CN101968641A - Error correction system of machine tool XY plane - Google Patents
Error correction system of machine tool XY plane Download PDFInfo
- Publication number
- CN101968641A CN101968641A CN 201010221491 CN201010221491A CN101968641A CN 101968641 A CN101968641 A CN 101968641A CN 201010221491 CN201010221491 CN 201010221491 CN 201010221491 A CN201010221491 A CN 201010221491A CN 101968641 A CN101968641 A CN 101968641A
- Authority
- CN
- China
- Prior art keywords
- machine tool
- module
- error
- plane
- lathe
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000012937 correction Methods 0.000 title claims abstract description 18
- 238000000034 method Methods 0.000 claims description 30
- 238000004364 calculation method Methods 0.000 claims description 19
- 238000006073 displacement reaction Methods 0.000 claims description 17
- 238000005259 measurement Methods 0.000 claims description 16
- 238000006243 chemical reaction Methods 0.000 claims description 7
- 230000009897 systematic effect Effects 0.000 claims description 5
- 238000012804 iterative process Methods 0.000 claims description 3
- 230000008676 import Effects 0.000 claims 1
- 238000010586 diagram Methods 0.000 description 5
- 238000003754 machining Methods 0.000 description 4
- 238000009434 installation Methods 0.000 description 3
- 238000013499 data model Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000014509 gene expression Effects 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 1
- 238000005553 drilling Methods 0.000 description 1
- 238000011900 installation process Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Images
Landscapes
- Numerical Control (AREA)
Abstract
本发明公开了一种机床XY平面误差修正系统,属于机床系统误差修正控制技术领域,系统硬件包括基于上位计算机及可编程控制器控制的伺服驱动器,以及与伺服驱动器连接的伺服电机,XY平面工作平台由伺服电机通过丝杆驱动,所述上位计算机里内设有对机床XY平面的系统误差辨识模块和拟合补偿模块;本发明通过系统软硬件配合,上位计算机功能模块即可辩识出机床精确误差模型数据,通过系统适时补偿,可使机床达到理想的控制精度,同时,数控系统设定补偿数据简单、便捷。
The invention discloses a machine tool XY plane error correction system, which belongs to the technical field of machine tool system error correction control. The system hardware includes a servo driver controlled by a host computer and a programmable controller, and a servo motor connected to the servo driver, and works on an XY plane. The platform is driven by a servo motor through a screw, and the upper computer is equipped with a system error identification module and a fitting compensation module for the XY plane of the machine tool; the present invention cooperates with the system software and hardware, and the upper computer function module can identify the machine tool Accurate error model data, timely compensation by the system, can make the machine tool achieve ideal control accuracy, and at the same time, the compensation data setting of the numerical control system is simple and convenient.
Description
the
技术领域technical field
本发明涉及一种机床系统误差修正控制技术,尤其涉及一种机床XY平面系统误差修正控制技术。The invention relates to a machine tool system error correction control technology, in particular to a machine tool XY plane system error correction control technology.
背景技术Background technique
机床的误差补偿是提高机床精度的一种有效措施,具有重要的现实意义。目前国内外,机床误差补偿主要由数控CNC系统完成(国外CNC数控系统主要厂家有SIEMENS、FANAC、FAGOR等)。其误差补偿主要包括螺距补偿和齿隙补偿。螺距补偿时,CNC系统自动将目标位置Pi的平均位置偏差叠加到插补指令上,使误差部分抵消, 实现误差的补偿。齿隙补偿时,需要测量出各目标位置Pi的平均反向差值,作为机床的补偿参数输入系统,系统在控制坐标反向运动时,自动先让该坐标轴反向运动,然后按指令进行运动,由此补偿误差。The error compensation of the machine tool is an effective measure to improve the precision of the machine tool, which has important practical significance. At present, at home and abroad, the error compensation of machine tools is mainly completed by the numerical control CNC system (the main foreign CNC numerical control system manufacturers include SIEMENS, FANAC, FAGOR, etc.). Its error compensation mainly includes pitch compensation and backlash compensation. During pitch compensation, the CNC system automatically superimposes the average position deviation of the target position Pi on the interpolation command, so that the error is partially offset and the error compensation is realized. During backlash compensation, it is necessary to measure the average reverse difference of each target position Pi, and input it into the system as the compensation parameter of the machine tool. When the system controls the reverse movement of the coordinates, it will automatically let the coordinate axis move in the reverse direction first, and then proceed according to the instruction. movement, thereby compensating for errors.
机床采用的CNC控制系统时,硬件上需要通过CNC控制器控制伺服驱动器,然后由伺服驱动器控制伺服电机,这样,集成的系统造价高,控制结构复杂。对于功能相对简单的车床(如精密钻床)来说,如果采用CNC控制器,CNC控制器的许多复杂功能在应用装置中没有使用,形成了很大的资源浪费。CNC系统补偿时,将目标位置Pi的平均位置偏差叠加到插补指令上,这样,位于相邻目标位置之间的补偿点的误差值较大,并且随着相邻目标位置之间的距离的加大,其补偿点的位置精确度亦变差。同时,目前流行的CNC控制系统(如:SIEMENS-840D数控系统等),其螺距误差补偿采用绝对型补偿方法,可以通过执行程序来设定补偿数据,方法直观但操作步骤非常繁琐。When the CNC control system is used in the machine tool, the CNC controller needs to control the servo driver on the hardware, and then the servo driver controls the servo motor. In this way, the integrated system is expensive and the control structure is complicated. For lathes with relatively simple functions (such as precision drilling machines), if a CNC controller is used, many complex functions of the CNC controller are not used in the application device, resulting in a great waste of resources. When the CNC system compensates, the average position deviation of the target position Pi is superimposed on the interpolation command. In this way, the error value of the compensation point between adjacent target positions is relatively large, and with the distance between adjacent target positions The position accuracy of the compensation point will also become worse if the value is increased. At the same time, the current popular CNC control system (such as: SIEMENS-840D numerical control system, etc.), its pitch error compensation adopts the absolute compensation method, and the compensation data can be set by executing the program. The method is intuitive but the operation steps are very cumbersome.
发明内容Contents of the invention
本发明的目的是提供一种能够在不使用CNC控制器的功能相对简单的机床上,不改变原有系统硬件结构的情况下,便可使机床达到需要的控制精度的机床XY平面误差修正系统。The purpose of the present invention is to provide a machine tool XY plane error correction system that can achieve the required control precision without using the CNC controller and without changing the hardware structure of the original system. .
本发明的技术方案为:一种机床XY平面误差修正系统,系统硬件包括基于上位计算机及可编程控制器控制的伺服驱动器,以及与伺服驱动器连接的伺服电机,XY平面工作平台由伺服电机通过丝杆驱动,所述上位计算机里内设有对机床XY平面的系统误差辨识模块和拟合补偿模块;The technical solution of the present invention is: a machine tool XY plane error correction system, the system hardware includes a servo driver controlled by a host computer and a programmable controller, and a servo motor connected to the servo driver, and the XY plane working platform is controlled by a servo motor through a wire Rod drive, the upper computer is equipped with a system error identification module and a fitting compensation module for the XY plane of the machine tool;
所述系统误差辨识模块,通过若干给定的指令位置和机床上刀具在机床XY平面对应的实际测量位置,得出机床XY平面系统误差模型;The system error identification module obtains the XY plane system error model of the machine tool through a number of given command positions and the actual measurement position of the tool on the machine tool in the XY plane of the machine tool;
所述拟合补偿模块,接收给定位置信号后,通过所述系统误差辨识模块所得出的机床XY平面系统误差模型,拟合计算出前馈量并将输出位置修正,将修正后的输出位置传给伺服驱动器。The fitting compensation module, after receiving the given position signal, uses the XY plane system error model of the machine tool obtained by the system error identification module to fit and calculate the feedforward amount and correct the output position, and transmit the corrected output position to to the servo drive.
所述系统误差辨识模块包括:The system error identification module includes:
进给位置数据转换子模块,该模块将需要输入的若干进给位置,转换成机床系统可以识别的数据格式;Feed position data conversion sub-module, this module converts several feed positions that need to be input into a data format that the machine tool system can recognize;
自动点到点进给位置子程序子模块,该模块指令刀具自动按照所述输入到机床加工数据基准区域的进给位置和数目自动进给;Automatic point-to-point feed position subroutine submodule, this module instructs the tool to automatically feed according to the feed position and number input into the machine tool processing data reference area;
刀具实际进给位置测量及数据格式转换子模块,通过激光干涉仪对机床刀具在XY平面实际进给位置进行测量,该模块将激光干涉仪的测量数据格式转换为机床系统可以识别的数据格式;The tool actual feed position measurement and data format conversion sub-module measures the actual feed position of the machine tool tool on the XY plane through a laser interferometer. This module converts the measurement data format of the laser interferometer into a data format that the machine tool system can recognize;
偏差计算修正子模块,该模块计算各输入点的进给位置与其实际进给位置的误差值,修改输入的进给位置,以修改后的进给位置输入系统,进行迭代过程计算,记录相应数据,直到误差符合要求,从而得到机床XY平面系统误差模型。该计算方法如下,即模型函数 的求取:Deviation calculation correction sub-module, this module calculates the error value between the feed position of each input point and its actual feed position, modifies the input feed position, inputs the modified feed position into the system, performs iterative process calculation, and records the corresponding data , until the error meets the requirements, so as to obtain the XY plane system error model of the machine tool. The calculation method is as follows, that is, the model function to obtain:
设各给定位置,其对应输入变量。对于函数,可转换为方程,由此,过程转换为方程的求解。set each given position , which corresponds to the input variable . for functions , which can be converted into the equation , thus, the process is transformed into the solution of the equation.
将机床系统对应各给定位置(即机床对应输出点)的对应理想输入变量作为求取过程初始值点,引入迭代算法,则机床实际输出即为,,可以通过激光干涉仪实际测量得到。上位计算机通过(W为迭代次数)的误差值计算,对输入值进行修正,得到进入下一次迭代过程。对测量数据进行分析,当满足相应国家标准(如VDI3441、JIS6330、GB10931-89等)时,过程结束,这样可得到机床XY平面系统误差模型函数。Match the machine tool system to each given position (that is, the corresponding output point of the machine tool) corresponds to the ideal input variable As the initial value point of the calculation process, the iterative algorithm is introduced, and the actual output of the machine tool is , , which can be actually measured by laser interferometer . upper computer through (W is the number of iterations) the error value is calculated for the input The value is corrected to get into the next iteration process. Analyze the measurement data, and when the corresponding national standards (such as VDI3441, JIS6330, GB10931-89, etc.) are met, the process ends, so that the XY plane system error model function of the machine tool can be obtained .
所述系统误差辨识模块的辨识方法与现有方法不同的实质是:通过迭代计算过程不断修正机床输入的进给位置,从而得到误差允许的理想输出进给位置所对应的输入进给位置量数值。并建立理想输出进给位置与输入进给位置的函数关系,以此函数关系作为机床存在系统误差时的模型。此辨识方法得到的误差模型可以综合机床螺距误差、系统安装等误差因素。The difference between the identification method of the system error identification module and the existing method is that the input feed position of the machine tool is continuously corrected through the iterative calculation process, so as to obtain the input feed position value corresponding to the ideal output feed position where the error is allowed . And establish the functional relationship between the ideal output feed position and the input feed position, and use this function relationship as a model when there is a systematic error in the machine tool. The error model obtained by this identification method can integrate error factors such as machine tool pitch error and system installation.
系统误差辩识模块原理:Principle of system error identification module:
在机床丝杆驱动系统硬件结构稳定、系统给定在合理的范围内时,可以认为机床的位置误差具有唯一性和可重复性。将系统实际位移量(其中包括了系统螺距误差、齿隙误差、以及由安装工艺等引起的系统误差)做为系统系列期望值点,并且做为系统函数的输出点。根据计算数学原理,可以求解出系统函数在各个输出进给位置的函数输入进给位置。When the hardware structure of the screw drive system of the machine tool is stable and the system setting is within a reasonable range, it can be considered that the position error of the machine tool is unique and repeatable. The actual displacement of the system (including the system pitch error, backlash error, and system error caused by the installation process) is taken as the expected value point of the system series, and as the output point of the system function. According to the computational mathematics principle, the function input feed position of the system function at each output feed position can be solved.
设机床输入、输出的模型函数为;其中为输入位置,为实际输入指令的位置点,即输入的进给位置,为机床实际输出进给位置。为高次函数,其阶数与机床系统误差相关(包括:齿轮间隙误差、丝杆误差、安装误差)。在区间,即机床正常工作范围内,函数是连续的,对于指定的函数值有唯一的输入变量与之对应。Let the model function of the input and output of the machine tool be ;in is the input position, and is the position point where the command is actually input , that is, the input feed position, The feed position is actually output for the machine tool. It is a high-order function, and its order is related to the error of the machine tool system (including: gear clearance error, screw error, installation error). in interval , that is, within the normal working range of the machine tool, the function is continuous, for the specified function value has a unique input variable Corresponding.
由此,函数在区间连续,给定个点,已知,,可寻找一函数,作为的近似表达式,使满足 Thus, the function in interval continuous, given points ,A known , , one can find a function , as Approximate expressions for
, (1.1) , (1.1)
由计算数学定理可知:在给定个互异节点上的函数值满足式(1.1)的次多项式是存在且唯一的。It can be known from the mathematical theorem of calculation that: in a given distinct nodes function value on Satisfies formula (1.1) Degree polynomials exist and are unique.
因此,可得到即为机床系统实用的计算模型函数。Therefore, it is possible to obtain It is the practical calculation model function of the machine tool system.
本发明所述刀具实际进给位置测量及记录子模块中的测量装置采用激光干涉仪离线方法测量刀具的实际进给位置。也可以采用其他的实际位置测量装置。The measuring device in the measuring and recording sub-module of the actual feed position of the cutter of the present invention measures the actual feed position of the cutter by an off-line method of a laser interferometer. Other actual position measuring devices can also be used.
本发明所述拟合补偿模块,包括:The fitting compensation module of the present invention includes:
进给位置数据转换子模块:该模块将需要输入的进给位置转换成机床系统可以识别的数据格式; Feed position data conversion sub-module: This module converts the feed position that needs to be input into a data format that the machine tool system can recognize;
进给位置前馈量计算、输出子模块:该模块根据各输入点的进给位置,与对应的机床XY平面系统误差模型进行拟合运算,得出前馈量,根据所述前馈量得到各输入点的实际所需进给位移,并将各实际所需进给位移传给伺服驱动器,控制伺服电机输出位移。Feed-forward calculation and output sub-module of feed position: This module performs fitting operation with the corresponding machine tool XY plane system error model according to the feed position of each input point to obtain the feed-forward amount, and obtains the feed-forward amount according to the feed-forward amount. Input the actual required feed displacement of the point, and transmit each actual required feed displacement to the servo driver to control the output displacement of the servo motor.
拟合补偿的作用:在系统送入一要求的理想进给位置时,根据系统误差辨识模块,对该进给位置的前馈量进行计算、确定,将确定的前馈量加入控制系统,达到误差修正补偿目的。所述的拟合补偿模块的拟合补偿方法与现有方法不同的实质是:在机床要求到达某一理想进给位置时,系统根据辩识出的系统误差模型,进行拟合计算,求出本要求进给位置对应的前馈量,并将确定的前馈量加入控制系统,达到误差修正补偿目的。模型拟合计算采用分段二次Lagrange插值法。The function of fitting compensation: when the system enters a required ideal feed position, according to the system error identification module, the feedforward amount of the feed position is calculated and determined, and the determined feedforward amount is added to the control system to achieve Error correction for compensation purposes. The essence of the fitting compensation method of the fitting compensation module is different from the existing method is that when the machine tool is required to reach a certain ideal feed position, the system performs fitting calculation according to the identified system error model to obtain This requires the feedforward amount corresponding to the feed position, and the determined feedforward amount is added to the control system to achieve the purpose of error correction and compensation. The model fitting calculation adopts the piecewise quadratic Lagrange interpolation method.
拟合补偿方法原理:Fit compensation method principle:
根据系统误差辨识模块已知:系统模型函数 ,得到其有限点的函数值。对连续函数在任意点的值,采用分段二次Lagrange插值。方法近似度为:Known according to the system error identification module: system model function , get the function value of its finite point. for continuous functions The value at any point is interpolated using piecewise quadratic Lagrange. The method approximation is:
有式:There are formulas:
成立。 established.
本发明的技术效果:本发明通过系统软硬件配合,上位计算机功能模块即可辩识出机床精确误差模型数据,通过系统适时补偿,可使机床达到理想的控制精度,同时,数控系统设定补偿数据简单、便捷。 The technical effect of the present invention: the present invention cooperates with the software and hardware of the system, and the functional module of the host computer can identify the accurate error model data of the machine tool, and through the timely compensation of the system, the machine tool can achieve the ideal control accuracy. At the same time, the numerical control system sets the compensation Data is simple and convenient. the
附图说明Description of drawings
本发明将通过例子并参照附图的方式说明,其中:The invention will be illustrated by way of example with reference to the accompanying drawings, in which:
图1是本发明的控制原理框图;Fig. 1 is a control principle block diagram of the present invention;
图2是本发明优选实施例所述系统误差辨识功能模块的流程示意图;Fig. 2 is a schematic flow chart of the system error identification function module described in the preferred embodiment of the present invention;
图3是本发明优选实施例所述拟合补偿模块的流程示意图;Fig. 3 is a schematic flow chart of the fitting compensation module described in the preferred embodiment of the present invention;
图4是机床系统未补偿时误差示意图;Fig. 4 is a schematic diagram of errors when the machine tool system is not compensated;
图5是机床系统进行一次系统误差辨识形成数据模型并拟合补偿后的误差示意图;Fig. 5 is a schematic diagram of the error after the machine tool system performs a system error identification to form a data model and fits and compensates;
图6是机床系统进行4次系统误差辨识形成数据模型并拟合补偿后的误差示意图。Fig. 6 is a schematic diagram of the error after the machine tool system performs 4 system error identifications to form a data model and fits and compensates.
具体实施方式Detailed ways
本说明书中公开的所有特征,或公开的所有方法或过程中的步骤,除了互相排斥的特征和/或步骤以外,均可以以任何方式组合。All features disclosed in this specification, or steps in all methods or processes disclosed, may be combined in any manner, except for mutually exclusive features and/or steps.
本说明书(包括任何附加权利要求、摘要和附图)中公开的任一特征,除非特别叙述,均可被其他等效或具有类似目的的替代特征加以替换。即,除非特别叙述,每个特征只是一系列等效或类似特征中的一个例子而已。Any feature disclosed in this specification (including any appended claims, abstract and drawings), unless expressly stated otherwise, may be replaced by alternative features which are equivalent or serve a similar purpose. That is, unless expressly stated otherwise, each feature is one example only of a series of equivalent or similar features.
如图1所示,一种机床XY平面误差修正系统,系统硬件包括基于上位计算机及可编程控制器控制的伺服驱动器,以及与伺服驱动器连接的伺服电机,XY平面工作平台由伺服电机通过丝杆驱动,所述上位计算机里内设有对机床XY平面的系统误差辨识模块和拟合补偿模块;所述系统误差辨识模块,通过若干给定的指令位置和机床上刀具在机床XY平面对应的实际测量位置,得出机床XY平面系统误差模型;所述拟合补偿模块,接收给定位置信号后,通过所述系统误差辨识模块所得出的机床XY平面系统误差模型,拟合计算出前馈量并将输出位置修正,将修正后的输出位置传给伺服驱动器。As shown in Figure 1, a machine tool XY plane error correction system, the system hardware includes a servo drive based on the host computer and programmable controller control, and a servo motor connected to the servo drive, the XY plane working platform is controlled by the servo motor through the screw drive, the upper computer is provided with a system error identification module and a fitting compensation module for the XY plane of the machine tool; Measure the position to obtain the XY plane system error model of the machine tool; after receiving the given position signal, the fitting compensation module uses the XY plane system error model of the machine tool obtained by the system error identification module to fit and calculate the feedforward amount and Correct the output position and send the corrected output position to the servo drive.
如图2所示,所述系统误差辨识模块包括:As shown in Figure 2, the system error identification module includes:
进给位置数据转换子模块,该模块将需要输入的若干进给位置,转换成机床系统可以识别的数据格式;Feed position data conversion sub-module, this module will need to input several feed positions , converted into a data format that the machine tool system can recognize;
自动点到点进给位置子程序子模块,该模块指令刀具自动按照所述输入的进给位置和数目自动进给;Automatic point-to-point feed position subroutine submodule, this module instructs the tool to automatically feed according to the input feed position and number;
刀具实际进给位置测量及数据格式转换子模块,通过激光干涉仪对机床刀具在XY平面实际进给位置进行测量,该模块将激光干涉仪的测量数据格式转换为机床系统可以识别的数据格式;The tool actual feed position measurement and data format conversion sub-module measures the actual feed position of the machine tool tool on the XY plane through a laser interferometer. This module converts the measurement data format of the laser interferometer into a data format that the machine tool system can recognize;
偏差计算修正子模块,该模块计算各输入点的进给位置与其实际进给位置的误差值,修改输入的进给位置,以修改后的进给位置输入系统,进行迭代过程计算,记录相应数据,直到误差符合要求,从而得到机床XY平面系统误差模型。Deviation calculation correction sub-module, this module calculates the error value between the feed position of each input point and its actual feed position, modifies the input feed position, inputs the modified feed position into the system, performs iterative process calculation, and records the corresponding data , until the error meets the requirements, so as to obtain the XY plane system error model of the machine tool.
该计算方法如下,即模型函数的求取:The calculation method is as follows, that is, the model function to obtain:
设各给定位置,其对应输入变量。对于函数,可转换为方程,由此,过程转换为方程的求解。set each given position , which corresponds to the input variable . for functions , which can be converted into the equation , thus, the process is transformed into the solution of the equation.
将机床系统对应各给定位置(即机床对应输出点)的对应理想输入变量作为求取过程初始值点,引入迭代算法,则机床实际输出即为,,可以通过激光干涉仪实际测量得到。上位计算机通过(W为迭代次数)的误差值计算,对输入值进行修正,得到进入下一次迭代过程。对测量数据进行分析,当满足相应国家标准(如VDI3441、JIS6330、GB10931-89等)时,过程结束,这样可得到模型函数。Match the machine tool system to each given position (that is, the corresponding output point of the machine tool) corresponds to the ideal input variable As the initial value point of the calculation process, the iterative algorithm is introduced, and the actual output of the machine tool is , , which can be actually measured by laser interferometer . upper computer through (W is the number of iterations) the error value is calculated for the input The value is corrected to get into the next iteration process. Analyze the measurement data. When the corresponding national standards (such as VDI3441, JIS6330, GB10931-89, etc.) are met, the process ends, so that the model function can be obtained .
设机床输入、输出的模型函数为;其中为输入量,为实际输入指令的位置点,即待进给的给定位置,为机床实际输出位置。为高次函数,其阶数与机床系统误差相关(包括:齿轮间隙误差、丝杆误差、安装误差)。在区间,即机床正常工作范围内,函数是连续的,对于指定的函数值有唯一的输入变量与之对应。Let the model function of the input and output of the machine tool be ;in is the input quantity, and is the position point of the actual input command , which is the given position to be fed, It is the actual output position of the machine tool. It is a high-order function, and its order is related to the error of the machine tool system (including: gear clearance error, screw error, installation error). in interval , that is, within the normal working range of the machine tool, the function is continuous, for the specified function value has a unique input variable Corresponding.
由此,函数在区间连续,给定个点,已知,,可寻找一函数,作为的近似表达式,使满足Thus, the function in interval continuous, given points ,A known , , one can find a function , as Approximate expressions for
, (1.1) , (1.1)
由计算数学定理可知:在给定个互异节点上的函数值满足式(1.1)的次多项式是存在且唯一的。It can be known from the mathematical theorem of calculation that: in a given distinct nodes function value on Satisfies formula (1.1) degree polynomial exists and is unique.
因此,可得到即为机床系统实用的计算模型函数。Therefore, it is possible to obtain It is the practical calculation model function of the machine tool system.
本实施例所述实际进给位置测量及记录子模块中的测量装置采用激光干涉仪。The measurement device in the actual feed position measurement and recording sub-module described in this embodiment adopts a laser interferometer.
如图3所示,本实施例所述拟合补偿模块,包括:As shown in Figure 3, the fitting compensation module described in this embodiment includes:
进给位置数据转换子模块:该模块将需要输入的进给位置转换成机床系统可以识别的数据格式; Feed position data conversion sub-module: This module converts the feed position that needs to be input into a data format that the machine tool system can recognize;
进给位置前馈量计算、输出子模块:该模块根据各输入点的进给位置,与对应的机床XY平面系统误差模型进行拟合运算,得出前馈量,根据所述前馈量得到各输入点的实际所需进给位移,并将各实际所需进给位移传给伺服驱动器,控制伺服电机输出位移。Feed-forward calculation and output sub-module of feed position: This module performs fitting operation with the corresponding machine tool XY plane system error model according to the feed position of each input point to obtain the feed-forward amount, and obtains the feed-forward amount according to the feed-forward amount. Input the actual required feed displacement of the point, and transmit each actual required feed displacement to the servo driver to control the output displacement of the servo motor.
拟合补偿的作用:The role of fit compensation:
在系统送入一要求的理想位置时,根据系统误差辨识模块,对该位置的前馈量进行计算、确定,将确定的前馈量加入控制系统,达到误差修正补偿目的。When the system enters a required ideal position, according to the system error identification module, the feedforward amount of the position is calculated and determined, and the determined feedforward amount is added to the control system to achieve the purpose of error correction and compensation.
拟合补偿方法原理:Fit compensation method principle:
根据系统误差辨识模块已知:系统模型函数 ,得到其有限点的函数值。对连续函数在任意点的值,采用分段二次Lagrange插值。方法近似度为:Known according to the system error identification module: system model function , get the function value of its finite point. for continuous functions The value at any point is interpolated using piecewise quadratic Lagrange. The method approximation is:
有式:There are formulas:
成立。 established.
由于上述系统软硬件配合,上位计算机功能模块即可辩识出机床精确误差模型数据,通过系统适时补偿,可使机床达到理想的控制精度,同时,数控系统设定补偿数据简单、便捷。Due to the cooperation of the software and hardware of the above system, the upper computer function module can identify the precise error model data of the machine tool, and through the timely compensation of the system, the machine tool can achieve the ideal control accuracy. At the same time, the numerical control system is simple and convenient to set the compensation data.
为验证本发明实际效果,对采用本实施例前后的加工精度进行对比测试。采用激光干涉仪器进行实际进给位置测量,测量位置间隔为20mm。In order to verify the actual effect of the present invention, a comparative test is carried out on the machining accuracy before and after the adoption of this embodiment. A laser interferometer is used to measure the actual feed position, and the measurement position interval is 20mm.
没有加入本实施例所述机床XY平面误差修正系统时,对0到1600mm的加工精度实际测量,误差值示意图如图4所示,其最大误差范围为:-0.094477mm, +0.130328mm,即( -94.477μm,+130.328μm)。When the XY plane error correction system of the machine tool described in this embodiment is not added, the actual measurement of the machining accuracy from 0 to 1600mm, the schematic diagram of the error value is shown in Figure 4, and the maximum error range is: -0.094477mm, +0.130328mm, that is ( -94.477μm, +130.328μm).
通过采用本实施例所述的机床XY平面误差修正系统,进行一次系统误差辩识(未进行过程迭代),形成系统误差模型后,再通过拟合补偿计算出前馈量,得出修正后的实际输出的进给位移,再将该实际输出的进给位移传给伺服驱动器,伺服驱动器控制伺服电机输出位移,用激光干涉仪器对机床刀具实际进给位移进行测量。其测量位置间隔为20mm,0到1600mm的加工精度实际测量,误差如图5所示,其最大误差范围为: -0.081854mm;+0.037439mm ,即( -81.854μm,+37.439μm) 。By using the machine tool XY plane error correction system described in this embodiment, a system error identification (without process iteration) is performed, and after the system error model is formed, the feedforward amount is calculated through fitting compensation, and the corrected actual value is obtained. The output feed displacement, and then the actual output feed displacement is transmitted to the servo driver, the servo driver controls the output displacement of the servo motor, and the actual feed displacement of the machine tool is measured with a laser interferometer. The measurement position interval is 20mm, and the machining accuracy of 0 to 1600mm is actually measured. The error is shown in Figure 5. The maximum error range is: -0.081854mm; +0.037439mm, that is ( -81.854μm, +37.439μm).
通过采用本实施例所述的机床XY平面误差修正系统,进行四次系统误差辩识(即进行3次过程迭代),形成系统误差模型后,再通过拟合补偿模块计算出前馈量,得出修正后的实际输出的进给位移,再将该实际输出的进给位移传给伺服驱动器,伺服驱动器控制伺服电机输出位移,用激光干涉仪器对机床刀具实际进给位移进行测量。其测量位置间隔为20mm,0到1600mm的加工精度实际测量,误差如图6所示,其最大误差范围为:-0.024969mm;+0.026406mm ,即( -24.969μm,+26.406μm)。By adopting the machine tool XY plane error correction system described in this embodiment, four system error identifications (that is, three process iterations) are performed, and after the system error model is formed, the feedforward amount is calculated by the fitting compensation module, and The corrected actual output feed displacement is then transmitted to the servo driver, the servo driver controls the output displacement of the servo motor, and the actual feed displacement of the machine tool is measured with a laser interferometer. The measurement position interval is 20mm, and the machining accuracy of 0 to 1600mm is actually measured. The error is shown in Figure 6. The maximum error range is: -0.024969mm; +0.026406mm, that is ( -24.969μm, +26.406μm).
由实际测量验证可知:本发明可以显著地提高机床定位精度,并且无须增加系统硬件,辩识补偿自动完成、操作简单,具有良好的应用前景。It can be seen from the actual measurement and verification that the invention can significantly improve the positioning accuracy of the machine tool, without adding system hardware, automatic completion of identification and compensation, simple operation, and good application prospects.
本发明并不局限于前述的具体实施方式。本发明扩展到任何在本说明书中披露的新特征或任何新的组合,以及披露的任一新的方法或过程的步骤或任何新的组合。The present invention is not limited to the foregoing specific embodiments. The present invention extends to any new feature or any new combination disclosed in this specification, and any new method or process step or any new combination disclosed.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2010102214914A CN101968641B (en) | 2010-07-08 | 2010-07-08 | Error correction system of machine tool XY plane |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2010102214914A CN101968641B (en) | 2010-07-08 | 2010-07-08 | Error correction system of machine tool XY plane |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101968641A true CN101968641A (en) | 2011-02-09 |
CN101968641B CN101968641B (en) | 2012-06-13 |
Family
ID=43547809
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2010102214914A Active CN101968641B (en) | 2010-07-08 | 2010-07-08 | Error correction system of machine tool XY plane |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101968641B (en) |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103192292A (en) * | 2013-04-11 | 2013-07-10 | 济南大学 | Numerical control machine error identification and separation method based on processing workpiece curved surface morphology information |
CN104597844A (en) * | 2015-01-07 | 2015-05-06 | 苏州新代数控设备有限公司 | Driving device control method and system |
CN104661793A (en) * | 2012-11-14 | 2015-05-27 | 三菱重工业株式会社 | Interface system of industrial machine |
CN106569458A (en) * | 2015-10-13 | 2017-04-19 | 上海铼钠克数控科技股份有限公司 | Error iteration-based dynamic machining error compensation method |
CN107817761A (en) * | 2016-09-12 | 2018-03-20 | 上海铼钠克数控科技股份有限公司 | Method of processing parts and system based on error iterative learning |
CN108681309A (en) * | 2018-05-16 | 2018-10-19 | 北京因时机器人科技有限公司 | A kind of servo-driver stroke scaling method and device |
CN108723888A (en) * | 2018-06-05 | 2018-11-02 | 西安交通大学 | Straight-line feed axis point of a knife point is relative to Grating examinations position deviation method of estimation |
CN109230482A (en) * | 2018-08-20 | 2019-01-18 | 合肥国轩高科动力能源有限公司 | Power battery oven tray or clamp positioning method |
CN109341526A (en) * | 2018-10-18 | 2019-02-15 | 山东中衡光电科技有限公司 | One kind optical fabrication detection error modification method as caused by air-flow |
CN109471458A (en) * | 2018-12-15 | 2019-03-15 | 东北林业大学 | A self-leveling structure error declination compensation method |
CN109753016A (en) * | 2019-01-24 | 2019-05-14 | 西华大学 | A Calculation Method for NC Multi-axis Linkage Tool Length Compensation |
CN111092587A (en) * | 2019-12-27 | 2020-05-01 | 北京合康新能科技股份有限公司 | A frequency conversion speed control method |
CN111113268A (en) * | 2019-12-21 | 2020-05-08 | 福建省嘉泰智能装备有限公司 | Cutter correction method and system for machine tool |
CN111189390A (en) * | 2020-01-09 | 2020-05-22 | 陕西科技大学 | A device for measuring geometric errors of machine tools based on the principle of laser interference |
CN111829454A (en) * | 2020-07-17 | 2020-10-27 | 湖南华曙高科技有限责任公司 | Calibration device for scanning system and calibration method thereof |
CN113910001A (en) * | 2021-11-22 | 2022-01-11 | 广西成电智能制造产业技术有限责任公司 | Numerical control machine tool space error identification method |
CN116203893A (en) * | 2023-01-30 | 2023-06-02 | 凹凸智能科技(苏州)有限公司 | High-precision servo machine tool and processing method thereof |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4990840A (en) * | 1988-02-19 | 1991-02-05 | The Cross Company | Method and system for controlling a machine tool such as a turning machine |
US6615102B1 (en) * | 1998-07-10 | 2003-09-02 | Fidia S.P.A. | Process and system for compensating static errors on numerically controlled machine tools |
WO2006102517A2 (en) * | 2005-03-23 | 2006-09-28 | Hurco Companies, Inc. | Method of tolerance-based trajectory planning and control |
CN1845025A (en) * | 2006-04-29 | 2006-10-11 | 沈阳工业大学 | Method of Improving Contour Machining Accuracy Using Zero Phase Error Tracking Control and Disturbance Observation |
CN1892175A (en) * | 2005-07-08 | 2007-01-10 | 鸿富锦精密工业(深圳)有限公司 | Three-coordinate measuring machine-tool error compensation system and method |
CN101114166A (en) * | 2007-09-13 | 2008-01-30 | 暨南大学 | A Contour Control Method for Complicated Trajectories |
-
2010
- 2010-07-08 CN CN2010102214914A patent/CN101968641B/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4990840A (en) * | 1988-02-19 | 1991-02-05 | The Cross Company | Method and system for controlling a machine tool such as a turning machine |
US6615102B1 (en) * | 1998-07-10 | 2003-09-02 | Fidia S.P.A. | Process and system for compensating static errors on numerically controlled machine tools |
WO2006102517A2 (en) * | 2005-03-23 | 2006-09-28 | Hurco Companies, Inc. | Method of tolerance-based trajectory planning and control |
CN1892175A (en) * | 2005-07-08 | 2007-01-10 | 鸿富锦精密工业(深圳)有限公司 | Three-coordinate measuring machine-tool error compensation system and method |
CN1845025A (en) * | 2006-04-29 | 2006-10-11 | 沈阳工业大学 | Method of Improving Contour Machining Accuracy Using Zero Phase Error Tracking Control and Disturbance Observation |
CN101114166A (en) * | 2007-09-13 | 2008-01-30 | 暨南大学 | A Contour Control Method for Complicated Trajectories |
Non-Patent Citations (2)
Title |
---|
《机床与液压》 20041231 杨上陆 基于PMAC和松下伺服电机的电子横移控制系统研究 第73-76页 1-4 , 第11期 2 * |
《机床与液压》 20051231 肖体兵等 高精度电液比例阀控缸位置伺服系统控制器的设计 第53-55页 1-4 , 第11期 2 * |
Cited By (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104661793A (en) * | 2012-11-14 | 2015-05-27 | 三菱重工业株式会社 | Interface system of industrial machine |
CN103192292A (en) * | 2013-04-11 | 2013-07-10 | 济南大学 | Numerical control machine error identification and separation method based on processing workpiece curved surface morphology information |
CN103192292B (en) * | 2013-04-11 | 2015-04-22 | 济南大学 | Numerical control machine error identification and separation method based on processing workpiece curved surface morphology information |
CN104597844A (en) * | 2015-01-07 | 2015-05-06 | 苏州新代数控设备有限公司 | Driving device control method and system |
CN104597844B (en) * | 2015-01-07 | 2017-08-25 | 苏州新代数控设备有限公司 | The control method and control system of drive device |
CN106569458A (en) * | 2015-10-13 | 2017-04-19 | 上海铼钠克数控科技股份有限公司 | Error iteration-based dynamic machining error compensation method |
CN107817761A (en) * | 2016-09-12 | 2018-03-20 | 上海铼钠克数控科技股份有限公司 | Method of processing parts and system based on error iterative learning |
CN108681309A (en) * | 2018-05-16 | 2018-10-19 | 北京因时机器人科技有限公司 | A kind of servo-driver stroke scaling method and device |
CN108681309B (en) * | 2018-05-16 | 2020-04-17 | 北京因时机器人科技有限公司 | Servo driver stroke calibration method and device |
CN108723888A (en) * | 2018-06-05 | 2018-11-02 | 西安交通大学 | Straight-line feed axis point of a knife point is relative to Grating examinations position deviation method of estimation |
CN109230482A (en) * | 2018-08-20 | 2019-01-18 | 合肥国轩高科动力能源有限公司 | Power battery oven tray or clamp positioning method |
CN109230482B (en) * | 2018-08-20 | 2020-05-22 | 合肥国轩高科动力能源有限公司 | A kind of power battery oven tray or fixture positioning method |
CN109341526A (en) * | 2018-10-18 | 2019-02-15 | 山东中衡光电科技有限公司 | One kind optical fabrication detection error modification method as caused by air-flow |
CN109471458A (en) * | 2018-12-15 | 2019-03-15 | 东北林业大学 | A self-leveling structure error declination compensation method |
CN109753016A (en) * | 2019-01-24 | 2019-05-14 | 西华大学 | A Calculation Method for NC Multi-axis Linkage Tool Length Compensation |
CN111113268A (en) * | 2019-12-21 | 2020-05-08 | 福建省嘉泰智能装备有限公司 | Cutter correction method and system for machine tool |
CN111113268B (en) * | 2019-12-21 | 2021-09-07 | 福建省嘉泰智能装备有限公司 | Cutter correction method and system for machine tool |
CN111092587A (en) * | 2019-12-27 | 2020-05-01 | 北京合康新能科技股份有限公司 | A frequency conversion speed control method |
CN111092587B (en) * | 2019-12-27 | 2021-07-06 | 北京合康新能科技股份有限公司 | A frequency conversion speed control method |
CN111189390A (en) * | 2020-01-09 | 2020-05-22 | 陕西科技大学 | A device for measuring geometric errors of machine tools based on the principle of laser interference |
CN111189390B (en) * | 2020-01-09 | 2021-08-10 | 陕西科技大学 | Machine tool geometric error measuring device based on laser interference principle |
CN111829454A (en) * | 2020-07-17 | 2020-10-27 | 湖南华曙高科技有限责任公司 | Calibration device for scanning system and calibration method thereof |
CN113910001A (en) * | 2021-11-22 | 2022-01-11 | 广西成电智能制造产业技术有限责任公司 | Numerical control machine tool space error identification method |
CN113910001B (en) * | 2021-11-22 | 2024-03-26 | 广西成电智能制造产业技术有限责任公司 | Numerical control machine tool space error identification method |
CN116203893A (en) * | 2023-01-30 | 2023-06-02 | 凹凸智能科技(苏州)有限公司 | High-precision servo machine tool and processing method thereof |
Also Published As
Publication number | Publication date |
---|---|
CN101968641B (en) | 2012-06-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101968641B (en) | Error correction system of machine tool XY plane | |
US8255075B2 (en) | Thermal error compensation method for machine tools | |
CN101943896B (en) | Compensation Method of Trajectory Regeneration for NC Machine Tool Error | |
CN109709892B (en) | Online compensation method for space error of multi-axis linkage numerical control machine tool | |
WO2021004218A1 (en) | Method and apparatus for controlling movement trajectory of machine tool, storage medium and processor | |
CN102211121B (en) | Numerical control precision progressive forming device and precision progressive forming method for plates | |
CN103123477B (en) | Shaft motion control method based on double feedbacks of motor and machine tool location | |
CN102581705B (en) | A Graduation Compensation Method for Workpiece Error in Milling | |
CN102566500B (en) | Straight line segment approximation node-based numerical control system contour error control method | |
CN101957611A (en) | Spline real-time interpolation method | |
CN102566497B (en) | Compensation realizing method for linear axis positioning error in numerical control system | |
CN101751002A (en) | Temperature compensation system and compensation method used for large-size numerical control machine | |
CN109291051B (en) | A closed-loop control method for terminal attitude of series-parallel robot based on angle sensor | |
CN112731865B (en) | A Pre-compensation Method for Multi-axis Machining Contour Error Based on Interpolation Data | |
CN110286650A (en) | A Method for Fast Alignment of Blanks on Machine Based on NC Macro Program | |
CN108062071B (en) | A Real-time Measurement Method of Servo Profile Error of Parametric Curve Track | |
CN110989490B (en) | A method for obtaining the optimal installation position of workpiece based on contour error | |
CN103513609B (en) | The external compensating control method of a kind of numerical control machining tool heat error based on auxiliary coder | |
CN106959664B (en) | Online nonlinear error compensation method based on five-axis double turntable | |
CN104181863A (en) | Numerical-control machine tool error compensation system based on position feedback signals | |
CN112525133A (en) | Method for converting normal tolerance into polar radius tolerance | |
CN105929791B (en) | The direct contour outline control method of plane rectangular coordinates kinematic system | |
CN113741341A (en) | Part contour error prediction method and system for cutting under strict definition | |
CN110045681B (en) | An external compensation method for position-dependent errors of CNC machine tools based on position prediction | |
CN102478820A (en) | Novel real-time compensation of digit control machine tool positioning error device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |