与该第三电平转换器之间;以及a third data latch coupled between the first selection circuit and the third level shifter; and 一第四数据拴锁器,耦接于该第一选择电路与该第四电平转换器之间。A fourth data latch is coupled between the first selection circuit and the fourth level shifter. 4.如权利要求2所述的像素驱动电路,其中当该伽玛电压选择信号与该极性信号皆表示一第一预定逻辑或皆表示一第二预定逻辑时,该第一选择电路输出该第二数字数据至该第一数字模拟转换器与该第三数字模拟转换器,且该第一选择电路输出该第一数字数据至该第二数字模拟转换器与该第四数字模拟转换器;当该伽玛电压选择信号表示该第一预定逻辑且该极性信号表示该第二预定逻辑时,该第一选择电路输出该第一数字数据至该第一数字模拟转换器与该第三数字模拟转换器,且该第一选择电路输出该第二数字数据至该第二数字模拟转换器与该第四数字模拟转换器;当该伽玛电压选择信号表示该第二预定逻辑且该极性信号表示该第一预定逻辑时,该第一选择电路输出该第一数字数据至该第一数字模拟转换器与该第三数字模拟转换器,且该第一选择电路输出该第二数字数据至该第二数字模拟转换器与该第四数字模拟转换器。4. The pixel driving circuit as claimed in claim 2, wherein when the gamma voltage selection signal and the polarity signal both represent a first predetermined logic or both represent a second predetermined logic, the first selection circuit outputs the second digital data to the first DAC and the third DAC, and the first selection circuit outputs the first digital data to the second DAC and the fourth DAC; When the gamma voltage selection signal represents the first predetermined logic and the polarity signal represents the second predetermined logic, the first selection circuit outputs the first digital data to the first DAC and the third digital an analog converter, and the first selection circuit outputs the second digital data to the second digital-to-analog converter and the fourth digital-to-analog converter; when the gamma voltage selection signal represents the second predetermined logic and the polarity When the signal represents the first predetermined logic, the first selection circuit outputs the first digital data to the first DAC and the third DAC, and the first selection circuit outputs the second digital data to The second DAC and the fourth DAC. 5.如权利要求4所述的像素驱动电路,其中该第一选择电路包含:5. The pixel driving circuit as claimed in claim 4, wherein the first selection circuit comprises: 一互斥或栅,用来根据该伽玛电压选择信号与该极性信号,以产生一控制信号;a mutually exclusive OR gate, used to select a signal and the polarity signal according to the gamma voltage to generate a control signal; 一第一多路器,包含一第一输入端用来接收该第二数字数据,一第二输入端用来接收该第一数字数据,一控制端用来接收该控制信号,以及一输出端,该第一多路器用来根据该控制信号将该第一多路器的该第一输入端或该第二输入端耦接至该第一多路器的该输出端;A first multiplexer, comprising a first input terminal for receiving the second digital data, a second input terminal for receiving the first digital data, a control terminal for receiving the control signal, and an output terminal , the first multiplexer is used to couple the first input terminal or the second input terminal of the first multiplexer to the output terminal of the first multiplexer according to the control signal; 一第二多路器,包含一第一输入端用来接收该第一数字数据,一第二输入端用来接收该第二数字数据,一控制端用来接收该控制信号,以及一输出端,该第二多路器用来根据该控制信号将该第二多路器的该第一输入端或该第二输入端耦接至该第二多路器的该输出端;A second multiplexer, comprising a first input terminal for receiving the first digital data, a second input terminal for receiving the second digital data, a control terminal for receiving the control signal, and an output terminal , the second multiplexer is used to couple the first input terminal or the second input terminal of the second multiplexer to the output terminal of the second multiplexer according to the control signal; 一第三多路器,包含一第一输入端用来接收该第二数字数据,一第二输入端用来接收该第一数字数据,一控制端用来接收该控制信号,以及一输出端,该第三多路器用来根据该控制信号将该第三多路器的该第一输入端或该第二输入端耦接至该第三多路器的该输出端;以及A third multiplexer, comprising a first input terminal for receiving the second digital data, a second input terminal for receiving the first digital data, a control terminal for receiving the control signal, and an output terminal , the third multiplexer is used to couple the first input terminal or the second input terminal of the third multiplexer to the output terminal of the third multiplexer according to the control signal; and 一第四多路器,包含一第一输入端用来接收该第一数字数据,一第二输入端用来接收该第二数字数据,一控制端用来接收该控制信号,以及一输出端,该第四多路器用来根据该控制信号将该第四多路器的该第一输入端或该第二输入端耦接至该第四多路器的该输出端。A fourth multiplexer, comprising a first input terminal for receiving the first digital data, a second input terminal for receiving the second digital data, a control terminal for receiving the control signal, and an output terminal , the fourth multiplexer is used to couple the first input terminal or the second input terminal of the fourth multiplexer to the output terminal of the fourth multiplexer according to the control signal. 6.如权利要求5所述的像素驱动电路,其中当该伽玛电压选择信号与该极性信号皆表示该第一预定逻辑或皆表示该第二预定逻辑时,该控制信号表示该第一预定逻辑;当该伽玛电压选择信号表示该第一预定逻辑且该极性信号表示该第二预定逻辑时,该控制信号表示该第二预定逻辑;当该伽玛电压选择信号表示该第二预定逻辑且该极性信号表示该第一预定逻辑时,该控制信号表示该第二预定逻辑。6. The pixel driving circuit as claimed in claim 5, wherein when the gamma voltage selection signal and the polarity signal both represent the first predetermined logic or both represent the second predetermined logic, the control signal represents the first Predetermined logic; when the gamma voltage selection signal represents the first predetermined logic and the polarity signal represents the second predetermined logic, the control signal represents the second predetermined logic; when the gamma voltage selection signal represents the second predetermined logic When the predetermined logic and the polarity signal represent the first predetermined logic, the control signal represents the second predetermined logic. 7.如权利要求6所述的像素驱动电路,其中当该控制信号表示该第一预定逻辑时,该第一多路器的该第一输入端耦接至该第一多路器的该输出端,该第二多路器的该第一输入端耦接至该第二多路器的该输出端,该第三多路器的该第一输入端耦接至该第三多路器的该输出端,且该第四多路器的该第一输入端耦接至该第四多路器的该输出端;当该控制信号表示该第二预定逻辑时,该第一多路器的该第二输入端耦接至该第一多路器的该输出端,该第二多路器的该第二输入端耦接至该第二多路器的该输出端,该第三多路器的该第二输入端耦接至该第三多路器的该输出端,且该第四多路器的该第二输入端耦接至该第四多路器的该输出端。7. The pixel driving circuit as claimed in claim 6, wherein when the control signal represents the first predetermined logic, the first input terminal of the first multiplexer is coupled to the output of the first multiplexer end, the first input end of the second multiplexer is coupled to the output end of the second multiplexer, the first input end of the third multiplexer is coupled to the third multiplexer the output terminal, and the first input terminal of the fourth multiplexer is coupled to the output terminal of the fourth multiplexer; when the control signal represents the second predetermined logic, the first multiplexer The second input terminal is coupled to the output terminal of the first multiplexer, the second input terminal of the second multiplexer is coupled to the output terminal of the second multiplexer, and the third multiplexer The second input terminal of the third multiplexer is coupled to the output terminal of the third multiplexer, and the second input terminal of the fourth multiplexer is coupled to the output terminal of the fourth multiplexer. 8.如权利要求6所述的像素驱动电路,其中该第二选择电路包含:8. The pixel driving circuit as claimed in claim 6, wherein the second selection circuit comprises: 一第五多路器,包含一第一输入端用来接收该第二灰阶电压,一第二输入端用来接收该第一灰阶电压,一控制端用来接收该控制信号,以及一输出端,该第五多路器用来根据该控制信号将该第五多路器的该第一输入端或该第二输入端耦接至该第五多路器的该输出端;A fifth multiplexer, comprising a first input terminal for receiving the second gray-scale voltage, a second input terminal for receiving the first gray-scale voltage, a control terminal for receiving the control signal, and a an output terminal, the fifth multiplexer is used to couple the first input terminal or the second input terminal of the fifth multiplexer to the output terminal of the fifth multiplexer according to the control signal; 一第六多路器,包含一第一输入端用来接收该第四灰阶电压,一第二输入端用来接收该第三灰阶电压,一控制端用来接收该控制信号,以及一输出端,该第六多路器用来根据该控制信号将该第六多路器的该第一输入端或该第二输入端耦接至该第六多路器的该输出端;A sixth multiplexer, comprising a first input terminal for receiving the fourth grayscale voltage, a second input terminal for receiving the third grayscale voltage, a control terminal for receiving the control signal, and a an output terminal, the sixth multiplexer is used to couple the first input terminal or the second input terminal of the sixth multiplexer to the output terminal of the sixth multiplexer according to the control signal; 一第七多路器,包含一第一输入端用来接收该第一灰阶电压,一第二输入端用来接收该第二灰阶电压,一控制端用来接收该控制信号,以及一输出端,该第七多路器用来根据该控制信号将该第七多路器的该第一输入端或该第二输入端耦接至该第七多路器的该输出端;A seventh multiplexer, comprising a first input terminal for receiving the first grayscale voltage, a second input terminal for receiving the second grayscale voltage, a control terminal for receiving the control signal, and a an output terminal, the seventh multiplexer is used to couple the first input terminal or the second input terminal of the seventh multiplexer to the output terminal of the seventh multiplexer according to the control signal; 一第八多路器,包含一第一输入端用来接收该第三灰阶电压,一第二输入端用来接收该第四灰阶电压,一控制端用来接收该控制信号,以及一输出端,该第八多路器用来根据该控制信号将该第八多路器的该第一输入端或该第二输入端耦接至该第八多路器的该输出端;An eighth multiplexer, comprising a first input terminal for receiving the third gray-scale voltage, a second input terminal for receiving the fourth gray-scale voltage, a control terminal for receiving the control signal, and a an output terminal, the eighth multiplexer is used to couple the first input terminal or the second input terminal of the eighth multiplexer to the output terminal of the eighth multiplexer according to the control signal; 一第一极性选择电路,包含一第一输入端耦接至该第五多路器的该输出端,一第二输入端耦接至该第六多路器的该输出端,一第一输出端,一第二输出端,以及一控制端用来接收该极性信号,该第一极性选择电路用来根据该极性信号将该第一极性选择电路的该第一输入端以及该第二输入端的其中之一输入端耦接至该第一极性选择电路的该第一输出端,并将另一输入端耦接至该第一极性选择电路的该第二输出端;以及A first polarity selection circuit, comprising a first input terminal coupled to the output terminal of the fifth multiplexer, a second input terminal coupled to the output terminal of the sixth multiplexer, a first The output terminal, a second output terminal, and a control terminal are used to receive the polarity signal, and the first polarity selection circuit is used to use the first input terminal and the first polarity selection circuit of the first polarity selection circuit according to the polarity signal one of the second input terminals is coupled to the first output terminal of the first polarity selection circuit, and the other input terminal is coupled to the second output terminal of the first polarity selection circuit; as well as 一第二极性选择电路,包含一第一输入端耦接至该第七多路器的该输出端,一第二输入端耦接至该第八多路器的该输出端,一第一输出端,一第二输出端,以及一控制端用来接收该极性信号,该第二极性选择电路用来根据该极性信号将该第二极性选择电路的该第一输入端以及该第二输入端的其中之一输入端耦接至该第二极性选择电路的该第一输出端,并将另一输入端耦接至该第二极性选择电路的该第二输出端。A second polarity selection circuit, comprising a first input terminal coupled to the output terminal of the seventh multiplexer, a second input terminal coupled to the output terminal of the eighth multiplexer, a first The output terminal, a second output terminal, and a control terminal are used to receive the polarity signal, and the second polarity selection circuit is used to use the first input terminal and the first input terminal of the second polarity selection circuit according to the polarity signal One of the second input terminals is coupled to the first output terminal of the second polarity selection circuit, and the other input terminal is coupled to the second output terminal of the second polarity selection circuit. 9.如权利要求8所述的像素驱动电路,其中当该控制信号表示该第一预定逻辑时,该第五多路器的该第一输入端耦接至该第五多路器的该输出端,该第六多路器的该第一输入端耦接至该第六多路器的该输出端,该第七多路器的该第一输入端耦接至该第七多路器的该输出端,该第八多路器的该第一输入端耦接至该第八多路器的该输出端;当该控制信号表示该第二预定逻辑时,该第五多路器的该第二输入端耦接至该第五多路器的该输出端,该第六多路器的该第二输入端耦接至该第六多路器的该输出端,该第七多路器的该第二输入端耦接至该第七多路器的该输出端,该第八多路器的该第二输入端耦接至该第八多路器的该输出端。9. The pixel driving circuit as claimed in claim 8, wherein when the control signal represents the first predetermined logic, the first input terminal of the fifth multiplexer is coupled to the output of the fifth multiplexer end, the first input end of the sixth multiplexer is coupled to the output end of the sixth multiplexer, the first input end of the seventh multiplexer is coupled to the seventh multiplexer The output terminal, the first input terminal of the eighth multiplexer is coupled to the output terminal of the eighth multiplexer; when the control signal indicates the second predetermined logic, the fifth multiplexer The second input terminal is coupled to the output terminal of the fifth multiplexer, the second input terminal of the sixth multiplexer is coupled to the output terminal of the sixth multiplexer, and the seventh multiplexer The second input terminal of the eighth multiplexer is coupled to the output terminal of the seventh multiplexer, and the second input terminal of the eighth multiplexer is coupled to the output terminal of the eighth multiplexer. 10.如权利要求8所述的像素驱动电路,其中当该极性信号表示该第一预定逻辑时,该第一极性选择电路的该第一输入端耦接至该第一极性选择电路的该第二输出端、该第一极性选择电路的该第二输入端耦接至该第一极性选择电路的该第一输出端、该第二极性选择电路的该第一输入端耦接至该第二极性选择电路的该第二输出端,且该第二极性选择电路的该第二输入端耦接至该第二极性选择电路的该第一输出端;当该极性信号表示该第二预定逻辑时,该第一极性选择电路的该第一输入端耦接至该第一极性选择电路的该第一输出端、该第一极性选择电路的该第二输入端耦接至该第一极性选择电路的该第二输出端、该第二极性选择电路的该第一输入端耦接至该第二极性选择电路的该第一输出端,且该第二极性选择电路的该第二输入端耦接至该第二极性选择电路的该第二输出端。10. The pixel driving circuit as claimed in claim 8, wherein when the polarity signal represents the first predetermined logic, the first input terminal of the first polarity selection circuit is coupled to the first polarity selection circuit The second output end of the first polarity selection circuit and the second input end of the first polarity selection circuit are coupled to the first output end of the first polarity selection circuit and the first input end of the second polarity selection circuit coupled to the second output terminal of the second polarity selection circuit, and the second input terminal of the second polarity selection circuit is coupled to the first output terminal of the second polarity selection circuit; when the When the polarity signal represents the second predetermined logic, the first input end of the first polarity selection circuit is coupled to the first output end of the first polarity selection circuit, the first polarity selection circuit The second input end is coupled to the second output end of the first polarity selection circuit, the first input end of the second polarity selection circuit is coupled to the first output end of the second polarity selection circuit , and the second input end of the second polarity selection circuit is coupled to the second output end of the second polarity selection circuit. 11.如权利要求8所述的像素驱动电路,其中该第二选择电路还包含:11. The pixel driving circuit as claimed in claim 8, wherein the second selection circuit further comprises: 一第一缓冲器,耦接于该第五多路器的该输出端与该第一极性选择电路的该第一输入端之间,该第一缓冲器用来缓冲该第五多路器的该输出端所输出的灰阶电压;A first buffer, coupled between the output terminal of the fifth multiplexer and the first input terminal of the first polarity selection circuit, the first buffer is used to buffer the fifth multiplexer the grayscale voltage output by the output terminal; 一第二缓冲器,耦接于该第六多路器的该输出端与该第一极性选择电路的该第二输入端之间,该第二缓冲器用来缓冲该第六多路器的该输出端所输出的灰阶电压;a second buffer, coupled between the output terminal of the sixth multiplexer and the second input terminal of the first polarity selection circuit, the second buffer is used for buffering the output of the sixth multiplexer the grayscale voltage output by the output terminal; 一第三缓冲器,耦接于该第七多路器的该输出端与该第二极性选择电路的该第一输入端之间,该第三缓冲器用来缓冲该第七多路器的该输出端所输出的灰阶电压;以及a third buffer, coupled between the output terminal of the seventh multiplexer and the first input terminal of the second polarity selection circuit, the third buffer is used for buffering the output of the seventh multiplexer the grayscale voltage output by the output terminal; and 一第四缓冲器,耦接于该第八多路器的该输出端与该第二极性选择电路的该第二输入端之间,该第四缓冲器用来缓冲该第八多路器的该输出端所输出的灰阶电压。a fourth buffer, coupled between the output terminal of the eighth multiplexer and the second input terminal of the second polarity selection circuit, the fourth buffer is used to buffer the eighth multiplexer The grayscale voltage output by the output terminal. 12.如权利要求8所述的像素驱动电路,其中该第一极性选择电路的该第一输出端耦接至该第一数据线,该第一极性选择电路的该第二输出端耦接至该第二数据线,该第二极性选择电路的该第一输出端耦接至该第三数据线,该第二极性选择电路的该第二输出端耦接至该第四数据线。12. The pixel driving circuit as claimed in claim 8, wherein the first output terminal of the first polarity selection circuit is coupled to the first data line, and the second output terminal of the first polarity selection circuit is coupled to connected to the second data line, the first output end of the second polarity selection circuit is coupled to the third data line, the second output end of the second polarity selection circuit is coupled to the fourth data line Wire. 13.如权利要求12所述的像素驱动电路,其中当该伽玛电压选择信号表示该第一预定逻辑且该极性信号表示该第二预定逻辑时,该第二选择电路透过该第一数据线提供该第一灰阶电压给该第一主区域、透过该第二数据线提供该第三灰阶电压给该第一子区域、透过该第三数据线提供该第二灰阶电压给该第二子区域,以及透过该第四数据线提供该第四灰阶电压给该第二主区域;当该伽玛电压选择信号且该极性信号皆表示该第一预定逻辑时,该第二选择电路透过该第一数据线提供该第四灰阶电压给该第一主区域、透过该第二数据线提供该第二灰阶电压给该第一子区域、透过该第三数据线提供该第三灰阶电压给该第二子区域,以及过该第四数据线提供该第一灰阶电压给该第二主区域。13. The pixel driving circuit as claimed in claim 12, wherein when the gamma voltage selection signal represents the first predetermined logic and the polarity signal represents the second predetermined logic, the second selection circuit passes through the first predetermined logic. The data line provides the first gray-scale voltage to the first main area, the second data line provides the third gray-scale voltage to the first sub-area, and the third data line provides the second gray-scale voltage voltage to the second sub-region, and provide the fourth gray scale voltage to the second main region through the fourth data line; when the gamma voltage selection signal and the polarity signal both represent the first predetermined logic , the second selection circuit provides the fourth grayscale voltage to the first main region through the first data line, provides the second grayscale voltage to the first subregion through the second data line, and The third data line provides the third grayscale voltage to the second sub-region, and the fourth data line provides the first grayscale voltage to the second main region. 14.如权利要求8所述的像素驱动电路,其中该第一极性选择电路的该第一输出端耦接至该第二数据线,该第一极性选择电路的该第二输出端耦接至该第一数据线,该第二极性选择电路的该第一输出端耦接至该第四数据线,该第二极性选择电路的该第二输出端耦接至该第三数据线。14. The pixel driving circuit as claimed in claim 8, wherein the first output terminal of the first polarity selection circuit is coupled to the second data line, and the second output terminal of the first polarity selection circuit is coupled to connected to the first data line, the first output end of the second polarity selection circuit is coupled to the fourth data line, the second output end of the second polarity selection circuit is coupled to the third data line Wire. 15.如权利要求14所述的像素驱动电路,其中当该伽玛电压选择信号且该极性信号皆表示该第二预定逻辑时,该第二选择电路透过该第一数据线提供该第四灰阶电压给该第一主区域、透过该第二数据线提供该第二灰阶电压给该第一子区域、透过该第三数据线提供该第三灰阶电压给该第二子区域,以及过该第四数据线提供该第一灰阶电压给该第二主区域;当该伽玛电压选择信号表示该第二预定逻辑且该极性信号表示该第一预定逻辑时,该第二选择电路透过该第一数据线提供该第一灰阶电压给该第一主区域、透过该第二数据线提供该第三灰阶电压给该第一子区域、透过该第三数据线提供该第二灰阶电压给该第二子区域,以及过该第四数据线提供该第四灰阶电压给该第二主区域。15. The pixel driving circuit as claimed in claim 14, wherein when the gamma voltage selection signal and the polarity signal both represent the second predetermined logic, the second selection circuit provides the first data line through the first data line. Four gray-scale voltages are provided to the first main area, the second gray-scale voltage is provided to the first sub-area through the second data line, and the third gray-scale voltage is provided to the second sub-area through the third data line. sub-region, and provide the first grayscale voltage to the second main region through the fourth data line; when the gamma voltage selection signal represents the second predetermined logic and the polarity signal represents the first predetermined logic, The second selection circuit provides the first gray-scale voltage to the first main region through the first data line, provides the third gray-scale voltage to the first sub-region through the second data line, and provides the first sub-region through the second data line. The third data line provides the second gray-scale voltage to the second sub-area, and the fourth data line provides the fourth gray-scale voltage to the second main area.
CN2010105461487A 2010-11-10 2010-11-10 Pixel driving circuit Active CN101976542B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2010105461487A CN101976542B (en) 2010-11-10 2010-11-10 Pixel driving circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2010105461487A CN101976542B (en) 2010-11-10 2010-11-10 Pixel driving circuit

Publications (2)

Publication Number Publication Date
CN101976542A true CN101976542A (en) 2011-02-16
CN101976542B CN101976542B (en) 2012-07-04

Family

ID=43576424

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2010105461487A Active CN101976542B (en) 2010-11-10 2010-11-10 Pixel driving circuit

Country Status (1)

Country Link
CN (1) CN101976542B (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104157254A (en) * 2014-08-18 2014-11-19 深圳市华星光电技术有限公司 Gamma voltage generating module and liquid crystal panel
CN104347047A (en) * 2014-11-11 2015-02-11 深圳市华星光电技术有限公司 Array substrate, display equipment and driving method thereof
CN104952408A (en) * 2015-07-06 2015-09-30 深圳市华星光电技术有限公司 Source electrode drive module and liquid crystal panel
CN105099456A (en) * 2014-05-08 2015-11-25 旭曜科技股份有限公司 Decoding and converting device and digital-to-analog converter using the decoding and converting device
CN112150959A (en) * 2019-06-26 2020-12-29 联咏科技股份有限公司 Data driver and driving method for driving display panel

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10319924A (en) * 1997-05-17 1998-12-04 Lg Electron Inc Liquid crystal display panel driving circuit of digital system
CN1388706A (en) * 2001-05-29 2003-01-01 三洋电机株式会社 Display and its controlling circuit
US20040257328A1 (en) * 2003-06-23 2004-12-23 Lim Kyoung Moon Data drive IC of liquid crystal display and driving method thereof
CN1901021A (en) * 2005-07-20 2007-01-24 三星电子株式会社 Driving apparatus for display device
CN101458914A (en) * 2009-01-09 2009-06-17 友达光电股份有限公司 Panel driving device and method, and liquid crystal display

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10319924A (en) * 1997-05-17 1998-12-04 Lg Electron Inc Liquid crystal display panel driving circuit of digital system
CN1388706A (en) * 2001-05-29 2003-01-01 三洋电机株式会社 Display and its controlling circuit
US20040257328A1 (en) * 2003-06-23 2004-12-23 Lim Kyoung Moon Data drive IC of liquid crystal display and driving method thereof
CN1901021A (en) * 2005-07-20 2007-01-24 三星电子株式会社 Driving apparatus for display device
CN101458914A (en) * 2009-01-09 2009-06-17 友达光电股份有限公司 Panel driving device and method, and liquid crystal display

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105099456B (en) * 2014-05-08 2018-12-25 敦泰电子股份有限公司 Decoding voltage conversion device and digital-to-analog converter using same
CN105099456A (en) * 2014-05-08 2015-11-25 旭曜科技股份有限公司 Decoding and converting device and digital-to-analog converter using the decoding and converting device
WO2016026149A1 (en) * 2014-08-18 2016-02-25 深圳市华星光电技术有限公司 Gamma voltage generating module and liquid crystal panel
GB2542529A (en) * 2014-08-18 2017-03-22 Shenzhen China Star Optoelect Gamma voltage generating module and liquid crystal panel
RU2667383C2 (en) * 2014-08-18 2018-09-19 Шэньчжэнь Чайна Стар Оптоэлектроникс Текнолоджи Ко., Лтд. Gamma-voltage generation module and liquid crystalline panel
CN104157254A (en) * 2014-08-18 2014-11-19 深圳市华星光电技术有限公司 Gamma voltage generating module and liquid crystal panel
GB2542529B (en) * 2014-08-18 2020-07-01 Shenzhen China Star Optoelect Gamma voltage generating module and liquid crystal panel
CN104347047A (en) * 2014-11-11 2015-02-11 深圳市华星光电技术有限公司 Array substrate, display equipment and driving method thereof
CN104347047B (en) * 2014-11-11 2016-09-07 深圳市华星光电技术有限公司 Array base palte, display device and driving method thereof
CN104952408A (en) * 2015-07-06 2015-09-30 深圳市华星光电技术有限公司 Source electrode drive module and liquid crystal panel
CN104952408B (en) * 2015-07-06 2018-11-23 深圳市华星光电技术有限公司 Source drive module and liquid crystal display panel
CN112150959A (en) * 2019-06-26 2020-12-29 联咏科技股份有限公司 Data driver and driving method for driving display panel
CN112150959B (en) * 2019-06-26 2024-05-28 联咏科技股份有限公司 Data driver for driving display panel and driving method

Also Published As

Publication number Publication date
CN101976542B (en) 2012-07-04

Similar Documents

Publication Publication Date Title
JP4512629B2 (en) Liquid crystal display
CN100403395C (en) Display driver, optoelectronic device, electronic device and gamma correction method
TWI407403B (en) Pixel-driving circuit
KR101864834B1 (en) Display device and offset cancellation method thereof
TWI386897B (en) Source driver, electro-optical device, and electronic instrument
US7352314B2 (en) Digital-to-analog converter circuit
CN101976542A (en) Pixel driving circuit
CN101178871A (en) Data driver and organic light emitting diode display device thereof
US20060198009A1 (en) Reference voltage generation circuit, display driver, electro-optical device, and electronic instrument
US10984739B2 (en) Ghost relieving circuit for display panel, display panel and ghost relieving method for display panel
US20060181544A1 (en) Reference voltage select circuit, reference voltage generation circuit, display driver, electro-optical device, and electronic instrument
KR101147121B1 (en) Apparatus and method for transmission data, apparatus and method for driving image display device using the same
CN110969998B (en) Source driver and composite level conversion circuit
TWI467538B (en) Driving voltage generator and digital to analog converter
CN110827741B (en) Output buffer circuit, drive circuit and display device
CN102087825A (en) Source driver
TWI380271B (en) Driving circuit and related method of a display apparatus
CN103544913B (en) Driving Voltage Generator and Its Digital-to-Analog Converter
JP2009003243A (en) Reference voltage selection circuit, display driver, electro-optical device, and electronic apparatus
CN104299581B (en) Display and grid drive circuit thereof
TWI390845B (en) Output buffer, source driver and electronic system utilizing the same
KR20160083377A (en) Data Driver And Display Device Including The Same
CN116386508A (en) Latch circuit and data driver including the same
JP2010191198A (en) Drive circuit of display device

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant