CN101943498A - Superfreeze device and vacuum plant - Google Patents
Superfreeze device and vacuum plant Download PDFInfo
- Publication number
- CN101943498A CN101943498A CN201010503347XA CN201010503347A CN101943498A CN 101943498 A CN101943498 A CN 101943498A CN 201010503347X A CN201010503347X A CN 201010503347XA CN 201010503347 A CN201010503347 A CN 201010503347A CN 101943498 A CN101943498 A CN 101943498A
- Authority
- CN
- China
- Prior art keywords
- refrigerant
- circuit
- branch
- gas
- main
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B9/00—Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
- F25B9/002—Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
- F25B9/006—Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant containing more than one component
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2500/00—Problems to be solved
- F25B2500/01—Geometry problems, e.g. for reducing size
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2500/00—Problems to be solved
- F25B2500/26—Problems to be solved characterised by the startup of the refrigeration cycle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2700/00—Sensing or detecting of parameters; Sensors therefor
- F25B2700/19—Pressures
- F25B2700/193—Pressures of the compressor
- F25B2700/1931—Discharge pressures
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B39/00—Evaporators; Condensers
- F25B39/02—Evaporators
- F25B39/028—Evaporators having distributing means
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B41/00—Fluid-circulation arrangements
- F25B41/40—Fluid line arrangements
- F25B41/42—Arrangements for diverging or converging flows, e.g. branch lines or junctions
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B45/00—Arrangements for charging or discharging refrigerant
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B49/00—Arrangement or mounting of control or safety devices
- F25B49/005—Arrangement or mounting of control or safety devices of safety devices
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25D—REFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
- F25D11/00—Self-contained movable devices, e.g. domestic refrigerators
- F25D11/04—Self-contained movable devices, e.g. domestic refrigerators specially adapted for storing deep-frozen articles
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25D—REFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
- F25D2400/00—General features of, or devices for refrigerators, cold rooms, ice-boxes, or for cooling or freezing apparatus not covered by any other subclass
- F25D2400/30—Quick freezing
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Devices That Are Associated With Refrigeration Equipment (AREA)
Abstract
本发明涉及一种超低温冷冻装置,于使用混合沸点相互各异复数种冷媒的混合冷媒的超低温冷冻装置(R)中,为确保对于过冷却器(31)的液体冷媒流量,增大低温盘管(32)的冷却效率,对于设置了低温盘管(32)及毛细管(29)的主冷媒回路(38)、上流端连接于上述主冷媒回路(38)的上流端,设置了毛细管(28)的副冷媒回路(39),使副冷媒回路(39)的高度位置低于主冷媒回路(38)的高度位置。使自过冷却器(31)一次一侧(31a)喷出的气液混合状态冷媒流入副冷媒回路(39)的流量比流入主冷媒回路(38)的流量多,流向副冷媒回路(39)的液体冷媒流量比流入主冷媒回路(38)的流量增加。
The present invention relates to an ultra-low temperature refrigeration device. In an ultra-low temperature refrigeration device (R) using mixed refrigerants with different boiling points, in order to ensure the flow rate of the liquid refrigerant to the supercooler (31), the cryogenic coil is enlarged. (32) cooling efficiency, for being provided with the main refrigerant circuit (38) of cryogenic coil (32) and capillary (29), the upstream end is connected to the upstream end of above-mentioned main refrigerant circuit (38), provided with capillary (28) The sub-refrigerant circuit (39), the height position of the sub-refrigerant circuit (39) is lower than the height position of the main refrigerant circuit (38). Make the gas-liquid mixed state refrigerant ejected from the primary side (31a) of the supercooler (31) flow into the secondary refrigerant circuit (39) more than the flow rate of the main refrigerant circuit (38), and flow to the secondary refrigerant circuit (39) The flow rate of the liquid refrigerant is increased compared with the flow rate flowing into the main refrigerant circuit (38).
Description
本申请是针对2009年3月2日递交的发明名称为“超低温冷冻装置及真空装置”的分案申请200910118136.1的分案申请This application is a divisional application for the divisional application 200910118136.1 filed on March 2, 2009 with the title of invention "ultra-low temperature freezing device and vacuum device"
技术领域technical field
本发明,关于一种为产生超低温冷量的超低温冷冻装置、冷冻系统及真空装置。The present invention relates to an ultra-low temperature freezing device, a freezing system and a vacuum device for generating ultra-low temperature cooling capacity.
背景技术Background technique
迄今为止,作为为产生-100℃以下的超低温冷量的冷冻系统,如专利文献1、2、3所示,混合沸点温度不同的复数种冷媒形成的非共沸点混合冷媒封入冷媒回路的混合冷媒方式超低温冷冻装置已为所知。该种超低温冷冻装置,如设置于衬底(晶片)等制造用真空成膜装置真空罐内的水分由冷冻去除从而提高真空水准。So far, as a refrigeration system for generating ultra-low temperature below -100°C, as shown in
该冷冻系统的冷媒回路,其基本构成为包括如:压缩机、冷凝器、复数级气液分离器、复数级的气液分离器、复数级的分级热交换器、复数个减压器及冷却器(蒸发器)。从上述压缩机喷出的混合冷媒中,主要是把高沸点冷媒由冷凝器冷凝后,在第一气液分离器分离液体冷媒和气体冷媒,将该气体冷媒在第一级分级热交换器的一次一侧,与上述分离后并减压后的液体冷媒热交换并冷却。还有,第二级以后的分级热交换器亦进行同样的热交换。也就是,各级的气液分离器中,分离由上一级分级热交换器冷凝的冷媒的气体冷媒和液体冷媒。该分离后的冷媒由减压器减压后,于对应的上述各级热交换器蒸发,由该蒸发热冷凝来自上述气液分离器的气体冷媒。并且,在复数级的分级热交换器上按照混合冷媒从高沸点到低沸点的顺序各自冷凝上述冷媒。再将从最后一级分级热交换器一次一侧流出的冷媒由毛细管等减压器减压后,将该冷媒在冷却器蒸发。由此,产生-100℃以下的超低温冷量,由此冷却部的冷量冷却欲冷却的物体,如捕捉真空罐中的水分。再有,将在此冷却器进行了冷却作用蒸发后的气体冷媒返回到最终一级的分级热交换器,然后在使其经过各级的分级热交换器二次一侧回到压缩机。The refrigerant circuit of the refrigeration system basically consists of compressors, condensers, multiple stages of gas-liquid separators, multiple stages of gas-liquid separators, multiple stages of graded heat exchangers, multiple pressure reducers and cooling device (evaporator). Among the mixed refrigerants sprayed from the above compressor, the high boiling point refrigerant is mainly condensed by the condenser, and then the liquid refrigerant and gas refrigerant are separated in the first gas-liquid separator, and the gas refrigerant is transferred to the first-stage heat exchanger. On the primary side, it exchanges heat with the separated and decompressed liquid refrigerant and cools it down. Also, the same heat exchange is performed in the second stage and subsequent stage heat exchangers. That is, in the gas-liquid separator of each stage, the gas refrigerant and the liquid refrigerant of the refrigerant condensed in the stage heat exchanger of the upper stage are separated. The separated refrigerant is decompressed by the pressure reducer, evaporates in the corresponding heat exchangers of each stage, and condenses the gas refrigerant from the gas-liquid separator by the heat of evaporation. In addition, the above-mentioned refrigerants are individually condensed in the order of the mixed refrigerants from high boiling point to low boiling point in the multi-stage hierarchical heat exchanger. Then, the refrigerant flowing out from the primary side of the final graded heat exchanger is depressurized by a pressure reducer such as a capillary tube, and then evaporated in the cooler. As a result, an ultra-low temperature cooling capacity below -100°C is generated, and the cooling capacity of the cooling part cools the object to be cooled, such as capturing moisture in the vacuum tank. In addition, the gas refrigerant that has been cooled by the cooler and evaporated is returned to the last stage of the staged heat exchanger, and then returned to the compressor on the secondary side after passing through the staged heat exchangers of each stage.
再有,上述减压器及冷却器设置了的主冷媒回路并列连接着副冷媒回路,在该副冷媒回路上设置了过冷却器用减压器。在上述冷凝器和冷却器之间,具有流淌从上述冷凝器喷出的冷媒的一次一侧,与该一次一侧的冷媒能够进行热交换的二次一侧的由热交换器形成的过冷却器,将一次一侧的冷媒与二次一侧的冷媒进行热交换使的冷却。另一方面,过冷却器用减压器,是为减压上述过冷却器与二次一侧热交换所提供的液体冷媒的器具。Furthermore, the sub-refrigerant circuit is connected in parallel to the main refrigerant circuit in which the pressure reducer and the cooler are installed, and the sub-refrigerant circuit is provided with a pressure reducer for a subcooler. Between the above-mentioned condenser and the cooler, there is a primary side where the refrigerant ejected from the above-mentioned condenser flows, and a secondary side capable of exchanging heat with the refrigerant on the primary side is supercooled by a heat exchanger. The device exchanges heat between the refrigerant on the primary side and the refrigerant on the secondary side for cooling. On the other hand, the pressure reducer for the subcooler is a device for decompressing the liquid refrigerant supplied for heat exchange between the subcooler and the secondary side.
还有,上述混合冷媒中,为防止压缩机内轴承等磨损混入冷冻机油,在压缩机喷出一侧到冷凝器之间,设置了从混合冷媒除去冷冻机油的分油器,防止由于冷冻机油提供给冷却器而凝固降低冷却效率。In addition, in the above-mentioned mixed refrigerant, in order to prevent the wear and tear of the inner bearing of the compressor from being mixed with the refrigerating machine oil, an oil separator for removing the refrigerating machine oil from the mixed refrigerant is installed between the discharge side of the compressor and the condenser, so as to prevent the refrigerating machine oil from Supply to the cooler while solidifying reduces cooling efficiency.
再有,这种混合冷媒式超低温冷冻装置中,在其开始启动等时,因为低温沸点成份冷媒没有充分凝结,出现喷出压力上升超过冷冻装置的耐压情况。为此,另外设置缓冲罐,通过使这个缓冲罐与冷媒回路由包括当冷媒回路中的压力超过所规定的压力(如比设计耐压稍稍低一些的压力)时而动作的阀门的管线连接,使高压冷媒暂时进入缓冲罐,可以使降低了喷出压力的运行继续。In addition, in this mixed refrigerant type ultra-low temperature freezer, when it starts to start, etc., because the low-boiling point component refrigerant is not sufficiently condensed, the discharge pressure rises beyond the withstand pressure of the freezer. For this purpose, a buffer tank is additionally provided, and the buffer tank is connected to the refrigerant circuit by a pipeline including a valve that operates when the pressure in the refrigerant circuit exceeds a specified pressure (such as a pressure slightly lower than the design pressure), so that The high-pressure refrigerant temporarily enters the buffer tank, allowing the operation to continue with the reduced discharge pressure.
再有,专利文献4所示中,缓冲罐与压缩机吸入一侧由回流管连接,使缓冲罐内的冷媒循环。In addition, in
还有,上述真空成膜装置中,是由冷却器(主冷却器)捕捉水分,在不成膜时停止冷冻装置的平常运转,冷却器的除霜就成为必要了。为此,对上述冷冻装置,将压缩机喷出口与冷却器用防冻回路连接,通过将压缩机喷出气体进行供给冷却器的防冻运转,进行冷却器的除霜。In addition, in the above-mentioned vacuum film forming apparatus, moisture is captured by the cooler (main cooler), and the normal operation of the refrigeration unit is stopped when the film is not formed, and defrosting of the cooler is necessary. Therefore, in the above-mentioned refrigerating apparatus, the discharge port of the compressor is connected to the antifreeze circuit for the cooler, and the defrosting of the cooler is carried out by the antifreeze operation in which the gas discharged from the compressor is supplied to the cooler.
(专利文献1)实用新型登录第2559220号公报(Patent Document 1) Utility Model Registration No. 2559220
(专利文献2)特开平2-67855号公报(Patent Document 2) JP-A-2-67855
(专利文献3)特开平6-347112号公报(Patent Document 3) JP-A-6-347112
(专利文献4)特开平6-159831号公报(Patent Document 4) JP-A-6-159831
(发明所要解决的课题)(The problem to be solved by the invention)
但是,上述以前的冷冻系统中,存在下述的问题。However, the above-mentioned conventional refrigeration systems have the following problems.
(1)首先,如上所述在连接了过冷却器的冷冻系统中,通常设定为主冷却器和过冷却器二次一侧所流过冷媒的流量相互相同。(1) First, as described above, in a refrigeration system connected with a subcooler, the flow rates of the refrigerant flowing through the main cooler and the secondary side of the subcooler are generally set to be the same.
但是,通过主冷媒回路及副冷媒回路的分支部分流向主冷却器和过冷却器的二次一侧的冷媒并不全由液体冷媒构成,提供的是包含着一部分气体冷媒的气液混合状态冷媒。为此,如上所述流向主冷却器及过冷却器的冷媒流量设定为相互相等,尽管如此,流向过冷却器二次一侧的液体冷媒少的情况下,出现对其一次一侧气体冷媒的冷却不足,这就招致由过冷却器液化了的液体冷媒流量减少使主冷却器的冷却效率降低。其结果,就产生了由主冷却器冷却的冷却对象负荷变动,或者是无法安定地冷却该负荷变动的冷却对象,再或者是由主冷却器将冷却对象从常温冷却至超低温状态所需要的冷却时间加长的问题。However, the refrigerant flowing to the secondary side of the main cooler and the subcooler through the branch part of the main refrigerant circuit and the sub-refrigerant circuit is not entirely composed of liquid refrigerant, but a gas-liquid mixed state refrigerant containing a part of gas refrigerant is provided. For this reason, the flow rates of the refrigerant flowing to the main cooler and the subcooler are set to be equal to each other as described above. However, if the amount of liquid refrigerant flowing to the secondary side of the subcooler is small, the flow rate of the gas refrigerant on the primary side will be reduced. Insufficient cooling, which leads to the reduction of the flow of liquid refrigerant liquefied by the subcooler, which reduces the cooling efficiency of the main cooler. As a result, the load of the cooling object cooled by the main cooler fluctuates, or the cooling object whose load fluctuates cannot be cooled stably, or the cooling required to cool the cooling object from normal temperature to ultra-low temperature by the main cooler The problem of prolonged time.
(2)其次,停止冷冻装置的通常运转,使压缩机喷出气体通过除霜回路提供给冷却器进行冷却器的除霜的除霜运转时,如果在该除霜运转开始时没有由上述分油器除去冷冻机油的话,就会产生冷冻机油流入除霜回路,提供给超低温状态的冷却器,在冷冻器中凝固的问题。(2) Next, stop the normal operation of the refrigerating device, and supply the blown gas from the compressor to the cooler through the defrosting circuit to defrost the cooler. If the oil tank removes the refrigerating machine oil, the refrigerating machine oil will flow into the defrosting circuit, supply it to the cooler in the ultra-low temperature state, and freeze in the refrigerator.
(3)再次,如此若冷冻机油等提供给冷却器在冷却器中凝固的话,其后,即便是于冷却器升温时冷冻机油通过冷却器,由自该冷却器流出的冷冻机油等于同等超低温状态下提供给热交换器,于热交换器内冷冻机油也会凝固,为消除该冷冻机油等凝固需要时间,产生除霜运转时间加长的问题。(3) Again, if the refrigerating machine oil etc. are supplied to the cooler and solidified in the cooler, then even if the refrigerating machine oil passes through the cooler when the temperature of the cooler is raised, the refrigerating machine oil flowing out of the cooler is equivalent to the ultra-low temperature state If it is supplied to the heat exchanger, the refrigerating machine oil will also solidify in the heat exchanger, and it takes time to eliminate the solidification of the refrigerating machine oil, etc., resulting in the problem of prolonging the defrosting operation time.
因此,为了解决这个冷冻机油等在冷却器中凝固的问题,从压缩机的喷出一侧到冷凝器为止的之间考虑串联设置复数个油分离器。但是,这个方法中,由于混合冷媒的流动阻抗产生了压力损失,又产生了冷却效率降低的另外的问题。Therefore, in order to solve the problem that the refrigerating machine oil and the like solidify in the cooler, it is conceivable to install a plurality of oil separators in series between the discharge side of the compressor and the condenser. However, in this method, a pressure loss occurs due to the flow resistance of the mixed refrigerant, and there arises another problem that the cooling efficiency is lowered.
(4)还有,近年,为了提高冷冻装置的冷却能力,较多地使用于运转中及停止中保持为气相状态的低沸点冷媒,为此,产生了缓冲罐容量不足的问题。(4) Also, in recent years, in order to improve the cooling capacity of refrigeration equipment, low-boiling-point refrigerants that are kept in a gaseous state during operation and shutdown have been widely used. For this reason, there has been a problem of insufficient capacity of the buffer tank.
为解决如此的缓冲罐容量不足的问题,可以使用大容量的缓冲罐。但是,只是简单地加大缓冲罐容积,确保缓冲罐设置空间就又很困难。还有,沸点不同的冷媒各自的比重不同,由缓冲罐将冷媒回流至冷媒回路的冷媒回流管的连接位置要达到完全循环的位置是困难的。为此,冷冻装置内各部分支混合冷媒的成份比率与冷媒封入当初相比发生变动,就有降低冷却性能的担忧。In order to solve the problem of insufficient capacity of such a buffer tank, a large-capacity buffer tank can be used. However, it is very difficult to secure the installation space of the buffer tank simply by increasing the volume of the buffer tank. In addition, since refrigerants with different boiling points have different specific gravity, it is difficult to achieve complete circulation at the connection position of the refrigerant return pipe that returns the refrigerant from the buffer tank to the refrigerant circuit. For this reason, the component ratio of the mixed refrigerant in each branch in the refrigeration unit is changed from the original time when the refrigerant is sealed, and there is a concern that the cooling performance will be reduced.
(5)再有,上述超低温冷冻装置中,最好的是能够使冷却器在短时间内从常温状态冷却至超低温状态,就可以提高真空装置的工作效率。在此,作为上述减压器使用毛细管的情况下,缩短毛细管的整体长度减小管道的阻力,如此,就可以于短时间内冷却冷却器至低温状态满足上述要求就成为可能。(5) Furthermore, in the above-mentioned ultra-low temperature freezing device, it is preferable that the cooler can be cooled from a normal temperature state to an ultra-low temperature state in a short time, so that the working efficiency of the vacuum device can be improved. Here, in the case of using a capillary tube as the pressure reducer, the overall length of the capillary tube is shortened to reduce the resistance of the pipeline, so that the cooler can be cooled to a low temperature state in a short time to meet the above requirements.
与此相反,加长毛细管的整体长度,可以将低沸点冷媒的蒸发温度冷却到使冷媒降压至可充分达到的低压使冷却对象达到超低温水准。On the contrary, by lengthening the overall length of the capillary, the evaporation temperature of the low-boiling refrigerant can be cooled to the point where the refrigerant can be depressurized to a low pressure that can be fully achieved, so that the cooling object can reach an ultra-low temperature level.
如此,于以前减压器回路构成中,将冷却器于短时间内冷却至超低温水准是困难的。Thus, in the conventional configuration of the decompressor circuit, it is difficult to cool the cooler to an ultra-low temperature in a short time.
发明内容Contents of the invention
本发明是鉴于上述诸点而发明的。其第一目的是由对上述主冷却器和过冷却器二次一侧适当地调整各冷媒的流量,安定且充分确保过冷却器的液体冷媒流量,增大主冷却器冷却效率,针对负荷变动安定地冷却冷却对象,缩短冷却对象从常温冷却至低温水平的冷却时间。The present invention was made in view of the above-mentioned points. The first purpose is to properly adjust the flow rate of each refrigerant on the secondary side of the main cooler and the subcooler, to ensure a stable and sufficient liquid refrigerant flow rate in the subcooler, to increase the cooling efficiency of the main cooler, and to respond to load fluctuations. Stable cooling of the cooling object, shortening the cooling time of the cooling object from normal temperature to low temperature level.
本发明的第二目的是,如上述的设置了除霜回路超低温冷冻装置中,于不损失冷却效率情况下确实进行冷冻机油的除去,使冷冻机油不提供给冷却器。The second object of the present invention is to reliably remove the refrigerator oil without supplying the refrigerator oil to the cooler in the ultra-low temperature refrigerator provided with the defrosting circuit as described above without losing the cooling efficiency.
本发明的第三目的是,如上述的设置了除霜回路超低温冷冻装置中,特别是热交换器控制了冷冻机油等的凝固可得到除霜运转的效果。The third object of the present invention is to obtain the effect of defrosting operation by controlling the solidification of refrigerating machine oil and the like in the ultra-low temperature refrigerating apparatus provided with the defrosting circuit as described above.
本发明的第四目的是,伴随着冷媒的低沸点化可实现缓冲罐的大容量化,且可使缓冲罐内的气体冷媒有效地循环。A fourth object of the present invention is to increase the capacity of the buffer tank with lower boiling point of the refrigerant, and to efficiently circulate the gas refrigerant in the buffer tank.
本发明的第五目的是,于超低温冷冻装置中,不损失其冷却能力而短时间地使冷却器冷却到超低温水准。A fifth object of the present invention is to cool down a cooler to an ultra-low temperature level in a short time without losing its cooling capacity in an ultra-low temperature freezer.
(为解决课题的方法)(for a solution to the problem)
为达成上述的目的,第一发明中,使流向主冷却器及过冷却器的液体冷媒流量具有差异,让于过冷却器二次一侧流动的液体冷媒流量多于主冷却器。To achieve the above object, in the first invention, the flow rate of the liquid refrigerant flowing to the main cooler and the subcooler is different, so that the flow rate of the liquid refrigerant flowing on the secondary side of the subcooler is larger than that of the main cooler.
具体而言,该第一发明的冷冻系统,以包括:压缩冷媒的压缩机、冷却该压缩机喷出冷媒至冷凝的冷凝器、具有自该冷凝器喷出冷媒的一次一侧,及自该一次一侧喷出且由过冷却器用减压器减压的冷媒流淌的二次一侧,由一次一侧的冷媒与二次一侧的冷媒之间热交换冷却的过冷却器、蒸发自该过冷却器一次一侧喷出且由主冷却器用减压器减压的冷媒冷却冷却对象的主冷却器、使自上述过冷却器一次一侧喷出的冷媒中,流过过冷却器二次一侧液体冷媒流量多于流向主冷却器液体冷媒流量的过冷却器冷媒流量增加器为特征。Specifically, the refrigeration system of the first invention includes: a compressor for compressing refrigerant, a condenser for cooling the compressor and discharging refrigerant to condensation, a primary side for discharging refrigerant from the condenser, and a The refrigerant discharged from the primary side and depressurized by the subcooler's pressure reducer flows to the secondary side, and the subcooler that is cooled by heat exchange between the primary side refrigerant and the secondary side refrigerant evaporates from the secondary side. The main cooler to be cooled is cooled by the refrigerant discharged from the primary side of the subcooler and depressurized by the pressure reducer of the main cooler, and the refrigerant discharged from the primary side of the above-mentioned subcooler flows through the secondary cooler. The subcooler refrigerant flow increaser is characterized by the flow of liquid refrigerant on one side more than the flow of liquid refrigerant to the main cooler.
还有,第二发明的冷冻系统,以包括:压缩混合沸点相互各异的复数种类冷媒的混合冷媒的压缩机、冷却该压缩机喷出的混合冷媒中高沸点冷媒至冷凝的冷凝器、按照自高沸点至低沸点的顺序分离自该压缩机喷出的混合冷媒中的液体冷媒及气体冷媒的复数级气液分离器、将该各气液分离器分离了的冷媒,与由该各气液分离器分离后再由减压器减压了的液体冷媒的热交换进行冷却的分级热交换器、具有自最后一级该分级热交换器喷出低沸点冷媒流淌的一次一侧,及自该一次一侧喷出且由过冷却器用减压器减压的低沸点冷媒流淌的二次一侧,由一次一侧的低沸点冷媒与二次一侧的低沸点冷媒之间热交换冷却的过冷却器、蒸发自该过冷却器一次一侧喷出且由主冷却器用减压器减压的低沸点冷媒冷却冷却对象至超低温水准的主冷却器、使自上述过冷却器一次一侧喷出的冷媒中,流过过冷却器二次一侧液体冷媒流量多于流向主冷却器液体冷媒流量的过冷却器冷媒流量增加器为特征。Also, the refrigerating system of the second invention includes: a compressor for compressing a mixed refrigerant of a plurality of types of refrigerants having different boiling points; Multiple stages of gas-liquid separators for separating liquid refrigerant and gas refrigerant from the mixed refrigerant discharged from the compressor in sequence from high boiling point to low boiling point, the refrigerant separated by each gas-liquid separator, and the gas-liquid refrigerant separated by each gas-liquid After separation by the separator, the staged heat exchanger is cooled by the heat exchange of the liquid refrigerant decompressed by the decompressor. It has a primary side where the low-boiling point refrigerant flows from the last stage of the staged heat exchanger, and from this stage. The secondary side is sprayed from the primary side and decompressed by the subcooler with a pressure reducer. The secondary side is cooled by heat exchange between the low boiling point refrigerant on the primary side and the low boiling point refrigerant on the secondary side. Cooler, the main cooler that evaporates from the primary side of the subcooler and the low boiling point refrigerant that is decompressed by the pressure reducer in the main cooler cools the object to be cooled to an ultra-low temperature level, and discharges from the primary side of the above subcooler. Among the refrigerants, the subcooler refrigerant flow increaser is characterized by the flow of liquid refrigerant flowing through the secondary side of the subcooler more than the flow of liquid refrigerant flowing to the main cooler.
由该各发明的构成,因为流过过冷却器二次一侧的液体冷媒流量比流向主冷却器的液体冷媒流量多,对该过冷却器一次一侧的气体冷媒保持有充分的冷却,增加由该过冷却器液化了的液体冷媒流量提高主冷却器的冷却效果。由此,即便是主冷却器冷却的冷却对象负荷变动的话,于可以安定地冷却该冷却对象的同时,可以缩短将冷却对象从常温迅速冷却至超低温水准的降温时间。According to the constitution of each invention, since the liquid refrigerant flow rate flowing through the secondary side of the subcooler is larger than the liquid refrigerant flow rate flowing to the main cooler, the gas refrigerant on the primary side of the subcooler is kept sufficiently cooled, increasing The flow rate of the liquid refrigerant liquefied by the subcooler improves the cooling effect of the main cooler. Thereby, even if the load of the object to be cooled by the main cooler fluctuates, the object to be cooled can be stably cooled, and the cooling time for rapidly cooling the object to be cooled from normal temperature to the cryogenic level can be shortened.
第三发明中,上述过冷却器冷媒流量增加器,是以在包括设置了主冷却器及主冷却器用减压器的主冷媒回路和、上流端分支连接在该主冷媒回路上端,设置了过冷却器用减压器的副冷媒回路基础上,还具有上述副冷媒回路的最小断面面积比主冷媒回路的最大断面面积还大的构造为特征。In the third invention, the above-mentioned subcooler refrigerant flow increaser is based on the main refrigerant circuit including the main cooler and the pressure reducer for the main cooler, and the upstream end branch is connected to the upper end of the main refrigerant circuit. In addition to the sub-refrigerant circuit of the decompressor for a cooler, the sub-refrigerant circuit has a structure in which the minimum sectional area of the sub-refrigerant circuit is larger than the maximum sectional area of the main refrigerant circuit.
如此,于过冷却器一次一侧喷出的冷媒分别流入主冷媒回路及副冷媒回路的时候,因为副冷媒回路的最小断面面积比主冷媒回路的最大断面面积还大,从整体来看气液混合状态冷媒流入副冷媒回路的流量就比流入主冷媒回路的冷媒增加,与其成正比流入副冷媒回路的液体冷媒就比流入主冷媒回路的液体冷媒流量多。因此,对于过冷却器一次一侧的气体冷媒而言能够得到充分的冷却,增加该过冷却器液化了的液体冷媒流量提高主冷却器的冷却效率。In this way, when the refrigerant ejected from the primary side of the subcooler flows into the main refrigerant circuit and the sub-refrigerant circuit respectively, because the minimum cross-sectional area of the sub-refrigerant circuit is larger than the maximum cross-sectional area of the main refrigerant circuit, the overall gas-liquid The flow rate of the mixed state refrigerant flowing into the sub-refrigerant circuit is higher than that of the refrigerant flowing into the main refrigerant circuit, and in direct proportion to it, the flow rate of liquid refrigerant flowing into the sub-refrigerant circuit is more than that flowing into the main refrigerant circuit. Therefore, the gas refrigerant on the primary side of the subcooler can be sufficiently cooled, and increasing the flow rate of the liquefied liquid refrigerant in the subcooler improves the cooling efficiency of the main cooler.
第四发明中,上述过冷却器冷媒流量增加器,是以在包括设置了主冷却器及主冷却器用减压器的主冷媒回路和、上流端分支连接在该主冷媒回路上端,设置了过冷却器用减压器的副冷媒回路基础上,还具有上述主冷媒回路和副冷媒回路分支部分的上述副冷媒回路最高高度位置比主冷媒回路最低高度位置低的构造为特征。In the fourth invention, the above-mentioned subcooler refrigerant flow increaser is based on the main refrigerant circuit including the main cooler and the pressure reducer for the main cooler, and the upstream end branch is connected to the upper end of the main refrigerant circuit. The sub-refrigerant circuit of the decompressor for a cooler also has a structure in which the highest height of the sub-refrigerant circuit is lower than the lowest height of the main refrigerant circuit in branched parts of the main refrigerant circuit and the sub-refrigerant circuit.
如此做,当过冷却器一次一侧喷出的冷媒分别流入主冷媒回路及副冷媒回路的时候,因为于其分支部分的上述副冷媒回路最高高度位置比主冷媒回路最低高度位置低,所以,气液混合状态冷媒中的液体冷媒,流入相对高度低的副冷媒回路就多,流向副冷媒回路液体冷媒流量就比流向主冷媒回路的流量增加。因此,对于过冷却器一次一侧的气体冷媒而言能够得到充分的冷却,增加该过冷却器液化了的液体冷媒流量提高主冷却器的冷却效率。In this way, when the refrigerant ejected from the primary side of the subcooler flows into the main refrigerant circuit and the auxiliary refrigerant circuit respectively, because the highest height of the auxiliary refrigerant circuit in its branch part is lower than the lowest height of the main refrigerant circuit, so, The liquid refrigerant in the refrigerant in the gas-liquid mixed state flows more into the auxiliary refrigerant circuit with a relatively low height, and the flow rate of the liquid refrigerant flowing into the auxiliary refrigerant circuit is higher than that flowing into the main refrigerant circuit. Therefore, the gas refrigerant on the primary side of the subcooler can be sufficiently cooled, and increasing the flow rate of the liquefied liquid refrigerant in the subcooler improves the cooling efficiency of the main cooler.
还有,只要使主冷媒回路及副冷媒回路高度具有差异既可,不形成断面面积的不同亦可,所以能够用简单的构造得到上述的效果。Also, as long as there is a difference in height between the main refrigerant circuit and the sub-refrigerant circuit, there is no need to form a difference in cross-sectional area, so the above-mentioned effect can be obtained with a simple structure.
第五发明中,上述第三发明的过冷却器流量增加器,具有主冷媒回路和副冷媒回路分支部分的副冷媒回路最高高度位置比主冷媒回路最低高度位置低的构造。由此,就可以起到叠加上述第三及第四发明作用的效果,更进一步提高主冷却器的冷却效率。In the fifth invention, the subcooler flow booster of the third invention has a structure in which the highest height of the sub refrigerant circuit is lower than the lowest height of the main refrigerant circuit in the branch portion of the main refrigerant circuit and the sub refrigerant circuit. In this way, the effect of superimposing the effects of the above-mentioned third and fourth inventions can be achieved, and the cooling efficiency of the main cooler can be further improved.
第六发明,是以由上述第一至第五的发明的任何一个冷冻系统的主冷却器冷却真空容器内水分使其冷冻的真空装置为特征。由此,冻结真空装置中真空容器内的水分,可得到安定的真空状态的同时,因冷却时间的缩短可在短时间内排空真空容器而提高生产效率。The sixth invention is characterized in that the main cooler of the refrigeration system according to any one of the above-mentioned first to fifth inventions is a vacuum device that cools the moisture in the vacuum container to freeze it. In this way, the moisture in the vacuum container in the vacuum device can be frozen to obtain a stable vacuum state, and at the same time, the vacuum container can be emptied in a short time due to the shortened cooling time, thereby improving production efficiency.
第七发明中,将防冻时使用的分油器,不是设置在压缩机喷出一侧至冷凝器之间,而是设置在防冻回路中,从流入防冻回路的混合冷媒中除去冷冻机油。In the seventh invention, the oil separator used for antifreezing is not installed between the discharge side of the compressor and the condenser, but is installed in the antifreeze circuit to remove refrigerating machine oil from the mixed refrigerant flowing into the antifreeze circuit.
具体而言,该第七发明,以包括:压缩混合沸点相互各异的复数种类冷媒的混合冷媒的压缩机、冷却该压缩机喷出的混合冷媒中高沸点冷媒至液化的冷凝器、从上述压缩机喷出一侧至冷凝器的混合冷媒中除去混入的冷冻机油的第一分油器、按照混合冷媒中自高沸点冷媒至低沸点冷媒的顺序分离由上述冷凝器液化了的液体冷媒及气体冷媒的复数级气液分离器、将该各气液分离器分离了的冷媒,与由该各气液分离器分离后再由减压器减压了的液体冷媒的热交换进行冷却的分级热交换器、具有蒸发自这些复数级中最后一级该分级热交换器喷出且减压了的低沸点冷媒冷却冷却对象至超低温水准的冷却器、该冷却器除霜时,将上述压缩机喷出的混合冷媒提供给冷却器的除霜回路,且,该除霜回路上,设置了从上述混合冷媒除去冷冻机油的第二分油器为特征。Specifically, the seventh invention includes: a compressor for compressing a mixed refrigerant mixed with a plurality of types of refrigerants having different boiling points; The first oil separator that removes the refrigerating machine oil from the mixed refrigerant from the discharge side of the machine to the condenser, and separates the liquid refrigerant and gas liquefied by the above condenser in the order of the mixed refrigerant from high boiling point refrigerant to low boiling point refrigerant Multiple stages of gas-liquid separators for the refrigerant, the refrigerant separated by the gas-liquid separators, and the liquid refrigerant separated by the gas-liquid separators and then decompressed by the decompressor to exchange heat for cooling. An exchanger, a cooler with a low-boiling point refrigerant that has been evaporated from the last stage of the multiple stages and ejected from the hierarchical heat exchanger to cool the cooling object to an ultra-low temperature level. When the cooler is defrosted, the above-mentioned compressor is sprayed The extracted mixed refrigerant is supplied to the defrosting circuit of the cooler, and the defrosting circuit is characterized in that a second oil separator for removing refrigerating machine oil from the mixed refrigerant is provided.
由该发明,因为除霜回路上,设置了从上述混合冷媒除去冷冻机油的第二分油器,所以,就可以防止除霜时上述混合冷媒中的冷冻机油从除霜回路提供给冷却器于该冷却器内凝固。By this invention, because the defrosting circuit is provided with the second oil separator for removing the refrigerating machine oil from the above-mentioned mixed refrigerant, so it can prevent the refrigerating machine oil in the above-mentioned mixed refrigerant from being supplied to the cooler from the defrosting circuit during defrosting. Freezes inside the cooler.
并且,还能够防止将复数个分油器串联于压缩机喷出一侧到冷凝器之间排设情况那样的压力损失的增加。由此,可以得到在使混合冷媒良好循环的同时,防止上述那样的冷却效率下降。In addition, it is also possible to prevent an increase in pressure loss that occurs when a plurality of oil separators are arranged in series between the discharge side of the compressor and the condenser. As a result, it is possible to prevent the above-mentioned reduction in cooling efficiency while allowing the mixed refrigerant to circulate well.
再有,因为除霜回路上设置了第二分油器,所以,可以谋求与不在除霜回路设置除霜回路的冷冻装置之间的零件共用化,于降低设备成本方面有利。还有,也可以容易地进行交换等维修作业。In addition, since the second oil separator is provided on the defrosting circuit, it is possible to achieve common use of parts with refrigeration devices that do not have a defrosting circuit, which is advantageous in terms of equipment cost reduction. In addition, maintenance work such as replacement can also be easily performed.
第八发明中,是以上述除霜回路中,设置了除霜时打开的开闭阀,上述第二分油器,设置于上述除霜回路上流端到上述开闭阀之间为特征。The eighth invention is characterized in that an on-off valve that opens during defrosting is provided in the defrosting circuit, and the second oil separator is provided between the upstream end of the defrosting circuit and the on-off valve.
由该发明,因为第二分油器,设置于上述除霜回路上流端到上述开闭阀之间,所以,由关闭上述开闭阀,可以防止压缩机吸入一侧和第二分油器之间前者比后者高的压力差的发生。By this invention, because the second oil separator is arranged between the upstream end of the above-mentioned defrosting circuit and the above-mentioned on-off valve, so by closing the above-mentioned on-off valve, it is possible to prevent the gap between the suction side of the compressor and the second oil separator. The occurrence of a pressure difference between the former higher than the latter.
亦即,于第二分油器与压缩机之间,采用了使分离的冷冻机油返回压缩机吸入一侧的连接方式,若压缩机吸入一侧与第二分油器之间前者比后者高的压力差的话,担心自压缩机流向第二分油器的冷冻机油逆流。但是,关闭配置于第二分油器下游一侧的开闭阀,就可以防止由上述压力差所发生的冷冻机油的逆流,可使冷冻机油顺利地流回。That is, between the second oil separator and the compressor, a connection method is adopted to return the separated refrigerating machine oil to the suction side of the compressor. If the pressure difference is high, there is concern about the reverse flow of the refrigeration oil from the compressor to the second oil separator. However, by closing the on-off valve disposed downstream of the second oil separator, the backflow of the refrigerating machine oil due to the pressure difference can be prevented, and the refrigerating machine oil can be smoothly returned.
第九发明中,是以上述第二分油器,设置于到上述除霜回路上流端为止的距离比到上述除霜回路下流端为止的距离短的位置为特征。A ninth invention is characterized in that the second oil separator is provided at a position where the distance to the upstream end of the defrosting circuit is shorter than the distance to the downstream end of the defrosting circuit.
由本发明,因为第二分油器设置于到上述除霜回路上流端为止的距离比到上述除霜回路下流端为止的距离短的位置,可以分离温度高粘度低的状态下的冷冻机油,可以更确实地进行冷冻机油的除去。According to the present invention, since the second oil separator is provided at a position where the distance to the upstream end of the defrosting circuit is shorter than the distance to the downstream end of the defrosting circuit, it is possible to separate the refrigerating machine oil in a state of high temperature and low viscosity. We perform removal of refrigerating machine oil more surely.
第十发明中,复数个设置了缓冲罐,由该缓冲罐之间的配管连接,气体冷媒于缓冲罐内顺利循环,还能够有效地防止气体冷媒于缓冲罐内滞留使气体冷媒有效地循环。In the tenth invention, a plurality of buffer tanks are provided, and the gas refrigerant circulates smoothly in the buffer tanks through the piping connection between the buffer tanks, and it is also possible to effectively prevent the gas refrigerant from stagnating in the buffer tanks and effectively circulate the gas refrigerant.
具体而言,该第十发明中,压缩混合沸点相互各异的复数种类冷媒的混合冷媒的压缩机、冷却该压缩机喷出的混合冷媒中高沸点冷媒至液化的冷凝器、按照混合冷媒中自高沸点冷媒至低沸点冷媒的顺序分离由该冷凝器液化了的液体冷媒及气体冷媒的复数级气液分离器、将该各气液分离器分离了的冷媒,与由该各气液分离器分离后再由减压器减压了的液体冷媒的热交换进行冷却的分级热交换器、具有蒸发自这些复数级中最后一级该分级热交换器喷出且减压了的低沸点冷媒冷却冷却对象至超低温水准的冷却器是由冷媒回路连接。Specifically, in the tenth invention, a compressor that compresses a mixed refrigerant of plural kinds of refrigerants with different boiling points from each other, a condenser that cools the high-boiling point refrigerant in the mixed refrigerant discharged from the compressor to liquefaction, and automatically The sequence of high boiling point refrigerant to low boiling point refrigerant is to separate the liquid refrigerant and gas refrigerant liquefied by the condenser in multiple stages of gas-liquid separators, the refrigerant separated by each gas-liquid separator, and the liquid refrigerant separated by each gas-liquid separator After separation, the staged heat exchanger is cooled by the heat exchange of the liquid refrigerant decompressed by the decompressor, and the low-boiling point refrigerant that is evaporated from the last stage of the multiple stages and ejected from the staged heat exchanger is cooled. The cooler that cools the object to an ultra-low temperature level is connected by a refrigerant circuit.
并且,是以上述冷媒回路上,连接了防止上述压缩机喷出压力异常上升的复数个缓冲罐为特征。Furthermore, it is characterized in that a plurality of buffer tanks are connected to the above-mentioned refrigerant circuit to prevent the discharge pressure of the above-mentioned compressor from rising abnormally.
由该发明,因为于冷媒回路上连接了复数个缓冲罐,与为解决罐容量不足采用一个大容量罐的情况相比,确保工厂内等放置罐的空间变得容易。再有,由复数个罐增加了罐的容量,可以防止压缩机喷出压力异常上升,对冷冻装置安定地运转有利。According to this invention, since a plurality of buffer tanks are connected to the refrigerant circuit, it becomes easier to secure space for tanks in factories, etc., compared with the case of using one large-capacity tank to solve the shortage of tank capacity. In addition, since the capacity of the tank is increased by a plurality of tanks, it is possible to prevent an abnormal increase in the discharge pressure of the compressor, which is beneficial to the stable operation of the refrigeration device.
第十一发明,于上述第十发明的超低温冷冻装置中,是以上述复数个缓冲罐,是由至少包括一个第一缓冲罐,位于比该第一缓冲罐更低位置的至少一个第二缓冲罐组成。该第一及第二缓冲罐,由使气体冷媒于第一及第二缓冲罐之间流通的连通管相互连接。并且,上述第二缓冲罐上连接着压缩机喷出一侧及吸入一侧的冷媒回路为特征。In the eleventh invention, in the ultra-low temperature freezing device of the tenth invention above, the plurality of buffer tanks are composed of at least one first buffer tank and at least one second buffer tank located at a lower position than the first buffer tank. tank composition. The first and second buffer tanks are connected to each other by a communication pipe through which the gas refrigerant flows between the first and second buffer tanks. In addition, the refrigerant circuits on the discharge side and the suction side of the compressor are connected to the second buffer tank.
由该发明,因为第一及第二缓冲罐由连通管相互连接,所以于两缓冲罐之间流通着冷媒。由此,可以防止罐内气体冷媒的滞留使比重不同的冷媒成份完全循环,防止装置内的混合冷媒成份比率与冷媒封入时相比发生变动而导致冷却性能的降低。According to this invention, since the first and second buffer tanks are connected to each other by the communication pipe, the refrigerant flows between the two buffer tanks. This prevents the stagnation of the gas refrigerant in the tank and completely circulates the refrigerant components with different specific gravity, and prevents the cooling performance from deteriorating due to fluctuations in the ratio of the mixed refrigerant components in the device compared to when the refrigerant is filled.
第十二发明,于上述第十发明的超低温冷冻装置中,是以上述复数个缓冲罐,是由至少包括一个第一缓冲罐,至少一个第二缓冲罐组成。该第一及第二缓冲罐,由使气体冷媒于第一及第二缓冲罐之间流通的连通管相互连接,上述第一缓冲罐连接于压缩机喷出一侧的冷媒回路上。并且,上述连通管中间与压缩机吸入一侧冷媒回路连接为特征。In the twelfth invention, in the ultra-low temperature freezing device of the above tenth invention, the above-mentioned plurality of buffer tanks are composed of at least one first buffer tank and at least one second buffer tank. The first and second buffer tanks are connected to each other by a communication pipe through which gas refrigerant flows between the first and second buffer tanks, and the first buffer tank is connected to a refrigerant circuit on the discharge side of the compressor. In addition, it is characterized in that the middle of the communication pipe is connected to the refrigerant circuit on the suction side of the compressor.
由该发明,因为第一及第二缓冲罐由连通管相互连接,所以于两缓冲罐之间流通着冷媒。由此,可以防止罐内气体冷媒的滞留使比重不同的冷媒成份完全循环,防止装置内的混合冷媒成份比率与冷媒封入时相比发生变动而导致冷却性能的降低。According to this invention, since the first and second buffer tanks are connected to each other by the communication pipe, the refrigerant flows between the two buffer tanks. This prevents the stagnation of the gas refrigerant in the tank and completely circulates the refrigerant components with different specific gravity, and prevents the cooling performance from deteriorating due to fluctuations in the ratio of the mixed refrigerant components in the device compared to when the refrigerant is filled.
还有,因为上述连通管于中间与压缩机吸入一侧的冷媒回路连接,自冷媒回路流入缓冲罐返回压缩机吸入一侧的气体冷媒顺利地于罐内循环。由此,能够更确实地防止罐内气体冷媒的滞留。Also, because the communication pipe is connected to the refrigerant circuit on the suction side of the compressor in the middle, the gas refrigerant flowing into the buffer tank from the refrigerant circuit and returning to the suction side of the compressor circulates smoothly in the tank. Thereby, stagnation of the gas refrigerant in the tank can be more reliably prevented.
第十三发明,于上述第十发明的超低温冷冻装置中,是以上述复数个缓冲罐,是由至少包括一个第一缓冲罐,至少一个第二缓冲罐组成。该第一及第二缓冲罐,由使气体冷媒于第一及第二缓冲罐之间流通的连通管相互连接。并且,上述第一缓冲罐与压缩机喷出一侧的冷媒回路连接,第二缓冲罐与压缩机吸入一侧冷媒回路连接为特征。In the thirteenth invention, in the ultra-low temperature freezing device of the tenth invention above, the plurality of buffer tanks are composed of at least one first buffer tank and at least one second buffer tank. The first and second buffer tanks are connected to each other by a communication pipe through which the gas refrigerant flows between the first and second buffer tanks. Furthermore, the first buffer tank is connected to the refrigerant circuit on the discharge side of the compressor, and the second buffer tank is connected to the refrigerant circuit on the suction side of the compressor.
由该发明,因为第一及第二缓冲罐由连通管相互连接,所以于两缓冲罐之间流通着冷媒。由此,可以防止罐内气体冷媒的滞留使比重不同的冷媒成份完全循环,防止装置内的混合冷媒成份比率与冷媒封入时相比发生变动而导致冷却性能的降低。According to this invention, since the first and second buffer tanks are connected to each other by the communication pipe, the refrigerant flows between the two buffer tanks. This prevents the stagnation of the gas refrigerant in the tank and completely circulates the refrigerant components with different specific gravity, and prevents the cooling performance from deteriorating due to fluctuations in the ratio of the mixed refrigerant components in the device compared to when the refrigerant is filled.
还有,因为形成了上述那样的回路构成,能够更确实地防止罐内气体冷媒的滞留。Furthermore, since the above-mentioned circuit structure is formed, stagnation of the gas refrigerant in the tank can be more reliably prevented.
第十四发明中,将除霜回路下流端部分支为二,使冷却器和热交换器同时升温。In the fourteenth invention, the downstream end of the defrosting circuit is branched into two, and the temperature of the cooler and the heat exchanger is raised simultaneously.
具体而言,该第十四发明中,以包括:压缩混合沸点相互各异的复数种类冷媒的混合冷媒的压缩机、冷却该压缩机喷出的混合冷媒中高沸点冷媒至液化的冷凝器、按照混合冷媒中自高沸点冷媒至低沸点冷媒的顺序分离由该冷凝器液化了的液体冷媒及气体冷媒的复数级气液分离器、将该各气液分离器分离了的冷媒,与由该各气液分离器分离后再由减压器减压了的液体冷媒的热交换进行冷却的分级热交换器、具有蒸发自这些复数级中最后一级该分级热交换器喷出且减压了的低沸点冷媒冷却冷却对象至超低温水准的冷却器是由冷媒回路连接的同时,上述冷却器除霜时,将自上述压缩机喷出的混合冷媒提供给冷却器的除霜回路的超低温冷冻装置为前提。Specifically, in the fourteenth invention, a compressor that compresses mixed refrigerants of plural kinds of refrigerants having different boiling points from each other, and a condenser that cools the high-boiling point refrigerants in the mixed refrigerants discharged from the compressor to liquefaction, according to A plurality of gas-liquid separators for separating the liquid refrigerant liquefied by the condenser and the gas refrigerant sequentially from the high boiling point refrigerant to the low boiling point refrigerant in the mixed refrigerant, the refrigerant separated by each gas-liquid separator, and the refrigerant separated by each A staged heat exchanger that is cooled by the heat exchange of the liquid refrigerant that has been decompressed by the decompressor after being separated by the gas-liquid separator. The low-boiling-point refrigerant cools the cooling object to the ultra-low temperature level. While the refrigerant circuit is connected, when the above-mentioned cooler is defrosted, the ultra-low-temperature refrigeration device that supplies the mixed refrigerant discharged from the above-mentioned compressor to the defrosting circuit of the cooler is: premise.
并且,是以将除霜回路下流端部分支为主分支回路和副分支回路。还有,上述主分支回路下流端连接冷却器入口一侧冷媒回路的同时,副分支回路下流端连接冷却器出口一侧冷媒回路为特征。Moreover, the downstream end of the defrosting circuit is branched into a main branch circuit and a secondary branch circuit. In addition, while the downstream end of the main branch circuit is connected to the refrigerant circuit on the inlet side of the cooler, the downstream end of the secondary branch circuit is connected to the refrigerant circuit on the outlet side of the cooler.
由该发明,除霜回路下流端部分支为主、副分支回路中,因为主分支回路下流端连接冷却器入口一侧冷媒回路,副分支回路下流端连接冷却器出口一侧冷媒回路,因此,将流过主分支回路的冷媒提供给冷却器使该冷却器与将流过副分支回路的冷媒提供给连接于冷却器出口一侧冷媒回路的热交换器的该热交换器能够同时升温。由此,可以防止通过上述冷却器的冷冻机油等再次于热交换器内凝固。如此防止了由冷冻机油等凝固导致的冷媒回路堵塞,确保冷媒回路内混合冷媒的良好循环,缩短了除霜运转时间。According to this invention, the downstream end of the defrosting circuit is branched into the main branch circuit and the auxiliary branch circuit, because the downstream end of the main branch circuit is connected to the refrigerant circuit on the inlet side of the cooler, and the downstream end of the auxiliary branch circuit is connected to the refrigerant circuit on the outlet side of the cooler. Therefore, Supplying the refrigerant flowing through the main branch circuit to the cooler enables simultaneous temperature rise of the cooler and the heat exchanger that supplies the refrigerant flowing through the sub branch circuit to the heat exchanger connected to the refrigerant circuit on the outlet side of the cooler. Thereby, the refrigerating machine oil etc. which passed through the said cooler can be prevented from solidifying again in a heat exchanger. This prevents the blockage of the refrigerant circuit caused by the solidification of refrigerating machine oil, etc., ensures the good circulation of the mixed refrigerant in the refrigerant circuit, and shortens the defrosting operation time.
第十五发明中,于第十四发明的超低温冷冻装置中上述副分支回路上设置了开闭阀为特征。In the fifteenth invention, in the ultra-low temperature freezer of the fourteenth invention, an on-off valve is provided in the sub-branch circuit.
由该发明,用开闭阀的开阀如上所述使冷却器及热交换器同时升温,热交换器中将冷冻机油等升温到能够顺畅地流动的流动点以上的温度后由关闭开闭阀,使到此时为止分流到主分支回路及副分支回路的混合冷媒只流入主分支回路升温冷却器,使除霜运转更加缩短。According to this invention, the temperature of the cooler and the heat exchanger is simultaneously raised by opening the on-off valve as described above. , so that the mixed refrigerant that has been diverted to the main branch circuit and the auxiliary branch circuit until now only flows into the main branch circuit temperature rise cooler, so that the defrosting operation is shortened.
第十六发明中,将至冷却器的相互并列连接冷媒回路作为复数个分支回路与各个分支减压器连接,使冷媒有选择地流过这些复数分支减压器。In the sixteenth invention, the parallel-connected refrigerant circuits to the coolers are connected to the respective branch pressure reducers as a plurality of branch circuits, and the refrigerant selectively flows through the plurality of branch pressure reducers.
具体而言,该第十六发明中,以包括:压缩混合沸点相互各异的复数种类冷媒的混合冷媒的压缩机、冷却该压缩机喷出的混合冷媒中高沸点冷媒至液化的冷凝器、按照混合冷媒中自高沸点冷媒至低沸点冷媒的顺序分离由该冷凝器液化了的液体冷媒及气体冷媒的复数级气液分离器、将该各气液分离器分离了的冷媒,与由该各气液分离器分离后再由减压器减压了的液体冷媒的热交换进行冷却的分级热交换器、减压自该复数级中最后一级该分级热交换器喷出的低沸点冷媒的减压器、蒸发由该减压器减压了的低沸点冷媒至超低温水准冷却冷却对象的冷却器由冷媒回路连接的超低温冷冻装置为前提。Specifically, in the sixteenth invention, a compressor that compresses mixed refrigerants of plural kinds of refrigerants having different boiling points from each other, and a condenser that cools the high-boiling point refrigerants in the mixed refrigerants discharged from the compressor to liquefaction, according to A plurality of gas-liquid separators for separating the liquid refrigerant liquefied by the condenser and the gas refrigerant sequentially from the high boiling point refrigerant to the low boiling point refrigerant in the mixed refrigerant, the refrigerant separated by each gas-liquid separator, and the refrigerant separated by each After the gas-liquid separator is separated, the heat exchange of the liquid refrigerant decompressed by the decompressor is used to cool the hierarchical heat exchanger. The decompressor and the cooler that evaporates the low-boiling point refrigerant decompressed by the decompressor to the ultra-low temperature level cool the object to be cooled, and the ultra-low temperature refrigeration device connected by the refrigerant circuit is based on the premise.
并且,是以将自上述最终级分级热交换器至上述冷却器提供给冷媒的冷媒回路,由相互并列连接的复数分支回路构成。还有,上述减压器,由上述复数分支回路各个串联连接的复数分支减压器构成。再有,上述复数分支回路中设置了至少一个使分支回路流过冷媒的切换器为特征。Furthermore, the refrigerant circuit for supplying the refrigerant from the final-stage heat exchanger to the cooler is constituted by a plurality of branch circuits connected in parallel. In addition, the pressure reducer is composed of a plurality of branch pressure reducers connected in series in each of the plurality of branch circuits. In addition, the plurality of branch circuits is characterized in that at least one switch for allowing the branch circuits to flow refrigerant is provided.
由该发明,于相互并列连接的复数分支回路上各自连接了分支减压器,并且设置了切换为上述复数分支回路中至少一个分支回路流过冷媒的切换器,所以,由该切换器的切换能够使冷媒于复数分支回路中分支流量增加。因此,由冷媒的管路阻力变化于确保使冷却对象冷却至所规定冷却温度为止的减压能力,同时亦可缩短到达冷却温度为止的冷却时间。According to this invention, the branch decompressors are respectively connected to the plurality of branch circuits connected in parallel, and a switcher is provided which is switched so that at least one of the branch circuits of the above-mentioned plurality of branch circuits flows through the refrigerant. It is possible to increase the branch flow rate of the refrigerant in multiple branch circuits. Therefore, the pipe resistance of the refrigerant is changed to ensure the decompression ability to cool the cooling object to the predetermined cooling temperature, and at the same time, the cooling time to reach the cooling temperature can be shortened.
第十七发明中,于第十六的超低温冷冻装置,是以上述切换器,为设置于上述复数分支回路中至少一个中的开闭阀为特征。In the seventeenth invention, the sixteenth ultra-low temperature freezer is characterized in that the switch is an on-off valve provided in at least one of the plurality of branch circuits.
由该发明,由有选择地打开开闭阀,可以调整复数分支回路分流的冷媒流量。由此,在冷却器中既可任意调整冷却温度及冷却时间。According to this invention, by selectively opening the on-off valve, the flow rate of the refrigerant branched by the plurality of branch circuits can be adjusted. As a result, the cooling temperature and cooling time can be adjusted arbitrarily in the cooler.
第十八发明中,于第十六或者是第十七发明的超低温冷冻装置,是以上述复数分支减压器,具有各自不同的减压能力为特征。In the eighteenth invention, the ultra-low temperature freezing device of the sixteenth or seventeenth invention is characterized in that the above-mentioned plurality of branch decompressors have different decompression capabilities.
由该发明,因为复数分支减压器各自具有不同的减压能力,所以与复数分支减压器各自具有相同减压能力的情况相比,可于冷却器中增大冷却温度及冷却时间的调整幅度。According to this invention, since the plurality of branch decompressors each have different decompression capabilities, compared with the case where the plurality of branch decompressors each have the same decompression capability, the adjustment of cooling temperature and cooling time can be increased in the cooler magnitude.
第十九发明中,于上述第十六至第十八的发明中任何一个超低温冷冻装置,是以上述分支减压器,为毛细管为特征。In the nineteenth invention, any one of the ultra-low temperature refrigerators in the sixteenth to eighteenth inventions above is characterized in that the branch pressure reducer is a capillary tube.
由该发明,因为作为减压器使用了毛细管,于超低温区域确实能够进行低沸点冷媒的减压。由此,与使用膨胀阀作为减压器的情况相比信赖性高,于使装置安定运转上有利。还有,毛细管与膨胀阀相比价格低,所以,大幅度地削减设备费成为可能。According to this invention, since the capillary tube is used as the pressure reducer, it is possible to reliably depressurize the low-boiling point refrigerant in the ultra-low temperature region. Therefore, reliability is higher than when an expansion valve is used as a pressure reducer, and it is advantageous in terms of stable operation of the device. In addition, since the capillary tube is less expensive than the expansion valve, it is possible to significantly reduce the equipment cost.
再有,第二十发明中,是以于上述第六至第十九发明的任何一项中由超低温冷冻装置的冷却器冷却真空容器内水分使其冻结构成的真空装置为特征。由此,可以求得真空装置的生产效率及动作安定性的提高。Furthermore, the twentieth invention is characterized in that it is a vacuum device in which the water in the vacuum container is cooled and frozen by the cooler of the ultra-low temperature freezing device in any one of the sixth to nineteenth inventions. Thereby, the productivity and operation stability of a vacuum apparatus can be improved.
(发明的效果)(effect of invention)
如以上的说明,第一或第二发明中,对于包含冷却冷却对象的主冷却器、将一次一侧的冷媒由二次一侧的冷媒冷却的过冷却器的冷冻系统,由流过过冷却器二次一侧的液体冷媒流量比流向主冷却器的液体冷媒流量多,确保对过冷却器一次一侧的气体冷媒保持有充分的冷却,可提高主冷却器的冷却效果,可以求得冷却对象冷却的安定化及缩短将冷却对象冷却至超低温水准的降温时间。As described above, in the first or second invention, for the refrigeration system including the main cooler for cooling the object to be cooled, and the subcooler for cooling the refrigerant on the primary side by the refrigerant on the secondary side, the subcooling system is formed by flowing through the subcooler. The flow of liquid refrigerant on the secondary side of the subcooler is greater than the flow of liquid refrigerant flowing to the main cooler, ensuring sufficient cooling of the gas refrigerant on the primary side of the subcooler, which can improve the cooling effect of the main cooler and obtain cooling Stabilization of object cooling and shortening of the cooling time for cooling objects to ultra-low temperature levels.
由第三发明,对于包括设置了主冷却器及主冷却器用减压器的主冷媒回路、分支连接于该主冷媒回路,设置了过冷却器用减压器的副冷媒回路,由副冷媒回路的最小断面面积比主冷媒回路的最大断面面积还大,于过冷却器一次一侧喷出的冷媒分别流入主冷媒回路及副冷媒回路的时候,由使流入副冷媒回路的流量多于流入主冷媒回路的冷媒,可以比主冷媒回路增加流入副冷媒回路的液体冷媒的流量,亦就具体化了上述过冷却器冷媒流量增加器。According to the third invention, for the main refrigerant circuit including the main cooler and the pressure reducer for the main cooler, the sub-refrigerant circuit branched to the main refrigerant circuit, and the sub-refrigerant circuit for the supercooler, the sub-refrigerant circuit The minimum cross-sectional area is larger than the maximum cross-sectional area of the main refrigerant circuit. When the refrigerant ejected from the primary side of the subcooler flows into the main refrigerant circuit and the auxiliary refrigerant circuit, the flow rate of the auxiliary refrigerant circuit is more than that of the main refrigerant. The refrigerant in the circuit can increase the flow rate of the liquid refrigerant flowing into the auxiliary refrigerant circuit compared with the main refrigerant circuit, which also embodies the above-mentioned subcooler refrigerant flow increaser.
由第四发明,对于设置了主冷却器及主冷却器用减压器的主冷媒回路、分支连接于该主冷媒回路,设置了过冷却器用减压器的副冷媒回路,由使主冷媒回路及副冷媒回路分支部分的副冷媒回路最高高度位置比主冷媒回路最低高度位置低,当过冷却器一次一侧喷出的冷媒分别流入主冷媒回路及副冷媒回路的时候,使气液混合状态冷媒中的液体冷媒,流入相对高度低的副冷媒回路,就可以使流向副冷媒回路液体冷媒流量比流向主冷媒回路的流量增加,所以用简单的构造,得到具体化了上述过冷却器冷媒流量增加器。According to the fourth invention, for the main refrigerant circuit provided with the main cooler and the pressure reducer for the main cooler, the sub-refrigerant circuit branched to the main refrigerant circuit and provided with the pressure reducer for the subcooler, the main refrigerant circuit and the pressure reducer for the subcooler are set. The highest height of the auxiliary refrigerant circuit in the branch part of the auxiliary refrigerant circuit is lower than the lowest height of the main refrigerant circuit. When the refrigerant sprayed from the primary side of the subcooler flows into the main refrigerant circuit and the auxiliary refrigerant circuit respectively, the refrigerant in the gas-liquid mixed state The liquid refrigerant in the medium flows into the sub-refrigerant circuit with a relatively low height, and the flow rate of the liquid refrigerant flowing to the sub-refrigerant circuit can be increased compared with the flow rate flowing to the main refrigerant circuit. Therefore, with a simple structure, the above-mentioned subcooler refrigerant flow rate increase device.
由第五发明,于第三发明的冷冻系统,由主冷媒回路和副冷媒回路分支部分的副冷媒回路最高高度位置比主冷媒回路最低高度位置低的构造,就可以起到叠加上述第三及第四发明作用的效果,更进一步提高主冷却器的冷却效率。According to the fifth invention, in the refrigeration system of the third invention, the highest height of the sub-refrigerant circuit of the branch part of the main refrigerant circuit and the sub-refrigerant circuit is lower than the lowest height of the main refrigerant circuit, which can superimpose the above-mentioned third and As an effect of the action of the fourth invention, the cooling efficiency of the main cooler is further improved.
由第六发明,由上述冷冻系统的主冷却器冷却真空容器内水分使其冷冻,求得安定的真空状态,及缩短冷却排空、时间,提高生产效率。According to the sixth invention, the main cooler of the above-mentioned refrigeration system cools the water in the vacuum container to freeze it, obtains a stable vacuum state, shortens the cooling and evacuation time, and improves the production efficiency.
由第七发明,于超低温冷冻装置的除霜回路上,设置了自混合冷媒除去冷冻机油的分油器,就可以防止除霜时上述混合冷媒中的冷冻机油从除霜回路提供给冷却器于该冷却器内凝固的同时,还能够防止将复数个分油器串联于压缩机喷出一侧到冷凝器之间排设情况那样的压力损失的增加。由此,可以得到在使混合冷媒良好循环的同时,防止上述那样的冷却效率下降。According to the seventh invention, on the defrosting circuit of the ultra-low temperature refrigerating device, an oil separator for removing the refrigerating machine oil from the mixed refrigerant is provided, so that the refrigerating machine oil in the above-mentioned mixed refrigerant can be prevented from being supplied to the cooler from the defrosting circuit during defrosting. While solidifying in the cooler, it is also possible to prevent the increase in pressure loss that occurs when a plurality of oil separators are arranged in series between the discharge side of the compressor and the condenser. As a result, it is possible to prevent the above-mentioned reduction in cooling efficiency while allowing the mixed refrigerant to circulate well.
由第八的发明,于除霜回路到开闭阀之间设置了分油器,关闭开闭阀防止发生压缩机的吸入一侧与分油器之间前者后者高的压力差,防止了由上述压力差所发生的自压缩机的吸入一侧向分油器的冷冻机油倒流,可使得冷冻机油顺利地流回压缩机。According to the eighth invention, an oil separator is installed between the defrosting circuit and the on-off valve, and the on-off valve is closed to prevent the former and the latter from having a high pressure difference between the suction side of the compressor and the oil separator, preventing The backflow of the refrigerating machine oil from the suction side of the compressor to the oil separator caused by the above pressure difference can make the refrigerating machine oil flow back to the compressor smoothly.
由第九发明,由将分油器设置于除霜回路的上流,可以回收温度高粘度低的冷冻机油,更确实地进行冷冻机油的除去。According to the ninth invention, by disposing the oil separator upstream of the defrosting circuit, it is possible to recover high-temperature low-viscosity refrigerating machine oil, and remove the refrigerating machine oil more reliably.
由第十发明,于冷媒回路的上连接了复数个缓冲罐,求得缓冲罐设置空间的确保,还由缓冲罐的大容量化防止压缩机喷出压力异常上升使冷冻装置安定地运转。According to the tenth invention, a plurality of buffer tanks are connected to the refrigerant circuit to ensure the installation space of the buffer tanks, and the increase in the capacity of the buffer tanks prevents abnormal rises in the discharge pressure of the compressor and stabilizes the operation of the refrigeration unit.
由第十一发明,第一及第二缓冲罐由连通管相互连接,使冷媒于两缓冲罐之间流通,防止罐内气体冷媒的滞留,可防止装置内的混合冷媒成份比率与冷媒封入时相比发生变动而导致冷却性能的降低。According to the eleventh invention, the first and second buffer tanks are connected to each other by a communication pipe, so that the refrigerant circulates between the two buffer tanks, preventing the stagnation of the gas refrigerant in the tank, and preventing the composition ratio of the mixed refrigerant in the device from changing when the refrigerant is sealed. Variations in the ratio lead to a reduction in cooling performance.
由第十二发明,连通管中间与压缩机吸入一侧的冷媒回路连接,自冷媒回路流入缓冲罐返回压缩机吸入一侧的气体冷媒顺利地于罐内循环,能够更确实地防止罐内气体冷媒的滞留。According to the twelfth invention, the middle of the communication pipe is connected to the refrigerant circuit on the suction side of the compressor, and the gas refrigerant flowing from the refrigerant circuit into the buffer tank and returning to the suction side of the compressor smoothly circulates in the tank, which can more reliably prevent the gas in the tank from Refrigerant retention.
由第十三发明,使气体冷媒自压缩机喷出一侧流入,再由压缩机吸入一侧返回的回路构成,能够确实地防止罐内气体冷媒的滞留。According to the thirteenth invention, the gas refrigerant flows in from the discharge side of the compressor and returns from the suction side of the compressor, so that the stagnation of the gas refrigerant in the tank can be reliably prevented.
由第十四发明,将超低温冷冻装置中除霜回路下流端部分支为主分支回路和副分支回路并各自连接到冷却器入口一侧及出口一侧,使冷却器和热交换器能够同时升温,可以防止通过上述冷却器的冷冻机油等于热交换器内凝固,确保冷媒回路内混合冷媒的良好循环缩短了除霜运转时间。According to the fourteenth invention, the downstream end of the defrosting circuit in the ultra-low temperature freezing device is branched into the main branch circuit and the secondary branch circuit and connected to the inlet side and the outlet side of the cooler respectively, so that the cooler and the heat exchanger can simultaneously heat up , can prevent the refrigerating machine oil passing through the above cooler from solidifying in the heat exchanger, ensure good circulation of the mixed refrigerant in the refrigerant circuit and shorten the defrosting operation time.
由第十五发明,于上述副分支回路中设置了开闭阀,热交换器中将冷冻机油等升温到能够顺畅地流动的流动点以上的温度后由关闭开闭阀使到此时为止分流到主分支回路及副分支回路的混合冷媒只流入主分支回路升温冷却器,使除霜运转更加缩短。According to the fifteenth invention, an on-off valve is provided in the sub-branch circuit, and the temperature of the refrigerating machine oil in the heat exchanger is raised to a temperature above the flow point where it can flow smoothly, and then the on-off valve is closed to divert the flow until then. The mixed refrigerant to the main branch circuit and the sub branch circuit only flows into the main branch circuit heating cooler, shortening the defrosting operation.
由第十六发明,使自超低温冷冻装置的最终级分级热交换器一次一侧至冷却器提供给冷媒的冷媒回路分支为复数分支回路,将该复数分支回路连接减压器,再由切换器的切换,能够增加冷媒的流量,既可确保使冷却对象冷却至所规定冷却温度为止的减压能力,亦可求得缩短到达冷却温度为止的冷却时间。According to the sixteenth invention, the refrigerant circuit supplied to the refrigerant from the primary side of the final graded heat exchanger of the ultra-low temperature freezing device to the cooler is branched into multiple branch circuits, and the multiple branch circuits are connected to the pressure reducer, and then the switching device Switching can increase the flow rate of the refrigerant, which can not only ensure the decompression ability to cool the cooling object to the specified cooling temperature, but also shorten the cooling time until the cooling temperature is reached.
由第十七发明,将切换器,于分支回路中设置至少一个开闭阀,于冷却器中可任意调整冷却温度及冷却时间。According to the seventeenth invention, the switch is provided with at least one on-off valve in the branch circuit, and the cooling temperature and cooling time can be adjusted arbitrarily in the cooler.
由第十八发明,使复数分支减压器各自具有不同的减压能力,可于冷却器中增大冷却温度及冷却时间的调整幅度。According to the eighteenth invention, each of the plurality of branch decompressors has different decompression capabilities, and the adjustment range of cooling temperature and cooling time can be increased in the cooler.
由第十九发明,上述减压器,为毛细管,于超低温区域确实能够进行低沸点冷媒的减压,于使装置安定运转上有利,可求得信赖性的提高和大幅度地削减设备费。According to the nineteenth invention, the above-mentioned pressure reducer is a capillary tube, which can reliably decompress the low-boiling point refrigerant in the ultra-low temperature region, which is advantageous in stabilizing the operation of the device, improving reliability and greatly reducing equipment costs.
由第二十发明,上述超低温冷冻装置的冷却器冷却真空装置的真空容器内水分使其冻结,可以求得真空装置的生产效率及动作安定性的提高。According to the twentieth invention, the cooler of the ultra-low temperature freezing device cools and freezes moisture in the vacuum container of the vacuum device, so that the production efficiency and operation stability of the vacuum device can be improved.
附图说明Description of drawings
图1,是概略表示本发明实施方式所关于的真空成膜装置的布置平面图。FIG. 1 is a plan view schematically showing the layout of a vacuum film forming apparatus according to an embodiment of the present invention.
图2,是概略表示真空成膜装置的其他布置平面图。Fig. 2 is a plan view schematically showing another layout of the vacuum film forming apparatus.
图3,是表示本发明实施方式1所关于的低温冷冻装置整体构成的冷媒系统图。Fig. 3 is a refrigerant system diagram showing the overall configuration of the cryogenic refrigeration device according to
图4,是扩大表示超低温冷冻装置主要部位的平面图。Fig. 4 is an enlarged plan view showing main parts of the ultra-low temperature freezing device.
图5,是图4的V方向视图。FIG. 5 is a view in the V direction of FIG. 4 .
图6,是表示实施方式2与图4相当的图。FIG. 6 is a
图7,是表示实施方式3与图4相当的图。FIG. 7 is a diagram showing Embodiment 3 corresponding to FIG. 4 .
图8,是图7VIII方向视图。Fig. 8 is a view from the VIII direction of Fig. 7 .
图9,是表示本发明实施方式4所关于的超低温冷冻装置的全体构成的冷媒系统图。Fig. 9 is a refrigerant system diagram showing the overall configuration of a cryogenic refrigeration device according to
图10,是表示本发明实施方式5所关于的超低温冷冻装置的全体构成的冷媒系统图。Fig. 10 is a refrigerant system diagram showing the overall configuration of the ultra-low temperature refrigerating apparatus according to
图11,是表示本发明实施方式6所关于的超低温冷冻装置的全体构成的冷媒系统图。Fig. 11 is a refrigerant system diagram showing the overall configuration of a cryogenic refrigeration device according to
图12,是表示本发明实施方式7所关于的超低温冷冻装置的全体构成的冷媒系统图。Fig. 12 is a refrigerant system diagram showing the overall configuration of a cryogenic refrigeration device according to
图13,是表示本发明实施方式8所关于的超低温冷冻装置的全体构成的冷媒系统图。Fig. 13 is a refrigerant system diagram showing the overall configuration of a cryogenic refrigerator according to
图14,是表示本发明实施方式9所关于的超低温冷冻装置的全体构成的冷媒系统图。Fig. 14 is a refrigerant system diagram showing the overall configuration of a cryogenic refrigeration device according to
图15,是表示本发明实施方式10所关于的超低温冷冻装置的全体构成的冷媒系统图。Fig. 15 is a refrigerant system diagram showing the overall configuration of the ultra-low temperature refrigeration device according to
图16,是表示本发明实施方式11所关于的超低温冷冻装置的全体构成的冷媒系统图。Fig. 16 is a refrigerant system diagram showing the overall configuration of the ultra-low temperature refrigerating apparatus according to Embodiment 11 of the present invention.
图17,是表示本发明实施方式12所关于的超低温冷冻装置的全体构成的冷媒系统图。Fig. 17 is a refrigerant system diagram showing the overall configuration of a cryogenic refrigeration device according to
图18,是表示本发明实施方式13所关于的超低温冷冻装置的全体构成的冷媒系统图。Fig. 18 is a refrigerant system diagram showing the overall configuration of a cryogenic refrigeration device according to
(符号说明)(Symbol Description)
A 真空成膜装置A Vacuum film forming device
R 超低温冷冻装置 R Ultra-low temperature freezing device
1 冷媒回路1 Refrigerant circuit
2 冷媒配管 2 Refrigerant piping
2a 主冷媒配管 2a Main refrigerant piping
2b 副冷媒配管2b Secondary refrigerant piping
4 缩机4 compressors
5 分油器 5 Oil separator
6 回油管6 Oil return pipe
8 水冷凝器8 water condenser
9 干燥机9 dryer
10 辅助冷凝器10 auxiliary condenser
12 第一气液分离器12 The first gas-liquid separator
13 第二气液分离器13 Second gas-liquid separator
14 第三气液分离器14 The third gas-liquid separator
15 第四气液分离器15 The fourth gas-liquid separator
18 第一热交换器18 The first heat exchanger
19 第二热交换器19 Second heat exchanger
20 第三热交换器20 The third heat exchanger
21 第四热交换器21 The fourth heat exchanger
24 第一毛细管(减压器)24 The first capillary (pressure reducer)
25 第二毛细管(减压器)25 second capillary (pressure reducer)
26 第三毛细管(减压器)26 The third capillary (pressure reducer)
27 第四毛细管(减压器)27 The fourth capillary (pressure reducer)
28 第五毛细管(过冷却器用减压器)28 fifth capillary (pressure reducer for subcooler)
29 第六毛细管30(主冷却器用减压器)29 The sixth capillary 30 (pressure reducer for the main cooler)
31 过冷却器31 Subcooler
31a 一次一侧31a one side at a time
31b 二次一侧31b secondary side
32 低温盘管(主冷却器)32 low temperature coil (main cooler)
35 分支管35 branch pipe
35b 主侧分支管35b main side branch pipe
35c 副侧分支管35c Secondary side branch pipe
h 高度h height
38 主冷媒回路38 Main refrigerant circuit
39 副冷媒回路39 Secondary refrigerant circuit
44 电磁开关阀44 Solenoid switch valve
45 防冻回路45 antifreeze circuit
45a 主分支回路45a main branch circuit
45b 副分支回路45b Secondary branch circuit
46 电磁开关阀46 Solenoid switch valve
50 第二分油器50 Second oil separator
59 压力计59 pressure gauge
60 缓冲罐60 buffer tank
61 冷媒流入管61 Refrigerant inlet pipe
62 冷媒回流管62 Refrigerant return pipe
63 第一缓冲罐63 The first buffer tank
64 第二缓冲罐64 Second buffer tank
65 连通管65 connecting pipe
66 电磁开关阀66 Electromagnetic switch valve
68 电磁开关阀68 Electromagnetic switch valve
80 第一分支回路80 first branch circuit
80a 第一分支毛细管80a First Branch Capillary
80b 电磁开关阀80b Solenoid switch valve
81 第二分支回路81 second branch circuit
81a 第二分支毛细管81a second branch capillary
81b 电磁开关阀81b Electromagnetic switch valve
82 第三分支回路82 The third branch circuit
82a 第三分支毛细管82a third branch capillary
82b 电磁开关阀82b Solenoid switch valve
83 第四分支回路83 The fourth branch circuit
83a 第四分支毛细管83a Fourth branch capillary
83b 电磁开关阀83b Solenoid switch valve
100 真空容器100 vacuum containers
具体实施方式Detailed ways
以下,基于附图详细说明本发明的实施方式。以下最好的实施方式,从本质上不超过示例,然而,本发明亦不为该适用物或该用途所限制。Hereinafter, embodiments of the present invention will be described in detail based on the drawings. The following best embodiments are not more than examples in nature, however, the present invention is not limited by the suitability or use.
(实施方式1)(Embodiment 1)
图1,是概略表示本发明实施方式所关于的真空成膜装置的真空成膜装置A的布置平面图一例。100是内部保持真空状态未图示衬底(亦称晶片)成膜了的真空容器。该真空容器100上,开设了由开闭门101开关的出入口(图中未示),于开闭门101打开的状态,将要成膜的衬底送入真空容器100,或者是将成膜后的衬底从真空容器100内取出。于该连通管102与真空容器100的连接部分,设置了由开闭使两者处于连通或者是截断状态的切换滑门阀104,关闭开闭门101且打开滑门阀104的状态下由真空泵103的工作使真空容器100内成为真空状态。FIG. 1 is an example of a layout plan view schematically showing a vacuum film forming apparatus A of a vacuum film forming apparatus according to an embodiment of the present invention. 100 is a vacuum container in which a substrate (not shown) (also referred to as a wafer) is deposited in a vacuum state. On the
于上述真空成膜装置A中设置了构成本发明的实施方式1所关于的冷冻系统的超低温冷冻装置R。由该超低温冷冻装置R的后述的低温盘管32,于真空泵103抽真空的状态直接将真空容器100内的冷却对象的水分冷却至超低温水准,由此,捕捉该冻结水分提高真空容器100内的真空度。The ultra-low temperature freezer R constituting the freezer system according to
另一方面,图2,表示真空成膜装置A的其他例的布置平面图,超低温冷冻装置R的低温盘管32不是配置于真空容器100内而是配置于连通管102的中途。于真空泵103抽真空的状态下由超低温冷冻装置R捕捉连通管102内的水分,亦就是间接地冷却真空容器100内的水分支冷冻,提高真空容器100内的真空度。其他的构造与图1所示真空成膜装置A相同。On the other hand, FIG. 2 shows a layout plan view of another example of the vacuum film forming apparatus A, and the
上述超低温冷冻装置R,是使用混合沸点相互不同的数种冷媒形成的非共沸点冷媒为冷媒产生-100℃以下的超低温水准冷量的装置。The above-mentioned ultra-low temperature refrigeration device R is a device that uses a non-azeotropic refrigerant formed by mixing several refrigerants with different boiling points as a refrigerant to generate an ultra-low temperature level cooling capacity below -100°C.
也就是,如图3所示超低温冷冻装置R的全体构成,1是封入上述混合冷媒的封闭循环冷媒回路,该冷媒回路1连接于以下说明的连接各种机器的冷媒配管2。4是压缩气体冷媒的压缩机,该压缩机4的喷出部分连接着分油器5。该分油器5,是自气体冷媒分离压缩机4喷出的气体冷媒中混入的压缩机用润滑油等冷冻机油的分油器,该分离的冷冻机油经过回油管6返回到压缩机4的吸入一侧。于上述分油器5的冷媒喷出部分,连接着将自压缩机4的喷出气体冷媒与冷却水管7的冷却水的热交换进行冷却至冷凝的水冷凝器8。于水冷凝器8的喷出部分,介于除去冷媒中的水分杂质的干燥机9连接着辅助冷凝器10的一次一侧,于该辅助冷凝器10,将来自水冷凝器8的气体冷媒,与压缩机4吸入的低温二次一侧回流冷媒热交换使的冷却凝聚。该实施方式中,由水冷凝器8和辅助冷凝器10构成冷凝器,由这两个冷凝器8和10凝聚混合冷媒中沸点较高的高温气体冷媒使的液化。That is, as shown in FIG. 3, the overall structure of the ultra-low temperature refrigerator R, 1 is a closed-cycle refrigerant circuit in which the above-mentioned mixed refrigerant is sealed, and this
上述辅助冷凝器10的一次一侧喷出部分连接着第一气液分离器12,由该第一气液分离器12将来自上述辅助冷凝器10的气液混合冷媒分离为液体冷媒和气体冷媒。该第一气液分离器12的气体冷媒喷出部分连接着分级式第一热交换器18的一次一侧,还有于液体冷媒喷出部分介于作为减压器的第一毛细管24与相同的第一热交换器18的二次一侧相连。并且,将第一气液分离器12分离的液体冷媒由第一毛细管24减压后提供给第一热交换器18的二次一侧进行蒸发,由该蒸发冷却一次一侧气体冷媒,冷凝混合冷媒中沸点温度下一个高的气体冷媒至液化。The discharge part of the primary side of the
再有,上述第一热交换器18中一次一侧喷出部分连接着第二气液分离器13,于该第二气液分离器13,将来自第一热交换器18的气液混合状态冷媒分离为液体冷媒和气体冷媒。于该第二气液分离器13的气体冷媒喷出部分连接着分级式第二热交换器19的一次一侧,于液体冷媒喷出部分介于作为减压器的第二毛细管25连接着同一个第二热交换器19的二次一侧。并且,将第二气液分离器13分离的液体冷媒由第二毛细管25减压后提供给第二热交换器19的二次一侧进行蒸发,由该蒸发冷却一次一侧气体冷媒,冷凝混合冷媒中沸点温度下一个高的气体冷媒至液化。In addition, in the above-mentioned
再有,与上述连接构造同样的做法,上述第二热交换器19中一次一侧喷出部分连接着第三气液分离器14、第三热交换器20及第三毛细管26,还有,于该第三热交换器20一次一侧喷出部分,连接着第四气液分离器15、第四热交换器21及第四毛细管27(这些连接构造与上述第一气液分离器12、第一热交换器18及第一毛细管24的连接构造相同,省略其详细说明)。并且,将第三气液分离器14分离的液体冷媒由第三毛细管26减压后提供给第三热交换器20的二次一侧进行蒸发,由该蒸发冷却来自第三气液分离器14的一次一侧气体冷媒,冷凝混合冷媒中沸点温度下一个高的气体冷媒至液化。还有,将第四气液分离器15分离的液体冷媒由第四毛细管27减压后提供给第四热交换器21的二次一侧进行蒸发,由该蒸发冷却来自第四气液分离器15的一次一侧气体冷媒,冷凝混合冷媒中沸点温度下一个高的气体冷媒至液化。Furthermore, in the same way as the above-mentioned connection structure, in the above-mentioned
并且,于上述第四热交换器21的一次一侧喷出部分连接着由热交换器形成的过冷却器31(第二空调)一次一侧31a,连接于该过冷却器31的一次一侧31a的喷出部分的冷媒配管2,由中途的分支管35分支为主冷媒配管2a和副冷媒配管2b。And, the primary side 31a of the subcooler 31 (second air conditioner) formed by the heat exchanger is connected to the primary side discharge part of the above-mentioned
于上述副冷媒配管2b的中途连接着第五毛细管28(过冷却器用减压器)。还有,副冷媒配管2b的下流端连接着同一个过冷却器31的二次一侧31b,该过冷却器31的二次一侧31b介于冷媒配管2连接于上述第四热交换器21的二次一侧。并且,将自第四热交换器21喷出的冷媒通过过冷却器31的一次一侧31a后,使其一部分于副冷媒配管2b的第五毛细管28减压,并将该冷媒提供给过冷却器31的二次一侧31b蒸发,由该蒸发冷却一次一侧31a的气体冷媒。The fifth capillary tube 28 (decompressor for subcooler) is connected in the middle of the
另一方面,于上述主冷媒配管2a中途,作为主冷却器用减压器的第六毛细管29和低温盘管32从各自的上流一侧串联连接。上述低温盘管32是构成主冷却器的,如图1及图2所示,冷却作为上述真空容器100内的冷却对象的水分。主冷媒配管2a的下流端,连接于上述第四热交换器21的二次一侧和过冷却器31的二次一侧之间的冷媒配管2,将过冷却器31的一次一侧31a喷出的冷媒剩余部分由主冷媒配管2a的第六毛细管29减压后提供给低温盘管32蒸发,由该蒸发使真空容器100内的水分(冷却对象)冷却至-100℃以下的超低温水准的温度,由冻结和捕捉该水分提高真空度。On the other hand, in the middle of the main
还有,上述过冷却器31的二次一侧(及低温盘管32)和第四热交换器21、第三热交换器20、第二热交换器19、第一热交换器18及辅助冷凝器10的各二次一侧按照记载的顺序由冷媒配管2串联连接,辅助冷凝器10的二次一侧连接于压缩机4的吸入一侧,混合冷媒由于蒸发气化了的各冷媒吸入压缩机4。In addition, the secondary side of the above-mentioned subcooler 31 (and the cryogenic coil 32) and the
本发明的特征在于上述分支管35的配置构造。也就是如图4及图5的扩大表示,分支管35是由集合部分35a和自该集合部分35a分支成两股状的主侧和副侧的一对分支部分35b、35c组成。于集合部分35,由连接于过冷却器31的一次一侧31a喷出部分的冷媒配管2下流端由密封连接结合为气密状态。还有,于主侧分支管35b上述主冷媒配管2a的上流端,还有于副侧分支管35c副冷媒配管2b的上流端各自由密封连接为气密状态。这些主冷媒配管2a及副冷媒配管2b基本都是沿水平延伸,各自形成了主侧分支管35b内部及主冷媒配管2a内部的主冷媒回路38,还有副侧分支管35c内部及副冷媒配管2b的副冷媒回路39。The present invention is characterized by the arrangement structure of the
上述分支管35主侧分支管35b和副侧分支管35c具有同样的直径(内外径均相同),与主侧分支管35b连接的主冷媒配管2a和与副侧分支管35c连接的副冷媒配管2b亦为具有相同内经的配管形成。并且,主侧分支管35b及副侧分支管35c,配置为副侧分支管35c位于主侧分支管35b的下侧沿近似垂直的面上下并列配置,副侧分支管35c及其连接的副冷媒配管2b,位于比主侧分支管35b及其连接的主冷媒配管2a低的所规定高度h的位置。因此,上述副冷媒回路39整体高度设定为比主冷媒回路38的整体位置低的位置。The above-mentioned
再有,图3中,44为上述第六毛细管29和低温盘管32之间连接于主冷媒配管2a的电磁开关阀,45为该电磁开关阀44及低温盘管32间主冷媒配管2a和分油器5及水冷凝器8间冷媒配管2之间的除霜回路,46为连接于该除霜回路45中途的电磁开关阀。并且,于使真空成膜装置A的真空容器100处于真空状态成膜衬底的通常运转时,由关闭电磁开关阀46关闭除霜回路45且打开电磁开关阀44开通主冷媒配管2a,由此,由低温盘管32蒸发低沸点冷媒,冷却真空容器100内的水分捕捉冻结。另一方面,打开开闭门101使真空容器100向大气开放于不进行衬底成膜状态的除霜运转时,由打开电磁开关阀46开通除霜回路45且由关闭电磁开关阀44关闭主冷媒配管2a,自压缩机4喷出的高温气体冷媒(热气)径直通过除霜回路45提供给低温盘管32,于低温盘管32进行水分的冷冻捕捉使其回覆。In addition, in Fig. 3, 44 is the electromagnetic on-off valve connected to the main
还有,60为缓冲罐,该缓冲罐60和第一气液分离器12的气体冷媒喷出部分及第一热交换器18的一次一侧间的冷媒配管2由冷媒流入管61连接。还有,缓冲罐60和压缩机4吸入一侧的冷媒配管2,由使缓冲罐60内的气体冷媒返回压缩机4吸入一侧的冷媒回流管62连接,缓冲罐60中,防止因超低温冷冻装置R开始启动时冷凝不充分的气体冷媒导致压缩机4喷出压力的异常升高。In addition, 60 is a buffer tank, and the
还有,于上述除霜回路45的电磁开关阀46附近,第六毛细管29及低温盘管32间的电磁开关阀44附近,低温盘管32出口一侧及第四热交换器21二次一侧间冷媒配管2上,分别设置了第一至第三手动开关阀71至73。这些手动开关阀71至73,于更换低温盘管32或者是维修的时候,分别关闭这些关闭阀不使配管中的残存混合冷媒外泄。In addition, near the
再有,低温盘管32出口一侧和第四热交换器21二次一侧间冷媒配管2上,连接着为向冷媒回路1内提供给冷媒的冷媒供给管路70。还有,该冷媒供给管路70,兼有自冷媒回路1内向外排除混合冷媒的排出管的作用。并且,于冷媒供给管路70,设置有冷媒的提供及排出时打开的供给开闭阀75。Further, a
且,图4中,42为分支管35副侧分支管35c和第五毛细管28间串联连接过滤器(图3未示)。In addition, in FIG. 4 , 42 is a filter connected in series between the secondary
因此,该实施方式中,于真空成膜装置A的真空容器100内成膜衬底时,使超低温冷冻装置R运转,真空容器100内部(或连通路102内部)的水分冷却到-100℃以下的超低温水准由冷冻捕捉,使真空容器100内达到真空状态。Therefore, in this embodiment, when the film substrate is formed in the
具体而言,该超低温冷冻装置R运转时,由关闭电磁开关阀46关闭除霜回路45且由打开电磁开关阀44开通主冷媒配管2a。由此,自压缩机4喷出的混合冷媒由水冷凝器8冷却后再于辅助冷凝器10由返回压缩机4二次一侧的冷媒冷却,以混合冷媒中沸点温度最高的冷媒为中心冷凝液化气体冷媒。该冷媒于第一气液分离器12分离为气体冷媒和液体冷媒,液体冷媒于第一毛细管24减压后再于第一热交换器18一次一侧蒸发,由该蒸发热冷却第一气液分离器12的气体冷媒,以混合冷媒中沸点温度最高的冷媒为中心冷凝液化气体冷媒。以后,同样的做法,第二至第四热交换器19至21中按照混合冷媒中沸点温度自高起的顺序冷凝液化气体冷媒。Specifically, when the ultra-low temperature refrigerator R is in operation, the
自上述第四热交换器21一次一侧喷出的冷媒成为气液混合状态冷媒,该气液混合状态冷媒,通过过冷却器31一次一侧31a后于分支管35分离为主冷媒回路38(主冷媒配管2a)和副冷媒回路39(副冷媒配管2b)两路。并且,于副冷媒回路39流动的冷媒于第五毛细管28减压后提供给过冷却器31的二次一侧31b蒸发,由该蒸发热自上述第四热交换器21提供给过冷却器31的一次一侧31a的气液混合状态冷媒进一步冷却增加液体冷媒的量。The refrigerant ejected from the primary side of the
还有,自过冷却器31的一次一侧31a喷出后于主冷媒配管2a流动,气液混合状态冷媒的残留部分于第六毛细管29减压,减压后于低温盘管32蒸发给真空容器100内的水分提供-100℃以下的冷量。由该-100℃以下的冷量冻结真空容器100内的水分而捕捉提高真空容器100内的真空度。Also, after being ejected from the primary side 31a of the
并且,自上述第四热交换器21经过过冷却器31的一次一侧31a的气液混合状态冷媒分流于分支管35的主冷媒回路38(主冷媒配管2a)及副冷媒回路39(副冷媒配管2b)时,由上述副冷媒回路39的高度位置低于主冷媒回路38的高度位置,气液混合状态冷媒的液体冷媒较多地流入高度较低的副冷媒回路39,流向该副冷媒回路39的液体冷媒流量比流向主冷媒回路38的流量增加。因此,对于过冷却器31的一次一侧31a的气体冷媒能够进行充分地冷却,增加该过冷却器31液化了的液体冷媒流量可以提高低温盘管32的冷却效率。并且,即便是于成膜状态时真空容器100内的热负荷发生变动,可安定地保持真空容器100内的冷却,可求得衬底成膜品质的提高。And, the gas-liquid mixed state refrigerant passing through the primary side 31a of the subcooler 31 from the
另一方面,将成膜装置A的真空容器100向大气开放而不进行成膜的除霜运行时,由打开电磁开关阀46开通除霜回路45且由关闭电磁开关阀44关闭主冷媒配管2a。由此,自压缩机4喷出的高温气体冷媒经过除霜回路45提供给低温盘管32,于低温盘管32解除水分的冻结。并且,于该除霜运转后,再度使真空容器100进入真空状态,与上述同样做法,由关闭电磁开关阀46关闭除霜回路45且由打开电磁开关阀44开通主冷媒配管2a,过冷却器31的一次一侧31a流出的低沸点冷媒于分支管35分流为主冷媒回路38及副冷媒回路39。这种情况也是,因为主冷媒回路38与副冷媒回路39的高度差h,流入过冷却器31的二次一侧31b液体冷媒流量多于流入低温盘管32的流量,使真空容器100内从常温迅速冷却到超低温水准,就可以缩短降温时间,也就可以求得真空容器100内排空时间或成膜处理时间的工序时间的缩短及提高效率。On the other hand, in the defrosting operation in which the
再有,如此地提高低温盘管32的冷却效率,因为只是设定了主冷媒回路38及副冷媒回路39的高差,所以简单地构造就能够得到上述效果。In addition, in order to improve the cooling efficiency of the
且,该实施方式中,由主冷媒配管2a及副冷媒配管2b均为沿水平面延伸,副冷媒回路39的整体高度位置低于主冷媒回路38的整体高度,但是并没有必要设定副冷媒回路39及主冷媒回路38的整体高差。至少于主冷媒回路38及副冷媒回路39的分支部分,副冷媒回路39的最高位置低于主冷媒回路38的最低位置既可。Moreover, in this embodiment, since the main
(实施方式2)(Embodiment 2)
图6表示本发明实施方式2(且,以下各实施方式中,与图1至图5相同的部分标注相同的符号并省略其详细说明)。上述实施方式1中以副冷媒回路39的高度位置低于主冷媒回路38,使流入过冷却器31的二次一侧31b的液体冷媒比流入低温盘管32的液体冷媒多。对此,本实施方式,在副冷媒回路39及主冷媒回路38的高度位置同高时,使副冷媒回路39的断面面积大于主冷媒回路38。FIG. 6 shows
也就是,该实施方式中,与实施方式1不同,分支管35的集合部分35a、主侧分支管35b及连接与它的主冷媒配管2a、分支管35的副侧分支管35c及连接与它的副冷媒配管2b位于同一水平面上,配置于同高位置。That is, in this embodiment, different from
并且,分支管35的主侧分支管35b及副侧分支管35c,与实施方式1相同具有同样的直径,但是,连接于该主侧分支管35b的主冷媒配管2a,使用的是比连接于该副侧分支管35c的副冷媒配管2b直径小的管线。由此,副侧分支管35c的内部及形成于副冷媒配管2b内部的副冷媒回路39的断面面积,大于主侧分支管35b的内部及形成于主冷媒配管2a内部的主冷媒回路38的断面面积。Also, the main
其他的构成与实施方式1相同。且,图6中没有表示过滤器42及第五毛细管28,但是与实施方式1具有相同的构造(参照图4)。Other configurations are the same as those in
该实施方式的情况,作为主冷媒配管2a,使用的是管径小于副冷媒配管2b的管线,副冷媒回路39的断面面积比主冷媒回路38的断面面积大。由此,过冷却器31的一次一侧31a喷出的冷媒分流于主冷媒回路38及副冷媒回路39的时候,从整体来讲,气液混合状态冷媒流入副冷媒回路39的流量比流入主冷媒回路38的流量多,与此成正比流入副冷媒回路39的冷媒流量比流入主冷媒回路38的流量增加。为此,对于过冷却器31的一次一侧31a的气体冷媒保持充分的冷却,增加该过冷却器31液化了的液体冷媒流量就可以提高主冷却器的冷却效率,所以,能够得到与上述实施方式1同样的效果。In this embodiment, a pipe having a smaller diameter than the
且,该实施方式2中,副冷媒配管2b使用的是与实施方式1同样的通常管径的物,由使用比它小直径的管线做主冷媒配管2a,使副冷媒配管2b的直径大于主冷媒配管2a的直径,相反,主冷媒配管2a使用通常的管径,使用比它直径大的管线做副冷媒配管2b,达成同样的目的亦可。Moreover, in the second embodiment, the
还有,于该实施方式2中,也是将副冷媒回路39整体断面面积大于主冷媒回路38整体断面面积,但是并不需要设置副冷媒回路39及主冷媒回路38整体的断面面积差,只要副冷媒回路39的最小断面面积大于主冷媒回路38的最大断面面积既可。Also, in
(实施方式3)(Embodiment 3)
图7及图8表示实施方式3,是组合了实施方式1及实施方式2的技术事项的产物。也就是,该实施方式中,与上述实施方式1一样,分支管35的主侧分支管35b及副侧分支管35c,副侧分支管35c配置为位于主侧分支管35b下侧位置沿近似垂直面上下延伸并列配置,副侧分支管35c及连接于它的副冷媒配管2b,配置于低于主侧分支管35b及连接于它的主冷媒配管2a的高度位置。与此同时,实施方式2中,连接于分支管35主侧分支管35b的主冷媒配管2a,使用比连接于副侧分支管35c的副冷媒配管2b直径小的管线,副冷媒回路39的断面面积大于形成于主侧分支管35b及形成于主冷媒配管2a内的主冷媒回路38的断面面积。其他与实施方式1及实施方式2具有同样构成。7 and 8 show Embodiment 3, which is a combination of technical matters of
因此,该实施方式中,可以奏效实施方式1及实施方式2作用效果的叠加,可以进一步提高低温盘管32的冷却效果。Therefore, in this embodiment, the superposition of the effects of
且,该情况下,也同实施方式1一样,至少于主冷媒回路38和副冷媒回路39的分支部分,副冷媒回路39的最高位置低于主冷媒回路38的最低位置既可。Also in this case, as in
且,上述实施方式1至3,是适用于用混合复数中冷媒的非共沸点混合冷媒的冷冻系统,对于不使用混合冷媒的冷冻系统亦可适用本发明,主要是具有主冷却器和其他过冷却器既可。Moreover, the above-mentioned
(实施方式4)(Embodiment 4)
图9,表示本发明实施方式4所关于超低温冷冻装置R的整体构成。且,以下所述实施方式4至13中,上述实施方式1至3所说明的分支管35的构造并非必须要件。FIG. 9 shows the overall configuration of a cryogenic refrigerator R according to
该实施方式4中,是以除霜回路45的回路构成为特征。也就是,如图9所示,于除霜回路45的上流端与电磁开关阀46之间,配置了将压缩机用润滑油等冷冻机油自气体冷媒分离的第二分油器50(连接于压缩机4的喷出部分的分油器5作为第一分油器)。由该第二分油器50分离的冷冻机油,与上述第一分油器5一样经过回油管6返回到压缩机4的吸入一侧。在此,第二分油器50,由分离温度高粘度低的冷冻机油,确实可以除去冷冻机油,配置于自分油器50至除霜回路45上流端为止的距离短于至除霜回路45下流端为止的位置(除霜回路45上流一侧一半的处)。其他构成与实施方式1相同。This fourth embodiment is characterized by the circuit configuration of the
因此,该实施方式中,除霜回路45上,设置了从混合冷媒除去冷冻机油的第二分油器50,于成膜装置A的真空容器100不进行衬底成膜状态的除霜运转时,关闭电磁开关阀44且打开电磁开关阀46,自压缩机4喷出的混合冷媒由除霜回路45提供给低温盘管32时,即便是第一分油器5未除去冷冻机油,还可以由第二分油器50除去。由此,可以抑制冷冻机油自除霜回路45提供给低温盘管32。特别是除霜运转开始时,还没有达到超低温水准的低温盘管32内冷却冷冻机油至凝固,可以确保混合冷媒的良好循环。还可以求得真空容器100内排空时间或成膜处理工序时间的缩短及高效化。Therefore, in this embodiment, the
还有,上述第二分油器50,配置于到除霜回路45上流端为止的距离比到除霜回路45下流端为止的距离短的位置。由此,对分离温度高粘度低的冷冻机油有利,也就可以更确切低除去冷冻机油。In addition, the
并且,于该除霜运转后,再度使真空容器100处于真空状态时,打开电磁开关阀44关闭电磁开关阀46,由第二分油器50分离的冷冻机油自压缩机4吸入一侧回收。这时,因为除霜回路45的上流端和电磁开关阀46之间配置了上述第二分油器50,所以,就可以抑制压缩机4吸入一侧和第二分油器50之间前者比后者高的压力差的发生。由此,可以防止自压缩机4吸入一侧向第二分油器50的冷冻机油倒流,可求得顺利地冷冻机油返回压缩机4。Then, after the defrosting operation, when the
(实施方式5)(Embodiment 5)
图10,表示本发明实施方式5的超低温冷冻装置R整体构成,该实施方式中,以缓冲罐的构成为特征。也就是,图10中,压缩机4喷出部分连接了检测气体冷媒的喷出压力的压力计59。63为第一缓冲罐,64为位于第一缓冲罐63下侧的第二缓冲罐,由该第一及第二缓冲罐63、64,于超低温冷冻装置R启动时暂时放过冷凝不充分的高压气体冷媒,控制压缩机4喷出压力异常上升。Fig. 10 shows the overall configuration of a cryogenic freezer R according to
上述第一及第二缓冲罐63、64,由为使气体冷媒于两罐63、64之间流通的连通路65(连通管)相互连接。还有,第二缓冲罐64和第一气液分离器12的气体冷媒喷出部分及第一热交换器18的一次一侧之间的冷媒配管2由冷媒流入管61连接。该冷媒流入管61的中途,连接着控制流向第一及第二缓冲罐63、64的电磁开关阀66。还有,上述冷媒流入管61的中途(电磁开关阀66与第二缓冲罐64之间的部分),连接着使第一及第二缓冲罐63、64内的气体冷媒返回压缩机4吸入一侧的冷媒配管2的冷媒回流管62。The first and
还有,第一缓冲罐63下侧连接着可熔拴67。该可熔拴67,是由火灾等热量自熔开放第一缓冲罐63降低罐内压力的保险拴。其他构成与上述实施方式4相同。Also, the lower side of the
因此,该实施方式中,于超低温冷冻装置R开始运转时,由冷凝不充分气体冷媒使压缩机4喷出压力异常上升,这由压力计59检测。伴随着该检测打开电磁开关阀66,由上述第一气液分离器12分离的气体冷媒的一部分通过冷媒流入管61流入第二缓冲罐64。还有,当气体冷媒流入多的时候,再由连通管65流入第一缓冲罐63。并且,解除了上述喷出一侧的异常上升,同样由压力计59检测到,关闭电磁开关阀66,自第一及第二缓冲罐63、64通过冷媒回流管62将气体冷媒返回压缩机4吸入一侧冷媒配管2。Therefore, in this embodiment, when the ultra-low temperature refrigerator R is started to operate, the discharge pressure of the
该情况,如上所述,因为于冷媒回路1上连接了第一及第二两个缓冲罐63、64,与为消除缓冲容量不足设置一个大的罐相比,确保罐的设置空间变得容易。In this case, as described above, since the first and
再有,第一及第二缓冲罐63、64由连通管65相互连接,两罐63、64间气体冷媒流通防止了各缓冲罐63、64内气体冷媒的滞留。由此,可以使比重不同的冷媒完全循环,可以防止由冷冻装置R内混合冷媒成份变化导致冷却效果降低。In addition, the first and
且,不只是上述冷媒流入管61,冷媒回流管62也连接电磁开关阀,由对应压缩机4喷出压力异常上升开闭各电磁开关阀,控制流入第一及第二缓冲罐63、64的气体冷媒量,以及自第一及第二缓冲罐63、64返回冷媒回路1的气体冷媒量均可。这与以下的实施方式6、7亦同。Moreover, not only the above-mentioned
(实施方式6)(Embodiment 6)
图11,表示本发明的实施方式6所关于的超低温冷冻装置R冷媒回路。与上述实施方式5不同的,因为只有第一及第二缓冲罐63、64的回路构成,所以与实施方式5相同的部分标注同样符号,只说明不同的处(实施方式7也一样)。Fig. 11 shows a refrigerant circuit of a cryogenic refrigerator R according to
第一及第二缓冲罐63、64,与实施方式5相同,由为使气体冷媒于两罐63、64间流通的连通管65相互连接。另一方面,与实施方式5不同的是,第一缓冲罐63和第一气液分离器12的气体冷媒喷出部分及第一热交换器18的一次一侧间的冷媒配管2由冷媒流入管61连接。还有,上述连通管65的中途,连接着将第一及第二缓冲罐63、64内的气体冷媒返回压缩机4吸入一侧冷媒配管2的冷媒回流管62。还有,可熔拴67连接于第二缓冲罐64。其他的构成与实施方式5相同。The first and
该实施方式的情况,于超低温冷冻装置R开始运转时,由冷凝不充分气体冷媒使压缩机4喷出压力异常上升,压力计59检测到该情况,打开电磁开关阀66,由第一气液分离器12分离的气体冷媒的一部分通过冷媒流入管61流入第一缓冲罐63。并且,流入该第一缓冲罐63的气体冷媒的一部分通过连通管65流入第二缓冲罐64,剩余部分通过冷媒回流管62返回压缩机4吸入一侧的冷媒配管2。In the case of this embodiment, when the ultra-low temperature refrigeration device R starts to operate, the discharge pressure of the
还有,上述喷出一侧的异常上升情况解除的信息由压力计59检测到后,关闭电磁开关阀66,第一及第二缓冲罐63、64内的冷媒通过冷媒回流管62返回压缩机4吸入一侧冷媒配管2。In addition, after the
如此,因为上述连通管65中途连接了压缩机4吸入一侧冷媒配管2(冷媒回路1),自冷媒回路1流入第一缓冲罐63后返回压缩机4吸入一侧的冷媒于第一及第二缓冲罐63、64内顺畅地流动。由此,防止了第一及第二缓冲罐63、64内气体冷媒的滞留,还可以使比重不同的冷媒完全循环,防止由冷冻装置R内混合冷媒成份变化导致冷却效果降低。In this way, since the
且,该实施方式6的第一及第二缓冲罐63、64的位置关于,如上述实施方式5那样,并不限制于第一缓冲罐63的下侧配置第二缓冲罐64的方式,例如变换一下它们的上下位置,横向并列配置亦可。这一点与以下的实施方式7相同。In addition, the positions of the first and
(实施方式7)(Embodiment 7)
图12,表示本发明的实施方式7所关于的超低温冷冻装置R冷媒回路。与上述实施方式5或者6不同的,只有第一及第二缓冲罐63、64的回路构成。FIG. 12 shows a refrigerant circuit of a cryogenic refrigerator R according to
也就是,第一及第二缓冲罐63、64,与实施方式5或者6相同,由为使气体冷媒于两罐63、64间流通的连通管65相互连接。并且,与实施方式6相同,第一缓冲罐63和第一气液分离器12的气体冷媒喷出部分及第一热交换器18的一次一侧间的冷媒配管2由冷媒流入管61连接。还有,与实施方式6不同的,第二缓冲罐64与压缩机4吸入一侧冷媒配管2由冷媒回流管62连接。且,可熔拴67连接于第二缓冲罐64。其他的构成与实施方式6相同。That is, the first and
该实施方式的情况,于超低温冷冻装置R开始运转时,由冷凝不充分气体冷媒使压缩机4喷出压力异常上升,压力计59检测到该情况,打开电磁开关阀66,由第一气液分离器12分离的气体冷媒的一部分通过冷媒流入管61流入第一缓冲罐63。并且,该气体冷媒通过连通管65流入第二缓冲罐64,通过冷媒回流管62返回压缩机4吸入一侧的冷媒配管2。In the case of this embodiment, when the ultra-low temperature refrigeration device R starts to operate, the discharge pressure of the
还有,上述喷出一侧的异常上升情况解除的信息由压力计59检测到后,关闭电磁开关阀66,第一及第二缓冲罐63、64内的冷媒通过冷媒回流管62返回压缩机4吸入一侧冷媒配管2。In addition, after the
如此,该气体冷媒,通过冷媒回路1流入第一缓冲罐63,通过连通管65流入第二缓冲罐64,通过冷媒回流管62返回压缩机4吸入一侧冷媒配管,如此,两罐63、64内气体冷媒能够更顺畅地流动。由此,可以使第一及第二缓冲罐63、64内比重不同的冷媒完全循环,防止由冷冻装置R内混合冷媒成份变化导致冷却效果降低。In this way, the gas refrigerant flows into the
(实施方式8)(Embodiment 8)
图13,表示本发明的实施方式8所关于的超低温冷冻装置R冷媒回路。该实施方式中,除霜回路45,将自压缩机4喷出的高温气体冷媒提供给包括低温盘管32的第四热交换器21。也就是,该除霜回路45上流端连接于第一分油器5及水冷凝器8之间的冷媒配管2。另一方面,除霜回路45下流端分支为主分支回路45a和副分支回路45b。主分支回路45a下流端,连接于低温盘管32入口一侧与第六毛细管29之间的主冷媒配管2a上,副分支回路45b下流端,连接于低温盘管32出口一侧与第四热交换器21的二次一侧之间的冷媒配管2上。Fig. 13 shows a refrigerant circuit of a cryogenic refrigerator R according to
且,电磁开关阀46,连接于主分支回路45a及副分支回路45b上流一侧的除霜回路45上,电磁开关阀44,连接于第六毛细管29和低温盘管32之间主冷媒配管2a的上述主分支回路45a下流端的连接位置上流一侧(第六毛细管29一侧)。其他的构成与实施方式4相同。In addition, the
该实施方式中,成膜装置A真空容器100中不进行衬底(晶片)成膜状态的除霜运行时,由打开电磁开关阀46开通除霜回路45且关闭电磁开关阀44关闭主冷媒配管2a。由此,自压缩机4喷出的高温气体冷媒自除霜回路45的主分支回路45a经过该入口侧提供给低温盘管32的同时,亦经过副分支回路45b提供给第四热交换器21,同时进行低温盘管32及第四至第二热交换器21至19中的水分捕捉的解除。In this embodiment, when the defrosting operation is not performed in the film formation state of the substrate (wafer) in the
也就是,除霜回路45下流端分支为主分支回路45a和副分支回路45b,主分支回路45a下流端与低温盘管32入口侧的冷媒配管2连接,副分支回路45b下流端与低温盘管32出口侧冷媒配管2连接,所以,流过主分支回路45a的冷媒提供给低温盘管32,并将该低温盘管32、流过副分支回路45b的冷媒,提供给连接于低温盘管32出口一侧冷媒配管2的第四至第二热交换器21至19可使该第四至第二热交换器21至19同时升温。由此,抑制了特别是除霜运转开始时还有超低温水准时通过低温盘管32的冷冻机油于第四至第二热交换器21至19内再次凝固,可确保混合冷媒良好的循环的同时,亦可缩短除霜运转时间。而且,可求得真空容器100内的排空时间或成膜处理工序时间的缩短和高效率。That is, the downstream end of the
(实施方式9)(Embodiment 9)
图14,表示本发明的实施方式9所关于的超低温冷冻装置R冷媒回路。与上述实施方式8不同的,除霜回路45副分支回路45b中途连接了电磁开关阀68。其他构成与实施方式8相同。Fig. 14 shows a refrigerant circuit of a cryogenic refrigerator R according to
该实施方式中,真空成膜装置A真空容器100中不进行衬底(晶片)成膜状态的除霜运行时,由打开电磁开关阀68开通副分支回路45b,与上述实施方式8一样打开电磁开关阀46开通除霜回路45且关闭电磁开关阀44关闭主冷媒配管2a,自压缩机4喷出的高温气体冷媒自除霜回路45的主分支回路45a经过该入口侧提供给低温盘管32的同时,亦经过副分支回路45b提供给第四热交换器21,同时进行低温盘管32及第四至第二热交换器21至19中的水分捕捉的解除。In this embodiment, when the defrosting operation of the
并且,当第四热交换器21升温到冷冻机油流动点(如-50℃)以上时,关闭上述电磁开关阀68关闭副分支回路45b。由此,除霜回路45内高温气体冷媒,从至此为止的主分支回路45a和副分支回路45b分流的状态变为只于主分支回路45a流动提供给低温盘管32,可进行其升温,进一步缩短除霜运转时间。Moreover, when the temperature of the
且,该实施方式9中,副分支回路45b下流端不连接第四热交换器21,而是连接更高温一侧热交换器的二次一侧亦无关。也就是,连接为向冷媒配管2中冷冻机油等可顺利流动的流动点(如-50℃)以下温度的部位提供高温气体冷媒(热气)亦可。Also, in
(实施方式10)(Embodiment 10)
图15表示本发明实施方式10,改变了主冷媒配管2a内主冷媒回路38构成的图。也就是,该实施方式中,主冷媒回路38中途,分支为相互并列连接的第一及第二分支回路80、81,比该两分支回路80、81下流端合流部分更靠下流一侧与主冷媒回路38上串联着低温盘管32。Fig. 15 shows a diagram in which the configuration of the main
上述第一分支回路80上,串联着第一分支毛细管80a。还有,上述第二分支回路81上,电磁开关阀81b和第二分支毛细管81a各自从上流一侧串联连接。上述电磁开关阀81b,构成为切换向第二分支回路81提供冷媒的切换器。还有,第一及第二分支毛细管80a、81a上,使用了具有相互不同减压能力的毛细管。还有,未图示,超低温冷冻装置R上,设置了检测低温盘管32温度的温度检测器。其他构造与实施方式4相同。A
因此,该实施方式中,超低温冷冻装置R通常运转时,关闭电磁开关阀46关闭除霜回路45且打开电磁开关阀44开通主冷媒回路38。再有,打开电磁开关阀81b开通第二分支回路81。由此,自第四热交换器21的一次一侧喷出的通过过冷却器31的一次一侧后的气液混合状态冷媒中,流过主冷媒回路38的冷媒,分支到第一及第二分支毛细管80a、81a各自减压,减压后于低温盘管32中蒸发向真空容器100内的水分提供冷量。Therefore, in this embodiment, when the ultra-low temperature refrigerator R is in normal operation, the electromagnetic on-off
这时,由打开电磁开关阀81b使冷媒于第一及第二分支回路80、81分支的第一及第二分支毛细管80a、81a中减压,可增加冷媒的流量。At this time, by opening the
并且,由超低温冷冻装置R的上述温度检测器检测的检测值,达到预先设定的温度(如-100℃)时,关闭电磁开关阀81b,冷媒只于第一分支毛细管80a中流过。And, when the detection value detected by the above-mentioned temperature detector of the ultra-low temperature refrigeration device R reaches a preset temperature (such as -100°C), the
因此,该实施方式中,由增大冷媒的管路阻力,于确保对冷却对象冷却到超低温水准的冷却能力,还可求得缩短到达超低温水准的冷却时间。Therefore, in this embodiment, by increasing the pipeline resistance of the refrigerant, the cooling ability to cool the object to be cooled to the ultra-low temperature level can be ensured, and the cooling time to reach the ultra-low temperature level can also be shortened.
再有,作为减压器使用了第一及第二分支毛细管80a、81a,于超低温区域确实能够进行冷媒的减压,与使用作为减压器的膨胀阀的情况相比可信度高,在使装置安定工作上有利。还有,由毛细管比膨胀阀廉价,所以大幅度削减设备费用成为可能。In addition, the first and second
且,本实施方式中,第一及第二分支毛细管80a、81a中,使用了具有不同减压能力的毛细管,但使用具有同样减压能力的亦可。Furthermore, in this embodiment, capillaries having different decompression capabilities are used for the first and
(实施方式11)(Embodiment 11)
图16,表示本发明的实施方式11所关于的超低温冷冻装置R冷媒回路。与上述实施方式10不同的,只于过冷却器31的一次一侧至低温盘管32入口一侧之间连接了毛细管的回路构成。Fig. 16 shows the refrigerant circuit of the cryogenic refrigerator R according to Embodiment 11 of the present invention. Unlike
也就是,该实施方式中,主冷媒回路38中途,形成相互并列连接的第一至第四分支回路80至83,比该分支回路80至83下流端合流部分更靠下流一侧与主冷媒回路38上串联着低温盘管32。That is, in this embodiment, in the middle of the main
再有,上述第一分支回路80上,串联着第一分支毛细管80a。还有,第二分支回路81上,电磁开关阀81b和第二分支毛细管81a、第三分支回路82上,电磁开关阀81b和第三分支毛细管82a、再有第四分支回路83上,电磁开关阀83b和第四分支毛细管83a各自从上流一侧串联连接。在此,第一至第四分支毛细管80a至83a上,使用了相互具有不同减压能力的毛细管。其他构造与实施方式10相同。Furthermore, the
该实施方式中,超低温冷冻装置R的真空容器100内成膜衬底时的超低温冷冻装置R通常运转时,自过冷却器31的一次一侧喷出后于主冷媒回路38流动的气液混合状态冷媒,于第一分支回路80的第一分支毛细管80a减压。还有,为了短时间冷却冷却对象,有选择地打开第二至第四分支回路81至83的各开关阀81b至83b。由此,于第二至第四分支毛细管81a至83a上有选择地分支减压,其减压后于低温盘管32蒸发给真空容器100内的水分冷量。In this embodiment, during the normal operation of the cryogenic freezer R when the film substrate is formed in the
并且,温度检测器检测的检测值达到设定的温度(如-100℃)时,关闭电磁开关阀81b至83b,冷媒只于第一分支毛细管80a中流过。Moreover, when the detection value detected by the temperature detector reaches the set temperature (eg -100° C.), the
由本实施方式,有选择地打开第二至第四分支回路81至83的各开关阀81b至83b,可将冷媒选择地分支到第二至第四分支毛细管81a至83a上,就可以于真空容器100内任意调整冷却温度或者是到达冷却温度的时间。According to this embodiment, the switching
且,本实施方式中,形成了将主冷媒回路38分支成为第一至第四分支毛细管80a至83a的四条回路构成,但是并不只限于此,例如分支成三条回路,或者五条回路均可(参照图16的设想线)。这点上,以下的实施方式13亦相同。Moreover, in this embodiment, the main
(实施方式12)(Embodiment 12)
图17表示本发明实施方式12所关于的超低温冷冻装置R冷媒回路。与上述实施方式10不同的,只于过冷却器31的一次一侧至低温盘管32入口一侧之间连接了毛细管的回路构成。Fig. 17 shows the refrigerant circuit of the ultra-low temperature refrigerator R according to the twelfth embodiment of the present invention. Unlike
也就是,该实施方式中,主冷媒回路38中途,形成相互并列连接的第一及第二分支回路80、81,比该分支回路80、81下流端合流部分更靠下流一侧与主冷媒回路38上串联着低温盘管32。That is, in this embodiment, in the middle of the main
上述第一分支回路80上,串联着第一分支毛细管80a和电磁开关阀80b,还有第二分支回路81上,串联着第二分支毛细管81a和电磁开关阀81b,各自从上流一侧串联连接。第一及第二分支毛细管80a、81a上,使用了具有相互不同减压能力的毛细管。还有,因为第一分支毛细管80a的电磁开关阀80b,第二分支毛细管81a的电磁开关阀81b同时关闭主冷媒回路38就被关闭,省略了实施方式10中的电磁开关阀44(参照图15)。其他构造与实施方式10相同。On the above-mentioned
该实施方式中,真空成膜装置A的真空容器100内成膜衬底时超低温冷冻装置R通常运转时,过冷却器31的一次一侧喷出后于主冷媒回路38流动的气液混合状态冷媒中的残留部分,由打开第一及第二分支回路80、81的电磁开关阀80b、81b分支到第一及第二分支毛细管80a、81a中减压,其减压后于低温盘管32蒸发给真空容器100内的水分冷量。In this embodiment, during the normal operation of the ultra-low temperature freezer R when the substrate is deposited in the
并且,由温度检测器或者压力检测器检测的检测值达到设定温度(如-100℃以下)或者达到设定压力时,关闭第一及第二分支回路80、81的电磁开关阀80b、81b,使冷媒只于第一或者第二分支毛细管80a、81a其中之一流过。And, when the detection value detected by the temperature detector or the pressure detector reaches the set temperature (such as below -100°C) or reaches the set pressure, the
该实施方式中,由选择开关第一及第二分支回路80、81的电磁开关阀80b、81b,可以有选择地分支第一或者第二分支毛细管80a、81a,就可以于真空容器100内任意调整冷却温度或者是到达冷却温度的时间。In this embodiment, the
且,不同时打开两个电磁开关阀80b、81b,只打开其中之一电磁开关阀80b、81b亦可。In addition, instead of opening the two
(实施方式13)(Embodiment 13)
图18表示本发明实施方式13所关于的超低温冷冻装置R冷媒回路。与上述实施方式12不同的,只于过冷却器31至低温盘管32之间连接了毛细管的回路构成。Fig. 18 shows the refrigerant circuit of the ultra-low temperature refrigerator R according to
也就是,该实施方式中,主冷媒回路38中途,形成相互并列连接的第一至第四分支回路80至83,比该分支回路80至83合流部分更靠下流一侧与主冷媒回路38上串联着低温盘管32。That is, in this embodiment, in the middle of the main
再有,上述第一分支回路80上串联着第一分支毛细管80a和电磁开关阀80b,还有第二分支回路81上串联着第二分支毛细管81a和电磁开关阀81b,再有第三分支回路82上串联着第二分支毛细管82a和电磁开关阀82b,再有第四分支回路83上串联着第四分支毛细管83a和电磁开关阀83b,各自均从上流一侧串联连接。第一至第四分支毛细管80a至83a上,使用了具有相互不同减压能力的毛细管。其他构造与实施方式12相同。Furthermore, the
该实施方式中,真空成膜装置A的真空容器100内成膜衬底时超低温冷冻装置R通常运转时,为短时间内冷却冷却对象有选择地打开第一至第四分支回路80至83的电磁开关阀80b至83b,过冷却器31的一次一侧喷出后于主冷媒回路38流动的气液混合状态冷媒中的残留部分,于选择分支的第一至第四分支毛细管80a至83a中流动减压,其减压后于低温盘管32蒸发给真空容器100内的水分冷量。In this embodiment, when the ultra-low temperature freezer R is in normal operation when the film substrate is formed in the
并且,由温度检测器的检测值达到设定温度(如-100℃以下)时,适当地关闭第一至第四分支回路80至83的电磁开关阀80b至83b,使冷媒于第一至第四分支毛细管80a至83a中选择流过。And, when the detection value of the temperature detector reaches the set temperature (such as below -100°C), the
该实施方式中,由选择开关第一至第四分支回路80至83的电磁开关阀80b至83b,可以有选择地分支第一至第四分支毛细管80a至83a,于真空容器100内任意调整冷却温度或者是到达冷却温度的时间。In this embodiment, the
(其他实施方式)(Other implementations)
上述各实施方式中,是将低温盘管32配置于真空容器100内,由该低温盘管32直接冷却真空容器100内的水分,但是,代替低温盘管32设置盐水空调,使该盐水空调连接于位于真空容器100内的吸热部分和盐水回路,于该盐水空调冷却盐水回路中的盐水至超低温水准,由该盐水向真空容器100内的吸热部分提供同温度水准的冷量。In each of the above-mentioned embodiments, the
还有,上述水冷凝器8、10,热交换器18至21及过冷却器31,是两重管构造、板式构造、毛细管构造中的任何一种均可。还有,代替毛细管24至29的其他减压器,可采用如膨胀阀等。In addition, the above-mentioned
还有,上述各实施方式中,使用了5种或是6种冷媒混合的混合冷媒,但是,使用与5种或是6种不同种类数的冷媒混合的混合冷媒于冷冻系统当然也是可以的。还有,上述各实施方式中,为冷却其他冷却对象的冷冻系统亦可。Also, in the above-mentioned embodiments, mixed refrigerants of 5 or 6 types of refrigerants are used, but it is of course possible to use mixed refrigerants of 5 or 6 different types of refrigerants in the refrigeration system. In addition, in each of the above-mentioned embodiments, the cooling system may be used to cool other cooling objects.
还有,上述实施方式中,表示了四阶层进行气液分离的系统,而本发明适用于三阶层以下、五阶层以上进行气液分离的系统亦为可能。Also, in the above-mentioned embodiment, a system for gas-liquid separation with four stages is shown, but the present invention may be applicable to a system for gas-liquid separation with less than three stages and more than five stages.
还有,本实施方式中表示了使用水冷凝器21的水冷系统,但是,使用空气冷凝器系统的构成亦可。In addition, although the water cooling system using the
(产业上利用可能性)(industrial utilization possibility)
本发明,即便是负荷发生变化也可以安定地冷却冷却对象的同时,可对冷却对象从常温降低至超低温水准迅速冷却缩短冷却时间,包括除霜回路超低温冷冻装置除霜运转时,良好地确保混合冷媒的循环且提高冷却效率,使超低温冷冻装置的缓冲罐内气体冷媒顺利地循环抑制罐内气体冷媒的滞留,良好地保持冷媒成份比例,缩短除霜运转时间,确保为将冷却对象冷却至所规定的冷却温度的冷却能力,缩短到达该冷却温度的冷却时间,得到实用性高的各种各样效果,于产业上的利用性极高。The present invention can stably cool the object to be cooled even if the load changes, and at the same time can quickly cool the object to be cooled from normal temperature to the ultra-low temperature level and shorten the cooling time, including the defrosting circuit. Refrigerant circulation and improve cooling efficiency, so that the gas refrigerant in the buffer tank of the ultra-low temperature refrigeration device can circulate smoothly, suppress the stagnation of gas refrigerant in the tank, maintain the ratio of refrigerant components well, shorten the defrosting operation time, and ensure that the cooling object is cooled to the desired temperature. The cooling capacity at a predetermined cooling temperature shortens the cooling time to reach the cooling temperature, and various effects with high practicality are obtained, and the industrial applicability is extremely high.
Claims (5)
Applications Claiming Priority (10)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004002344A JP2005195258A (en) | 2004-01-07 | 2004-01-07 | Refrigeration system and vacuum film formation system |
JP2004-002344 | 2004-01-07 | ||
JP2004-012692 | 2004-01-21 | ||
JP2004012692A JP2005207637A (en) | 2004-01-21 | 2004-01-21 | Ultra-low temperature refrigeration equipment |
JP2004014064A JP4326353B2 (en) | 2004-01-22 | 2004-01-22 | Ultra-low temperature refrigeration equipment |
JP2004-014064 | 2004-01-22 | ||
JP2004-014074 | 2004-01-22 | ||
JP2004014074A JP2005207661A (en) | 2004-01-22 | 2004-01-22 | Ultra-low temperature refrigeration equipment |
JP2004014143A JP2005207662A (en) | 2004-01-22 | 2004-01-22 | Ultra-low temperature refrigeration equipment |
JP2004-014143 | 2004-01-22 |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB2005800020979A Division CN100485285C (en) | 2004-01-07 | 2005-01-05 | Ultralow temperature refrigerator, refrigerating system, and vacuum apparatus |
Publications (1)
Publication Number | Publication Date |
---|---|
CN101943498A true CN101943498A (en) | 2011-01-12 |
Family
ID=34753943
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2010105033889A Expired - Fee Related CN101963409B (en) | 2004-01-07 | 2005-01-05 | Ultra-low temperature freezer and vacuum apparatus |
CN201010503347XA Pending CN101943498A (en) | 2004-01-07 | 2005-01-05 | Superfreeze device and vacuum plant |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2010105033889A Expired - Fee Related CN101963409B (en) | 2004-01-07 | 2005-01-05 | Ultra-low temperature freezer and vacuum apparatus |
Country Status (4)
Country | Link |
---|---|
US (1) | US20090188270A1 (en) |
CN (2) | CN101963409B (en) |
TW (1) | TW200532153A (en) |
WO (1) | WO2005066554A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103712494A (en) * | 2014-01-09 | 2014-04-09 | 缪志先 | Integral-box-shaped stacked heat exchanger with gas-liquid separation device |
CN103857968A (en) * | 2011-07-01 | 2014-06-11 | 布鲁克机械公司 | Systems and methods for warming a cryogenic heat exchanger array, for compact and efficient refrigeration, and for adaptive power management |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010131604A1 (en) | 2009-05-15 | 2010-11-18 | 株式会社日本触媒 | Method for producing (meth)acrylic acid |
EP2431350B1 (en) | 2009-05-15 | 2017-10-04 | Nippon Shokubai Co., Ltd. | Method for producing (meth)acrylic acid and crystallization system |
EP3109572B1 (en) * | 2015-06-22 | 2019-05-01 | Lg Electronics Inc. | Refrigerator |
KR102479532B1 (en) * | 2015-07-28 | 2022-12-21 | 엘지전자 주식회사 | Refrigerator |
US10648701B2 (en) | 2018-02-06 | 2020-05-12 | Thermo Fisher Scientific (Asheville) Llc | Refrigeration systems and methods using water-cooled condenser and additional water cooling |
JP6994419B2 (en) * | 2018-03-29 | 2022-01-14 | 東京エレクトロン株式会社 | Cooling system |
JP6957026B2 (en) * | 2018-05-31 | 2021-11-02 | 伸和コントロールズ株式会社 | Refrigeration equipment and liquid temperature control equipment |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01116369U (en) * | 1988-01-29 | 1989-08-04 | ||
JPH03191269A (en) * | 1989-12-18 | 1991-08-21 | Matsushita Refrig Co Ltd | Refrigerant flow divider |
GB2248318B (en) * | 1990-09-06 | 1994-11-02 | Perkin Elmer Ltd | Temperature control systems |
JP2559220Y2 (en) * | 1992-03-31 | 1998-01-14 | 新明和工業株式会社 | Refrigeration equipment |
JPH06159831A (en) * | 1992-11-19 | 1994-06-07 | Shin Meiwa Ind Co Ltd | Refrigerating plant |
JPH06159817A (en) * | 1992-11-19 | 1994-06-07 | Toshiba Corp | Air-conditioning device for vehicle |
JPH06347112A (en) * | 1993-04-15 | 1994-12-20 | Shin Meiwa Ind Co Ltd | Cooling device |
JP2814186B2 (en) * | 1993-09-30 | 1998-10-22 | 新明和工業株式会社 | Cooling system |
KR100343638B1 (en) * | 1994-06-29 | 2002-12-28 | 다이킨 고교 가부시키가이샤 | Freezer |
JPH09145179A (en) * | 1995-11-24 | 1997-06-06 | Mac:Kk | Binary type cryogenic refrigerator with mixed refrigerant |
JP3094997B2 (en) * | 1998-09-30 | 2000-10-03 | ダイキン工業株式会社 | Refrigeration equipment |
JP2000179968A (en) * | 1998-12-18 | 2000-06-30 | Fujitsu General Ltd | Refrigerating cycle for air conditioner |
US6502410B2 (en) * | 2000-06-28 | 2003-01-07 | Igc-Polycold Systems, Inc. | Nonflammable mixed refrigerants (MR) for use with very low temperature throttle-cycle refrigeration systems |
CA2462568A1 (en) * | 2001-10-26 | 2003-05-01 | Igc-Polycold Systems Inc. | Methods of freezeout prevention for very low temperature mixed refrigerant systems |
-
2004
- 2004-12-31 TW TW093141850A patent/TW200532153A/en unknown
-
2005
- 2005-01-05 CN CN2010105033889A patent/CN101963409B/en not_active Expired - Fee Related
- 2005-01-05 US US10/585,463 patent/US20090188270A1/en not_active Abandoned
- 2005-01-05 CN CN201010503347XA patent/CN101943498A/en active Pending
- 2005-01-05 WO PCT/JP2005/000024 patent/WO2005066554A1/en active Application Filing
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103857968A (en) * | 2011-07-01 | 2014-06-11 | 布鲁克机械公司 | Systems and methods for warming a cryogenic heat exchanger array, for compact and efficient refrigeration, and for adaptive power management |
CN103857968B (en) * | 2011-07-01 | 2016-11-23 | 布鲁克机械公司 | For freezing heat-exchanger array is heated, for compact and effective refrigeration and the System and method for for adaptive power management |
US11175075B2 (en) | 2011-07-01 | 2021-11-16 | Edwards Vacuum Llc | Systems and methods for warming a cryogenic heat exchanger array, for compact and efficient refrigeration, and for adaptive power management |
CN103712494A (en) * | 2014-01-09 | 2014-04-09 | 缪志先 | Integral-box-shaped stacked heat exchanger with gas-liquid separation device |
Also Published As
Publication number | Publication date |
---|---|
CN101963409A (en) | 2011-02-02 |
US20090188270A1 (en) | 2009-07-30 |
TW200532153A (en) | 2005-10-01 |
WO2005066554A1 (en) | 2005-07-21 |
CN101963409B (en) | 2012-07-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR20030077639A (en) | Ultra-low temperature closed-loop recirculating gas chilling system | |
AU2014407850A1 (en) | Refrigeration cycle device | |
JPWO2014045394A1 (en) | Refrigeration equipment | |
CN101943498A (en) | Superfreeze device and vacuum plant | |
CN108700354B (en) | Condenser and turbo refrigeration device provided with same | |
CN105556221B (en) | Refrigerating plant | |
CN101504209B (en) | Ultra-low temperature freezer and vacuum apparatus | |
JP4022429B2 (en) | Cryogenic refrigerator | |
CN116465107A (en) | Refrigerating system and purifying method thereof | |
CA3105808A1 (en) | Cooling system with flooded low side heat exchangers | |
CN109442798B (en) | Refrigeration system, closed-loop refrigeration cycle and method for injecting refrigerant | |
JP2009228978A (en) | Refrigerating device | |
JP2008185256A (en) | Refrigeration equipment | |
JP2009186074A (en) | Refrigeration equipment | |
JP4326353B2 (en) | Ultra-low temperature refrigeration equipment | |
JP4413128B2 (en) | Ultra-low temperature cooling device | |
JP3756711B2 (en) | Cryogenic refrigerator | |
CN212205126U (en) | Ultralow-temperature water vapor capture pump pipeline system using secondary refrigerant for cold storage | |
JP2013002737A (en) | Refrigeration cycle device | |
JP2009180442A (en) | Refrigeration equipment | |
JP2005207637A (en) | Ultra-low temperature refrigeration equipment | |
KR102134652B1 (en) | Movable chiller | |
JP2008185257A (en) | Refrigeration equipment | |
JP2001201190A (en) | Ammonia refrigerating apparatus | |
US20240310087A1 (en) | Refrigeration System |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |
Open date: 20110112 |