CN101942967A - Bit hydraulic structure capable of reducing pressure and accelerating speed and drilling bit - Google Patents
Bit hydraulic structure capable of reducing pressure and accelerating speed and drilling bit Download PDFInfo
- Publication number
- CN101942967A CN101942967A CN 201010282192 CN201010282192A CN101942967A CN 101942967 A CN101942967 A CN 101942967A CN 201010282192 CN201010282192 CN 201010282192 CN 201010282192 A CN201010282192 A CN 201010282192A CN 101942967 A CN101942967 A CN 101942967A
- Authority
- CN
- China
- Prior art keywords
- drill bit
- water hole
- flow channel
- transition zone
- speed
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000005553 drilling Methods 0.000 title claims abstract description 41
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 77
- 230000007704 transition Effects 0.000 claims abstract description 57
- 239000012530 fluid Substances 0.000 claims abstract description 27
- 230000003628 erosive effect Effects 0.000 claims abstract description 24
- 238000007789 sealing Methods 0.000 claims abstract description 23
- 230000006837 decompression Effects 0.000 claims description 11
- 238000005452 bending Methods 0.000 claims description 7
- 238000009792 diffusion process Methods 0.000 claims description 6
- 239000000463 material Substances 0.000 claims description 5
- 239000011435 rock Substances 0.000 claims description 4
- 238000003466 welding Methods 0.000 claims description 4
- 239000002131 composite material Substances 0.000 claims description 3
- 229910003460 diamond Inorganic materials 0.000 claims description 3
- 239000010432 diamond Substances 0.000 claims description 3
- QFXZANXYUCUTQH-UHFFFAOYSA-N ethynol Chemical group OC#C QFXZANXYUCUTQH-UHFFFAOYSA-N 0.000 claims description 3
- 238000004372 laser cladding Methods 0.000 claims description 3
- 238000005520 cutting process Methods 0.000 abstract description 18
- 230000000694 effects Effects 0.000 abstract description 4
- 239000003208 petroleum Substances 0.000 abstract description 2
- 238000000034 method Methods 0.000 description 7
- 230000015572 biosynthetic process Effects 0.000 description 4
- 238000005755 formation reaction Methods 0.000 description 4
- 230000007423 decrease Effects 0.000 description 3
- 230000008602 contraction Effects 0.000 description 2
- 230000007812 deficiency Effects 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
Images
Landscapes
- Earth Drilling (AREA)
Abstract
本发明涉及减压提速的钻头水力结构和钻头,属于石油和地质钻井工程领域。钻头水力结构由钻头体、主流道、流道过渡区、水孔、卡簧槽、密封槽和耐冲蚀层组成。其特征在于:主流道、流道过渡区和水孔位于钻头体内,流道过渡区连通主流道与水孔,流道过渡区和水孔的轴线垂直于主流道的轴线,卡簧槽与密封槽位于水孔内,耐冲蚀层位于流道过渡区表面。钻头水孔出口方向与钻头轴线的夹角为90°,且与径向的夹角为0°~90°,泥浆倾斜射向井壁,在钻头旋转速度和泥浆本身的切向速度的带动下,在井底形成低压漩涡区,降低钻头作用面局部压力,减小泥浆液柱对岩屑的压持作用,钻井液抽汲井底岩屑,加速岩屑的清除,提高钻速,降低钻井成本。
The invention relates to a drill bit hydraulic structure and a drill bit for reducing pressure and increasing speed, and belongs to the field of petroleum and geological drilling engineering. The hydraulic structure of the drill bit is composed of the drill bit body, the main flow channel, the transition zone of the flow channel, the water hole, the ring groove, the sealing groove and the erosion-resistant layer. It is characterized in that: the main flow channel, the flow channel transition zone and the water hole are located in the drill body, the flow channel transition zone is connected to the main channel and the water hole, the axis of the flow channel transition zone and the water hole is perpendicular to the axis of the main channel, and the ring groove and the seal The groove is located in the water hole, and the erosion-resistant layer is located on the surface of the transition zone of the flow channel. The angle between the outlet direction of the drill bit water hole and the axis of the drill bit is 90°, and the angle between the direction of the drill bit and the radial direction is 0°~90°. The mud shoots obliquely to the well wall. Driven by the rotational speed of the drill bit and the tangential speed of the mud itself, A low-pressure vortex area is formed at the bottom of the well, which reduces the local pressure of the drill bit’s active surface and reduces the holding effect of the mud column on the cuttings. The drilling fluid pumps the cuttings at the bottom of the well, accelerates the removal of cuttings, increases the drilling speed, and reduces drilling costs. .
Description
所属技术领域Technical field
本发明涉及石油和地质钻井工程领域,特别涉及减压提速的钻头水力结构和钻头。The invention relates to the fields of petroleum and geological drilling engineering, in particular to a drill bit hydraulic structure and a drill bit for reducing pressure and increasing speed.
背景技术Background technique
为了开采地下的油气资源,需要利用钻具钻穿地下地层。这些钻具从地面到地下一般依次包括井架、转盘、方钻杆、钻杆、钻铤和钻头。其中钻头对地层进行切削从而钻进井眼。钻头切削地层的同时在井底产生大量的岩屑,为了把这些岩屑清除到地面,在钻进的同时必须通过钻柱内部注入钻井液,这些钻井液从钻头喷出并经过钻柱与地层之间的环形空间返回到地面,从而把岩屑携带到地面。然而,钻井液对井底产生一个非常大的液柱压持力,例如,对于一个3000米深的井眼,使用密度为1.1g/cm3的钻井液钻井,这样的压力将达到33MPa。现有钻头的水孔出口沿井深方向向下,且与钻头轴线夹角为0°~60°,钻井液流经喷嘴后直接冲击井底,在巨大的压持力作用下,钻头切削下来的岩屑被压持在井底,从而不利于岩屑的清除,极大地降低了岩屑清除效率。特别是在深井和超深井的钻井过程中,巨大的钻井液液柱压持力,将极大地影响岩屑的及时清除,造成钻头的重复破碎,降低钻井速度。In order to exploit underground oil and gas resources, it is necessary to use drilling tools to drill through underground formations. These drilling tools generally include a derrick, a rotary table, a kelly, a drill pipe, a drill collar and a drill bit from the surface to the ground. The drill bit cuts through the formation to drill the wellbore. When the drill bit cuts the formation, a large amount of cuttings are produced at the bottom of the well. In order to remove these cuttings to the surface, drilling fluid must be injected through the inside of the drill string while drilling. The drilling fluid is ejected from the drill bit and passes through the drill string and the formation. The annular space between returns to the surface, thus carrying the cuttings to the surface. However, the drilling fluid produces a very large fluid column holding force on the bottom of the well. For example, for a 3,000-meter-deep wellbore, the drilling fluid with a density of 1.1g/cm 3 is used to drill, and the pressure will reach 33MPa. The outlet of the water hole of the existing drill bit is downward along the well depth direction, and the included angle with the axis of the drill bit is 0°~60°. After the drilling fluid flows through the nozzle, it directly hits the bottom of the well. The cuttings are held at the bottom of the well, which is not conducive to the removal of cuttings and greatly reduces the efficiency of cuttings removal. Especially in the drilling process of deep and ultra-deep wells, the huge holding force of the drilling fluid column will greatly affect the timely removal of cuttings, resulting in repeated breakage of the drill bit and reducing the drilling speed.
为了解决这个问题,人们通常通过提高泥浆泵排量、增加泵压,以及采用各种喷嘴组合和改变喷嘴结构的方法,依靠高压水射流增加对井底的冲击力,实现水射流和机械联合破岩。然而,这种方法加大了泥浆液柱对井底岩屑的压持力,特别是在深井和超深井钻井中,由于巨大的泥浆液柱压力,单纯的依靠高压射流手段提高钻速效果并不明显。因此迫切需要一种能够降低井底局部压力的钻头,在保持整个井筒泥浆液柱压力不变的情况下,降低钻头作用面的泥浆柱压力,从而实现在保持井壁稳定的前提下大大提高机械钻速。In order to solve this problem, people usually increase the displacement of the mud pump, increase the pump pressure, use various nozzle combinations and change the nozzle structure, rely on high-pressure water jets to increase the impact on the bottom of the well, and realize the combination of water jets and machinery. rock. However, this method increases the holding force of the mud column on the cuttings at the bottom of the well, especially in deep and ultra-deep well drilling. Not obvious. Therefore, there is an urgent need for a drill bit that can reduce the local pressure at the bottom of the wellbore. Under the condition of keeping the mud column pressure of the whole wellbore constant, the mud column pressure on the working surface of the drill bit can be reduced, thereby greatly improving the mechanical strength while maintaining the stability of the wellbore wall. Drilling speed.
发明内容Contents of the invention
本发明的目的是克服现有技术中的不足,提供一种能够降低井底钻头作用面的泥浆柱压持力从而提高钻速的钻头水力结构和钻头。The purpose of the present invention is to overcome the deficiencies in the prior art and provide a drill bit hydraulic structure and a drill bit that can reduce the mud column holding force on the active surface of the bottom hole drill bit to increase the drilling speed.
本发明解决上述技术问题所采取的技术方案是:一种减压提速的钻头水力结构包括主流道、钻头体、流道过渡区、水孔、卡簧槽、密封槽和耐冲蚀层,所述主流道、所述流道过渡区和所述水孔位于所述钻头体内;所述流道过渡区连通所述主流道与所述水孔;所述流道过渡区和所述水孔的轴线垂直于所述主流道的轴线;所述卡簧槽与所述密封槽位于所述水孔内;所述耐冲蚀层位于所述流道过渡区表面。The technical scheme adopted by the present invention to solve the above-mentioned technical problems is: a drill bit hydraulic structure for decompression and speed increase includes main flow channel, drill bit body, flow channel transition zone, water hole, circlip groove, sealing groove and erosion-resistant layer. The main flow channel, the flow channel transition area and the water hole are located in the drill body; the flow channel transition area communicates with the main flow channel and the water hole; the flow channel transition area and the water hole The axis is perpendicular to the axis of the main flow channel; the circlip groove and the sealing groove are located in the water hole; the erosion-resistant layer is located on the surface of the transition zone of the flow channel.
所述主流道为圆柱形,其轴线与所述钻头体的轴线重合;所述主流道的上端与钻柱内钻井液通道相连,其下端与所述流道过渡区相连。The main flow channel is cylindrical, and its axis coincides with the axis of the drill bit body; the upper end of the main flow channel is connected with the drilling fluid channel in the drill string, and the lower end is connected with the flow channel transition zone.
所述流道过渡区包括锥形收缩段、转向弯曲段和向上扩散段;所述锥形收缩段呈圆锥形;所述转向弯曲段呈弧形,且其弧心在钻头旋转方向一侧;所述向上扩散段呈圆柱形,与所述水孔相连,且其中心线与所述水孔的中心线重合。The flow channel transition zone includes a conical constriction section, a turning and bending section and an upward diverging section; the conical constricting section is conical; the turning and bending section is arc-shaped, and its arc center is on one side of the drill bit rotation direction; The upward diffusion section is cylindrical, connected to the water hole, and its centerline coincides with the centerline of the water hole.
所述水孔呈圆柱形,其出口方向与钻头旋转方向一致;所述水孔的出口方向与钻头轴线的夹角α为90°;所述水孔出口处的中心点所在的径向方向,与所述水孔轴线的夹角为β:0°<β<90°。The water hole is cylindrical, and its outlet direction is consistent with the drill bit rotation direction; the angle α between the outlet direction of the water hole and the drill bit axis is 90°; the radial direction where the central point of the water hole outlet is located, The included angle with the axis of the water hole is β: 0°<β<90°.
所述卡簧槽位于所述水孔内部上端,用于放置卡簧,以将钻头喷嘴固定在所述水孔内。The circlip groove is located at the inner upper end of the water hole, and is used for placing a circlip to fix the drill nozzle in the water hole.
所述密封槽位于水孔内部中间位置,用于放置密封装置,以防止泥浆从喷嘴和所述水孔之间的间隙泄露;所述的密封装置采用“O”型密封圈和膨胀密封结构。The sealing groove is located in the middle of the water hole and is used to place a sealing device to prevent the mud from leaking from the gap between the nozzle and the water hole; the sealing device adopts an "O" type sealing ring and an expansion sealing structure.
所述耐冲蚀层是采用氧乙炔或激光熔覆的方法,将耐冲蚀材料敷焊在所述流道过渡区的表面,敷焊厚度为0.2~2.0mm。The erosion-resistant layer adopts the method of oxyacetylene or laser cladding, and the erosion-resistant material is welded on the surface of the flow channel transition zone, and the thickness of the welding is 0.2-2.0mm.
所述减压提速的钻头使用减压提速的钻头水力结构,并在钻头体内可同时设置若干相同的所述流道过渡区和所述水孔。The decompression-speed-up drill bit uses a decompression-speed-up drill bit hydraulic structure, and several identical flow channel transition zones and water holes can be set in the drill bit body at the same time.
本发明将现有钻头的水孔出口方向,由与钻头轴线夹角为0°~60°,调整为与钻头轴线夹角为90°,且与钻头径向的夹角为0°~90°。泥浆流经喷嘴后,由原先的向下直接冲击井底,改变成水平方向,获得与井壁相切的速度。结合钻头旋转速度的带动作用,泥浆从水孔中射出后,随钻头做圆周运动,在钻头附近形成漩涡,在漩涡底部产生一低压区,从而使井底的泥浆液柱压持力减小,井底岩屑在上下压力差的作用下,被抽汲离开井底,随钻井液返回地面。一方面,本发明的钻头,在井底产生一局部低压漩涡区,减小井底岩屑的压持作用,实现对井底岩屑的抽汲,加速岩屑的清除,减少岩屑的重复破碎,提高钻速;另一方面由于不需要大功率的泥浆泵和柴油机,从而降低了钻井成本,节约了能源。In the present invention, the outlet direction of the water hole of the existing drill bit is adjusted from 0° to 60° to the axis of the drill bit to an angle of 90° to the axis of the drill bit, and to an angle of 0° to 90° to the radial direction of the drill bit. . After the mud flows through the nozzle, it changes from the original downward direction directly to the bottom of the well to the horizontal direction, and obtains a velocity tangential to the well wall. Combined with the driving effect of the drill bit rotation speed, after the mud is ejected from the water hole, it makes a circular motion with the drill bit, forming a vortex near the drill bit, and a low-pressure area is generated at the bottom of the vortex, thereby reducing the holding force of the mud column at the bottom of the well. Bottomhole cuttings are swabbed away from the bottom of the well under the action of the pressure difference between the upper and lower sides, and return to the surface with the drilling fluid. On the one hand, the drill bit of the present invention generates a local low-pressure vortex area at the bottom of the well, which reduces the holding effect of cuttings at the bottom of the well, realizes the swabbing of cuttings at the bottom of the well, accelerates the removal of cuttings, and reduces the repetition of cuttings. On the other hand, because there is no need for high-power mud pumps and diesel engines, the drilling cost is reduced and energy is saved.
附图说明Description of drawings
下面结合附图和具体实施例对本发明作进一步的说明。The present invention will be further described below in conjunction with the accompanying drawings and specific embodiments.
图1是本发明的垂直剖面图。Fig. 1 is a vertical sectional view of the present invention.
图2是本发明的钻头水力结构的剖面图。Fig. 2 is a cross-sectional view of the hydraulic structure of the drill bit of the present invention.
图3是本发明一个实施例三牙轮钻头牙掌的垂直剖视图。Fig. 3 is a vertical sectional view of the tooth palm of a tricone bit according to an embodiment of the present invention.
图4是本发明一个实施例三牙轮钻头水力结构的剖面图。Fig. 4 is a cross-sectional view of the hydraulic structure of the tri-cone bit according to an embodiment of the present invention.
图5是本发明一个实施例PDC钻头的垂直剖视图。Fig. 5 is a vertical sectional view of a PDC drill bit according to an embodiment of the present invention.
图6是本发明一个实施例PDC钻头水力结构的剖面图。Fig. 6 is a cross-sectional view of the hydraulic structure of a PDC drill bit according to an embodiment of the present invention.
具体实施方式Detailed ways
实施例1:下面结合图1、图2进行说明。本发明包括主流道1、钻头体2、流道过渡区3、水孔4、卡簧槽5、密封槽6和耐冲蚀层7,所述主流道1、所述流道过渡区3和所述水孔4位于所述钻头体2内;所述流道过渡区3连通所述主流道1与所述水孔4;所述流道过渡区3和所述水孔4的轴线垂直于所述主流道1的轴线;所述卡簧槽5与所述密封槽6位于所述水孔4内;所述耐冲蚀层7位于所述流道过渡区3表面。所述主流道1为圆柱形,上与钻柱内钻井液通道相连,下与所述流道过渡区3相连。所述流道过渡区3包括锥形收缩段8、转向弯曲段9和向上扩散段10;所述锥形收缩段8呈圆锥形;所述转向弯曲段9呈弧形,且其弧心在钻头旋转方向一侧;所述向上扩散段10呈圆柱形,与所述水孔4相连,且其中心线与所述水孔4的中心线重合。所述水孔4呈圆柱形,其出口方向与钻头旋转方向一致;所述水孔4的出口方向与钻头轴线的夹角α为90°;所述水孔4出口处的中心点所在的径向方向,与所述水孔4轴线的夹角为β:0°<β<90°。所述卡簧槽5位于所述水孔4内部上端,用于放置卡簧,以将钻头喷嘴固定在所述水孔4内。所述密封槽6位于水孔4内部中间,用于放置密封装置,以防止泥浆从喷嘴外部和所述水孔4的内表面泄露;所述的密封装置采用“O”型密封圈和膨胀密封结构。所述耐冲蚀层7是采用氧乙炔或激光熔覆的方法,将耐冲蚀材料敷焊在所述流道过渡区3的表面,敷焊厚度为0.2~2.0mm。Embodiment 1: The following will be described in conjunction with Fig. 1 and Fig. 2 . The present invention includes a
实施例2:下面结合附图3和附图4进行说明。一种减压提速的三牙轮钻头由牙掌11、牙轮12、主流道1、流道过渡区3、水孔4、卡簧槽5、密封槽6和耐冲蚀层7组成。流道过渡区3由锥形收缩段8、转向弯曲段9和向上扩散段10组成。三个相同的流道过渡区3和水孔4呈120°对称分布于钻头体2内的同一个平面内,且该平面垂直于主流道1的轴线。当不处于同一平面内时,各组所述流道过渡区3和所述水孔4离井底水平面的距离的间距相同。在附图中,实线箭头所表示的方向是钻头内泥浆的流动方向。Embodiment 2: It will be described below in conjunction with accompanying
其工作原理:钻柱带动三牙轮钻头旋转,牙轮12转动破碎井底岩石;钻井液从钻柱内进入牙掌11内部的主流道1,流经流道过渡区3的锥形收缩段8,速度增大,压力减小,流经转向弯曲段9,速度方向由最初的径向方向逐渐向钻头的旋转方向过渡,直至形成夹角β,再流经向上扩散段10,钻井液压力增大,在此过程中,钻井液获得与井壁相切的速度;钻井液从水孔4中的喷嘴倾斜射向井壁,钻井液在水孔4出口处的压力迅速增高,在向上流动携带岩屑快速向井眼方向流动的同时,在切向速度的作用下,围绕井眼轴线做圆周运动,此时钻头体2外表面与井壁的环空之间出现一较大漩涡,在漩涡底部即井底产生一低压区,泥浆液柱在井底的压持力减小,被抽汲离开井底,随钻井液返回地面。耐冲蚀层7是采用耐冲蚀材料敷焊在流道过渡区3的表面,以提高流道过渡区3在高速钻井液冲刷下的抗冲蚀性能,提高钻头的使用寿命。Its working principle: the drill string drives the three-cone bit to rotate, and the
实施例3:下面结合附图5和附图6进行说明。一种减压提速PDC钻头由钻头体2、流道1、流道过渡区3、水孔4、卡簧槽5、密封槽6、耐冲蚀层7、刀翼13和人造金刚石复合片-PDC14组成。流道过渡区3由锥形收缩段8、转向弯曲段9和向上扩散段10组成。根据需要,可在钻头体2内设置1-10组相同的流道过渡区3和水孔4,本实施例采用4组相同的流道过渡区3和水孔4,呈90°对称分布于钻头体2内的同一个平面内,且该平面垂直于主流道1的轴线。每组所述流道过渡区3和所述水孔4离井底水平面的距离可均相同或不相同,当不相同时,相邻的每组或每两组、每三组所述流道过渡区3和所述水孔4离井底水平面的距离的间距相同。Embodiment 3: It will be described below in conjunction with accompanying drawing 5 and accompanying
其工作原理:钻柱带动PDC钻头旋转,刀翼13上的人造金刚石复合片-PDC14转动刮削井底岩石;钻井液从钻柱内进入钻头体2内部的主流道1内,流经流道过渡区3的锥形收缩段8,速度增大,压力减小,流经转向弯曲段9,速度方向由最初的径向方向逐渐向钻头的旋转方向过渡,直至形成夹角β,再流经向上扩散段10,钻井液压力增大,在此过程中,钻井液获得与井壁相切的速度;钻井液从水孔4中的喷嘴倾斜射向井壁,钻井液在水孔4出口处的压力迅速增高,在向上流动携带岩屑快速向井眼方向流动的同时,在切向速度的作用下,围绕井眼轴线做圆周运动,此时钻头体2外表面附近与井壁的环空之间出现一较大漩涡,在漩涡底部即井底产生一低压区,泥浆液柱在井底的压持力减小,井底岩屑在水孔4出口处上下压力差的作用下,被抽汲离开井底,随钻井液返回地面。耐冲蚀层7是采用耐冲蚀材料敷焊在流道过渡区3的表面,以提高流道过渡区3在高速钻井液冲刷下的抗冲蚀性能,提高钻头的使用寿命。Its working principle: the drill string drives the PDC bit to rotate, and the synthetic diamond composite sheet-PDC14 on the blade 13 rotates to scrape the rock at the bottom of the well; the drilling fluid enters the
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 201010282192 CN101942967A (en) | 2010-09-15 | 2010-09-15 | Bit hydraulic structure capable of reducing pressure and accelerating speed and drilling bit |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 201010282192 CN101942967A (en) | 2010-09-15 | 2010-09-15 | Bit hydraulic structure capable of reducing pressure and accelerating speed and drilling bit |
Publications (1)
Publication Number | Publication Date |
---|---|
CN101942967A true CN101942967A (en) | 2011-01-12 |
Family
ID=43435149
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN 201010282192 Pending CN101942967A (en) | 2010-09-15 | 2010-09-15 | Bit hydraulic structure capable of reducing pressure and accelerating speed and drilling bit |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101942967A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103776712A (en) * | 2012-10-20 | 2014-05-07 | 中国石油化工股份有限公司 | Simulation bit for determining drilling characteristic of PDC |
CN104373044A (en) * | 2014-11-03 | 2015-02-25 | 中国石油大学(北京) | Tangential injection type whirl flow jet flow grinding drill bit for horizontal well |
CN111255383A (en) * | 2020-03-31 | 2020-06-09 | 西南石油大学 | Dysmorphism gradual change formula geophysical prospecting drill bit runner structure |
CN113944431A (en) * | 2021-12-20 | 2022-01-18 | 成都迪普金刚石钻头有限责任公司 | Hydraulic auxiliary rock breaking PDC drill bit and auxiliary rock breaking method |
CN114458157A (en) * | 2022-02-11 | 2022-05-10 | 重庆大学 | A kind of self-advance and retreat type jet drill bit and drilling method |
CN119195648A (en) * | 2024-11-29 | 2024-12-27 | 河南省豫西煤田地质勘察有限公司 | Horizontal well drilling equipment, drilling methods and their applications in deep oil and gas production |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4083417A (en) * | 1976-11-12 | 1978-04-11 | Arnold James F | Jetting apparatus |
SU1541370A1 (en) * | 1986-11-21 | 1990-02-07 | Московский Институт Нефти И Газа Им.И.М.Губкина | Roller-bit drill |
CN2178779Y (en) * | 1993-09-29 | 1994-10-05 | 钟国强 | Grinding wheel burs with strengthen plating |
WO1996024744A1 (en) * | 1995-02-07 | 1996-08-15 | Brit Bit Limited | Improvements in or relating to drill bits |
CN2732976Y (en) * | 2004-10-10 | 2005-10-12 | 中国石化集团胜利石油管理局钻井工艺研究院 | Downhole hydraulic pumping pressure-reducing drilling tool |
CN201180497Y (en) * | 2008-04-10 | 2009-01-14 | 中国京冶工程技术有限公司 | Single tube all-directional drilling injection slip casting drilling bit of auxiliary slip casting hole capable of hydraulic controlling open-and-close |
-
2010
- 2010-09-15 CN CN 201010282192 patent/CN101942967A/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4083417A (en) * | 1976-11-12 | 1978-04-11 | Arnold James F | Jetting apparatus |
SU1541370A1 (en) * | 1986-11-21 | 1990-02-07 | Московский Институт Нефти И Газа Им.И.М.Губкина | Roller-bit drill |
CN2178779Y (en) * | 1993-09-29 | 1994-10-05 | 钟国强 | Grinding wheel burs with strengthen plating |
WO1996024744A1 (en) * | 1995-02-07 | 1996-08-15 | Brit Bit Limited | Improvements in or relating to drill bits |
CN2732976Y (en) * | 2004-10-10 | 2005-10-12 | 中国石化集团胜利石油管理局钻井工艺研究院 | Downhole hydraulic pumping pressure-reducing drilling tool |
CN201180497Y (en) * | 2008-04-10 | 2009-01-14 | 中国京冶工程技术有限公司 | Single tube all-directional drilling injection slip casting drilling bit of auxiliary slip casting hole capable of hydraulic controlling open-and-close |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103776712A (en) * | 2012-10-20 | 2014-05-07 | 中国石油化工股份有限公司 | Simulation bit for determining drilling characteristic of PDC |
CN104373044A (en) * | 2014-11-03 | 2015-02-25 | 中国石油大学(北京) | Tangential injection type whirl flow jet flow grinding drill bit for horizontal well |
CN111255383A (en) * | 2020-03-31 | 2020-06-09 | 西南石油大学 | Dysmorphism gradual change formula geophysical prospecting drill bit runner structure |
CN113944431A (en) * | 2021-12-20 | 2022-01-18 | 成都迪普金刚石钻头有限责任公司 | Hydraulic auxiliary rock breaking PDC drill bit and auxiliary rock breaking method |
CN114458157A (en) * | 2022-02-11 | 2022-05-10 | 重庆大学 | A kind of self-advance and retreat type jet drill bit and drilling method |
CN119195648A (en) * | 2024-11-29 | 2024-12-27 | 河南省豫西煤田地质勘察有限公司 | Horizontal well drilling equipment, drilling methods and their applications in deep oil and gas production |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109653691B (en) | Hydraulic and mechanical compound controllable rock debris bed cleaning tool | |
CN102086756A (en) | Hole-dilating drill for pressure reduction and speed acceleration | |
CN102678050B (en) | A kind of have the gear wheel composite drill bit impacting cutting structure | |
CN110439464B (en) | Downhole Rotary Particle Jet Drilling Device | |
CN111594128A (en) | Rotary downhole cavitation generator | |
CN103527092B (en) | Suction bits expanding method is penetrated in horizontal orientation boring | |
CN102678053B (en) | A kind of intersect scrape cut-impact combined drill | |
CN101988369A (en) | Pressure-reducing and speed-accelerating drill flow channel structure and drill | |
CN109025825B (en) | Underground self-suction particle jet drilling device based on Venturi effect | |
CN206346717U (en) | Reacting cycle pulse pumping drill pipe nipple | |
CN101942967A (en) | Bit hydraulic structure capable of reducing pressure and accelerating speed and drilling bit | |
CN112593849B (en) | An electric pulse-mechanical composite rock-breaking bit for deep difficult-to-drill formations | |
CN105464638A (en) | Coal bed gas well pulse radial drilling and double-pulsating hydrofracturing method | |
CN102003140A (en) | Traversing reverse circulating drilling method of horizontal directional drilling pipeline and special drilling bit | |
CN203239230U (en) | Downhole jet flow auxiliary drilling speed increasing device | |
CN108678679B (en) | A subsea gas hydrate layer composite drill bit | |
CN108915619B (en) | A concentric tube cuttings suction and crushing device suitable for dual gradient drilling | |
CN102425382B (en) | Dynamic pressure lubrication drilling tool and drilling tool assembly with same | |
CN103352663B (en) | Can the well drilling centralizer of the clear rock in shaft bottom and Cutting Disposal | |
CN108533183A (en) | The PDC drill bit of passive swivel nozzle is provided on a kind of wing | |
CN102287152B (en) | Rotary jet sand cleaning method | |
CN102345445A (en) | Drill bit for particle impact drilling technology | |
Xiumin et al. | Research and application of gas-lift reverse circulation drilling technology to geothermal well construction in Dalian Jiaoliu Island | |
CN202673148U (en) | Cross scraping-impacting combined type drill bit | |
CN204476278U (en) | A kind of multistage reamer for non-excavation laying pipeline and reaming assembly of pulling back |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20110112 |