CN101947144A - Ply tissue engineering corneal frame and manufacturing method and application thereof - Google Patents
Ply tissue engineering corneal frame and manufacturing method and application thereof Download PDFInfo
- Publication number
- CN101947144A CN101947144A CN 201010296433 CN201010296433A CN101947144A CN 101947144 A CN101947144 A CN 101947144A CN 201010296433 CN201010296433 CN 201010296433 CN 201010296433 A CN201010296433 A CN 201010296433A CN 101947144 A CN101947144 A CN 101947144A
- Authority
- CN
- China
- Prior art keywords
- corneal
- lamellar
- cornea
- tissue engineering
- flaggy
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 16
- 210000004087 cornea Anatomy 0.000 claims abstract description 74
- 210000003683 corneal stroma Anatomy 0.000 claims abstract description 65
- 239000000463 material Substances 0.000 claims abstract description 25
- 241001465754 Metazoa Species 0.000 claims abstract description 14
- 201000010099 disease Diseases 0.000 claims abstract description 13
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 claims abstract description 13
- 238000002054 transplantation Methods 0.000 claims abstract description 13
- 102000008186 Collagen Human genes 0.000 claims abstract description 12
- 108010035532 Collagen Proteins 0.000 claims abstract description 12
- 229920001436 collagen Polymers 0.000 claims abstract description 11
- 208000009043 Chemical Burns Diseases 0.000 claims abstract description 5
- 208000026278 immune system disease Diseases 0.000 claims abstract description 5
- 238000002834 transmittance Methods 0.000 claims abstract description 4
- 208000018380 Chemical injury Diseases 0.000 claims abstract description 3
- 210000003850 cellular structure Anatomy 0.000 claims abstract description 3
- 201000005228 cornea cancer Diseases 0.000 claims abstract description 3
- 208000024726 cornea neoplasm Diseases 0.000 claims abstract description 3
- 239000000835 fiber Substances 0.000 claims abstract description 3
- 210000001519 tissue Anatomy 0.000 claims description 68
- 238000001962 electrophoresis Methods 0.000 claims description 48
- 238000000034 method Methods 0.000 claims description 35
- 239000000243 solution Substances 0.000 claims description 28
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 28
- 238000004659 sterilization and disinfection Methods 0.000 claims description 20
- 238000001035 drying Methods 0.000 claims description 15
- 239000000137 peptide hydrolase inhibitor Substances 0.000 claims description 14
- 239000000872 buffer Substances 0.000 claims description 13
- 210000004027 cell Anatomy 0.000 claims description 13
- 239000003242 anti bacterial agent Substances 0.000 claims description 11
- 229940088710 antibiotic agent Drugs 0.000 claims description 11
- 102000004190 Enzymes Human genes 0.000 claims description 9
- 108090000790 Enzymes Proteins 0.000 claims description 9
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 9
- 239000012153 distilled water Substances 0.000 claims description 9
- 238000001291 vacuum drying Methods 0.000 claims description 9
- GUTLYIVDDKVIGB-OUBTZVSYSA-N Cobalt-60 Chemical compound [60Co] GUTLYIVDDKVIGB-OUBTZVSYSA-N 0.000 claims description 8
- 229940124158 Protease/peptidase inhibitor Drugs 0.000 claims description 8
- 210000005252 bulbus oculi Anatomy 0.000 claims description 8
- CPKVUHPKYQGHMW-UHFFFAOYSA-N 1-ethenylpyrrolidin-2-one;molecular iodine Chemical compound II.C=CN1CCCC1=O CPKVUHPKYQGHMW-UHFFFAOYSA-N 0.000 claims description 7
- 229920000153 Povidone-iodine Polymers 0.000 claims description 7
- 229960001621 povidone-iodine Drugs 0.000 claims description 7
- 239000000758 substrate Substances 0.000 claims description 7
- 229920000742 Cotton Polymers 0.000 claims description 6
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 claims description 6
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 claims description 6
- UCSJYZPVAKXKNQ-HZYVHMACSA-N streptomycin Chemical compound CN[C@H]1[C@H](O)[C@@H](O)[C@H](CO)O[C@H]1O[C@@H]1[C@](C=O)(O)[C@H](C)O[C@H]1O[C@@H]1[C@@H](NC(N)=N)[C@H](O)[C@@H](NC(N)=N)[C@H](O)[C@H]1O UCSJYZPVAKXKNQ-HZYVHMACSA-N 0.000 claims description 6
- 230000018044 dehydration Effects 0.000 claims description 5
- 238000006297 dehydration reaction Methods 0.000 claims description 5
- 230000008569 process Effects 0.000 claims description 5
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 claims description 4
- 239000006144 Dulbecco’s modified Eagle's medium Substances 0.000 claims description 4
- 229930182555 Penicillin Natural products 0.000 claims description 4
- 239000003795 chemical substances by application Substances 0.000 claims description 4
- 210000000887 face Anatomy 0.000 claims description 4
- 238000000926 separation method Methods 0.000 claims description 4
- 230000001954 sterilising effect Effects 0.000 claims description 4
- 238000009777 vacuum freeze-drying Methods 0.000 claims description 4
- 229960005322 streptomycin Drugs 0.000 claims description 3
- 238000010257 thawing Methods 0.000 claims description 3
- 239000007983 Tris buffer Substances 0.000 claims description 2
- 229960000583 acetic acid Drugs 0.000 claims description 2
- 239000012362 glacial acetic acid Substances 0.000 claims description 2
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 claims description 2
- 239000002609 medium Substances 0.000 claims 5
- 210000000981 epithelium Anatomy 0.000 claims 4
- 238000011010 flushing procedure Methods 0.000 claims 4
- 239000007788 liquid Substances 0.000 claims 4
- 238000007654 immersion Methods 0.000 claims 3
- 210000001232 limbus corneae Anatomy 0.000 claims 3
- 239000012531 culture fluid Substances 0.000 claims 2
- 108091092562 ribozyme Proteins 0.000 claims 2
- 206010055015 Corneal hypertrophy Diseases 0.000 claims 1
- 210000000589 cicatrix Anatomy 0.000 claims 1
- 238000001816 cooling Methods 0.000 claims 1
- 238000001976 enzyme digestion Methods 0.000 claims 1
- 150000002960 penicillins Chemical class 0.000 claims 1
- 208000028006 Corneal injury Diseases 0.000 abstract description 4
- 208000021921 corneal disease Diseases 0.000 abstract description 3
- 230000002062 proliferating effect Effects 0.000 abstract description 2
- 231100000241 scar Toxicity 0.000 abstract description 2
- 239000004365 Protease Substances 0.000 description 15
- 102000006382 Ribonucleases Human genes 0.000 description 15
- 108010083644 Ribonucleases Proteins 0.000 description 15
- 102000016911 Deoxyribonucleases Human genes 0.000 description 12
- 108010053770 Deoxyribonucleases Proteins 0.000 description 12
- 241000283973 Oryctolagus cuniculus Species 0.000 description 12
- 102000035195 Peptidases Human genes 0.000 description 10
- 108091005804 Peptidases Proteins 0.000 description 10
- 201000004569 Blindness Diseases 0.000 description 9
- 238000005516 engineering process Methods 0.000 description 9
- 210000002919 epithelial cell Anatomy 0.000 description 9
- 229940042399 direct acting antivirals protease inhibitors Drugs 0.000 description 6
- 229940088598 enzyme Drugs 0.000 description 6
- 238000002360 preparation method Methods 0.000 description 6
- 102000007590 Calpain Human genes 0.000 description 5
- 108010032088 Calpain Proteins 0.000 description 5
- 108090000712 Cathepsin B Proteins 0.000 description 5
- 102000004225 Cathepsin B Human genes 0.000 description 5
- 108010088842 Fibrinolysin Proteins 0.000 description 5
- 206010061218 Inflammation Diseases 0.000 description 5
- 108010028275 Leukocyte Elastase Proteins 0.000 description 5
- 102000016799 Leukocyte elastase Human genes 0.000 description 5
- 239000004677 Nylon Substances 0.000 description 5
- 102000016387 Pancreatic elastase Human genes 0.000 description 5
- 108010067372 Pancreatic elastase Proteins 0.000 description 5
- 108090000526 Papain Proteins 0.000 description 5
- 108090001109 Thermolysin Proteins 0.000 description 5
- 108090000631 Trypsin Proteins 0.000 description 5
- 102000004142 Trypsin Human genes 0.000 description 5
- 238000005138 cryopreservation Methods 0.000 description 5
- 230000006378 damage Effects 0.000 description 5
- 238000007710 freezing Methods 0.000 description 5
- 230000008014 freezing Effects 0.000 description 5
- 239000003102 growth factor Substances 0.000 description 5
- 230000004054 inflammatory process Effects 0.000 description 5
- 108020004707 nucleic acids Proteins 0.000 description 5
- 102000039446 nucleic acids Human genes 0.000 description 5
- 150000007523 nucleic acids Chemical class 0.000 description 5
- 229920001778 nylon Polymers 0.000 description 5
- 229940055729 papain Drugs 0.000 description 5
- 235000019834 papain Nutrition 0.000 description 5
- 229940012957 plasmin Drugs 0.000 description 5
- 235000019419 proteases Nutrition 0.000 description 5
- 239000012588 trypsin Substances 0.000 description 5
- 102000010834 Extracellular Matrix Proteins Human genes 0.000 description 4
- 108010037362 Extracellular Matrix Proteins Proteins 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 210000002744 extracellular matrix Anatomy 0.000 description 4
- 238000002513 implantation Methods 0.000 description 4
- 239000011159 matrix material Substances 0.000 description 4
- JGSARLDLIJGVTE-MBNYWOFBSA-N Penicillin G Chemical compound N([C@H]1[C@H]2SC([C@@H](N2C1=O)C(O)=O)(C)C)C(=O)CC1=CC=CC=C1 JGSARLDLIJGVTE-MBNYWOFBSA-N 0.000 description 3
- 206010052779 Transplant rejections Diseases 0.000 description 3
- 210000002159 anterior chamber Anatomy 0.000 description 3
- 230000004071 biological effect Effects 0.000 description 3
- 239000012620 biological material Substances 0.000 description 3
- 239000012154 double-distilled water Substances 0.000 description 3
- 210000003560 epithelium corneal Anatomy 0.000 description 3
- 239000010437 gem Substances 0.000 description 3
- 229910001751 gemstone Inorganic materials 0.000 description 3
- 230000007918 pathogenicity Effects 0.000 description 3
- 229940049954 penicillin Drugs 0.000 description 3
- 239000003761 preservation solution Substances 0.000 description 3
- 230000008439 repair process Effects 0.000 description 3
- 238000012216 screening Methods 0.000 description 3
- 238000002791 soaking Methods 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 229960000707 tobramycin Drugs 0.000 description 3
- NLVFBUXFDBBNBW-PBSUHMDJSA-N tobramycin Chemical compound N[C@@H]1C[C@H](O)[C@@H](CN)O[C@@H]1O[C@H]1[C@H](O)[C@@H](O[C@@H]2[C@@H]([C@@H](N)[C@H](O)[C@@H](CO)O2)O)[C@H](N)C[C@@H]1N NLVFBUXFDBBNBW-PBSUHMDJSA-N 0.000 description 3
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 2
- 102000004266 Collagen Type IV Human genes 0.000 description 2
- 108010042086 Collagen Type IV Proteins 0.000 description 2
- 238000000116 DAPI staining Methods 0.000 description 2
- 208000003556 Dry Eye Syndromes Diseases 0.000 description 2
- 206010013774 Dry eye Diseases 0.000 description 2
- 241000725303 Human immunodeficiency virus Species 0.000 description 2
- 206010072138 Limbal stem cell deficiency Diseases 0.000 description 2
- 206010028980 Neoplasm Diseases 0.000 description 2
- 238000012356 Product development Methods 0.000 description 2
- 206010042033 Stevens-Johnson syndrome Diseases 0.000 description 2
- 231100000168 Stevens-Johnson syndrome Toxicity 0.000 description 2
- 241000282887 Suidae Species 0.000 description 2
- 239000003513 alkali Substances 0.000 description 2
- 230000000890 antigenic effect Effects 0.000 description 2
- 210000002469 basement membrane Anatomy 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 230000010261 cell growth Effects 0.000 description 2
- 230000001413 cellular effect Effects 0.000 description 2
- 230000009193 crawling Effects 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 238000006731 degradation reaction Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- 230000029087 digestion Effects 0.000 description 2
- 239000003792 electrolyte Substances 0.000 description 2
- 210000001508 eye Anatomy 0.000 description 2
- GNBHRKFJIUUOQI-UHFFFAOYSA-N fluorescein Chemical compound O1C(=O)C2=CC=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 GNBHRKFJIUUOQI-UHFFFAOYSA-N 0.000 description 2
- 239000000815 hypotonic solution Substances 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 230000036512 infertility Effects 0.000 description 2
- 210000005036 nerve Anatomy 0.000 description 2
- 238000005457 optimization Methods 0.000 description 2
- 210000000056 organ Anatomy 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 210000003491 skin Anatomy 0.000 description 2
- 238000010186 staining Methods 0.000 description 2
- 210000002536 stromal cell Anatomy 0.000 description 2
- 230000008961 swelling Effects 0.000 description 2
- 238000012876 topography Methods 0.000 description 2
- 230000004393 visual impairment Effects 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- 238000002689 xenotransplantation Methods 0.000 description 2
- 208000002177 Cataract Diseases 0.000 description 1
- 102000001187 Collagen Type III Human genes 0.000 description 1
- 108010069502 Collagen Type III Proteins 0.000 description 1
- BWGVNKXGVNDBDI-UHFFFAOYSA-N Fibrin monomer Chemical group CNC(=O)CNC(=O)CN BWGVNKXGVNDBDI-UHFFFAOYSA-N 0.000 description 1
- 229920002683 Glycosaminoglycan Polymers 0.000 description 1
- 241000700721 Hepatitis B virus Species 0.000 description 1
- 201000005505 Measles Diseases 0.000 description 1
- WHNWPMSKXPGLAX-UHFFFAOYSA-N N-Vinyl-2-pyrrolidone Chemical compound C=CN1CCCC1=O WHNWPMSKXPGLAX-UHFFFAOYSA-N 0.000 description 1
- 206010067776 Ocular pemphigoid Diseases 0.000 description 1
- 241000711798 Rabies lyssavirus Species 0.000 description 1
- 241000700584 Simplexvirus Species 0.000 description 1
- 241000700605 Viruses Species 0.000 description 1
- 206010047642 Vitiligo Diseases 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 238000007605 air drying Methods 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 229920001222 biopolymer Polymers 0.000 description 1
- 230000001851 biosynthetic effect Effects 0.000 description 1
- 230000002051 biphasic effect Effects 0.000 description 1
- 201000000053 blastoma Diseases 0.000 description 1
- 210000004204 blood vessel Anatomy 0.000 description 1
- 238000000861 blow drying Methods 0.000 description 1
- 239000001110 calcium chloride Substances 0.000 description 1
- 229910001628 calcium chloride Inorganic materials 0.000 description 1
- 235000011148 calcium chloride Nutrition 0.000 description 1
- 210000000170 cell membrane Anatomy 0.000 description 1
- 230000004663 cell proliferation Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 201000010002 cicatricial pemphigoid Diseases 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 230000004453 corneal transparency Effects 0.000 description 1
- 201000007717 corneal ulcer Diseases 0.000 description 1
- 238000012136 culture method Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 239000003599 detergent Substances 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 230000001909 effect on DNA Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 210000004177 elastic tissue Anatomy 0.000 description 1
- 201000008184 embryoma Diseases 0.000 description 1
- 210000002889 endothelial cell Anatomy 0.000 description 1
- 210000005081 epithelial layer Anatomy 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 208000030533 eye disease Diseases 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 239000000499 gel Substances 0.000 description 1
- 239000003292 glue Substances 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 210000003709 heart valve Anatomy 0.000 description 1
- 239000000017 hydrogel Substances 0.000 description 1
- XMBWDFGMSWQBCA-UHFFFAOYSA-N hydrogen iodide Chemical compound I XMBWDFGMSWQBCA-UHFFFAOYSA-N 0.000 description 1
- 239000007943 implant Substances 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 230000028709 inflammatory response Effects 0.000 description 1
- 208000014674 injury Diseases 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 230000000968 intestinal effect Effects 0.000 description 1
- 230000004410 intraocular pressure Effects 0.000 description 1
- PNDPGZBMCMUPRI-UHFFFAOYSA-N iodine Chemical compound II PNDPGZBMCMUPRI-UHFFFAOYSA-N 0.000 description 1
- 230000002427 irreversible effect Effects 0.000 description 1
- 208000002741 leukoplakia Diseases 0.000 description 1
- 210000003041 ligament Anatomy 0.000 description 1
- 210000004185 liver Anatomy 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 210000004379 membrane Anatomy 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 210000000633 nuclear envelope Anatomy 0.000 description 1
- 210000004940 nucleus Anatomy 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 1
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 1
- 229940069328 povidone Drugs 0.000 description 1
- 230000035755 proliferation Effects 0.000 description 1
- 235000004252 protein component Nutrition 0.000 description 1
- 229940121649 protein inhibitor Drugs 0.000 description 1
- 239000012268 protein inhibitor Substances 0.000 description 1
- 235000018102 proteins Nutrition 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 230000001172 regenerating effect Effects 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 210000002027 skeletal muscle Anatomy 0.000 description 1
- 238000007920 subcutaneous administration Methods 0.000 description 1
- 238000001356 surgical procedure Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 230000008733 trauma Effects 0.000 description 1
- 210000003932 urinary bladder Anatomy 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Images
Landscapes
- Materials For Medical Uses (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
Abstract
一种板层组织工程角膜支架及其制作方法与应用,涉及一种生物医学的板层组织工程角膜支架。提供一种与现有材料相比,来源丰富、透明度高、生物相容性好、性能与新鲜角膜接近、脱细胞彻底、安全性强,能被广大患者接受并长期应用于临床的板层组织工程角膜支架及其制作方法与应用。所述一种板层组织工程角膜支架为动物源性脱细胞板层角膜基质片,不含细胞成分,胶原纤维排列整齐,间隙规则,角膜透光率为80%~95%,拉伸强度为2~5N/mm2。可用于角膜移植各种供体材料的替代物,可在治疗角膜外伤及化学烧伤系列疾病,角膜肿瘤及增生性系列疾病,角膜血管化和瘢痕系列疾病,角膜免疫性疾病,角膜移植排斥反应系列疾病等角膜病变中应用。A lamellar tissue engineering corneal stent and its manufacturing method and application relate to a biomedical lamellar tissue engineering corneal stent. Compared with the existing materials, it provides a lamellar tissue that has rich sources, high transparency, good biocompatibility, performance close to that of fresh cornea, complete decellularization, and strong safety, which can be accepted by a large number of patients and used in clinical practice for a long time Engineering corneal stent and its manufacturing method and application. The lamellar tissue engineering corneal scaffold is an animal-derived decellularized lamellar corneal stroma sheet, which does not contain cell components, the collagen fibers are arranged neatly, the gaps are regular, the corneal light transmittance is 80% to 95%, and the tensile strength is 2~5N/mm 2 . It can be used as a substitute for various donor materials in corneal transplantation, and can be used in the treatment of corneal trauma and chemical burn series of diseases, corneal tumors and proliferative diseases, corneal vascularization and scar series of diseases, corneal immune diseases, corneal transplantation rejection series It is used in corneal diseases such as diseases.
Description
技术领域technical field
本发明涉及一种生物医学的板层组织工程角膜支架,尤其是涉及一种用于治疗角膜外伤、肿瘤、化学烧伤(碱烧伤)、血管化严重干眼症、角膜缘干细胞缺乏、免疫性疾病如Stevens-Johnson综合征(SJS)、眼部类天疱疮、单纯疱疹病毒性角膜白斑、角膜移植排斥反应等致盲性眼病的板层角膜组织工程材料及其制备方法与应用。The invention relates to a biomedical lamellar tissue engineering corneal scaffold, in particular to a scaffold for treating corneal trauma, tumors, chemical burns (alkali burns), vascularized severe dry eye, limbal stem cell deficiency, and immune diseases Such as Stevens-Johnson syndrome (SJS), ocular pemphigoid, herpes simplex virus leukoplakia, corneal transplant rejection and other blinding eye diseases such as lamellar corneal tissue engineering materials and their preparation methods and applications.
背景技术Background technique
据世界卫生组织报告,角膜病是引起视力丧失的第二位主要病因,每年因角膜溃疡、眼外伤等造成的新增角膜盲为150万至200万,儿童盲的主要病因是麻疹导致的角膜白斑。治疗角膜盲的唯一有效方法是角膜移植术。但是由于宗教信仰、风俗习惯的影响,身故后捐献角膜者甚少;加上人类免疫缺陷病毒(HIV)、乙肝病毒、狂犬病毒、克雅氏病毒可以通过植片传播、角膜屈光手术、人口老龄化等原因使角膜供体材料严重不足,极大地限制了角膜盲患者脱盲。随着人们对视觉质量要求的日益提高,角膜移植技术也得到不断改进和更新,而目前供体来源不足、免疫排斥反应、角膜移植并发症等又限制了此项技术的开展。随着角膜外伤、肿瘤、化学烧伤(碱烧伤)、血管化严重干眼症、角膜缘干细胞缺乏、免疫性疾病、角膜移植排斥反应等患者人数的增多,角膜材料的来源也就成为目前眼科医生存在的一个棘手的问题。如何高质量长时间维持板层角膜替代物在眼内的功能,寻找一种能达到理想状态的角膜替代物也就成了当前眼科界研究的一个热点。然而,目前国内外研制的各种种子细胞支架材料在角膜曲率及地形图,生物相容性,强度,降解率,透明性,同源性,抗原性及病原性等性能方面均存在着部分缺陷。猪角膜来源广泛,价格便宜,角膜厚度,地形图和屈光方面与人角膜极为相似([1]Liu W,McLaughlin CR,Fagerholm P,Lagali NS,Heyne B,et al.Collagen-phoshphorylcholine interpenetrating network hydrogels as corneal substitutes.Biomaterials,2009.p.1551-9;[2]Biomaterials and Culture Methods.Res 2008;63:535-544;[3]recombinant humancollagen-based corneal substitutes for I mplantation:performance of type I versus type IIIcollagen.Invest Ophthalmol Vis Sci 2008;49:3887-3894;[4]Li F,Lohmann C,Suuronen E,VascottoS,Kobuch K,et al.Cellular and nerve regeneration within a biosynthetic extracellular matrix forcorneal transplantation.Proc Natl Acad Sci USA 2003;100:15346-15351;[5]Gilbert TW,BadylakSF.Decellualrization of tissues and organs.Biomaterials 2006;27:3675-3683),越来越受到科学家的重视,而目前猪的其他器官已经用于异种移植([6]Sykes M,Sandrin M.Position paper of theEthics Committee of the International Xenotransplantation Association.Transplantation 2004;78:1101-1107;[7]Kampmeier J,Birngruber R,Brinkmann R. Thermal and biomechanical parametersof porcine cornea.2000;19:355-363)。According to the report of the World Health Organization, corneal disease is the second major cause of vision loss. Every year, 1.5 million to 2 million new corneal blindness are caused by corneal ulcers and eye trauma. The main cause of childhood blindness is corneal blindness caused by measles. Vitiligo. The only effective treatment for corneal blindness is keratoplasty. However, due to the influence of religious beliefs and customs, very few people donate corneas after death; in addition, human immunodeficiency virus (HIV), hepatitis B virus, rabies virus, Creutzfeldt-Jakob virus can be transmitted through implants, corneal refractive surgery, Due to population aging and other reasons, there is a serious shortage of corneal donor materials, which greatly limits the blindness of corneal blind patients. As people's requirements for visual quality are increasing day by day, corneal transplantation technology has also been continuously improved and updated, but the lack of donor sources, immune rejection, corneal transplantation complications, etc. limit the development of this technology. With the increase in the number of patients with corneal trauma, tumors, chemical burns (alkali burns), severe vascularized dry eye, limbal stem cell deficiency, immune diseases, and corneal transplant rejection, the source of corneal materials has become the current ophthalmologist. A tricky problem exists. How to maintain the function of the lamellar corneal substitute in the eye with high quality for a long time, and how to find a corneal substitute that can achieve an ideal state has become a hot spot in the current ophthalmology field. However, various seed cell scaffold materials developed at home and abroad have some defects in corneal curvature and topography, biocompatibility, strength, degradation rate, transparency, homology, antigenicity and pathogenicity. . Porcine cornea has a wide range of sources and is cheap, and its thickness, topography and refraction are very similar to those of human cornea ([1] Liu W, McLaughlin CR, Fagerholm P, Lagali NS, Heyne B, et al. Collagen-phoshphorylcholine interpenetrating network hydrogels as corneal substitutes.Biomaterials, 2009.p.1551-9; [2]Biomaterials and Culture Methods.Res 2008;63:535-544; [3]recombinant humancollagen-based corneal substitutes for Implantation: performance of type I versus type IIIcollagen. Invest Ophthalmol Vis Sci 2008; 49: 3887-3894; [4] Li F, Lohmann C, Suuronen E, Vascotto S, Kobuch K, et al. Cellular and nerve regeneration within a biosynthetic extracellular matrix S for corneal transplantation. USA 2003; 100: 15346-15351; [5] Gilbert TW, BadylakSF. Decellualrization of tissues and organs. Biomaterials 2006; 27: 3675-3683), more and more attention of scientists, while other organs of pigs have been used for Xenotransplantation ([6] Sykes M, Sandrin M. Position paper of the Ethics Committee of the International Xenotransplantation Association. Transplantation 2004; 78: 1101-1107; [7] Kampmeier J, Birngruber R, Brinkmann R. Thermal and biomechanical parameters of ne .2000; 19 : 355-363).
发明内容Contents of the invention
本发明的目的是提供一种与现有材料相比,来源丰富、透明度高、生物相容性好、性能与新鲜角膜接近、脱细胞彻底、安全性强,能被广大患者接受并长期应用于临床的板层组织工程角膜支架及其制作方法与应用。The purpose of the present invention is to provide a cornea with abundant sources, high transparency, good biocompatibility, performance close to that of fresh cornea, complete decellularization and strong safety compared with the existing materials, which can be accepted by the majority of patients and used for a long time. Clinical lamellar tissue engineering corneal stent and its production method and application.
所述一种板层组织工程角膜支架可用于角膜移植各种供体材料的替代物。The lamellar tissue engineering corneal support can be used as a substitute for various donor materials for corneal transplantation.
所述一种板层组织工程角膜支架为动物源性脱细胞板层角膜基质片,不含细胞成分,胶原纤维排列整齐,间隙规则,角膜透光率为80%~95%,拉伸强度为2~5N/mm2。The lamellar tissue engineering corneal scaffold is an animal-derived decellularized lamellar corneal stroma sheet, which does not contain cell components, the collagen fibers are arranged neatly, the gaps are regular, the corneal light transmittance is 80% to 95%, and the tensile strength is 2~5N/mm 2 .
所述板层组织工程角膜支架可包括未干燥板层角膜支架、干燥板层角膜支架或复水板层角膜支架等。The lamellar tissue engineered corneal scaffold may include an undried lamellar corneal scaffold, a dried lamellar corneal scaffold, or a rehydrated lamellar corneal scaffold.
所述未干燥板层角膜支架的含水量和膨胀率为75%~90%。The water content and expansion rate of the undried lamellar corneal stent are 75%-90%.
所述干燥板层角膜支架是以未干燥板层角膜支架为基础,经过干燥处理的板层角膜支架,所述干燥处理可为真空冻干,真空晾干,干燥无水CaCl2真空干燥,自然晾干,吹干,30~60℃恒温箱内烘干等中的至少一种。The dry lamellar corneal stent is based on the undried lamellar corneal stent, and the lamellar corneal stent has been dried. The drying process can be vacuum freeze-drying, vacuum drying, dry anhydrous CaCl2 vacuum drying, natural At least one of air drying, blow drying, and drying in a 30-60°C thermostat.
所述复水板层角膜支架是以干燥板层角膜支架为基础,经过复水过程处理的板层角膜支架,所述复水过程处理所用的复水剂选自林格氏液,平衡液,1×PBS溶液,DMEM培养液,短、中期角膜保存液等中的至少一种,含水量和膨胀率为75%~90%。The rehydrated lamellar corneal stent is based on a dry lamellar corneal stent and processed through a rehydration process. The rehydration agent used in the rehydration process is selected from Ringer's solution, balance solution, At least one of 1×PBS solution, DMEM culture solution, short-term and medium-term corneal preservation solutions, etc., with a water content and expansion rate of 75% to 90%.
所述板层组织工程角膜支架的制作方法包括以下步骤:The preparation method of described lamellar tissue engineering corneal stent comprises the following steps:
1)将新鲜动物眼球经过碘伏浸泡,或用含抗菌素的PBS浸泡后,冲洗;1) Soak fresh animal eyeballs in iodophor, or in PBS containing antibiotics, and rinse;
2)消毒后用滤纸覆盖于角膜表面或直接浸泡,然后擦除上皮细胞层;2) After disinfection, cover the surface of the cornea with filter paper or soak it directly, and then wipe off the epithelial cell layer;
3)在手术显微镜下作角膜缘切口,伸入虹膜恢复器分离前层角膜,分离完全后用角膜剪剪下前层角膜,或直接用板层角膜分离刀分离前板层角膜;3) Make a limbal incision under the operating microscope, insert the iris restorer to separate the anterior cornea, cut off the anterior cornea with corneal scissors after the separation is complete, or directly separate the anterior lamellar cornea with a lamellar keratectomy knife;
4)将分离的前板层角膜放于角膜枕上,前弹力层面朝下,然后用角膜环钻取3~10mm直径的板层角膜基质片(10-0尼龙线标记上皮面);将去上皮后的新鲜板层角膜基质片直接放于密闭无菌的冻存管内给予反复冻融复温处理,冷冻时间为1~5min,复温时间为3~15min,循环次数为1~5次;4) Place the separated anterior lamellar cornea on the corneal occipital, with the anterior elastic layer facing down, and then use a corneal ring to drill a lamellar corneal stroma piece with a diameter of 3-10 mm (mark the epithelial surface with 10-0 nylon thread); The fresh lamellar corneal stroma slices were placed directly in airtight sterile cryopreservation tubes and subjected to repeated freeze-thaw rewarming treatment. The freezing time was 1-5 minutes, the rewarming time was 3-15 minutes, and the number of cycles was 1-5 times;
5)将冻融的板层角膜基质片放置于低渗液中浸泡20~120min;5) Soak the frozen-thawed lamellar corneal stroma sheet in hypotonic solution for 20-120 minutes;
6)将经过步骤5)处理过的板层角膜基质片放于30~40℃恒温箱中,先后于DNA酶孵育60~180min,RNA酶中孵育60~180min,同时在各自的缓冲液中加入0.5~2.5ug/ml的蛋白酶抑制剂,每毫克角膜基质干重含1.10±0.25μg DNA,角膜基质含水量为50%~80%;6) Put the lamellar corneal stromal slices treated in step 5) in an incubator at 30-40°C, incubate successively with DNase for 60-180 minutes, and incubate with RNase for 60-180 minutes. At the same time, add 0.5-2.5ug/ml protease inhibitor, 1.10±0.25μg DNA per milligram dry weight of corneal stroma, corneal stroma water content is 50%-80%;
7)将经过酶消化的板层角膜基质片放置于电泳液TA液中(作好角膜的电泳方向标记),然后将整个电泳槽放于密闭消毒盒内,0~10℃恒温冰箱内进行冰浴电泳;7) Place the enzymatically digested lamellar corneal stroma piece in the electrophoresis solution TA (mark the electrophoresis direction of the cornea), then put the entire electrophoresis tank in a closed disinfection box, and freeze it in a constant temperature refrigerator at 0-10°C. bath electrophoresis;
8)将电泳完毕的板层角膜基质片进行梯度脱水,即得到未干燥板层组织工程角膜支架,采用环氧乙烷灭菌处理,保存备用;8) Gradient dehydration is performed on the lamellar corneal stroma sheet after electrophoresis to obtain an undried lamellar tissue engineered corneal scaffold, which is sterilized with ethylene oxide and stored for later use;
9)将未干燥角膜基质片放于24孔板内进行干燥处理,即得到干燥板层组织工程角膜支架;9) putting the undried corneal stroma sheet in a 24-well plate for drying treatment to obtain a dry lamellar tissue engineered corneal scaffold;
10)将干燥板层组织工程角膜支架进行钴60消毒,进行复水处理,得复水板层角膜支架。10) Sterilize the dry lamellar tissue engineered corneal stent with
在步骤1)中,所述碘伏,可采用质量百分浓度为0.5%~2%的碘伏,所述碘伏浸泡的时间可为2~5min;所述用含抗菌素的PBS浸泡的时间可为5~10min,所述PBS冲洗,可冲洗3次,每次冲洗的时间可为5min;所述抗菌素包括5万U/L青霉素,8万U/L妥布霉素或100mg/L链霉素等。In step 1), the povidone iodine can be 0.5% to 2% povidone iodide in mass percent concentration, and the soaking time of the povidone iodine can be 2 to 5 minutes; the soaking time with PBS containing antibiotics It can be 5-10 minutes, and the PBS washing can be washed 3 times, and the time of each washing can be 5 minutes; the antibiotics include 50,000 U/L penicillin, 80,000 U/L tobramycin or 100 mg/L chain Mycin etc.
在步骤2)中,所述滤纸,最好是蘸有质量百分浓度为15%~30%酒精的滤纸;所述直接浸泡的时间可为1~5min;所述擦除上皮细胞层,可采用棉签或角膜上皮刀擦除上皮细胞层。In step 2), the filter paper is preferably a filter paper dipped in 15% to 30% alcohol by mass percentage; the time for the direct soaking can be 1 to 5 minutes; the erasing of the epithelial cell layer can be Use a cotton swab or a corneal epidermotomy to scrape off the epithelial layer.
在步骤3)中,所述在手术显微镜下作角膜缘切口,可采用宝石刀作深度为3~4mm,厚度为0.8~1.2mm,长为2.5~3.5mm的角膜缘切口;所述直接用板层角膜分离刀分离前板层角膜的前板层角膜的深度可为3~4mm,厚度可为0.8~1.2mm。In step 3), the limbal incision is made under the operating microscope, and a gem knife can be used to make a limbal incision with a depth of 3 to 4 mm, a thickness of 0.8 to 1.2 mm, and a length of 2.5 to 3.5 mm; The depth of the anterior lamellar cornea separated by the lamellar keratectomy knife may be 3-4 mm, and the thickness may be 0.8-1.2 mm.
在步骤5)中,所述低渗液,可选自双蒸水或三蒸水等。In step 5), the hypotonic solution can be selected from double distilled water or triple distilled water.
在步骤6)中,所述酶与缓冲液的体积比可为1∶50,DNA酶与RNA酶的体积比可为10∶1;所述蛋白酶抑制剂可采用roche公司的产品,不含EDTA,能抑制Protease,Calpain II,Cathepsin B,Elastase,leukocyte,Elastase,pancreatic,Papain,Plasmin,Thermolysin,Trypsin等蛋白酶。In step 6), the volume ratio of the enzyme to the buffer can be 1:50, and the volume ratio of the DNase to the RNase can be 10:1; the protease inhibitor can use the product of Roche Company, without EDTA , can inhibit Protease, Calpain II, Cathepsin B, Elastase, leukocyte, Elastase, pancreatic, Papain, Plasmin, Thermolysin, Trypsin and other proteases.
在步骤7)中,所述冰浴电泳的时间可为1~4h,所述电泳可为单相水平电泳或双相电泳,电泳的条件为100~180V/cm,1×TA溶液配置方法:将4.84g TrisBase溶于100ml双蒸水中,滴加1.142ml Glacial Acetic Acid,然后加双蒸水至1L;In step 7), the time of the ice-bath electrophoresis can be 1-4 hours, the electrophoresis can be single-phase horizontal electrophoresis or biphasic electrophoresis, the condition of electrophoresis is 100-180V/cm, 1×TA solution configuration method: Dissolve 4.84g TrisBase in 100ml double distilled water, add 1.142ml Glacial Acetic Acid dropwise, then add double distilled water to 1L;
在步骤9)中,所述干燥处理可为真空冻干,真空晾干,干燥无水Cacl2真空干燥,自然晾干,吹干,30~60℃恒温箱内烘干等中的至少一种,所述干燥处理的时间可为6~24h。In step 9), the drying process can be at least one of vacuum freeze-drying, vacuum drying, drying anhydrous Cacl2 vacuum drying, natural drying, drying, drying in a 30-60°C thermostat, etc. , the drying time may be 6-24 hours.
在步骤10)中,所述复水处理所采用的复水剂可选自林格氏液,平衡液,1×PBS溶液,DMEM培养液,短期角膜保存液,中期角膜保存液等中的至少一种。In step 10), the rehydration agent used in the rehydration treatment can be selected from at least one of Ringer's solution, equilibrium solution, 1×PBS solution, DMEM culture solution, short-term corneal preservation solution, medium-term corneal preservation solution, etc. A sort of.
本发明所述一种板层组织工程角膜支架可用于角膜移植各种供体材料的替代物,可在治疗角膜外伤及化学烧伤系列疾病,角膜肿瘤及增生性系列疾病,角膜血管化和瘢痕系列疾病,角膜免疫性疾病,角膜移植排斥反应系列疾病等角膜病变中应用。The lamellar tissue engineering corneal stent described in the present invention can be used as a substitute for various donor materials for corneal transplantation, and can be used in the treatment of corneal trauma and chemical burn series of diseases, corneal tumors and proliferative series of diseases, corneal vascularization and scar series Diseases, corneal immune diseases, corneal transplant rejection series of diseases and other corneal diseases.
本发明从详细分析目前常用去细胞方法出发,并根据各自的优缺点进行严格筛选和有效组合,最后选出了对组织结构影响较小的冻融法破坏崩解细胞膜,用低渗法来胀破核膜,采用对胶原纤维蛋白支架没有影响DNA/RNA酶破坏和消化残留的核酸,并在缓冲液中加入了蛋白酶抑制剂,减少了角膜基质骨架细胞外基质(主要是糖胺聚糖)的破坏,利用单相/双相电泳的方法将细胞残留碎屑和带电成分去除干净,达到彻底去除了支架材料的抗原成分的目的,通过完全电泳出残留的核酸成分和Co60消毒的方法去除了支架材料的病原性。为了能达到开发产品的要求,在脱细胞处理的各个环节如时间、温度、电压、如何保证无菌及电解液的配置等方面均经过详细周密的设计和反复严格的摸索;通过一系列制作过程的反复改良和优化,使本发明具有以下优点:The present invention starts from a detailed analysis of the commonly used decellularization methods at present, and conducts strict screening and effective combination according to their respective advantages and disadvantages. Breaking the nuclear membrane, using DNA/RNA enzymes that have no effect on the collagen fibrous protein scaffold to destroy and digest residual nucleic acids, and adding protease inhibitors to the buffer, reducing the extracellular matrix of the corneal stroma skeleton (mainly glycosaminoglycans) The destruction of cell residues and charged components is removed by single-phase/two-phase electrophoresis to achieve the purpose of completely removing the antigenic components of the scaffold material, and the remaining nucleic acid components are removed by complete electrophoresis and Co60 disinfection. Pathogenicity of scaffold materials. In order to meet the requirements of product development, all aspects of decellularization treatment, such as time, temperature, voltage, how to ensure sterility and electrolyte configuration, have been carefully designed and repeatedly rigorously explored; through a series of production processes Repeated improvement and optimization make the present invention have the following advantages:
1)采用本发明的技术方案,制作流程简单可靠,时间短且易于实施;1) Adopting the technical solution of the present invention, the production process is simple and reliable, the time is short and easy to implement;
2)板层组织工程角膜支架来源广泛,成本低,使用方便;2) The lamellar tissue engineered corneal stent has a wide range of sources, low cost and convenient use;
3)采用本发明的技术方案,脱细胞彻底,最小的减少角膜基质骨架细胞外基质的破坏,胶原排列规则,间隙均匀,不留有任何核酸物质及可溶性蛋白成分,表面由IV型胶原构成的前弹力层以及基底膜得以保留,提高了支架材料的生物相容性,有利于自体细胞增殖爬行,而蛋白酶抑制剂的应用,最大限度的保护了基质的胶原蛋白;3) Adopting the technical scheme of the present invention, the decellularization is thorough, the destruction of the extracellular matrix of the corneal stromal skeleton is minimized, the collagen is arranged regularly, the gap is uniform, no nucleic acid substance and soluble protein components are left, and the surface is composed of type IV collagen The pre-bowman's layer and basement membrane are preserved, which improves the biocompatibility of the scaffold material and facilitates the proliferation and crawling of autologous cells, while the application of protease inhibitors maximizes the protection of the collagen in the matrix;
4)采用本发明技术方案制作的板层组织工程角膜支架,生物学性质检测(透明度、含水量、膨胀率、最大拉伸长度),超微结构观察及视光学检测,结果发现此种材料与人角膜基质极其相近;4) The lamellar tissue engineered corneal stent produced by the technical solution of the present invention was tested for biological properties (transparency, water content, expansion rate, maximum stretching length), ultrastructure observation and optometry detection. Human corneal stroma is very similar;
5)本发明不仅有利于优化动物角膜基质脱细胞条件,同时将为组织工程角膜产业化提供重要的技术支持。5) The invention not only helps to optimize the decellularization conditions of animal corneal stroma, but also provides important technical support for the industrialization of tissue engineering cornea.
附图说明Description of drawings
图1是经过本发明方法制作的未干燥脱细胞猪板层角膜基质片的DAPI染色结果。Fig. 1 is the DAPI staining result of the undried decellularized porcine lamellar corneal stromal sheet made by the method of the present invention.
图2是经过本发明方法制作的未干燥脱细胞猪板层角膜基质片的DNAGel结果。Fig. 2 is the DNAGel result of the undried decellularized porcine lamellar corneal stromal sheet made by the method of the present invention.
图3是经过本发明方法制作的脱细胞猪板层角膜基质片的透明度情况。Fig. 3 is the transparency of the acellular porcine lamellar corneal stromal sheet made by the method of the present invention.
图4是经过本发明方法制作的未干燥脱细胞猪板层角膜基质片的透射电镜下超微结构结果。Fig. 4 is the result of the ultrastructure under the transmission electron microscope of the undried acellular porcine lamellar corneal stromal sheet made by the method of the present invention.
图5是经过本发明方法制作的未干燥猪板层角膜基质片(直径为9cm)兔颈背部植入术后8月的裂隙灯照片。Fig. 5 is a slit-lamp photograph of an undried porcine lamellar corneal stromal sheet (with a diameter of 9 cm) implanted in the back of the
图6是经过本发明方法制作未干燥猪板层角膜基质片兔眼前房内植入2月的的裂隙灯照片。Fig. 6 is a slit-lamp photograph of the non-dried porcine lamellar corneal stromal sheet implanted in the anterior chamber of the rabbit for two months after being made by the method of the present invention.
图7是经过本发明方法制作的未干燥猪板层角膜基质片在兔角膜中央囊袋平铺术后3月后的裂隙灯照片。Fig. 7 is a slit-lamp photograph of the undried porcine lamellar corneal stromal sheet made by the method of the present invention after 3 months after tiling of the central pouch of the rabbit cornea.
图8是经过本发明方法制作的未干燥猪板层角膜基质片用于兔眼角膜移植10天的裂隙灯照片。Fig. 8 is a slit-lamp photograph of undried porcine lamellar corneal stromal slices made by the method of the present invention used for rabbit corneal transplantation for 10 days.
图9为本发明制备的未干燥猪板层组织工程角膜支架和新鲜猪板层组织工程角膜支架用于兔眼角膜移植12天内角膜上皮修复的对比曲线。在图9中,横坐标为修复时间time(day),纵坐标为角膜上皮已修复的比例Accumulation repair;▲为未处理组,■为实验组。Fig. 9 is a comparison curve of corneal epithelial repair within 12 days of rabbit corneal transplantation using undried porcine lamellar tissue engineered corneal scaffold and fresh pig lamellar tissue engineered corneal scaffold prepared by the present invention. In Figure 9, the abscissa is the repair time time (day), and the ordinate is the proportion of corneal epithelium repaired Accumulation repair; ▲ is the untreated group, and ■ is the experimental group.
具体实施方式Detailed ways
实施例1Example 1
本发明所述板层组织工程角膜支架,以干燥后复水的板层角膜支架为例,包括以下步骤:将新鲜动物眼球经过碘伏消毒后经过酒精处理及刮除法去净上皮细胞,分离出板层角膜,取下板层角膜基质片,将其放于角膜枕上用角膜环钻取下不同直径的板层角膜片,通过反复规律密闭冻融、低渗溶胀,DNA、RNA酶消化、密闭消毒盒内冰浴电泳法、24孔板内干燥技术及钴60消毒技术等,最后得到未干燥、干燥以及干燥后复水的板层角膜基质片即得所述板层组织工程角膜基质支架。保存备用,用前可适当加入所需的生长因子等。The lamellar tissue engineering corneal stent described in the present invention, taking the dry and rehydrated lamellar corneal stent as an example, comprises the following steps: after the fresh animal eyeball is disinfected with iodine, it is treated with alcohol and scraped to remove the epithelial cells, and the Lamellar cornea, remove the lamellar corneal stroma, put it on the corneal pillow and use a corneal trephine to remove the lamellar corneal slices of different diameters, through repeated regular airtight freeze-thaw, hypotonic swelling, DNA, RNase digestion, airtight Ice bath electrophoresis in a sterilization box, drying technology in a 24-well plate,
制备方法一,包括以下步骤:将新鲜动物眼球经过2%碘伏浸泡5min,消毒后用蘸有20%酒精的滤纸覆盖于角膜表面3min,然后用棉签/角膜上皮刀轻轻的擦除上皮细胞层;在手术显微镜下用宝石刀作深约3/4(厚约0.8~1.2mm),长约3mm的角膜缘切口,伸入虹膜恢复器分离前层角膜,厚度约为0.8~1.2mm,分离完全后用角膜剪剪下前层角膜;将分离下前板层角膜放于角膜枕上(前弹力层面朝下),然后用角膜环钻取3~10mm直径的板层角膜基质片(10~0尼龙线标记上皮面)。将去上皮后的新鲜板层角膜基质片直接放于密闭无菌的2ml冻存管内给予反复冻融复温处理,冷冻时间为2min,复温时间为5min,循环次数为3次;然后将冻融的板层角膜基质片放置于三蒸水中浸泡60min。然后将经过上述处理的基质片放于37℃温箱中,先后于DNA酶孵育120min,RNA酶中孵育120min,同时在各自的buffer中加入1ug/ml的蛋白酶抑制剂,其中酶与buffer的比例为1∶50,DNA酶与RNA酶的用量比例为10∶1,每毫克角膜基质干重含约1.10±0.25μgDNA,角膜基质含水量在50%~80%,蛋白酶抑制剂是roche公司的产品,不含EDTA,能抑制Protease,Calpain II,Cathepsin B,Elastase,leukocyte,Elastase,pancreatic,Papain,Plasmin,Thermolysin,Trypsin等蛋白酶.然后将经过酶消化的板层角膜基质片放置于特殊的电泳液TA液中(做好角膜的电泳方向标记),然后将整个单相水平电泳槽放于密闭消毒盒内,4℃恒温冰箱内进行冰浴电泳1~4h,电泳的条件为100~180V/cm;将电泳完毕的板层角膜基质片进行梯度脱水,即得到未干燥板层组织工程角膜支架,采用环氧乙烷灭菌处理,保存备用;然后将未干燥角膜基质片放于24孔板内进行无水Cacl2真空干燥,时间为12h,即得到干燥板层组织工程角膜支架;干燥后的样品进行钴60消毒,用时进行林格氏液复水处理。最后得到所需的未干燥、干燥以及干燥后复水的板层角膜基质片即为所述板层组织工程角膜基质支架。保存备用,用前可适当加入所需的生长因子等。
制备方法二,包括以下步骤:将新鲜动物眼球经过2%碘伏浸泡5min,消毒后用蘸有20%酒精的滤纸覆盖于角膜表面3min,然后用棉签/角膜上皮刀轻轻的擦除上皮细胞层;在手术显微镜下直接用板层角膜分离刀分离深约3/4(厚约0.8~1.2mm)的前板层角膜;将分离下前板层角膜放于角膜枕上(前弹力层面朝下),然后用角膜环钻取3~10mm直径的板层角膜基质片(10~0尼龙线标记上皮面)。将去上皮后的新鲜板层角膜基质片直接放于密闭无菌的2ml冻存管内给予反复冻融复温处理,冷冻时间为2min,复温时间为5min,循环次数为3次;然后将冻融的板层角膜基质片放置于三蒸水中浸泡60min。然后将经过上述处理的基质片放于37℃温箱中,先后于DNA酶孵育120min,RNA酶中孵育120min,同时在各自的buffer中加入1ug/ml的蛋白酶抑制剂,其中酶与buffer的比例为1∶50,DNA酶与RNA酶的用量比例为10∶1,每毫克角膜基质干重含约1.10±0.25μg DNA,角膜基质含水量在50%~80%,蛋白酶抑制剂是roche公司的产品,不含EDTA,能抑制Protease,Calpain II,Cathepsin B,Elastase,leukocyte,Elastase,pancreatic,Papain,Plasmin,Thermolysin,Trypsin等蛋白酶.然后将经过酶消化的板层角膜基质片放置于特殊的电泳液TA液中(做好角膜的电泳方向标记),然后将整个单相水平电泳槽放于密闭消毒盒内,4℃恒温冰箱内进行冰浴电泳1~4h,电泳的条件为100~180V/cm;将电泳完毕的板层角膜基质片进行梯度脱水,即得到未干燥板层组织工程角膜支架,采用环氧乙烷灭菌处理,保存备用;然后将未干燥角膜基质片放于24孔板内进行无水CaCl2真空干燥,时间为12h,即得到干燥板层组织工程角膜支架;干燥后的样品进行钴60消毒,用时进行林格氏液复水处理。最后得到所需的未干燥、干燥以及干燥后复水的板层角膜基质片即为所述板层组织工程角膜基质支架。保存备用,用前可适当加入所需的生长因子等。Preparation method 2 includes the following steps: soak fresh animal eyeballs in 2% iodophor for 5 minutes, after disinfection, cover the corneal surface with filter paper dipped in 20% alcohol for 3 minutes, and then gently wipe the epithelial cells with a cotton swab/corneal epidermal knife directly use a lamellar keratectomy knife to separate the anterior lamellar cornea about 3/4 deep (about 0.8-1.2mm thick); put the separated anterior lamellar cornea on the corneal pillow (the anterior elastic layer faces down) ), and then use a corneal ring drill to get a lamellar corneal stromal piece with a diameter of 3 to 10 mm (10 to 0 nylon thread marks the epithelial surface). The fresh lamellar corneal stromal slices after de-epithelialization were directly placed in a closed sterile 2ml cryopreservation tube and subjected to repeated freeze-thaw rewarming treatment, the freezing time was 2 minutes, the rewarming time was 5 minutes, and the number of cycles was 3 times; then the frozen The melted lamellar corneal stroma piece was placed in triple distilled water and soaked for 60 minutes. Then put the above-treated matrix slices in a 37°C incubator, incubate in DNase for 120 minutes, and incubate in RNase for 120 minutes. At the same time, add 1ug/ml of protease inhibitors to the respective buffers, wherein the ratio of enzyme to buffer The dosage ratio of DNase and RNase is 1:50, the dosage ratio of DNase and RNase is 10:1, the dry weight of corneal stroma per mg contains about 1.10±0.25μg DNA, the water content of corneal stroma is 50%-80%, and the protease inhibitor is from Roche Company The product does not contain EDTA and can inhibit Protease, Calpain II, Cathepsin B, Elastase, leukocyte, Elastase, pancreatic, Papain, Plasmin, Thermolysin, Trypsin and other proteases. Then the enzymatically digested lamellar corneal stroma sheet is placed in a special electrophoresis TA solution (mark the electrophoresis direction of the cornea), then put the entire single-phase horizontal electrophoresis tank in a closed disinfection box, and conduct ice bath electrophoresis in a constant temperature refrigerator at 4°C for 1-4 hours. The electrophoresis condition is 100-180V/ cm; dehydrate the lamellar corneal stroma sheet after electrophoresis to obtain the undried lamellar tissue engineering corneal scaffold, sterilize it with ethylene oxide, and save it for later use; then put the undried corneal stroma sheet in a 24-well plate Vacuum-dried with anhydrous CaCl 2 for 12 hours to obtain dry lamellar tissue engineered corneal scaffolds; the dried samples were sterilized with
实施例2Example 2
本发明所述板层组织工程角膜支架,以干燥后复水的板层角膜支架为例,包括以下步骤:将新鲜动物眼球经过抗菌素消毒后经过酒精处理及刮除法去净上皮细胞,分离出板层角膜,取下板层角膜基质片,将其放于角膜枕上用角膜环钻取下不同直径的板层角膜片,通过反复规律密闭冻融、低渗溶胀,DNA、RNA酶消化、密闭消毒盒内冰浴电泳法、24孔板内干燥技术及钴60消毒技术等,最后得到未干燥、干燥以及干燥后复水的板层角膜基质片即得所述板层组织工程角膜基质支架。保存备用,用前可适当加入所需的生长因子等。The lamellar tissue engineered corneal stent described in the present invention, taking the dry and rehydrated lamellar corneal stent as an example, includes the following steps: after the fresh animal eyeball is sterilized with antibiotics, it is treated with alcohol and scraped to remove the epithelial cells, and the lamellar tissue is separated. Cornea, remove the lamellar corneal stroma sheet, put it on the corneal pillow and use the corneal trephine to remove the lamellar corneal sheet of different diameters, through repeated regular sealing freeze-thawing, hypotonic swelling, DNA, RNase digestion, airtight disinfection In-box ice-bath electrophoresis, 24-well plate drying technology,
制备方法一,包括以下步骤:将新鲜动物眼球经过用含抗菌素的PBS浸泡10min后,PBS冲洗3次×5min。所用的抗菌素包括5万U/L青霉素,8万U/L妥布霉素,100mg/L链霉素;消毒后用蘸有20%酒精的滤纸覆盖于角膜表面3min,然后用棉签/角膜上皮刀轻轻的擦除上皮细胞层;在手术显微镜下用宝石刀作深约3/4(厚约0.8~1.2mm),长约3mm的角膜缘切口,伸入虹膜恢复器分离前层角膜,厚度约为0.8~1.2mm,分离完全后用角膜剪剪下前层角膜;将分离下前板层角膜放于角膜枕上(前弹力层面朝下),然后用角膜环钻取3~10mm直径的板层角膜基质片(10-0尼龙线标记上皮面)。将去上皮后的新鲜板层角膜基质片直接放于密闭无菌的2ml冻存管内给予反复冻融复温处理,冷冻时间为2min,复温时间为5min,循环次数为3次;然后将冻融的板层角膜基质片放置于三蒸水中浸泡60min。然后将经过上述处理的基质片放于37℃温箱中,先后于DNA酶孵育120min,RNA酶中孵育120min,同时在各自的buffer中加入1ug/ml的蛋白酶抑制剂,其中酶与buffer的比例为1∶50,DNA酶与RNA酶的用量比例为10∶1,每毫克角膜基质干重含约1.10±0.25μg DNA,角膜基质含水量在50-80%之间,蛋白酶抑制剂是roche公司的产品,不含EDTA,能抑制Protease,Calpain II,Cathepsin B,Elastase,leukocyte,Elastase,pancreatic,Papain,Plasmin,Thermolysin,Trypsin等蛋白酶.然后将经过酶消化的板层角膜基质片放置于特殊的电泳液TA液中(做好角膜的电泳方向标记),然后将整个单相水平电泳槽放于密闭消毒盒内,4℃恒温冰箱内进行冰浴电泳1~4h,电泳的条件为100~180V/cm;将电泳完毕的板层角膜基质片进行梯度脱水,即得到未干燥板层组织工程角膜支架,采用环氧乙烷灭菌处理,保存备用;然后将未干燥角膜基质片放于24孔板内进行无水CaCl2真空干燥,时间为12h,即得到干燥板层组织工程角膜支架;干燥后的样品进行钴60消毒,用时进行林格氏液复水处理。最后得到所需的未干燥、干燥以及干燥后复水的板层角膜基质片即为所述板层组织工程角膜基质支架,保存备用。The first preparation method includes the following steps: soak fresh animal eyeballs in PBS containing antibiotics for 10 minutes, and then rinse with PBS for 3 times×5 minutes. The antibiotics used include 50,000 U/L penicillin, 80,000 U/L tobramycin, and 100 mg/L streptomycin; after disinfection, cover the corneal surface with filter paper dipped in 20% alcohol for 3 minutes, and then use a cotton swab/corneal epithelial Gently wipe off the epithelial cell layer with a knife; under the operating microscope, use a gemstone knife to make a limbal incision about 3/4 deep (0.8-1.2mm thick) and 3mm long, and insert the iris restorer to separate the anterior cornea. The thickness is about 0.8-1.2 mm. After the separation is complete, use corneal scissors to cut off the anterior cornea; place the separated anterior lamellar cornea on the corneal pillow (the anterior elastic layer faces down), and then use a corneal ring to drill a 3-10 mm diameter Lamellar corneal stroma sheet (10-0 nylon thread marks the epithelial side). The fresh lamellar corneal stromal slices after de-epithelialization were directly placed in a closed sterile 2ml cryopreservation tube and subjected to repeated freeze-thaw rewarming treatment, the freezing time was 2 minutes, the rewarming time was 5 minutes, and the number of cycles was 3 times; then the frozen The melted lamellar corneal stroma piece was placed in triple distilled water and soaked for 60 minutes. Then put the above-treated matrix slices in a 37°C incubator, incubate in DNase for 120 minutes, and incubate in RNase for 120 minutes. At the same time, add 1ug/ml of protease inhibitors to the respective buffers, wherein the ratio of enzyme to buffer The dosage ratio of DNase and RNase is 1:50, the ratio of DNase and RNase is 10:1, about 1.10±0.25 μg DNA is contained in each milligram of dry weight of corneal stroma, and the water content of corneal stroma is between 50-80%. The protease inhibitor is from Roche Company The product does not contain EDTA and can inhibit Protease, Calpain II, Cathepsin B, Elastase, leukocyte, Elastase, pancreatic, Papain, Plasmin, Thermolysin, Trypsin and other proteases. Then the enzymatically digested lamellar corneal stroma sheet is placed in a special Put the electrophoresis solution in TA solution (mark the electrophoresis direction of the cornea), then put the entire single-phase horizontal electrophoresis tank in a closed disinfection box, and conduct ice bath electrophoresis in a constant temperature refrigerator at 4°C for 1-4 hours. The electrophoresis condition is 100-180V /cm; Gradient dehydration of the lamellar corneal stroma sheet after electrophoresis is performed to obtain the undried lamellar tissue engineering corneal scaffold, which is sterilized with ethylene oxide and stored for later use; then the undried corneal stroma sheet is placed in 24 wells Vacuum drying with anhydrous CaCl 2 in the plate for 12 hours to obtain dry lamellar tissue engineered corneal scaffolds; the dried samples were sterilized with
制备方法二,包括以下步骤:将新鲜动物眼球经过用含抗菌素的PBS浸泡10min后,PBS冲洗3次×5min。所用的抗菌素包括5万U/L青霉素,8万U/L妥布霉素,100mg/L链霉素;消毒后用蘸有20%酒精的滤纸覆盖于角膜表面3min,然后用棉签/角膜上皮刀轻轻的擦除上皮细胞层;在手术显微镜下直接用板层角膜分离刀分离深约3/4(厚约0.8~1.2mm)的前板层角膜;将分离下前板层角膜放于角膜枕上(前弹力层面朝下),然后用角膜环钻取3-10mm直径的板层角膜基质片(10-0尼龙线标记上皮面)。将去上皮后的新鲜板层角膜基质片直接放于密闭无菌的2ml冻存管内给予反复冻融复温处理,冷冻时间为2min,复温时间为5min,循环次数为3次;然后将冻融的板层角膜基质片放置于三蒸水中浸泡60min。然后将经过上述处理的基质片放于37℃温箱中,先后于DNA酶孵育120min,RNA酶中孵育120min,同时在各自的buffer中加入1ug/ml的蛋白酶抑制剂,其中酶与buffer的比例为1∶50,DNA酶与RNA酶的用量比例为10∶1,每毫克角膜基质干重含约1.10±0.25微克DNA,角膜基质含水量在50-80%之间,蛋白酶抑制剂是roche公司的产品,不含EDTA,能抑制Protease,Calpain II,Cathepsin B,Elastase,leukocyte,Elastase,pancreatic,Papain,Plasmin,Thermolysin,Trypsin等蛋白酶.然后将经过酶消化的板层角膜基质片放置于特殊的电泳液TA液中(做好角膜的电泳方向标记),然后将整个单相水平电泳槽放于密闭消毒盒内,4℃恒温冰箱内进行冰浴电泳1~4h,电泳的条件为100~180V/cm;将电泳完毕的板层角膜基质片进行梯度脱水,即得到未干燥板层组织工程角膜支架,采用环氧乙烷灭菌处理,保存备用;然后将未干燥角膜基质片放于24孔板内进行无水CaCl2真空干燥,时间为12h,即得到干燥板层组织工程角膜支架;干燥后的样品进行钴60消毒,用时进行林格氏液复水处理。最后得到所需的未干燥、干燥以及干燥后复水的板层角膜基质片即为所述板层组织工程角膜基质支架。保存备用,用前可适当加入所需的生长因子等。The second preparation method includes the following steps: soak fresh animal eyeballs in PBS containing antibiotics for 10 minutes, and rinse with PBS for 3 times×5 minutes. The antibiotics used include 50,000 U/L penicillin, 80,000 U/L tobramycin, and 100 mg/L streptomycin; after disinfection, cover the corneal surface with filter paper dipped in 20% alcohol for 3 minutes, and then use a cotton swab/corneal epithelial Gently wipe the epithelial cell layer with the knife; directly use the lamellar keratotomy knife to separate the anterior lamellar cornea about 3/4 deep (about 0.8-1.2mm thick) under the operating microscope; put the separated anterior lamellar cornea on Put the cornea on the occipital (the Bowman's layer facing down), and then drill a 3-10mm diameter lamellar corneal stromal piece (the epithelial surface is marked with 10-0 nylon thread) with a corneal ring drill. The fresh lamellar corneal stromal slices after de-epithelialization were directly placed in a closed sterile 2ml cryopreservation tube and subjected to repeated freeze-thaw rewarming treatment, the freezing time was 2 minutes, the rewarming time was 5 minutes, and the number of cycles was 3 times; then the frozen The melted lamellar corneal stroma piece was placed in triple distilled water and soaked for 60 minutes. Then put the above-treated matrix slices in a 37°C incubator, incubate in DNase for 120 minutes, and incubate in RNase for 120 minutes. At the same time, add 1ug/ml of protease inhibitors to the respective buffers, wherein the ratio of enzyme to buffer 1:50, the dosage ratio of DNase and RNase is 10:1, about 1.10 ± 0.25 micrograms of DNA per milligram of dry weight of corneal stroma, the water content of corneal stroma is between 50-80%, and the protease inhibitor is Roche company The product does not contain EDTA and can inhibit Protease, Calpain II, Cathepsin B, Elastase, leukocyte, Elastase, pancreatic, Papain, Plasmin, Thermolysin, Trypsin and other proteases. Then the enzymatically digested lamellar corneal stroma sheet is placed in a special Put the electrophoresis solution in TA solution (mark the electrophoresis direction of the cornea), then put the entire single-phase horizontal electrophoresis tank in a closed disinfection box, and conduct ice bath electrophoresis in a constant temperature refrigerator at 4°C for 1-4 hours. The electrophoresis condition is 100-180V /cm; Gradient dehydration of the lamellar corneal stroma sheet after electrophoresis is performed to obtain the undried lamellar tissue engineering corneal scaffold, which is sterilized with ethylene oxide and stored for later use; then the undried corneal stroma sheet is placed in 24 wells Vacuum drying with anhydrous CaCl 2 in the plate for 12 hours to obtain dry lamellar tissue engineered corneal scaffolds; the dried samples were sterilized with
本发明详细分析目前常用去细胞方法,并根据各自的优缺点进行严格筛选和有效组合,最后选出了对组织结构影响较小的冻融法破坏崩解细胞膜,用低渗法来胀破核膜,采用对胶原纤维蛋白支架没有影响DNA/RNA酶破坏和消化残留的核仁,并在缓冲液中加入了蛋白抑制剂,减少了角膜基质骨架ECM的破坏,低温下利用单相/双相电泳的方法将细胞残留碎屑和带电成分去除干净,达到彻底去除了支架材料的抗原成分的目的,通过完全电泳出残留的核酸成分和Co60消毒的方法去除了支架材料的病原性。为了能达到开发产品的要求,在脱细胞处理的各个环节如时间、温度、电压、如何保证无菌及电解液的配置等方面均经过详细周密的设计和反复严格的摸索;通过一系列制作过程的反复改良和优化,使本发明具有以下优点:(1)采用本发明的技术方案,制作流程简单可靠,时间短且易于实施;(2)板层组织工程角膜支架来源广泛,成本低,取材和使用方便;(3)经过DAPI染色及DNA Gel结果显示(图1和2),本发明方法制作的猪板层角膜基质,脱细胞彻底,最小的减少角膜基质ECM的破坏,不留有任何核酸成分及可溶性蛋白,表面由IV型胶原构成的前弹力层以及基底膜得以保留,提高了支架材料的生物相容性,有利于自体细胞增殖爬行;(4)采用本发明技术方案制作的猪板层组织工程角膜支架,透明度高(参见图3),生物学性质检测包括透明度、含水量、膨胀率、最大拉伸长度等测量(参见表1),超微结构观察(参见图4)及视光学检测,结果发现此种材料与人角膜基质极其相近,胶原排列规则,间隙均匀;(5)采用本发明技术方案制作的未干燥猪板层组织工程角膜支架,植入于兔皮下8个月(参见图5),兔眼前房内(参见图6)6月均显示其具有良好组织相容性,没有见明显的炎症反应和排斥反应;(6)采用本发明技术方案制作的未干燥猪板层组织工程角膜支架,用于兔角膜中央平铺术后3月(参见图7),发现角膜较为透明,不影响其透明度,未见明显的炎症反应和排斥反应;(7)采用本发明技术方案制作的猪板层组织工程角膜支架,用于兔角膜移植术后10天(参见图8),荧光素染色发现术后10天角膜上皮在其表面生长完好(参见图9),角膜逐渐透明,未见明显的炎症反应和排斥反应;(7)本发明不仅有利于优化动物角膜基质脱细胞条件,同时将为组织工程角膜产业化提供重要的技术支持。The present invention analyzes in detail the commonly used decellularization methods at present, and conducts strict screening and effective combination according to their respective advantages and disadvantages, and finally selects the freezing-thawing method that has less influence on the tissue structure to destroy and disintegrate the cell membrane, and uses the hypotonic method to burst the nucleus Membrane, the use of collagen fibrin scaffolds has no effect on DNA/RNase damage and digested residual nucleoli, and protein inhibitors are added to the buffer to reduce the damage to the ECM of the corneal stroma skeleton, using single-phase/bi-phase at low temperature The method of electrophoresis removes the residual debris and charged components of the cells, and achieves the purpose of completely removing the antigenic components of the scaffold material. The pathogenicity of the scaffold material is removed by completely electrophoresis to remove the residual nucleic acid components and Co60 disinfection. In order to meet the requirements of product development, all aspects of decellularization treatment, such as time, temperature, voltage, how to ensure sterility and electrolyte configuration, have been carefully designed and repeatedly rigorously explored; through a series of production processes The repeated improvement and optimization of the present invention has the following advantages: (1) adopting the technical scheme of the present invention, the production process is simple and reliable, the time is short and easy to implement; (2) the lamellar tissue engineering corneal scaffold has a wide range of sources, low cost, and and easy to use; (3) through DAPI staining and DNA Gel results show (Fig. 1 and 2), the porcine lamellar corneal stroma that the inventive method makes, decellularization is thorough, the minimum reduces the destruction of corneal stroma ECM, does not stay any Nucleic acid components and soluble protein, the pre-blastoma and basement membrane formed by type IV collagen on the surface are preserved, which improves the biocompatibility of the scaffold material and is conducive to autologous cell proliferation and crawling; (4) pigs made by adopting the technical scheme of the present invention Lamellar tissue engineered corneal stent, with high transparency (see Figure 3), biological property testing includes measurement of transparency, water content, expansion rate, maximum stretching length, etc. (see Table 1), ultrastructural observation (see Figure 4) and As a result of optical inspection, it was found that this material is very similar to human corneal stroma, the collagen is arranged regularly, and the gaps are even; (5) the non-dried porcine lamellar tissue engineering corneal scaffold made by the technical scheme of the present invention is implanted in 8 rabbit subcutaneous (seeing Fig. 5), in the anterior chamber of the rabbit (seeing Fig. 6) 6 months all show that it has good histocompatibility, do not see obvious inflammatory reaction and rejection; Porcine lamellar tissue-engineered corneal scaffolds were used for 3 months after the central tiling of rabbit corneas (see Figure 7). It was found that the cornea was relatively transparent without affecting its transparency, and no obvious inflammatory reaction and rejection reaction were seen; (7) using this method The porcine lamellar tissue engineering corneal scaffold made by the technical scheme of the invention was used for 10 days after corneal transplantation in rabbits (see Figure 8), and fluorescein staining found that the corneal epithelium grew intact on its
表1Table 1
注:拉伸强度的单位为N/mm2,含水率、膨胀率和透光率的单位均为%。Note: The unit of tensile strength is N/mm 2 , and the units of water content, expansion rate and light transmittance are %.
各种疾病造成的角膜透明度下降,角膜基质不可逆性混浊是视力丧失的主要原因,在致盲病因中位居第二,仅次于白内障。角膜盲最有效的治疗方法是穿透性角膜移植,但是供体来源不足、免疫排斥反应、角膜移植并发症等限制了此项技术的开展。因此寻找一种新的角膜替代材料就显得尤为重要。角膜替代物主要分为二类:人工角膜和组织工程角膜等效物(TECE)。TECE是以细胞为基础构建的活性替代物,主要由天然角膜的三种细胞和胶原成分构成。构建组织工程角膜等效物的关键是支持细胞三维生长的支架材料。以胶原为基础的天然生物聚合胶表现了极好的生物学特性,支持细胞三维生长,已经被广泛应用于组织工程技术。目前尚无以此构建的TECE临床应用的报道,主要原因是胶原韧性差,不耐受缝合。去细胞处理的异种组织主要成分为胶原、弹力纤维等,形态与韧性变化较小。而且去细胞处理可以降低异种组织的炎症反应和免疫排斥反应,扩充组织来源。在组织工程技术和再生医学研究中,去细胞生物支架材料如心脏瓣膜、血管、皮肤、神经、骨骼肌、腱膜、韧带、小肠粘膜下组织、膀胱和肝脏,已经进入临床前期动物实验或临床治疗阶段。但目前的研究中多联合应用物理、化学及去污剂等方法去除基质细胞,虽然尽可能的去除了细胞成分,对角膜基质骨架和ECM损伤较大,严重影响了基质片的透明度和韧性。The decrease of corneal transparency caused by various diseases, irreversible turbidity of corneal stroma is the main cause of vision loss, ranking second in the cause of blindness, second only to cataract. The most effective treatment for corneal blindness is penetrating keratoplasty, but insufficient donor sources, immune rejection, and complications of corneal transplantation limit the development of this technique. Therefore, it is particularly important to find a new corneal substitute material. Corneal substitutes are mainly divided into two categories: artificial corneas and tissue engineered corneal equivalents (TECE). TECE is a cell-based active substitute, mainly composed of three types of cells and collagen components of the natural cornea. The key to constructing a tissue-engineered cornea equivalent is a scaffold material that supports the three-dimensional growth of cells. Collagen-based natural biopolymer glue exhibits excellent biological properties and supports three-dimensional growth of cells, and has been widely used in tissue engineering technology. At present, there is no report on the clinical application of TECE constructed with this method, mainly because the collagen has poor toughness and cannot tolerate sutures. The main components of decellularized xenogeneic tissues are collagen, elastic fibers, etc., with little change in shape and toughness. Moreover, decellularization treatment can reduce the inflammatory response and immune rejection of heterogeneous tissues, and expand the source of tissues. In tissue engineering technology and regenerative medicine research, decellularized bioscaffold materials such as heart valves, blood vessels, skin, nerves, skeletal muscles, aponeurosis, ligaments, small intestinal submucosal tissue, bladder and liver have entered preclinical animal experiments or clinical trials. treatment phase. However, in current studies, physical, chemical and detergent methods are often used to remove stromal cells. Although the cellular components are removed as much as possible, the corneal stromal skeleton and ECM are greatly damaged, which seriously affects the transparency and toughness of the stromal sheet.
组织工程构建角膜的关键技术是形成角膜上皮细胞、基质细胞和内皮细胞与生物支架三维复合体。支架材料是组织工程领域研究的主要内容,也是组织工程角膜的基本要素之一。支架材料的特性直接影响着复合的种子细胞能否正常黏附、生长和分化。The key technology of tissue engineering to construct cornea is to form a three-dimensional complex of corneal epithelial cells, stromal cells, endothelial cells and biological scaffolds. Scaffold material is the main content of tissue engineering research and one of the basic elements of tissue engineering cornea. The characteristics of the scaffold material directly affect whether the composite seed cells can adhere, grow and differentiate normally.
理想的TECE的支架材料应具备以下特点:An ideal TECE scaffold material should have the following characteristics:
1)良好的生物相容性,角膜的各种细胞能在其上或其中良好的生长。1) Good biocompatibility, various cells of the cornea can grow well on or in it.
2)具有三维立体结构并携带具有生物诱导性的多种化学信号可诱导种子细胞沿支架材料生长并向角膜细胞分化。2) Having a three-dimensional structure and carrying a variety of biologically inducible chemical signals can induce seed cells to grow along the scaffold material and differentiate into corneal cells.
3)支架材料的降解速率与植入的种子细胞所形成组织的速率相匹配,可逐渐被降解吸收或成为与新生组织相互融合的组成部分,可按病损角膜的缺损情况进行塑行,达到完善的形态修复。3) The degradation rate of the scaffold material matches the rate of the tissue formed by the implanted seed cells, and can be gradually degraded and absorbed or become an integral part of the fusion with the new tissue, and can be molded according to the defect of the diseased cornea to achieve Perfect shape restoration.
4)具有一定的强度和韧性,能抵抗眼内压。4) It has certain strength and toughness, and can resist intraocular pressure.
5)能逐渐透明化。而理想的方法需要对角膜基质温和(减少步骤,操作尽可能少,时间尽可能短,温度尽可能低),尽可能去除了细胞但不损伤基质骨架及细胞外基质,使角膜基质保留原有的生物学及力学特性,同时还不影响组织的透明度。为满足上述大部分的要求,我们详细分析目前常用去细胞方法,并根据各自的优缺点进行严格筛选和有效组合,最后发明出上述制作流程。5) Can gradually become transparent. The ideal method needs to be gentle on the corneal stroma (reduce steps, operate as little as possible, time as short as possible, and temperature as low as possible), remove cells as much as possible without damaging the stroma skeleton and extracellular matrix, and keep the corneal stroma as it is. Biological and mechanical properties without affecting the transparency of the tissue. In order to meet most of the above requirements, we analyzed in detail the currently commonly used decellularization methods, and conducted strict screening and effective combination according to their respective advantages and disadvantages, and finally invented the above production process.
采用本发明制作的未干燥猪板层组织工程角膜支架,植入于兔皮下8个月,兔眼前房内6月均显示其具有良好组织相容性,没有见明显的炎症反应和排斥反应,明显优有未处理的猪板层角膜基质片植入结果,同时将其用于兔角膜中央及周边囊袋内平铺术后3月和角膜移植术后10天均发现角膜逐渐透明,未见明显的炎症反应和排斥反应,明显优有未处理的猪板层角膜基质片植入结果,荧光素染色发现术后10天角膜上皮在其表面生长完好。The undried porcine lamellar tissue engineering corneal stent made by the present invention was implanted under the rabbit skin for 8 months, and the anterior chamber of the rabbit for 6 months showed that it had good histocompatibility, and no obvious inflammatory reaction and rejection reaction were seen. The implantation results of the untreated porcine lamellar corneal stromal sheet were obviously superior. At the same time, it was used in the central and peripheral pockets of the rabbit cornea to tile the
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2010102964338A CN101947144B (en) | 2010-09-29 | 2010-09-29 | Ply tissue engineering corneal frame and manufacturing method and application thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2010102964338A CN101947144B (en) | 2010-09-29 | 2010-09-29 | Ply tissue engineering corneal frame and manufacturing method and application thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101947144A true CN101947144A (en) | 2011-01-19 |
CN101947144B CN101947144B (en) | 2012-07-04 |
Family
ID=43450859
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2010102964338A Active CN101947144B (en) | 2010-09-29 | 2010-09-29 | Ply tissue engineering corneal frame and manufacturing method and application thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101947144B (en) |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102726370A (en) * | 2012-06-29 | 2012-10-17 | 厦门大学附属厦门眼科中心 | Preservation method for corneal limbus tissue |
CN103908700A (en) * | 2013-01-06 | 2014-07-09 | 陕西佰傲再生医学有限公司 | Decellularization cornea preparation method |
CN104001214A (en) * | 2014-05-28 | 2014-08-27 | 青岛中皓生物工程有限公司 | Lamellar corneal stroma bracket as well as preparation method and application thereof |
CN104511053A (en) * | 2015-03-06 | 2015-04-15 | 青岛中皓生物工程有限公司 | Decellularized porcine cornea tissue and preparation method and application thereof |
CN104645415A (en) * | 2014-11-28 | 2015-05-27 | 南昌大学第一附属医院 | Method for preparing decellularized lamellar cornea matrix sheet |
CN105688282A (en) * | 2016-03-11 | 2016-06-22 | 广州宏畅生物科技有限公司 | Novel biological artificial cornea capable of realizing cellularization through in-vivo induction as well as realizing quick transparency |
CN107929811A (en) * | 2017-12-15 | 2018-04-20 | 厦门大学 | A kind of tissue engineering comea |
WO2018107482A1 (en) * | 2016-12-16 | 2018-06-21 | 厦门大开生物科技有限公司 | Preparation method for decelluralized swine cornea, decellularized lamellar cornea thereof, and use method |
WO2018107486A1 (en) * | 2016-12-16 | 2018-06-21 | 厦门大开生物科技有限公司 | Method of drying decellularized cornea and dried decellularized pig lamellar cornea |
WO2018107487A1 (en) * | 2016-12-16 | 2018-06-21 | 厦门大开生物科技有限公司 | Method of sterilizing cornea by irradiation and cornea sterilized thereby |
WO2018107484A1 (en) * | 2016-12-16 | 2018-06-21 | 厦门大开生物科技有限公司 | Decellurization method for swine cornea, decellularized cornea thereof, and use method for dried lamellar cornea |
WO2018107485A1 (en) * | 2016-12-16 | 2018-06-21 | 厦门大开生物科技有限公司 | Decellularized dried swine lamellar cornea, used method for same, and uses thereof |
CN108261564A (en) * | 2016-12-30 | 2018-07-10 | 深圳兰度生物材料有限公司 | De- extracellular matrix and its preparation method and application |
CN109908403A (en) * | 2019-01-08 | 2019-06-21 | 王伟 | A kind of decellularized neural scaffold and preparation method thereof |
WO2021159198A1 (en) | 2020-02-14 | 2021-08-19 | Kheiros Pater Inovação S.A | Method for producing decellularized biomaterial, decellularized biomaterial and use thereof |
CN116808299A (en) * | 2023-06-13 | 2023-09-29 | 中山大学中山眼科中心 | A sutureable composite artificial cornea and its preparation method |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1579342A (en) * | 2004-04-28 | 2005-02-16 | 浙江大学医学院附属邵逸夫医院 | Exogenous cornea substrate without cells and its preparation method and use |
CN1692891A (en) * | 2005-05-17 | 2005-11-09 | 浙江大学医学院附属邵逸夫医院 | A frozen heterogeneous corneal stroma with low antigen content and its preparation method |
CN1879578A (en) * | 2005-06-15 | 2006-12-20 | 西安组织工程工程技术研究中心 | A method for preparing bioactivity possessed artificial cornea |
CN101380486A (en) * | 2008-10-28 | 2009-03-11 | 暨南大学 | Active regenerative artificial corneal graft and preparation method thereof |
-
2010
- 2010-09-29 CN CN2010102964338A patent/CN101947144B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1579342A (en) * | 2004-04-28 | 2005-02-16 | 浙江大学医学院附属邵逸夫医院 | Exogenous cornea substrate without cells and its preparation method and use |
CN1692891A (en) * | 2005-05-17 | 2005-11-09 | 浙江大学医学院附属邵逸夫医院 | A frozen heterogeneous corneal stroma with low antigen content and its preparation method |
CN1879578A (en) * | 2005-06-15 | 2006-12-20 | 西安组织工程工程技术研究中心 | A method for preparing bioactivity possessed artificial cornea |
CN101380486A (en) * | 2008-10-28 | 2009-03-11 | 暨南大学 | Active regenerative artificial corneal graft and preparation method thereof |
Non-Patent Citations (4)
Title |
---|
《中国博士学位论文全文数据库医药卫生科技辑》 20081215 杜立群 新型组织工程角膜支架材料的实验研究 E080-13 , 第12期 * |
《中国博士学位论文全文数据库医药卫生科技辑》 20081215 杜立群 新型组织工程角膜支架材料的实验研究 E080-13 , 第12期 2 * |
《西安交通大学学报(医学版)》 20071231 姜河等 角膜基质脱细胞处理与相容性实验研究 631-634 第28卷, 第6期 * |
《西安交通大学学报(医学版)》 20071231 姜河等 角膜基质脱细胞处理与相容性实验研究 631-634 第28卷, 第6期 2 * |
Cited By (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102726370A (en) * | 2012-06-29 | 2012-10-17 | 厦门大学附属厦门眼科中心 | Preservation method for corneal limbus tissue |
CN103908700A (en) * | 2013-01-06 | 2014-07-09 | 陕西佰傲再生医学有限公司 | Decellularization cornea preparation method |
CN104001214A (en) * | 2014-05-28 | 2014-08-27 | 青岛中皓生物工程有限公司 | Lamellar corneal stroma bracket as well as preparation method and application thereof |
CN104645415A (en) * | 2014-11-28 | 2015-05-27 | 南昌大学第一附属医院 | Method for preparing decellularized lamellar cornea matrix sheet |
CN104511053A (en) * | 2015-03-06 | 2015-04-15 | 青岛中皓生物工程有限公司 | Decellularized porcine cornea tissue and preparation method and application thereof |
CN104511053B (en) * | 2015-03-06 | 2016-01-27 | 青岛中皓生物工程有限公司 | A kind of de-cell cornea tissue and its preparation method and application |
CN105688282A (en) * | 2016-03-11 | 2016-06-22 | 广州宏畅生物科技有限公司 | Novel biological artificial cornea capable of realizing cellularization through in-vivo induction as well as realizing quick transparency |
WO2018107485A1 (en) * | 2016-12-16 | 2018-06-21 | 厦门大开生物科技有限公司 | Decellularized dried swine lamellar cornea, used method for same, and uses thereof |
CN109475663B (en) * | 2016-12-16 | 2021-11-26 | 厦门大开生物科技有限公司 | Preparation method of acellular porcine cornea, acellular lamellar cornea and use method of acellular lamellar cornea |
WO2018107486A1 (en) * | 2016-12-16 | 2018-06-21 | 厦门大开生物科技有限公司 | Method of drying decellularized cornea and dried decellularized pig lamellar cornea |
WO2018107487A1 (en) * | 2016-12-16 | 2018-06-21 | 厦门大开生物科技有限公司 | Method of sterilizing cornea by irradiation and cornea sterilized thereby |
WO2018107484A1 (en) * | 2016-12-16 | 2018-06-21 | 厦门大开生物科技有限公司 | Decellurization method for swine cornea, decellularized cornea thereof, and use method for dried lamellar cornea |
WO2018107482A1 (en) * | 2016-12-16 | 2018-06-21 | 厦门大开生物科技有限公司 | Preparation method for decelluralized swine cornea, decellularized lamellar cornea thereof, and use method |
CN109069264A (en) * | 2016-12-16 | 2018-12-21 | 厦门大开生物科技有限公司 | A kind of drying means and the dry cornea of de- cell pig plate layer of de- cell cornea |
CN109069263A (en) * | 2016-12-16 | 2018-12-21 | 厦门大开生物科技有限公司 | Porcine cornea method for removing cells and its dry cornea application method of de- cell cornea and plate layer |
CN109069696A (en) * | 2016-12-16 | 2018-12-21 | 厦门大开生物科技有限公司 | A kind of dry cornea of de- cell pig plate layer and its application method and purposes |
CN109475663A (en) * | 2016-12-16 | 2019-03-15 | 厦门大开生物科技有限公司 | A kind of preparation method of de- cell porcine cornea and its de- cell plate layer cornea and usage |
CN109069696B (en) * | 2016-12-16 | 2022-02-01 | 厦门大开生物科技有限公司 | Acellular pig lamellar dry cornea and use method and application thereof |
CN109069264B (en) * | 2016-12-16 | 2020-06-30 | 厦门大开生物科技有限公司 | Drying method of acellular cornea and acellular pig lamina layer dried cornea |
CN108261564A (en) * | 2016-12-30 | 2018-07-10 | 深圳兰度生物材料有限公司 | De- extracellular matrix and its preparation method and application |
CN107929811A (en) * | 2017-12-15 | 2018-04-20 | 厦门大学 | A kind of tissue engineering comea |
CN109908403A (en) * | 2019-01-08 | 2019-06-21 | 王伟 | A kind of decellularized neural scaffold and preparation method thereof |
WO2021159198A1 (en) | 2020-02-14 | 2021-08-19 | Kheiros Pater Inovação S.A | Method for producing decellularized biomaterial, decellularized biomaterial and use thereof |
CN116808299A (en) * | 2023-06-13 | 2023-09-29 | 中山大学中山眼科中心 | A sutureable composite artificial cornea and its preparation method |
CN116808299B (en) * | 2023-06-13 | 2024-12-31 | 中山大学中山眼科中心 | Suturable composite artificial cornea and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
CN101947144B (en) | 2012-07-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101947144B (en) | Ply tissue engineering corneal frame and manufacturing method and application thereof | |
CN103432627B (en) | Method for preparing animal acellular tissue matrix material and tissue matrix material prepared by same | |
CN103908700B (en) | A kind of preparation method of de-cell cornea | |
CN104189957B (en) | Fresh pig cornea is utilized to prepare method and the application of tissue engineering comea carrier bracket | |
CN100333702C (en) | Exogenous cornea substrate without cells and its preparation method and use | |
CN101066471B (en) | Cell-eliminating coanea matrix and its preparation process | |
KR101840726B1 (en) | Method for preparing heterogenous corneal material | |
CN104001214B (en) | Lamellar corneal stroma bracket as well as preparation method and application thereof | |
CN104645415A (en) | Method for preparing decellularized lamellar cornea matrix sheet | |
CN107308496B (en) | A kind of biological tissue reinforcement scaffold material and preparation method thereof | |
Li et al. | Preparation and biomechanical properties of an acellular porcine corneal stroma | |
CN108888804B (en) | Soft tissue repair material and preparation method thereof | |
Elisseeff et al. | Future perspectives for regenerative medicine in ophthalmology | |
CN104971381B (en) | A kind of sterile processing preparation method of heterogenic cornea graft | |
Sanders et al. | Amniotic membrane transplantation: structural and biological properties, tissue preparation, application and clinical indications | |
Huang et al. | Anterior lens capsule: biomechanical properties and biomedical engineering perspectives | |
CN109157676A (en) | A kind of preparation method for remolding compound bio amnion | |
Khadamy | Harnessing the underutilized potential of lens capsule transplantation in ophthalmology: a narrative review of current applications and future directions | |
CN105688282A (en) | Novel biological artificial cornea capable of realizing cellularization through in-vivo induction as well as realizing quick transparency | |
CN108939161B (en) | A kind of humanization activity goes the preparation method of cell corneal stroma stent | |
WO2018107482A1 (en) | Preparation method for decelluralized swine cornea, decellularized lamellar cornea thereof, and use method | |
CN107050515B (en) | Corneal stroma, preparation method and application | |
CN106212442A (en) | A kind of de-cell cornea stand-by protection liquid | |
WO2018107485A1 (en) | Decellularized dried swine lamellar cornea, used method for same, and uses thereof | |
CN100484497C (en) | A method for preparing bioactivity possessed artificial cornea |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C41 | Transfer of patent application or patent right or utility model | ||
TR01 | Transfer of patent right |
Effective date of registration: 20170111 Address after: Haicang District of Xiamen City, Fujian province 361028 Weng Kok Road No. 2052 Xiamen biomedical industry park B2 401-402 Patentee after: Tall building is Medical Devices Co., Ltd. with the door open Address before: Xiamen City, Fujian Province, 361005 South Siming Road No. 422 Patentee before: Xiamen Univ. |
|
CP01 | Change in the name or title of a patent holder |
Address after: 361028 B2 401-402, Xiamen biomedical industrial park, No. 2052, wengjiao Road, Haicang District, Xiamen City, Fujian Province Patentee after: XIAMEN DAKAI BIOTECHNOLOGY Co.,Ltd. Address before: 361028 B2 401-402, Xiamen biomedical industrial park, No. 2052, wengjiao Road, Haicang District, Xiamen City, Fujian Province Patentee before: XIAMEN DAKAI MEDICAL DEVICES Co.,Ltd. |
|
CP01 | Change in the name or title of a patent holder |