CN101974231A - High-performance epoxy bitumen material for roads and bridges and preparation method thereof - Google Patents
High-performance epoxy bitumen material for roads and bridges and preparation method thereof Download PDFInfo
- Publication number
- CN101974231A CN101974231A CN 201010514305 CN201010514305A CN101974231A CN 101974231 A CN101974231 A CN 101974231A CN 201010514305 CN201010514305 CN 201010514305 CN 201010514305 A CN201010514305 A CN 201010514305A CN 101974231 A CN101974231 A CN 101974231A
- Authority
- CN
- China
- Prior art keywords
- acid
- epoxy
- asphalt
- epoxy resin
- bridge
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000010426 asphalt Substances 0.000 title claims abstract description 118
- 239000004593 Epoxy Substances 0.000 title claims abstract description 82
- 239000000463 material Substances 0.000 title claims abstract description 75
- 238000002360 preparation method Methods 0.000 title claims abstract description 15
- 239000003822 epoxy resin Substances 0.000 claims abstract description 57
- 229920000647 polyepoxide Polymers 0.000 claims abstract description 57
- 239000000203 mixture Substances 0.000 claims abstract description 47
- OFOBLEOULBTSOW-UHFFFAOYSA-N Malonic acid Chemical compound OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 claims abstract description 33
- 239000003795 chemical substances by application Substances 0.000 claims abstract description 33
- 125000001931 aliphatic group Chemical group 0.000 claims abstract description 30
- 229920002732 Polyanhydride Polymers 0.000 claims abstract description 16
- 239000011384 asphalt concrete Substances 0.000 claims abstract description 15
- 238000003756 stirring Methods 0.000 claims description 25
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 claims description 12
- 238000000034 method Methods 0.000 claims description 10
- 239000004575 stone Substances 0.000 claims description 10
- WNLRTRBMVRJNCN-UHFFFAOYSA-N adipic acid Chemical compound OC(=O)CCCCC(O)=O WNLRTRBMVRJNCN-UHFFFAOYSA-N 0.000 claims description 8
- BDJRBEYXGGNYIS-UHFFFAOYSA-N nonanedioic acid Chemical compound OC(=O)CCCCCCCC(O)=O BDJRBEYXGGNYIS-UHFFFAOYSA-N 0.000 claims description 8
- WLJVNTCWHIRURA-UHFFFAOYSA-N pimelic acid Chemical compound OC(=O)CCCCCC(O)=O WLJVNTCWHIRURA-UHFFFAOYSA-N 0.000 claims description 8
- CXMXRPHRNRROMY-UHFFFAOYSA-N sebacic acid Chemical compound OC(=O)CCCCCCCCC(O)=O CXMXRPHRNRROMY-UHFFFAOYSA-N 0.000 claims description 8
- 239000002253 acid Substances 0.000 claims description 7
- 150000008064 anhydrides Chemical class 0.000 claims description 7
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 claims description 7
- POULHZVOKOAJMA-UHFFFAOYSA-N dodecanoic acid Chemical compound CCCCCCCCCCCC(O)=O POULHZVOKOAJMA-UHFFFAOYSA-N 0.000 claims description 6
- BNJOQKFENDDGSC-UHFFFAOYSA-N octadecanedioic acid Chemical compound OC(=O)CCCCCCCCCCCCCCCCC(O)=O BNJOQKFENDDGSC-UHFFFAOYSA-N 0.000 claims description 6
- RTBFRGCFXZNCOE-UHFFFAOYSA-N 1-methylsulfonylpiperidin-4-one Chemical compound CS(=O)(=O)N1CCC(=O)CC1 RTBFRGCFXZNCOE-UHFFFAOYSA-N 0.000 claims description 4
- KDYFGRWQOYBRFD-UHFFFAOYSA-N Succinic acid Natural products OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 claims description 4
- 239000001361 adipic acid Substances 0.000 claims description 4
- 235000011037 adipic acid Nutrition 0.000 claims description 4
- -1 aliphatic aromatic amines Chemical class 0.000 claims description 4
- JFCQEDHGNNZCLN-UHFFFAOYSA-N anhydrous glutaric acid Natural products OC(=O)CCCC(O)=O JFCQEDHGNNZCLN-UHFFFAOYSA-N 0.000 claims description 4
- PXKLMJQFEQBVLD-UHFFFAOYSA-N bisphenol F Chemical compound C1=CC(O)=CC=C1CC1=CC=C(O)C=C1 PXKLMJQFEQBVLD-UHFFFAOYSA-N 0.000 claims description 4
- KDYFGRWQOYBRFD-NUQCWPJISA-N butanedioic acid Chemical compound O[14C](=O)CC[14C](O)=O KDYFGRWQOYBRFD-NUQCWPJISA-N 0.000 claims description 4
- 238000004519 manufacturing process Methods 0.000 claims description 4
- 235000006408 oxalic acid Nutrition 0.000 claims description 4
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 claims description 3
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 claims description 3
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 claims description 3
- TUNFSRHWOTWDNC-UHFFFAOYSA-N Myristic acid Natural products CCCCCCCCCCCCCC(O)=O TUNFSRHWOTWDNC-UHFFFAOYSA-N 0.000 claims description 3
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 claims description 3
- 239000005642 Oleic acid Substances 0.000 claims description 3
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 claims description 3
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 claims description 3
- 239000003208 petroleum Substances 0.000 claims description 3
- 229920000642 polymer Polymers 0.000 claims description 3
- GHMLBKRAJCXXBS-UHFFFAOYSA-N resorcinol Chemical compound OC1=CC=CC(O)=C1 GHMLBKRAJCXXBS-UHFFFAOYSA-N 0.000 claims description 3
- VPWNQTHUCYMVMZ-UHFFFAOYSA-N 4,4'-sulfonyldiphenol Chemical compound C1=CC(O)=CC=C1S(=O)(=O)C1=CC=C(O)C=C1 VPWNQTHUCYMVMZ-UHFFFAOYSA-N 0.000 claims description 2
- 229930185605 Bisphenol Natural products 0.000 claims description 2
- 238000010438 heat treatment Methods 0.000 claims description 2
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 claims description 2
- 239000011976 maleic acid Substances 0.000 claims description 2
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 claims description 2
- HQHCYKULIHKCEB-UHFFFAOYSA-N tetradecanedioic acid Chemical compound OC(=O)CCCCCCCCCCCCC(O)=O HQHCYKULIHKCEB-UHFFFAOYSA-N 0.000 claims 2
- QFGCFKJIPBRJGM-UHFFFAOYSA-N 12-[(2-methylpropan-2-yl)oxy]-12-oxododecanoic acid Chemical compound CC(C)(C)OC(=O)CCCCCCCCCCC(O)=O QFGCFKJIPBRJGM-UHFFFAOYSA-N 0.000 claims 1
- 239000011294 coal tar pitch Substances 0.000 claims 1
- 239000011295 pitch Substances 0.000 claims 1
- 238000012360 testing method Methods 0.000 description 10
- 238000002156 mixing Methods 0.000 description 9
- 239000000084 colloidal system Substances 0.000 description 8
- 238000005516 engineering process Methods 0.000 description 6
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 description 6
- 239000000126 substance Substances 0.000 description 6
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 239000006184 cosolvent Substances 0.000 description 4
- 235000014113 dietary fatty acids Nutrition 0.000 description 4
- 239000000194 fatty acid Substances 0.000 description 4
- 229930195729 fatty acid Natural products 0.000 description 4
- 150000004665 fatty acids Chemical class 0.000 description 4
- QGLWBTPVKHMVHM-MDZDMXLPSA-N (e)-octadec-9-en-1-amine Chemical compound CCCCCCCC\C=C\CCCCCCCCN QGLWBTPVKHMVHM-MDZDMXLPSA-N 0.000 description 3
- IGFHQQFPSIBGKE-UHFFFAOYSA-N Nonylphenol Natural products CCCCCCCCCC1=CC=C(O)C=C1 IGFHQQFPSIBGKE-UHFFFAOYSA-N 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 239000011159 matrix material Substances 0.000 description 3
- SNQQPOLDUKLAAF-UHFFFAOYSA-N nonylphenol Chemical compound CCCCCCCCCC1=CC=CC=C1O SNQQPOLDUKLAAF-UHFFFAOYSA-N 0.000 description 3
- 238000009864 tensile test Methods 0.000 description 3
- UWDJMMDMYWHALD-UHFFFAOYSA-N 4,5,6,7-tetramethyl-2-benzofuran-1,3-dione Chemical compound CC1=C(C)C(C)=C2C(=O)OC(=O)C2=C1C UWDJMMDMYWHALD-UHFFFAOYSA-N 0.000 description 2
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 239000013530 defoamer Substances 0.000 description 2
- 125000000524 functional group Chemical group 0.000 description 2
- 238000009863 impact test Methods 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 239000011297 pine tar Substances 0.000 description 2
- 229940068124 pine tar Drugs 0.000 description 2
- 239000002861 polymer material Substances 0.000 description 2
- 238000010992 reflux Methods 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- OYHQOLUKZRVURQ-NTGFUMLPSA-N (9Z,12Z)-9,10,12,13-tetratritiooctadeca-9,12-dienoic acid Chemical compound C(CCCCCCC\C(=C(/C\C(=C(/CCCCC)\[3H])\[3H])\[3H])\[3H])(=O)O OYHQOLUKZRVURQ-NTGFUMLPSA-N 0.000 description 1
- OWMNWOXJAXJCJI-UHFFFAOYSA-N 2-(oxiran-2-ylmethoxymethyl)oxirane;phenol Chemical compound OC1=CC=CC=C1.OC1=CC=CC=C1.C1OC1COCC1CO1 OWMNWOXJAXJCJI-UHFFFAOYSA-N 0.000 description 1
- MWSKJDNQKGCKPA-UHFFFAOYSA-N 6-methyl-3a,4,5,7a-tetrahydro-2-benzofuran-1,3-dione Chemical compound C1CC(C)=CC2C(=O)OC(=O)C12 MWSKJDNQKGCKPA-UHFFFAOYSA-N 0.000 description 1
- RPNUMPOLZDHAAY-UHFFFAOYSA-N Diethylenetriamine Chemical compound NCCNCCN RPNUMPOLZDHAAY-UHFFFAOYSA-N 0.000 description 1
- LGRFSURHDFAFJT-UHFFFAOYSA-N Phthalic anhydride Natural products C1=CC=C2C(=O)OC(=O)C2=C1 LGRFSURHDFAFJT-UHFFFAOYSA-N 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 235000021355 Stearic acid Nutrition 0.000 description 1
- 125000004018 acid anhydride group Chemical group 0.000 description 1
- 150000008065 acid anhydrides Chemical class 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 150000001338 aliphatic hydrocarbons Chemical class 0.000 description 1
- 229920000180 alkyd Polymers 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- JHIWVOJDXOSYLW-UHFFFAOYSA-N butyl 2,2-difluorocyclopropane-1-carboxylate Chemical compound CCCCOC(=O)C1CC1(F)F JHIWVOJDXOSYLW-UHFFFAOYSA-N 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000004567 concrete Substances 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 239000000539 dimer Substances 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 125000003700 epoxy group Chemical group 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 1
- 239000003350 kerosene Substances 0.000 description 1
- 239000003446 ligand Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 1
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 1
- 235000014366 other mixer Nutrition 0.000 description 1
- 150000002989 phenols Chemical class 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920000768 polyamine Polymers 0.000 description 1
- 229920005652 polyisobutylene succinic anhydride Polymers 0.000 description 1
- 238000004886 process control Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 229960001755 resorcinol Drugs 0.000 description 1
- WBHHMMIMDMUBKC-XLNAKTSKSA-N ricinelaidic acid Chemical class CCCCCC[C@@H](O)C\C=C\CCCCCCCC(O)=O WBHHMMIMDMUBKC-XLNAKTSKSA-N 0.000 description 1
- 238000004513 sizing Methods 0.000 description 1
- 238000013112 stability test Methods 0.000 description 1
- 239000008117 stearic acid Substances 0.000 description 1
- 239000004557 technical material Substances 0.000 description 1
- 239000002383 tung oil Substances 0.000 description 1
Landscapes
- Compositions Of Macromolecular Compounds (AREA)
- Epoxy Resins (AREA)
Abstract
本发明公开了一种高性能路桥用环氧沥青材料及其制备方法,一种高性能路桥用环氧沥青材料,它由A部分和B部分组成,A部分的质量组成为:沥青40-100份,脂肪族二元羧酸10-100份,脂肪族二元羧酸聚酸酐10-100份,环氧树脂固化剂5-50份,环氧树脂固化促进剂0-1.0份,B部分为环氧树脂;A部分与B部分的质量比例为0.5-5∶1。本环氧沥青材料具有制备时无需专用设备分散混合,制备工艺简单,材料既具有较高的使用强度,又有极好的低温柔韧性,还可以根据不同的要求提供相应的操作时间,相应的环氧沥青混凝土耐疲劳性能和耐车辙性能极为优良,适用于高速公路及道桥等要求较高的场所,也可以广泛适用于城市高架桥及公共汽车停靠站等地。The invention discloses an epoxy asphalt material for high-performance road bridges and a preparation method thereof. The epoxy asphalt material for high-performance road bridges is composed of part A and part B, and the mass composition of part A is asphalt 40-100 Parts, 10-100 parts of aliphatic dicarboxylic acid, 10-100 parts of aliphatic dicarboxylic acid polyanhydride, 5-50 parts of epoxy resin curing agent, 0-1.0 parts of epoxy resin curing accelerator, part B is Epoxy resin; the mass ratio of part A to part B is 0.5-5:1. The epoxy asphalt material does not need special equipment to disperse and mix during preparation, and the preparation process is simple. The material not only has high service strength, but also has excellent low-temperature flexibility. It can also provide corresponding operating time according to different requirements. Epoxy asphalt concrete has excellent fatigue resistance and rutting resistance. It is suitable for places with high requirements such as highways, roads and bridges, and can also be widely used in urban viaducts and bus stops.
Description
技术领域technical field
本发明涉及一种高性能路桥用环氧沥青材料及其制备方法,尤其是提供了一种采用环氧树脂及固化剂改性基质沥青制备本具有高强度、高延展性、优良的耐疲劳性能和耐低温性能等特点的高性能路桥用环氧沥青混凝土主体材料,属于道桥用化工新材料的技术领域。The invention relates to a high-performance epoxy asphalt material for road bridges and its preparation method, in particular, it provides a kind of epoxy resin and curing agent modified base asphalt prepared with high strength, high ductility and excellent fatigue resistance. A high-performance epoxy asphalt concrete main material for roads and bridges with the characteristics of low temperature resistance and the like belongs to the technical field of new chemical materials for roads and bridges.
背景技术Background technique
环氧沥青的在路桥方面的应用由来已久。由于环氧沥青中石油沥青的主要成分是脂肪烃类和芳香烃类的混合物,其溶解度参数约为8.66,而环氧树脂的溶解度参数为10.36,因此混合体系在热力学上很难相容而成为均一稳定的体系。为了有效的制备环氧沥青材料,一般采用四种工艺制备环氧沥青材料:采用共溶剂、改性沥青、特殊的环氧树脂和改性固化剂等工艺。如1961年,壳牌公司的Thomas E.Mika等采用松焦油作为环氧树脂和沥青的共溶剂,以二乙烯三胺、邻苯二甲酸酐等作为固化剂,成功制备了环氧沥青粘接材料,并应用于混凝土表面和路基中,不足之处是松焦油作为溶剂最终残留在体系中,对材料长期的性能稳定产生较大的影响;Hijikata等合成了两种活性共溶剂,并同时对以酚类(如壬基酚等)作为共溶剂的情况进行了讨论,发现采用10份壬基酚作为共溶剂的时候,产物易与沥青分离,当壬基酚增加到40份的时材料弯曲强度较低;此外,通过将沥青进行顺酐化改性,也可使其与环氧树脂具有很好的相容性,如Shigeyuki Hayashi等采用少量马来酸酐(5%、10%)或马来酸酐酯在高温的情况下对沥青进行改性,发现所得的沥青与环氧树脂具有很好的相容性,采用胺值为315的聚酰胺作为固化剂时,得到的材料的最大拉伸强度为2.1MPa,延伸率为60%;采用改性固化剂也是制备环氧沥青的一种新的途径,王治流等采用改性桐油酸酐和改性蓖麻油酸混合作为固化剂,制备的环氧沥青的最大断裂伸长率为441%,拉伸强度为5.62MPa;另一种新的制备工艺就是采用含有环氧官能团的能溶于沥青的单体或聚合物,与沥青混合,通过一定的工艺制备环氧沥青。The application of epoxy asphalt in road and bridge has a long history. Since the main component of petroleum asphalt in epoxy asphalt is a mixture of aliphatic hydrocarbons and aromatic hydrocarbons, its solubility parameter is about 8.66, while the solubility parameter of epoxy resin is 10.36, so the mixed system is difficult to be compatible in thermodynamics and become uniform stable system. In order to effectively prepare epoxy asphalt materials, four processes are generally used to prepare epoxy asphalt materials: co-solvent, modified asphalt, special epoxy resin and modified curing agent. For example, in 1961, Thomas E.Mika of Shell Corporation used pine tar as a co-solvent for epoxy resin and asphalt, and used diethylenetriamine and phthalic anhydride as curing agents to successfully prepare epoxy asphalt bonding materials. , and applied to the concrete surface and roadbed, the disadvantage is that pine tar remains in the system as a solvent, which has a great impact on the long-term performance stability of the material; Hijikata et al. synthesized two active co-solvents, and at the same time The use of phenols (such as nonylphenol, etc.) as a co-solvent was discussed, and it was found that when 10 parts of nonylphenol was used as a co-solvent, the product was easily separated from the asphalt, and when the nonylphenol was increased to 40 parts, the bending strength of the material In addition, by maleic anhydride modification of asphalt, it can also make it have good compatibility with epoxy resin, such as Shigeyuki Hayashi, etc. using a small amount of maleic anhydride (5%, 10%) or maleic anhydride The acid anhydride ester modified asphalt at high temperature, and found that the obtained asphalt has good compatibility with epoxy resin. When polyamide with an amine value of 315 is used as the curing agent, the maximum tensile strength of the obtained material is It is 2.1MPa, and the elongation rate is 60%. Using modified curing agent is also a new way to prepare epoxy asphalt. Wang Zhiliu et al. used modified tung oil anhydride and modified ricinoleic acid as curing agent to prepare epoxy asphalt The maximum elongation at break is 441%, and the tensile strength is 5.62MPa; another new preparation process is to use monomers or polymers containing epoxy functional groups that can be dissolved in asphalt, mix them with asphalt, and pass a certain process Prepare epoxy asphalt.
在专利CN 1837290A中,A部份为带羧基或酸酐基的改性沥青,脂肪族二元酸、二聚酸或醇酸树脂、脂肪酸酐、固化促进剂,B部份了环氧树脂。其制备方法为:按质量配方要求,将升温到90-140℃的基质沥青加入到反应器中,加入一定量的顺酐或烯酸,升温到140-160℃,保持10-60min,通入氮气保护反应3-6h后(或利用冷凝器在60-100℃的冷凝水下回流直至反应结束),加入其它组份进行混合,然后在0.02-0.09MPa的真空下抽10-60min,最后通过胶体磨等高速分散机械分散制得A部份。使用时将A、B两部份按比例在一定温度下混合即可。In the patent CN 1837290A, part A is modified asphalt with carboxyl group or acid anhydride group, aliphatic dibasic acid, dimer acid or alkyd resin, fatty acid anhydride, curing accelerator, and part B is epoxy resin. The preparation method is as follows: according to the requirements of the quality formula, add the base asphalt heated to 90-140°C into the reactor, add a certain amount of maleic anhydride or alkenoic acid, raise the temperature to 140-160°C, keep it for 10-60min, and pass it into the reactor. After reacting for 3-6 hours under nitrogen protection (or using a condenser to reflux under condensed water at 60-100°C until the reaction is complete), add other components for mixing, then pump under a vacuum of 0.02-0.09MPa for 10-60min, and finally pass Colloid mill and other high-speed dispersing machines disperse to obtain Part A. When in use, mix parts A and B in proportion at a certain temperature.
在专利CN 101003688A中,A组份为沥青、固化剂、促进剂和消泡剂,B组份为环氧树脂。其制备方法是将沥青加热到100-120℃,加入固化剂后,转移到胶体磨中进行高速剪切混合,混合时间为10-60min,再加入促进剂、消泡剂继续高速剪切混合5-50min,制得A组份。使用时将A组份加热到100-160℃后,与B组份在120-140℃混合搅拌均匀。In the patent CN 101003688A, component A is asphalt, curing agent, accelerator and defoamer, and component B is epoxy resin. The preparation method is to heat the asphalt to 100-120°C, add the curing agent, transfer it to the colloid mill for high-speed shear mixing, the mixing time is 10-60min, then add the accelerator and defoamer to continue the high-speed shear mixing for 5 -50min to prepare component A. When in use, heat component A to 100-160°C, then mix and stir with component B at 120-140°C.
在专利CN 10113622A中,在环氧当量为190的二环氧甘油醚双酚A型环氧树脂中,加入苯酚作为固化剂催化剂,经液体脂肪族聚胺中固化剂,在速度为1000rpm的搅拌器中分散30min后,加入一定量的主剂组成物,即得沥青用环氧树脂给成物。材料最终马歇尔稳定度为4700-6500kg/cm2。In the patent CN 10113622A, in the diglycidyl ether bisphenol A type epoxy resin with an epoxy equivalent of 190, phenol is added as a curing agent catalyst, and the curing agent in the liquid aliphatic polyamine is stirred at a speed of 1000rpm After dispersing in the container for 30 minutes, add a certain amount of main agent composition to obtain the epoxy resin compound for asphalt. The final Marshall stability of the material is 4700-6500 kg/cm 2 .
在专利CN1546571A中,A部份为沥青、脂肪族二元酸或取羧酸、脂肪酸酐、聚异丁烯丁二酸酐、环氧树脂固化促进剂,B部份了环氧树脂。其制备方法为:将A部份中的部份中的沥青和其它组份一起加入到反应器中,升温至90-160℃,反应至环氧基全部反应,然后加入剩余沥青,混合30-60min,再经胶体磨高速分散得到A组份。使用时将A部份和B部份加热到90-160℃混合,拌入或不拌入石料,保温30-60分钟。材料最终拉伸强度为1.5-1.8MPa,断裂伸长率为170-260%,马歇尔稳定度为59-76kN。In the patent CN1546571A, part A is asphalt, aliphatic dibasic acid or carboxylic acid, fatty acid anhydride, polyisobutylene succinic anhydride, epoxy resin curing accelerator, and part B is epoxy resin. Its preparation method is: add the bitumen in part A and other components into the reactor, raise the temperature to 90-160°C, react until all the epoxy groups are reacted, then add the remaining bitumen, mix for 30- 60min, and then dispersed at a high speed by a colloid mill to obtain component A. When in use, heat Part A and Part B to 90-160°C and mix, with or without mixing stones, and keep warm for 30-60 minutes. The final tensile strength of the material is 1.5-1.8MPa, the elongation at break is 170-260%, and the Marshall stability is 59-76kN.
在专利CN1592012A中,A部份为沥青、固化剂和自制的增容剂,B部份为环氧树脂,在材料应用中,以甲基四氢苯酐为固化剂,将各组份在80-90℃混合均匀后,在100-120℃下固化0.5-7h。材料最终拉伸强度为1.5-1.8MPa,断裂伸长率为190-260%,马歇尔稳定度为59-76kN。In the patent CN1592012A, part A is asphalt, curing agent and self-made compatibilizer, part B is epoxy resin, in material application, take methyl tetrahydrophthalic anhydride as curing agent, each component is in 80- After mixing evenly at 90°C, cure at 100-120°C for 0.5-7h. The final tensile strength of the material is 1.5-1.8MPa, the elongation at break is 190-260%, and the Marshall stability is 59-76kN.
在专利CN101735623A中,A部份为环氧树脂,B部份为沥青、顺丁烯二酸酐、9-十八烯胺、聚癸二酸酐或聚壬二酸酐。其制备方法为:将顺丁烯二酸酐和沥青在150℃混合搅拌4-6h,将9-十八烯胺以每分钟按B部份质量2%的速率加入,且9-十八烯胺在混合物温度降低至90℃之前加完,将聚癸二酸酐或聚壬二酸酐一次性加入到混合物中,以制备B部份。材料最终24h马歇尔稳定度为12-14kN,动稳定度为3600-4600次/mm。In patent CN101735623A, part A is epoxy resin, and part B is pitch, maleic anhydride, 9-octadecenylamine, polysebacic anhydride or polyazebaic anhydride. Its preparation method is: mix maleic anhydride and asphalt at 150°C for 4-6 hours, add 9-octadecenylamine at a rate of 2% by mass of part B per minute, and 9-octadecenylamine Before the addition was complete before the temperature of the mixture was lowered to 90°C, polysebacic anhydride or polyazebaic anhydride was added to the mixture in one portion to prepare Part B. The final 24h Marshall stability of the material is 12-14kN, and the dynamic stability is 3600-4600 times/mm.
在专利CN101629011A中,A部份为环氧树脂、脂肪酸,B部份为沥青、固化剂。其制备方法为:将一定量的脂肪酸和环氧树脂加入到反应器中,在140-200℃混合搅拌2-8h,再通过胶体磨搅拌均匀得到A部份;将一定量的沥青和固化剂入到反应器中,在100-140℃混合搅拌0.5-2h,再通过胶体磨搅拌均匀得到B组份。使用时将A、B部份在100-140℃混合均匀,在120℃固化2-4h。材料最终拉伸强度为2.7-14MPa,断裂伸长率为1100-180%,In the patent CN101629011A, part A is epoxy resin and fatty acid, and part B is pitch and curing agent. The preparation method is as follows: add a certain amount of fatty acid and epoxy resin into the reactor, mix and stir at 140-200°C for 2-8 hours, and then use a colloid mill to stir evenly to obtain part A; put a certain amount of asphalt and curing agent Put it into the reactor, mix and stir at 100-140°C for 0.5-2h, and then pass through the colloid mill to stir evenly to obtain component B. When using, mix parts A and B uniformly at 100-140°C, and cure at 120°C for 2-4h. The final tensile strength of the material is 2.7-14MPa, and the elongation at break is 1100-180%.
在专利CN101696097A中,包括A、B、C三部份,其中A部份为沥青、固化剂、稀施剂、增容剂和促进剂,B部份为环氧树脂,C部份为石子集料。其制备方法为:将沥青加热到130-150℃,将固化剂加入到沥青中混合搅拌后再转移到胶体磨中高速分散10-60min,再加入稀施剂、增容剂和促进剂,在胶体磨中高速分散5-50min,制得A部份;将制得的A组份加热至140-150℃,B部份加热至80-90℃,再将A、B两部份在115-130℃搅拌均匀,再加入C部份。材料最终劈裂强度(20℃)为7.4-9.4MPa,抗车辙为14550-16350次/mm。In the patent CN101696097A, it includes three parts A, B and C, wherein part A is asphalt, curing agent, dilute agent, compatibilizer and accelerator, part B is epoxy resin, and part C is stone collection material. The preparation method is as follows: heat the asphalt to 130-150°C, add the curing agent to the asphalt, mix and stir, then transfer to the colloid mill and disperse at high speed for 10-60min, then add dilute sizing agent, compatibilizer and accelerator. Disperse at high speed in a colloid mill for 5-50 minutes to prepare part A; heat the prepared part A to 140-150°C, heat part B to 80-90°C, and then put the two parts A and B at 115- Stir well at 130°C, then add part C. The final splitting strength (20°C) of the material is 7.4-9.4MPa, and the rutting resistance is 14550-16350 times/mm.
本发明技术的有益效果是:基于对高分子材料之间相容性的判断原理,对分子结构进行设计,制备出高强、高延伸率、材料可操作时间可控、超耐疲劳和耐温性能的可用于路桥方面的环氧沥青材料。本技术采用普通基质沥青为主要材料,原料来源广泛,价格低廉,相对于上述专利中所用的四甲基苯酐等作为材料主体固化剂,本技术以长链脂肪族二元酸或酸酐作为主体固化剂,其较长的非极性链一方面能在沥青和环氧树脂两者之间形成柔性的桥架结构,长链两端的可以反应的活性官能团可以和极性的环氧树脂之间发生反应,形成作用力更强更为牢固的分子键作用力,可以更加有效的增加沥青和环氧树脂之间的相容性,另一方面可以避免利用四甲基苯酐固化后材料在低温下所呈现的脆性;以聚酸酐作为配体固化剂,其更加长的分子链可以有效的增加材料在低温时的柔韧性;本技术材料中未添加煤油等分散剂,可以保证材料在长期使用过程中无物质析出,以增加有效使用时间;本技术材料还可配以适当的固化促进剂,使材料的可操作时间更为可变,以适应更为广泛的应用要求。The beneficial effect of the technology of the present invention is: based on the principle of judging the compatibility between polymer materials, the molecular structure is designed to prepare high strength, high elongation, controllable material operating time, super fatigue resistance and temperature resistance Epoxy asphalt materials that can be used for roads and bridges. This technology uses ordinary matrix asphalt as the main material, and the source of raw materials is wide and the price is low. Compared with the tetramethylphthalic anhydride used in the above patents as the main curing agent of the material, this technology uses long-chain aliphatic dibasic acid or acid anhydride as the main curing agent. On the one hand, its longer non-polar chain can form a flexible bridge structure between asphalt and epoxy resin, and the reactive active functional groups at both ends of the long chain can react with polar epoxy resin , to form a stronger and stronger molecular bond force, which can more effectively increase the compatibility between asphalt and epoxy resin, and on the other hand, it can avoid the use of tetramethylphthalic anhydride to cure the material at low temperature. brittleness; using polyanhydride as a ligand curing agent, its longer molecular chain can effectively increase the flexibility of the material at low temperature; no dispersant such as kerosene is added to the material of this technology, which can ensure that the material will not be damaged during long-term use. Substances are precipitated to increase the effective use time; this technical material can also be equipped with an appropriate curing accelerator to make the material's operable time more variable to meet a wider range of application requirements.
相对于以上专利技术而言,本技术方法简单易行,制备时可以直接将A部份中各一次性加入到普通的反应釜等混合器中混合,避免了上述专利中所提及的A部份中组分需要分批加入,要采用专用的胶体磨中高速分散、部份反应甚至还需要通入氮气保护反应或使用冷凝水回流数小时的复杂操作,使生产过程中工艺控制简单,设备占有少,产品性能稳定,且产量可以大幅度提高,生产成本低廉,可以满足更大就用的需求。Compared with the above patented technology, this technical method is simple and easy to implement. During the preparation, each of Part A can be directly added to a common reactor and other mixers for mixing, avoiding the A part mentioned in the above patent. The components in the part need to be added in batches, and high-speed dispersion in a special colloid mill is used. Partial reactions even require the complex operation of nitrogen protection reaction or reflux of condensed water for several hours, so that the process control in the production process is simple and the equipment Occupancy is small, the product performance is stable, and the output can be greatly increased, the production cost is low, and it can meet the demand for larger use.
利用本技术所制备的环氧沥青材料具有加优越的力学性能(平均拉伸强度为2.5MPa,断裂伸长率为262%),在121℃的施工条件下,粘度达到1000cp的可操作时间为63-84min,可操作时间的选择更为广泛;马歇尔稳定度平均可达70KN,动稳定度更是高达31万次/mm,表现为极为优良的抗车辙性能;材料的-20℃的条件下放置24h后,劈裂时材料呈现韧性断裂,表现出本材料优良抗低温性能。The epoxy asphalt material prepared by this technology has superior mechanical properties (the average tensile strength is 2.5MPa, and the elongation at break is 262%). Under the construction condition of 121°C, the operating time for the viscosity to reach 1000cp is 63-84min, the choice of operating time is more extensive; the average Marshall stability can reach 70KN, and the dynamic stability is as high as 310,000 times/mm, showing excellent anti-rutting performance; After standing for 24 hours, the material showed ductile fracture when splitting, showing the excellent low temperature resistance of this material.
发明内容Contents of the invention
本发明的思路是基于对高分子材料之间相容性的判断原理,对分子结构进行设计,制备出高强、高延伸率和超耐疲劳性能的可用于路桥方面的环氧沥青材料。The idea of the present invention is to design the molecular structure based on the principle of judging the compatibility between polymer materials, and prepare the epoxy asphalt material which can be used in road and bridge with high strength, high elongation and super fatigue resistance.
本发明的目的是提供一种制备高强、高延伸率和超耐疲劳性能的可用于路桥方面的环氧沥青材料的新方法和新思路。The purpose of the present invention is to provide a new method and a new idea for preparing epoxy asphalt materials with high strength, high elongation and super fatigue resistance, which can be used in road and bridge aspects.
为了实现上述发明目的,本发明提供以下技术方案:In order to achieve the above-mentioned purpose of the invention, the present invention provides the following technical solutions:
一种高性能路桥用环氧沥青材料,其组成和质量组分为:A kind of epoxy asphalt material for road and bridge with high performance, its composition and quality components are:
A部分:沥青 40-100份Part A: Bitumen 40-100 parts
脂肪族二元羧酸 10-100份Aliphatic dicarboxylic acid 10-100 parts
脂肪族二元羧酸聚酸酐 10-100份Aliphatic dicarboxylic acid polyanhydride 10-100 parts
环氧树脂固化剂 5-50份Epoxy resin curing agent 5-50 parts
环氧树脂固化促进剂 0-1.0份Epoxy resin curing accelerator 0-1.0 parts
B部分:环氧树脂Part B: Epoxy
A部分与B部分的质量比例为0.5-5∶1The mass ratio of part A to part B is 0.5-5:1
上述的高性能路桥用环氧沥青材料,所述的沥青可以是石油沥青、氧化沥青、煤沥青、湖沥青。In the above-mentioned epoxy asphalt material for high-performance road and bridge, the asphalt may be petroleum asphalt, oxidized asphalt, coal asphalt, lake asphalt.
上述的高性能路桥用环氧沥青材料,所述的脂肪族二元羧酸可以是:乙二酸、丙二酸、丁二酸、戊二酸、己二酸、庚二酸、壬二酸、癸二酸、十二二酸、十四二酸、十八二酸、桐油酸、马来酸,也可是以它们的聚合物,也可是它们的酸酐等,其中的至少一种。Above-mentioned high-performance road and bridge epoxy asphalt material, described aliphatic dicarboxylic acid can be: oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, azelaic acid , sebacic acid, dodecanoic acid, tetradecanoic acid, stearic acid, linoleic acid, maleic acid, or their polymers, or their anhydrides, etc., at least one of them.
上述的高性能路桥用环氧沥青材料,所述的脂肪族二元羧酸聚酸酐可以是:乙二酸、丙二酸、丁二酸、戊二酸、己二酸、庚二酸、壬二酸、癸二酸、十二二酸、十四二酸、十八二酸、桐油酸等的聚酸酐其中的至少一种。Above-mentioned high-performance road and bridge epoxy asphalt material, described aliphatic dibasic carboxylic acid polyanhydride can be: oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, azelaic acid At least one of polyanhydrides such as dioic acid, sebacic acid, dodecanoic acid, tetradecanoic acid, octadecanedioic acid, and oleic acid.
上述的高性能路桥用环氧沥青材料,所述的环氧树脂固化促进剂为脂肪族芳香胺类。In the above-mentioned high-performance epoxy asphalt material for road and bridge, the epoxy resin curing accelerator is aliphatic aromatic amines.
上述的高性能路桥用环氧沥青材料,所述的环氧树脂是双酚A型、双酚F型环氧树脂、双酚S型环氧树脂、双酚AD型环氧树脂、间苯二酚环氧树脂其中的至少一种。Above-mentioned epoxy asphalt material for high-performance road and bridge, described epoxy resin is bisphenol A type, bisphenol F type epoxy resin, bisphenol S type epoxy resin, bisphenol AD type epoxy resin, resorcin At least one of the phenolic epoxy resins.
上述的高性能路桥用环氧沥青材料的制备方法,是由下列方法制备的:The preparation method of above-mentioned high-performance road and bridge epoxy asphalt material is prepared by the following method:
a)将沥青加热到80-180℃,将脂肪族二元羧酸、脂肪族二元羧聚酸酐、环氧树脂固化剂、环氧树脂固化促进剂加入到沥青中,搅拌5-300min,获得A部份;a) Heating the asphalt to 80-180°C, adding aliphatic dicarboxylic acid, aliphatic dicarboxylic polyanhydride, epoxy resin curing agent, and epoxy resin curing accelerator to the asphalt, and stirring for 5-300 minutes to obtain Part A;
b)使用前,将A部份加热到80-180℃,再将A部份与B部份按质量比0.5-5∶1混合,保持4-8h。b) Before use, heat Part A to 80-180°C, then mix Part A and Part B at a mass ratio of 0.5-5:1, and keep for 4-8 hours.
在上述的两个步骤之间,可以插入一些混入上述步骤中未提到的其他物质的步骤,或者在上述的任意一个步骤中,混入的物质还可以包括上述步骤中未提到的其他物质。混入的物质需是可以接受的助剂或者填料等。Between the above two steps, some steps of mixing other substances not mentioned in the above steps may be inserted, or in any of the above steps, the mixed substances may also include other substances not mentioned in the above steps. The mixed substances must be acceptable additives or fillers.
上述的高性能路桥用环氧沥青材料的应用,其特征是:使用前,将获得的A部份加热到80-180℃,再将A部份与B部份按比例在80-180℃下混合,作为生产环氧沥青混凝土的主要材料环氧沥青。The application of the above-mentioned high-performance epoxy asphalt material for road bridges is characterized in that: before use, the obtained part A is heated to 80-180 °C, and then the part A and part B are heated in proportion to 80-180 °C Mixing, as the main material of epoxy asphalt in the production of epoxy asphalt concrete.
上述的高性能路桥用环氧沥青材料的应用,其特征是:使用前,将获得的A部份加热到80-180℃,再将A部份与B部份按比例在80-180℃下搅拌混合,搅拌中同时加入石料和辅料,搅拌均匀后放置10-60min,获得环氧沥青混凝土。The application of the above-mentioned high-performance epoxy asphalt material for road bridges is characterized in that: before use, the obtained part A is heated to 80-180 °C, and then the part A and part B are heated in proportion to 80-180 °C Stir and mix, add stone and auxiliary materials at the same time during the stirring, stir evenly and place it for 10-60min to obtain epoxy asphalt concrete.
上述的高性能路桥用环氧沥青材料的应用,其特征是:将所获得环氧沥青混凝土直接铺设于路面,经过4-96h固化,形成环氧沥青路面。The application of the above-mentioned high-performance epoxy asphalt material for road and bridge is characterized in that: the obtained epoxy asphalt concrete is directly laid on the road surface, and after curing for 4-96 hours, the epoxy asphalt pavement is formed.
本发明可用于高速公路及道桥等要求较高的场合,也可以用于城市干道、公共汽车停靠站以及机场路面,此外,还可用于路面修补如灌缝等。The invention can be used in high-demand occasions such as highways, roads and bridges, and can also be used in urban arterial roads, bus stops and airport roads. In addition, it can also be used in road surface repairs such as filling joints and the like.
拉伸试验用于评价环氧沥青材料的强度和断裂变形能力,测试标准为ASTMD638其试验步骤为:按测试要求制备拉伸试件,然后在拉力试验机上将试件的两端夹住,夹具以500mm/min的速度匀速分离,直至断裂,测试温度为23℃。测量试件工作部分拉伸到断裂时的负荷和延伸值,根据标距的伸长量与截面积计算抗拉强度和断裂延伸率,抗拉强度单位为MPa,断裂延伸率单位为%。The tensile test is used to evaluate the strength and fracture deformation capacity of epoxy asphalt materials. The test standard is ASTMD638. The test steps are: prepare the tensile test piece according to the test requirements, and then clamp the two ends of the test piece on the tensile testing machine. Separate at a constant speed of 500mm/min until it breaks, and the test temperature is 23°C. Measure the load and elongation value when the working part of the specimen is stretched to fracture, and calculate the tensile strength and elongation at break according to the elongation of the gauge length and the cross-sectional area. The unit of tensile strength is MPa, and the unit of elongation at break is %.
本实施例采用旋转粘度仪DV-II+粘度计测定环氧沥青粘度在121℃增长至1000cp的时间,即环氧沥青的可操作时间。操作应注意:环氧沥青A、B组分一经混合就开始反应,故在做粘度试验时应操作迅速,盛样筒先预热到所需的操作温度。In this embodiment, a rotational viscometer DV-II+ viscometer is used to measure the time for the viscosity of epoxy asphalt to increase to 1000 cp at 121° C., that is, the operational time of epoxy asphalt. Attention should be paid to the operation: Epoxy asphalt A and B components will start to react once they are mixed, so the viscosity test should be done quickly, and the sample container should be preheated to the required operating temperature.
本实施例采用JTJ 052-2000中的T0702-2000的方法成型环氧沥青的标准马歇尔试件(试件尺寸:Φ101.6mm×63.5mm),在121℃下养护12h后进行马歇尔稳定度测试。In this example, the method of T0702-2000 in JTJ 052-2000 is used to form a standard Marshall specimen of epoxy asphalt (specimen size: Φ101.6mm×63.5mm), and the Marshall stability test is carried out after curing at 121°C for 12h.
环氧沥青混合料主要应用于道路及桥梁大面积铺装,随着温度的升高,沥青的粘度会降低,因此路面的高温稳定性非常重要。本实施例用JTJ 052-2000中T0703-1993的方法成型制件,在121℃下养护12h后,利用JTJ 052-2000中T0729-2000方法进行车辙试验。Epoxy asphalt mixture is mainly used for large-area pavement of roads and bridges. As the temperature increases, the viscosity of asphalt will decrease, so the high temperature stability of the road surface is very important. In this example, the method of T0703-1993 in JTJ 052-2000 is used to form the part, and after curing at 121°C for 12 hours, the rutting test is carried out using the method of T0729-2000 in JTJ 052-2000.
本实施例中环氧沥青材料的低温劈裂测试,是将所制备环氧沥青A部份、B两部份探险一定比例混合加热到140℃,再将A部份与B部份按比例在140℃下搅拌混合,倒入2cm×4cm×10cm的模腔中,经过4h固化后成型成样条,然后置于-20℃的冰箱中冷冻24h后,取出后立即用冲击试验机冲击样条中间,观察断面情况。The low-temperature splitting test of the epoxy asphalt material in this example is to mix the prepared epoxy asphalt part A and part B in a certain proportion and heat it up to 140°C, and then mix part A and part B in proportion Stir and mix at 140°C, pour into a mold cavity of 2cm×4cm×10cm, form a sample after 4 hours of curing, and then place it in a refrigerator at -20°C for 24 hours, then impact the sample with an impact testing machine immediately after taking it out In the middle, observe the cross section.
具体实施方式Detailed ways
下面结合实施例和对比例实施例,进一步阐述本发明。下面的实施例是对本发明的进一步说明,而不是限制本发明。Below in conjunction with embodiment and comparative example embodiment, further illustrate the present invention. The following examples are to further illustrate the present invention, but not to limit the present invention.
实施例Example
实施例1:将脂肪族二元羧酸、脂肪族二元羧酸聚酸酐、环氧树脂固化剂的混合物和基质沥青(牌号:70号,壳牌沥青,下同)一起加入到120℃的搅拌釜中,搅拌1h直至体系粘度几乎均一,然后加入B部分环氧树脂(牌号:E-51,中国石化集团巴陵石化有限责任公司,下同),混合均匀,即得本发明的高速公路及道桥用的环氧沥青材料。材料本身性能及制备出的环氧沥青混凝土性能见表1。Embodiment 1: Add the mixture of aliphatic dicarboxylic acid, aliphatic dicarboxylic acid polyanhydride, epoxy resin curing agent and matrix asphalt (brand: No. 70, Shell asphalt, the same below) to 120 ° C stirring In the kettle, stir for 1h until the viscosity of the system is almost uniform, then add part B epoxy resin (brand: E-51, Sinopec Baling Petrochemical Co., Ltd., the same below), and mix evenly to obtain the highway and the present invention. Epoxy asphalt material for road and bridge. The performance of the material itself and the performance of the prepared epoxy asphalt concrete are shown in Table 1.
实施例2:将脂肪族二元羧酸、脂肪族二元羧酸聚酸酐、环氧树脂固化剂的混合物和基质沥青(牌号:70号,壳牌沥青,下同)一起加入到140℃的搅拌釜中,搅拌1h直至体系粘度几乎均一,然后加入B部分环氧树脂(牌号:E-51,中国石化集团巴陵石化有限责任公司,下同),混合均匀,即得本发明的高速公路及道桥用的环氧沥青材料。材料本身性能及制备出的环氧沥青混凝土性能见表1。Embodiment 2: Add the mixture of aliphatic dicarboxylic acid, aliphatic dicarboxylic acid polyanhydride, epoxy resin curing agent and matrix asphalt (brand: No. 70, Shell asphalt, the same below) to 140 ° C stirring In the kettle, stir for 1h until the viscosity of the system is almost uniform, then add part B epoxy resin (brand: E-51, Sinopec Baling Petrochemical Co., Ltd., the same below), and mix evenly to obtain the highway and the present invention. Epoxy asphalt material for road and bridge. The performance of the material itself and the performance of the prepared epoxy asphalt concrete are shown in Table 1.
实施例3:将脂肪族二元羧酸、脂肪族二元羧酸聚酸酐、环氧树脂固化剂、环氧树脂固化促进剂的混合物和基质沥青(牌号:70号,壳牌沥青,下同)一起加入到140℃的搅拌釜中,搅拌1h直至体系粘度几乎均一,然后加入B部分环氧树脂(牌号:E-51,中国石化集团巴陵石化有限责任公司,下同),混合均匀,即得本发明的高速公路及道桥用的环氧沥青材料。材料本身性能及制备出的环氧沥青混凝土性能见表1。Embodiment 3: the mixture of aliphatic dicarboxylic acid, aliphatic dicarboxylic acid polyanhydride, epoxy resin curing agent, epoxy resin curing accelerator and base asphalt (brand: No. 70, Shell asphalt, the same below) Add them together into a stirred tank at 140°C, stir for 1 hour until the viscosity of the system is almost uniform, then add part B epoxy resin (brand: E-51, Sinopec Baling Petrochemical Co., Ltd., the same below), and mix evenly, that is Obtain the epoxy asphalt material that expressway of the present invention and road bridge are used. The performance of the material itself and the performance of the prepared epoxy asphalt concrete are shown in Table 1.
实施例4:将脂肪族二元羧酸、脂肪族二元羧酸聚酸酐、环氧树脂固化剂的混合物和基质沥青(牌号:70号,壳牌沥青,下同)一起加入到120℃的搅拌釜中,搅拌1h直至体系粘度几乎均一,然后加入B部分环氧树脂(牌号:E-51,中国石化集团巴陵石化有限责任公司,下同),混合均匀,即得本发明的高速公路及道桥用的环氧沥青材料。再拌入AC-10的集配石料,油石比为7.0%,保温5hr。材料本身性能及制备出的环氧沥青混凝土性能见表1。Embodiment 4: Add the mixture of aliphatic dicarboxylic acid, aliphatic dicarboxylic acid polyanhydride, epoxy resin curing agent and base asphalt (brand: No. 70, Shell asphalt, the same below) to 120 ° C stirring In the kettle, stir for 1h until the viscosity of the system is almost uniform, then add part B epoxy resin (brand: E-51, Sinopec Baling Petrochemical Co., Ltd., the same below), and mix evenly to obtain the highway and the present invention. Epoxy asphalt material for road and bridge. Then mix in AC-10 aggregated stone, the oil-stone ratio is 7.0%, and keep warm for 5 hours. The performance of the material itself and the performance of the prepared epoxy asphalt concrete are shown in Table 1.
实施例5:将脂肪族二元羧酸、脂肪族二元羧酸聚酸酐、环氧树脂固化剂的混合物和基质沥青(牌号:70号,壳牌沥青,下同)一起加入到140℃的搅拌釜中,搅拌1h直至体系粘度几乎均一,然后加入B部分环氧树脂(牌号:E-51,中国石化集团巴陵石化有限责任公司,下同),混合均匀,即得本发明的高速公路及道桥用的环氧沥青材料。再拌入AC-10的集配石料,油石比为7.0%,保温5hr。材料本身性能及制备出的环氧沥青混凝土性能见表1。Embodiment 5: Add the mixture of aliphatic dicarboxylic acid, aliphatic dicarboxylic acid polyanhydride, epoxy resin curing agent and base asphalt (brand: No. 70, Shell asphalt, the same below) to 140 ° C stirring In the kettle, stir for 1h until the viscosity of the system is almost uniform, then add part B epoxy resin (brand: E-51, Sinopec Baling Petrochemical Co., Ltd., the same below), and mix evenly to obtain the highway and the present invention. Epoxy asphalt material for road and bridge. Then mix in AC-10 aggregated stone, the oil-stone ratio is 7.0%, and keep warm for 5 hours. The performance of the material itself and the performance of the prepared epoxy asphalt concrete are shown in Table 1.
实施例6:将脂肪族二元羧酸、脂肪族二元羧酸聚酸酐、环氧树脂固化剂、环氧树脂固化促进剂的混合物和基质沥青(牌号:70号,壳牌沥青,下同)一起加入到140℃的搅拌釜中,搅拌1h直至体系粘度几乎均一,然后加入B部分环氧树脂(牌号:E-51,中国石化集团巴陵石化有限责任公司,下同),混合均匀,即得本发明的高速公路及道桥用的环氧沥青材料。再拌入AC-10的集配石料,油石比为7.0%,保温5hr。材料本身性能及制备出的环氧沥青混凝土性能见表1。Embodiment 6: the mixture of aliphatic dicarboxylic acid, aliphatic dicarboxylic acid polyanhydride, epoxy resin curing agent, epoxy resin curing accelerator and base asphalt (brand: No. 70, Shell asphalt, the same below) Add them together into a stirred tank at 140°C, stir for 1 hour until the viscosity of the system is almost uniform, then add part B epoxy resin (brand: E-51, Sinopec Baling Petrochemical Co., Ltd., the same below), and mix evenly, that is Obtain the epoxy asphalt material that expressway of the present invention and road bridge are used. Then mix in AC-10 aggregated stone, the oil-stone ratio is 7.0%, and keep warm for 5 hours. The performance of the material itself and the performance of the prepared epoxy asphalt concrete are shown in Table 1.
表1环氧沥青和环氧沥青混凝土性能Table 1 Performance of epoxy asphalt and epoxy asphalt concrete
环氧沥青混合料固化后的拉伸强度平均值为2.5MPa,断裂延伸率平均值为为262%,均超过技术指标的要求,证明该种材料很好的兼顾了强度和韧性这两大指标。The average tensile strength of the epoxy asphalt mixture after curing is 2.5MPa, and the average elongation at break is 262%, both of which exceed the requirements of technical indicators, which proves that this material has well taken into account the two indicators of strength and toughness .
环氧沥青中两部份混合后,其粘度至少要经过63分钟才能达到1000cP,说明该种环氧沥青的可操作试件已经超过一个小时。操作时间的延长十分有利于道路摊铺的施工,降低摊铺难度,降低粘度上升对摊铺后混合料路用性能的负面影响。After the two parts of the epoxy asphalt are mixed, its viscosity can reach 1000cP after at least 63 minutes, indicating that the operable test piece of this epoxy asphalt has been more than one hour. The extension of operation time is very beneficial to the construction of road paving, reduces the difficulty of paving, and reduces the negative impact of viscosity increase on the road performance of the paved mixture.
养生后混合料的马歇尔稳定度已经达到65kN以上,体现出该种环氧沥青的优良弹性和胶结性能,从侧面反映出该种环氧沥青混合料的优良力学性能和路用性能。The Marshall stability of the mixture after curing has reached more than 65kN, which reflects the excellent elasticity and cementation performance of this epoxy asphalt, and reflects the excellent mechanical properties and road performance of this epoxy asphalt mixture from the side.
80℃条件下的车辙试验完成后,车辙块上的车辙深度不足0.2mm,动稳定度达到31万以上。优异的抗车辙能力体现出该种环氧沥青混合料出色的高温稳定性能,能很好满足钢箱梁桥面夏日70℃的高温下的路用性能,避免高温下出现车辙病害。After the rutting test under the condition of 80°C is completed, the rutting depth on the rutting block is less than 0.2mm, and the dynamic stability reaches more than 310,000. The excellent anti-rutting ability reflects the excellent high-temperature stability of this epoxy asphalt mixture, which can well meet the road performance of the steel box girder bridge deck at a high temperature of 70°C in summer, and avoid rutting disease under high temperature.
环氧沥青混合料固化后经-20℃的冰箱中冷冻24h后,取出后立即用冲击试验时表现为韧性断裂,体现出该种环氧沥青混合料在保有高强度的同时,也具有良好的低温抗裂性。其低温的柔韧性对于满足钢箱梁桥面变形较大的特点意义十分重大。After the epoxy asphalt mixture is cured, it is frozen in a refrigerator at -20°C for 24 hours, and immediately after taking it out, it shows a ductile fracture in the impact test, which shows that this epoxy asphalt mixture has good strength while maintaining high strength. Low temperature crack resistance. Its low-temperature flexibility is of great significance to meet the characteristics of large deformation of steel box girder bridge deck.
本说明书中应用了具体实施例对本发明进行了阐述,只是本发明的优选实施方式,应当指出,对于本领域的一般技术人员,依据本发明的思想在具体实施方式及应用范围上可能在实施过程中会有改变之处。因此,本说明书记载的内容不应理解为对本发明的限制。In this description, the application of specific embodiments has been described to the present invention, which is only the preferred implementation mode of the present invention. It should be pointed out that for those of ordinary skill in the art, the idea of the present invention may be implemented in the specific implementation mode and application scope. There will be changes in . Therefore, the contents described in this specification should not be understood as limiting the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 201010514305 CN101974231A (en) | 2010-10-21 | 2010-10-21 | High-performance epoxy bitumen material for roads and bridges and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 201010514305 CN101974231A (en) | 2010-10-21 | 2010-10-21 | High-performance epoxy bitumen material for roads and bridges and preparation method thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
CN101974231A true CN101974231A (en) | 2011-02-16 |
Family
ID=43574142
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN 201010514305 Pending CN101974231A (en) | 2010-10-21 | 2010-10-21 | High-performance epoxy bitumen material for roads and bridges and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101974231A (en) |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102174245A (en) * | 2011-03-10 | 2011-09-07 | 中公高科(北京)养护科技有限公司 | Epoxy asphalt for gravel sealing layer, gravel sealing layer material and gravel sealing layer method |
CN102675886A (en) * | 2012-05-07 | 2012-09-19 | 湖北大学 | Fiber-reinforced epoxy asphalt material and preparation method thereof |
CN102964856A (en) * | 2012-12-20 | 2013-03-13 | 中国林业科学研究院林产化学工业研究所 | Preparation method of bio-based solubilizing and toughening agent-modified epoxy asphalt material |
CN104230216A (en) * | 2014-09-11 | 2014-12-24 | 北京东方雨虹防水技术股份有限公司 | Epoxy asphalt mixture of steel bridge as well as preparation method and use method thereof |
CN104744952A (en) * | 2015-03-20 | 2015-07-01 | 李孟平 | Modified epoxy resin asphalt material with weatherability and preparation method of modified epoxy resin asphalt material |
CN104845392A (en) * | 2015-04-29 | 2015-08-19 | 上海市政工程设计研究总院(集团)有限公司 | Foam epoxy asphalt material |
CN104861665A (en) * | 2015-04-29 | 2015-08-26 | 上海市政工程设计研究总院(集团)有限公司 | Production method of foamed epoxy asphalt materials |
CN108342091A (en) * | 2018-02-05 | 2018-07-31 | 山东省交通科学研究院 | A kind of cold-mix asphalt, the cold mixing cover mixture based on waste asphalt pavement material |
CN108504114A (en) * | 2018-04-20 | 2018-09-07 | 杨振轩 | A kind of municipal construction ground surface material and preparation method thereof |
CN110284390A (en) * | 2019-07-10 | 2019-09-27 | 南京城建隧桥经营管理有限责任公司 | A kind of asphalt pavement structure and its method for paving for city tunnel deformation joint |
CN111154279A (en) * | 2020-01-09 | 2020-05-15 | 新疆宏宇志祥工程咨询有限公司 | Graphene/carbon nanotube modified epoxy resin asphalt material and preparation method thereof |
CN113416422A (en) * | 2021-05-19 | 2021-09-21 | 东南大学 | Epoxy asphalt caulking material and preparation method and application thereof |
CN115448634A (en) * | 2022-09-16 | 2022-12-09 | 武汉工大杰诚工程质量检测有限公司 | Paving site penetration type anti-rut agent and preparation method thereof |
CN117050541A (en) * | 2023-07-27 | 2023-11-14 | 山东百成新材料科技股份有限公司 | High-temperature-resistant composite modified asphalt for highway and preparation method thereof |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1546571A (en) * | 2003-12-11 | 2004-11-17 | 卫 黄 | Epoxy asphalt material for express highway and bridge, and preparation method |
CN101735623A (en) * | 2009-12-30 | 2010-06-16 | 同济大学 | Warm mixed epoxy bitumen material and preparation method thereof |
-
2010
- 2010-10-21 CN CN 201010514305 patent/CN101974231A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1546571A (en) * | 2003-12-11 | 2004-11-17 | 卫 黄 | Epoxy asphalt material for express highway and bridge, and preparation method |
CN101735623A (en) * | 2009-12-30 | 2010-06-16 | 同济大学 | Warm mixed epoxy bitumen material and preparation method thereof |
Cited By (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102174245B (en) * | 2011-03-10 | 2012-11-28 | 中公高科养护科技股份有限公司 | Epoxy asphalt for gravel sealing layer, gravel sealing layer material and gravel sealing layer method |
CN102174245A (en) * | 2011-03-10 | 2011-09-07 | 中公高科(北京)养护科技有限公司 | Epoxy asphalt for gravel sealing layer, gravel sealing layer material and gravel sealing layer method |
CN102675886A (en) * | 2012-05-07 | 2012-09-19 | 湖北大学 | Fiber-reinforced epoxy asphalt material and preparation method thereof |
CN102675886B (en) * | 2012-05-07 | 2014-05-07 | 湖北大学 | Fiber-reinforced epoxy asphalt material and preparation method thereof |
CN102964856A (en) * | 2012-12-20 | 2013-03-13 | 中国林业科学研究院林产化学工业研究所 | Preparation method of bio-based solubilizing and toughening agent-modified epoxy asphalt material |
CN104230216B (en) * | 2014-09-11 | 2017-04-19 | 北京东方雨虹防水技术股份有限公司 | Epoxy asphalt mixture of steel bridge as well as preparation method and use method thereof |
CN104230216A (en) * | 2014-09-11 | 2014-12-24 | 北京东方雨虹防水技术股份有限公司 | Epoxy asphalt mixture of steel bridge as well as preparation method and use method thereof |
CN104744952A (en) * | 2015-03-20 | 2015-07-01 | 李孟平 | Modified epoxy resin asphalt material with weatherability and preparation method of modified epoxy resin asphalt material |
CN104845392B (en) * | 2015-04-29 | 2017-11-14 | 上海市政工程设计研究总院(集团)有限公司 | One kind foaming epoxy bitumen material |
CN104861665A (en) * | 2015-04-29 | 2015-08-26 | 上海市政工程设计研究总院(集团)有限公司 | Production method of foamed epoxy asphalt materials |
CN104845392A (en) * | 2015-04-29 | 2015-08-19 | 上海市政工程设计研究总院(集团)有限公司 | Foam epoxy asphalt material |
CN104861665B (en) * | 2015-04-29 | 2017-11-14 | 上海市政工程设计研究总院(集团)有限公司 | A kind of preparation method for the epoxy bitumen material that foams |
CN108342091A (en) * | 2018-02-05 | 2018-07-31 | 山东省交通科学研究院 | A kind of cold-mix asphalt, the cold mixing cover mixture based on waste asphalt pavement material |
CN108504114A (en) * | 2018-04-20 | 2018-09-07 | 杨振轩 | A kind of municipal construction ground surface material and preparation method thereof |
CN108504114B (en) * | 2018-04-20 | 2021-04-20 | 杨振轩 | Municipal construction pavement material and preparation method thereof |
CN110284390A (en) * | 2019-07-10 | 2019-09-27 | 南京城建隧桥经营管理有限责任公司 | A kind of asphalt pavement structure and its method for paving for city tunnel deformation joint |
CN111154279A (en) * | 2020-01-09 | 2020-05-15 | 新疆宏宇志祥工程咨询有限公司 | Graphene/carbon nanotube modified epoxy resin asphalt material and preparation method thereof |
CN113416422A (en) * | 2021-05-19 | 2021-09-21 | 东南大学 | Epoxy asphalt caulking material and preparation method and application thereof |
CN115448634A (en) * | 2022-09-16 | 2022-12-09 | 武汉工大杰诚工程质量检测有限公司 | Paving site penetration type anti-rut agent and preparation method thereof |
CN117050541A (en) * | 2023-07-27 | 2023-11-14 | 山东百成新材料科技股份有限公司 | High-temperature-resistant composite modified asphalt for highway and preparation method thereof |
CN117050541B (en) * | 2023-07-27 | 2024-05-28 | 山东百成新材料科技股份有限公司 | High-temperature-resistant composite modified asphalt for highway and preparation method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101974231A (en) | High-performance epoxy bitumen material for roads and bridges and preparation method thereof | |
US8389606B2 (en) | Asphalt mixture | |
CN100460469C (en) | Thermosetting epoxy asphalt material, preparation method and special compatibilizer thereof | |
CN102061098B (en) | Asphalt mixture warm-mixing modifier and preparation method thereof | |
CN101255276A (en) | Epoxy asphalt material for road and bridge and its green preparation method | |
CN102532924B (en) | Normal temperature solidified thermosetting epoxy bitumen material and preparation method thereof | |
CN102276790B (en) | Method for preparing bulking agent of epoxy resin modified asphalt | |
CN108726924B (en) | Reactive normal temperature asphalt mixture and its preparation method | |
JP2011514412A (en) | Bitumen composition | |
CN102153725B (en) | Preparation and application of high-performance epoxy bitumen material compatibilizer | |
CN103194070A (en) | Epoxy asphalt material, as well as preparation method and use method thereof | |
CN101792606A (en) | High-performance thermosetting epoxy asphalt material with wide temperature field and preparation method thereof | |
CN103146205A (en) | High-performance epoxy asphalt composite material capable of enabling roads to be rapidly open to traffic and preparation method thereof | |
CN101629011B (en) | Thermosetting epoxy bitumen material for roads and bridges and preparation method thereof | |
CN107151419B (en) | A kind of high-toughness cold-mix epoxy asphalt binder and preparation method thereof | |
CN101974237B (en) | Epoxy bitumen material for highway and road bridge and preparation method thereof | |
CN101967286A (en) | Modified thermosetting epoxy bitumen material and preparation method thereof | |
CN101003688A (en) | High performance pavement material of epoxy asphalt, preparation method and application | |
CN101955673B (en) | Thermosetting epoxy asphalt material and preparation method thereof | |
CN112961463B (en) | A kind of super tough self-healing epoxy resin glass polymer material and preparation method thereof | |
CN104031395A (en) | Epoxy asphalt compatibilizer, preparation method and application method thereof | |
CN108864447B (en) | Reactive solvent and method for realizing normal-temperature fluidity of asphalt | |
CN107987542A (en) | Bridge thermosetting epoxy asphalt material and preparation method thereof | |
CN110054907A (en) | Biology base Normal Atmospheric Temperature Liquid pitch and the preparation method and application thereof | |
JP6215699B2 (en) | Paving binder |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C12 | Rejection of a patent application after its publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20110216 |