CN101942588B - Magnesium alloy diatomite ferric oxide composite material and preparation method thereof - Google Patents
Magnesium alloy diatomite ferric oxide composite material and preparation method thereof Download PDFInfo
- Publication number
- CN101942588B CN101942588B CN2010102204039A CN201010220403A CN101942588B CN 101942588 B CN101942588 B CN 101942588B CN 2010102204039 A CN2010102204039 A CN 2010102204039A CN 201010220403 A CN201010220403 A CN 201010220403A CN 101942588 B CN101942588 B CN 101942588B
- Authority
- CN
- China
- Prior art keywords
- diatomite
- magnesium alloy
- iron oxide
- composite material
- zeyssatite
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N iron oxide Inorganic materials [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 title claims abstract description 106
- 239000002131 composite material Substances 0.000 title claims abstract description 70
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 title claims abstract description 66
- 229910000861 Mg alloy Inorganic materials 0.000 title claims abstract description 51
- 238000002360 preparation method Methods 0.000 title claims abstract description 33
- NDLPOXTZKUMGOV-UHFFFAOYSA-N oxo(oxoferriooxy)iron hydrate Chemical compound O.O=[Fe]O[Fe]=O NDLPOXTZKUMGOV-UHFFFAOYSA-N 0.000 title claims 3
- 239000002245 particle Substances 0.000 claims abstract description 28
- 239000000203 mixture Substances 0.000 claims abstract description 19
- 239000011159 matrix material Substances 0.000 claims abstract description 17
- 239000011777 magnesium Substances 0.000 claims abstract description 14
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 11
- 229910052787 antimony Inorganic materials 0.000 claims abstract description 10
- 229910052776 Thorium Inorganic materials 0.000 claims abstract description 9
- 239000000126 substance Substances 0.000 claims abstract description 5
- 239000010459 dolomite Substances 0.000 claims description 28
- 229910000514 dolomite Inorganic materials 0.000 claims description 28
- 239000007788 liquid Substances 0.000 claims description 22
- 229910000831 Steel Inorganic materials 0.000 claims description 14
- 239000010959 steel Substances 0.000 claims description 14
- IMBKASBLAKCLEM-UHFFFAOYSA-L ferrous ammonium sulfate (anhydrous) Chemical compound [NH4+].[NH4+].[Fe+2].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O IMBKASBLAKCLEM-UHFFFAOYSA-L 0.000 claims description 11
- 238000010438 heat treatment Methods 0.000 claims description 11
- 229910052751 metal Inorganic materials 0.000 claims description 9
- 239000002184 metal Substances 0.000 claims description 9
- 238000003756 stirring Methods 0.000 claims description 9
- 229910045601 alloy Inorganic materials 0.000 claims description 8
- 239000000956 alloy Substances 0.000 claims description 8
- 239000000463 material Substances 0.000 claims description 7
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 6
- 239000002994 raw material Substances 0.000 claims description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 5
- 239000004809 Teflon Substances 0.000 claims description 3
- 229920006362 Teflon® Polymers 0.000 claims description 3
- 230000000694 effects Effects 0.000 claims description 3
- 239000004575 stone Substances 0.000 claims 9
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 claims 2
- 238000001816 cooling Methods 0.000 claims 2
- 229910052742 iron Inorganic materials 0.000 claims 2
- 238000000465 moulding Methods 0.000 claims 1
- 238000012856 packing Methods 0.000 claims 1
- 239000000758 substrate Substances 0.000 claims 1
- -1 diatomite iron oxide compound Chemical class 0.000 abstract description 13
- 238000013016 damping Methods 0.000 abstract description 11
- 238000000034 method Methods 0.000 abstract description 8
- 238000004519 manufacturing process Methods 0.000 abstract description 6
- 239000011148 porous material Substances 0.000 abstract description 6
- 239000010409 thin film Substances 0.000 abstract 1
- 229910021578 Iron(III) chloride Inorganic materials 0.000 description 9
- RBTARNINKXHZNM-UHFFFAOYSA-K iron trichloride Chemical compound Cl[Fe](Cl)Cl RBTARNINKXHZNM-UHFFFAOYSA-K 0.000 description 9
- 239000005909 Kieselgur Substances 0.000 description 7
- 229910052782 aluminium Inorganic materials 0.000 description 7
- 229920000049 Carbon (fiber) Polymers 0.000 description 6
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 6
- 239000004917 carbon fiber Substances 0.000 description 6
- 229940010514 ammonium ferrous sulfate Drugs 0.000 description 5
- 238000000576 coating method Methods 0.000 description 5
- 230000005294 ferromagnetic effect Effects 0.000 description 5
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 5
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 4
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 4
- 239000011358 absorbing material Substances 0.000 description 4
- 239000000919 ceramic Substances 0.000 description 4
- 239000011248 coating agent Substances 0.000 description 4
- 229910052749 magnesium Inorganic materials 0.000 description 4
- FHVDTGUDJYJELY-UHFFFAOYSA-N 6-{[2-carboxy-4,5-dihydroxy-6-(phosphanyloxy)oxan-3-yl]oxy}-4,5-dihydroxy-3-phosphanyloxane-2-carboxylic acid Chemical compound O1C(C(O)=O)C(P)C(O)C(O)C1OC1C(C(O)=O)OC(OP)C(O)C1O FHVDTGUDJYJELY-UHFFFAOYSA-N 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 229940072056 alginate Drugs 0.000 description 2
- 235000010443 alginic acid Nutrition 0.000 description 2
- 229920000615 alginic acid Polymers 0.000 description 2
- 238000003491 array Methods 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 238000004090 dissolution Methods 0.000 description 2
- 238000009776 industrial production Methods 0.000 description 2
- 239000010410 layer Substances 0.000 description 2
- 230000005291 magnetic effect Effects 0.000 description 2
- 239000002905 metal composite material Substances 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- 241000195493 Cryptophyta Species 0.000 description 1
- 229910001069 Ti alloy Inorganic materials 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000004070 electrodeposition Methods 0.000 description 1
- 238000007772 electroless plating Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000003292 glue Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- 238000005470 impregnation Methods 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 230000008595 infiltration Effects 0.000 description 1
- 238000001764 infiltration Methods 0.000 description 1
- VBMVTYDPPZVILR-UHFFFAOYSA-N iron(2+);oxygen(2-) Chemical class [O-2].[Fe+2] VBMVTYDPPZVILR-UHFFFAOYSA-N 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 239000002070 nanowire Substances 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 238000004663 powder metallurgy Methods 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000012257 stirred material Substances 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
Images
Landscapes
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
Abstract
本发明提供一种镁合金硅藻土氧化铁复合材料及其制备方法,该复合材料吸波性能高,并且具有优越的阻尼性能。该制备方法工艺简单,生产成本低,适于工业化生产。该复合材料以镁合金为基体,在基体上分布着硅藻土氧化铁复合物,该硅藻土氧化铁复合物占复合材料的体积百分比为40-45%,硅藻土氧化铁复合物的颗粒为0.5-1mm;该镁合金基体的化学成分的重量百分含量:Al为3%~8%,Th为0.01%~0.05%,Si为0.5%-1%,Sb为0.005%-0.01%,其余为Mg;硅藻土氧化铁复合物为氧化铁钻入硅藻土的孔隙中,并在孔隙壁面形成一层薄膜。
The invention provides a magnesium alloy diatomite iron oxide composite material and a preparation method thereof. The composite material has high wave-absorbing performance and excellent damping performance. The preparation method has simple process, low production cost and is suitable for industrialized production. The composite material uses a magnesium alloy as a matrix, and a diatomite iron oxide compound is distributed on the matrix. The diatomite iron oxide compound accounts for 40-45% by volume of the composite material. The particle size is 0.5-1mm; the weight percentage of the chemical composition of the magnesium alloy matrix: Al is 3%-8%, Th is 0.01%-0.05%, Si is 0.5%-1%, Sb is 0.005%-0.01% , and the rest is Mg; the diatomite iron oxide composite is iron oxide drilled into the pores of diatomite, and forms a thin film on the pore wall.
Description
一、技术领域 1. Technical field
本发明属于金属材料领域,涉及一种镁合金硅藻土氧化铁复合材料及其制备方法及其制备方法。The invention belongs to the field of metal materials, and relates to a magnesium alloy diatomite iron oxide composite material and a preparation method thereof.
二、背景技术 2. Background technology
目前属材料领域中,对材料的吸波减振作用受到了重视。At present, in the field of materials, the wave-absorbing and vibration-reducing effect of materials has been paid attention to.
CN200410023374.1涉及一种铝基吸波材料及其制备方法,其特征在于:将铝或铝合金板表层采用直流或交流电一步或二步阳极氧化法形成多孔氧化铝膜,制成铝基多孔氧化铝模板,即AAO模板;采用直流或脉冲电流电化学沉积在铝基AAO多孔膜中组装磁性纳米金属线阵列,制成表层原位组装磁性纳米线阵列的铝基吸波材料。该方法的缺点是要求技术难度高。CN200410023374.1 relates to an aluminum-based wave-absorbing material and its preparation method, which is characterized in that: the surface layer of an aluminum or aluminum alloy plate is formed by a one-step or two-step anodic oxidation method of direct current or alternating current to form a porous aluminum oxide film to form an aluminum-based porous oxide film Aluminum template, that is, AAO template; use DC or pulse current electrochemical deposition to assemble magnetic nano-metal wire arrays in aluminum-based AAO porous membranes to make aluminum-based absorbing materials for in-situ assembly of magnetic nanowire arrays on the surface. The disadvantage of this method is that it requires high technical difficulty.
CN200910071958.9提出陶瓷晶须/铁磁金属复合吸波材料及其制备方法,它涉及一种用于吸收电磁波的复合材料及其制备方法。将表面镀有铁磁金属镀层的陶瓷晶须在温度为300~400℃、热处理气氛为氢气或氩气的条件下热处理60分钟,即得陶瓷晶须/铁磁金属复合吸波材料。该方法的缺点是陶瓷晶须表面涂铁磁金属镀层,加工中铁磁金属易脱落。CN200910071958.9 proposes a ceramic whisker/ferromagnetic metal composite wave-absorbing material and a preparation method thereof, which relates to a composite material for absorbing electromagnetic waves and a preparation method thereof. Ceramic whiskers coated with ferromagnetic metal coatings are heat-treated for 60 minutes at a temperature of 300-400°C and the heat treatment atmosphere is hydrogen or argon to obtain ceramic whisker/ferromagnetic metal composite wave-absorbing materials. The disadvantage of this method is that the surface of the ceramic whisker is coated with a ferromagnetic metal coating, and the ferromagnetic metal is easy to fall off during processing.
CN200910191481.8号申请涉及一种具有优良阻尼特性的短碳纤维增强镁基复合材料的制备方法,它包括以下步骤:(1)去除短碳纤维表面的有机胶层;(2)化学镀沉积金属镍涂层,在碱性条件下通过控制沉积时间来得到需要厚度的涂层;(3)在制备好表面镀有金属镍涂层的短碳纤维后,采用粉末冶金法即可制备得到具有优良阻尼特性的短碳纤维增强镁基复合材料。该发明将3~20%体积百分数的化学镀镍短碳纤维加入到镁基体中,虽然强化了基体并赋予其更为优良的阻尼性能,其阻尼性能具有比纯镁更优良的阻尼性能,可达到0.015的高阻尼范围,但是工艺更为复杂。该材料的缺点是吸波性能差。Application No. CN200910191481.8 relates to a preparation method of a short carbon fiber reinforced magnesium-based composite material with excellent damping properties, which includes the following steps: (1) removing the organic glue layer on the surface of the short carbon fiber; (2) depositing metal nickel coating by electroless plating layer, under alkaline conditions by controlling the deposition time to obtain the required thickness of the coating; (3) After the short carbon fiber coated with metal nickel coating is prepared, the powder metallurgy method can be used to prepare the carbon fiber with excellent damping characteristics Short carbon fiber reinforced magnesium matrix composites. The invention adds 3 to 20% by volume of electroless nickel-plated short carbon fibers into the magnesium matrix. Although the matrix is strengthened and the damping performance is endowed with better performance, its damping performance is better than that of pure magnesium, which can reach High damping range of 0.015, but the process is more complicated. The disadvantage of this material is its poor absorbing properties.
三、发明内容 3. Contents of the invention
本发明的目的就是针对上述技术缺陷,提供一种镁合金硅藻土氧化铁复合材料,该复合材料吸波性能高,并且具有优越的阻尼性能。The object of the present invention is to address the above-mentioned technical defects and provide a magnesium alloy diatomite-iron oxide composite material, which has high wave-absorbing performance and excellent damping performance.
本发明的另一目的是提供镁合金硅藻土氧化铁复合材料的制备方法,该制备方法工艺简单,生产成本低,适于工业化生产。Another object of the present invention is to provide a preparation method of magnesium alloy diatomite iron oxide composite material, which has simple process, low production cost and is suitable for industrial production.
本发明的目的是通过以下技术方案实现的:The purpose of the present invention is achieved through the following technical solutions:
一种镁合金基硅藻土氧化铁复合材料,该复合材料以镁合金为基体,在基体上分布着硅藻土氧化铁复合物,该硅藻土氧化铁复合物占复合材料的体积百分比为40-45%,硅藻土氧化铁复合物的颗粒为0.5-1mm;该镁合金基体的化学成分的重量百分含量:Al为3%~8%,Th为0.01%~0.05%,Si为0.5%-1%,Sb为0.005%-0.01%,其余为Mg;硅藻土氧化铁复合物为氧化铁钻入硅藻土的孔隙中,并在孔隙壁面形成一层厚度为0.1-10μm薄膜。A magnesium alloy-based diatomite iron oxide composite material, the composite material takes magnesium alloy as a matrix, and diatomite iron oxide composites are distributed on the matrix, and the volume percentage of the diatomite iron oxide composites in the composite material is 40-45%, the particle of diatomite iron oxide composite is 0.5-1mm; the weight percentage of the chemical composition of the magnesium alloy matrix: Al is 3%-8%, Th is 0.01%-0.05%, Si is 0.5%-1%, Sb is 0.005%-0.01%, and the rest is Mg; diatomite iron oxide composite is iron oxide drilled into the pores of diatomite, and forms a film with a thickness of 0.1-10μm on the pore wall .
一种镁合金基硅藻土氧化铁复合材料的制备方法,其特征在于:它包括以下步骤:A method for preparing a magnesium alloy-based diatomite iron oxide composite material, characterized in that it comprises the following steps:
a、硅藻土氧化铁复合物的准备:把氯化铁和硫酸亚铁铵装入带聚四氟乙烯衬里的水热容器中,加水溶解(加少量水,达到溶解即可),容器温度保持80-90℃,再装入硅藻土,硅藻土的尺寸为0.5-1mm,搅拌以上物质达2-7min,氯化铁、硫酸亚铁铵及硅藻土的重量比为1∶1∶(1-2),搅拌结束后将搅拌物置于220℃的烘箱中保温3h后自然冷却便得到硅藻土氧化铁复合物;a. Preparation of diatomaceous earth iron oxide compound: put ferric chloride and ammonium ferrous sulfate into a hydrothermal container with Teflon lining, add water to dissolve (add a small amount of water to achieve dissolution), and the container temperature Keep at 80-90°C, then add diatomite, the size of diatomite is 0.5-1mm, stir the above materials for 2-7min, the weight ratio of ferric chloride, ferrous ammonium sulfate and diatomite is 1:1 : (1-2), after the stirring is finished, place the stirred material in an oven at 220° C. for 3 hours and then cool naturally to obtain the diatomite iron oxide compound;
然后将白云石和硅藻土氧化铁复合物混合,白云石颗粒的尺寸为0.01-0.06mm,硅藻土氧化铁复合物和白云石的重量比为1∶(0.05-0.09),将白云石和硅藻土氧化铁复合物的混合物放入有加热装置的底部通真空系统的钢制模具的空腔中形成复合物预制体,复合物预制体占金属模具空腔体积的40-45%;开启加热装置,控制钢制模具内为520-540℃;Then dolomite and diatomite iron oxide compound are mixed, the size of dolomite particles is 0.01-0.06mm, the weight ratio of diatomite iron oxide compound and dolomite is 1: (0.05-0.09), and dolomite and silicon The mixture of algae and iron oxide composites is placed in the cavity of a steel mold with a heating device and a vacuum system at the bottom to form a composite prefabricated body, and the composite prefabricated body accounts for 40-45% of the cavity volume of the metal mold; turn on the heating device to control the temperature in the steel mold at 520-540°C;
b、镁合金液的准备:将重量百分含量为Al为3%~8%,Th为0.01%~0.05%,Si为0.5%-1%,Sb为0.005%-0.01%,其余为Mg的原料,在680-720℃温度下熔化成合金液;b. Preparation of magnesium alloy solution: the weight percentage is 3%-8% for Al, 0.01%-0.05% for Th, 0.5%-1% for Si, 0.005%-0.01% for Sb, and the rest is Mg Raw materials are melted into alloy liquid at a temperature of 680-720°C;
c、开启真空系统,控制上述钢制模具内的相对真空度为-30Kpa,将上述镁合金液体浇入钢制模具空腔内的复合物预制体的上面,并注满模具,镁合金液体在真空压力作用下渗入复合物预制体中的间隙,关闭模具加热装置,在钢制模具内冷却凝固而形成镁合金基硅藻土氧化铁复合材料。c. Turn on the vacuum system, control the relative vacuum in the above-mentioned steel mold to be -30Kpa, pour the above-mentioned magnesium alloy liquid into the composite prefabricated body in the cavity of the steel mold, and fill the mold, the magnesium alloy liquid is in the Infiltrate the gap in the composite preform under the action of vacuum pressure, close the mold heating device, cool and solidify in the steel mold to form the magnesium alloy-based diatomite iron oxide composite material.
本发明相比现有技术的有益效果如下:The beneficial effects of the present invention compared with prior art are as follows:
本发明中硅藻土空隙大,易于接纳氧化铁,氧化铁处于硅藻土的空隙中,形成氧化铁不会散落的硅藻土氧化铁复合物,因而成为复合材料吸收电磁波的坚实的物质中心;In the present invention, the diatomite has large gaps and is easy to accept iron oxide. The iron oxide is in the gaps of the diatomite to form a diatomite iron oxide composite that does not scatter iron oxide, thus becoming a solid material center for the composite material to absorb electromagnetic waves. ;
硅藻土置于氧化铁原料溶液中搅动,原料溶液钻入硅藻土孔隙,在孔隙表面形成一层厚度为0.1-10μm薄膜氧化铁,该氧化铁为Fe3O4。The diatomite is stirred in the iron oxide raw material solution, and the raw material solution drills into the pores of the diatomite to form a film of iron oxide with a thickness of 0.1-10 μm on the surface of the pores, and the iron oxide is Fe 3 O 4 .
白云石的化学成分为CaMg[CO3]2,白云石的作用是在复合材料浸渗制备时隔开硅藻土颗粒,便于镁合金液体渗入硅藻土颗粒间隙,同时白云石具有减振作用。The chemical composition of dolomite is CaMg[CO 3 ] 2 . The function of dolomite is to separate the diatomite particles during the impregnation preparation of the composite material, so that the magnesium alloy liquid can penetrate into the gap between the diatomite particles. At the same time, the dolomite has a vibration damping effect. .
氧化铁处于硅藻土的空隙中,不于镁合金液体接触,因此不会造成镁合金的氧化;The iron oxide is in the gap of diatomite and is not in contact with the magnesium alloy liquid, so it will not cause the oxidation of the magnesium alloy;
镁合金中的Si可促进镁合金与硅藻土的界面结合。Sb可促进镁合金与白云石的界面结合。镁合金中的Th可减小镁合金的颗粒,提高复合材料基体的强度。坚实的硅藻土氧化铁复合物可提高镁合金复合材料的抗压性能。这些都能改善镁合金基硅藻土氧化铁复合材料的力学性能。Si in magnesium alloy can promote the interfacial bonding between magnesium alloy and diatomite. Sb can promote the interfacial bonding between magnesium alloy and dolomite. Th in the magnesium alloy can reduce the particle size of the magnesium alloy and increase the strength of the matrix of the composite material. Robust diatomaceous earth-iron oxide composites enhance compressive properties of magnesium alloy composites. These can improve the mechanical properties of magnesium alloy-based diatomite-iron oxide composites.
本发明制备中,硅藻土空隙大,易于接纳氧化铁,因此制备中搅拌和加热时间均短,生产周期短。In the preparation of the present invention, the diatomite has large voids and is easy to accept iron oxide, so the stirring and heating time in the preparation are short, and the production cycle is short.
复合材料制备工艺简便,生产的复合材料具有一定良好阻尼性能,同时吸波性能优越,而且生产成本低,非常便于工业化生产。The preparation process of the composite material is simple, and the produced composite material has a certain good damping performance and superior wave-absorbing performance, and the production cost is low, which is very convenient for industrial production.
四、附图说明金性能见表1。4. Description of drawings See Table 1 for properties of gold.
图1为本发明实施例一制得的镁合金基硅藻土氧化铁复合材料的金相组织。Fig. 1 is the metallographic structure of the magnesium alloy-based diatomite-iron oxide composite material prepared in Example 1 of the present invention.
由图1可以看到在镁合金基体上分布有硅藻土氧化铁复合体。It can be seen from Figure 1 that diatomaceous earth iron oxide complexes are distributed on the magnesium alloy matrix.
五、具体实施方式 5. Specific implementation
以下各实施例仅用作对本发明的解释说明,其中的重量百分比均可换成重量g、kg或其它重量单位。The following examples are only used to illustrate the present invention, and the weight percentages can be replaced by weight g, kg or other weight units.
实施例一:Embodiment one:
本发明镁合金基硅藻土氧化铁复合材料的制备过程:The preparation process of the magnesium alloy-based diatomite iron oxide composite material of the present invention:
硅藻土氧化铁复合物的准备:把氯化铁和硫酸亚铁铵装入带聚四氟乙烯衬里的水热容器中,加水溶解(加少量水,达到溶解即可),容器温度保持80-90℃,再装入硅藻土,硅藻土颗粒的尺寸为0.5mm,搅拌以上物质达2-7min,氯化铁、硫酸亚铁铵及硅藻土的重量比为1∶1∶1,搅拌结束后将搅拌物置于220℃的烘箱中保温3h后自然冷却便得到硅藻土氧化铁复合物;Preparation of diatomaceous earth iron oxide complex: put ferric chloride and ferrous ammonium sulfate into a hydrothermal container with Teflon lining, add water to dissolve (add a small amount of water to achieve dissolution), and keep the container temperature at 80 -90°C, then add diatomite, the size of diatomite particles is 0.5mm, stir the above materials for 2-7min, the weight ratio of ferric chloride, ferrous ammonium sulfate and diatomite is 1:1:1 , after the stirring is completed, place the stirring material in an oven at 220°C for 3 hours and then cool naturally to obtain the diatomite iron oxide compound;
然后将白云石和硅藻土氧化铁复合物混合,白云石颗粒的尺寸为0.01-0.06mm,硅藻土氧化铁复合物和白云石的重量比为1∶0.05,白云石颗粒的尺寸为0.01mm;将白云石和硅藻土氧化铁复合物的混合物放入有加热装置的底部通真空系统的钢制模具的空腔中形成复合物预制体,复合物预制体占金属模具空腔体积的45%(40-45%均可,由此可控制硅藻土氧化铁复合物占复合材料的体积百分比为40-45%);开启加热装置,控制钢制模具内为520-540℃;Then dolomite and diatomite iron oxide compound are mixed, the size of dolomite particle is 0.01-0.06mm, the weight ratio of diatomite iron oxide compound and dolomite is 1:0.05, and the size of dolomite particle is 0.01mm ; Put the mixture of dolomite and diatomite iron oxide compound into the cavity of a steel mold with a heating device and a vacuum system at the bottom to form a composite prefabricated body, and the composite prefabricated body accounts for 45% of the cavity volume of the metal mold (40-45% is all right, so the volume percentage of the diatomite iron oxide composite that can be controlled to account for the composite material is 40-45%); turn on the heating device, and control the temperature in the steel mold to 520-540°C;
镁合金液的准备:按重量百分含量Al为3%,Th为0.01%,Si为0.5%,Sb为0.005%,其余为Mg进行配料,在680-720℃温度下熔化成合金液;Preparation of magnesium alloy liquid: Al is 3% by weight, Th is 0.01%, Si is 0.5%, Sb is 0.005%, and the rest is Mg for batching, and is melted into alloy liquid at a temperature of 680-720°C;
开启真空系统,控制上述钢制模具内的相对真空度为-30Kpa,将上述镁合金液体浇入模具空腔内的复合物预制体的上面,并注满模具,镁合金液体在真空压力作用下渗入复合物预制体中的间隙,关闭模具加热装置,在钢制模具内冷却凝固而形成镁合金基硅藻土氧化铁复合材料。Turn on the vacuum system, control the relative vacuum in the above-mentioned steel mold to be -30Kpa, pour the above-mentioned magnesium alloy liquid into the top of the composite prefabricated body in the mold cavity, and fill the mold, the magnesium alloy liquid is under vacuum pressure Infiltrate into the gap in the composite prefabricated body, close the mold heating device, cool and solidify in the steel mold to form the magnesium alloy-based diatomite iron oxide composite material.
实施例二:Embodiment two:
硅藻土氧化铁复合物的准备:Preparation of diatomaceous earth iron oxide complex:
制备硅藻土氧化铁复合物时,氯化铁、硫酸亚铁铵及硅藻土的重量比为1∶1∶2,硅藻土颗粒尺寸为0.9mm。When preparing the diatomite iron oxide composite, the weight ratio of ferric chloride, ammonium ferrous sulfate and diatomite is 1:1:2, and the particle size of diatomite is 0.9mm.
制备复合物预制体时,硅藻土氧化铁复合物和白云石的重量比为1∶0.09,白云石颗粒的尺寸为0.06mm;When preparing the composite preform, the weight ratio of diatomite iron oxide composite to dolomite is 1:0.09, and the size of dolomite particles is 0.06mm;
镁合金液的准备:按重量百分含量Al为8%,Th为0.05%,Si为1%,Sb为0.01%,其余为Mg进行配料,在680-720℃温度下熔化成合金液;Preparation of magnesium alloy liquid: according to weight percentage, Al is 8%, Th is 0.05%, Si is 1%, Sb is 0.01%, and the rest is Mg for batching, and is melted into alloy liquid at a temperature of 680-720°C;
制备过程同实施例一,制备中控制藻土氧化铁复合物占复合材料的体积百分比为40%。The preparation process is the same as that in Example 1, and the volume percentage of the alginate iron oxide composite in the composite material is controlled to be 40%.
实施例三:Embodiment three:
硅藻土氧化铁复合物的准备:Preparation of diatomaceous earth iron oxide complex:
形成硅藻土氧化铁复合物时,氯化铁、硫酸亚铁铵及硅藻土的重量比为1∶1∶1.5,硅藻土颗粒尺寸为0.7mm.When forming diatomite iron oxide complex, the weight ratio of ferric chloride, ammonium ferrous sulfate and diatomite is 1:1:1.5, and the particle size of diatomite is 0.7mm.
制备复合物预制体时,硅藻土氧化铁复合物和白云石的重量比为1∶0.06,白云石颗粒的尺寸为0.05mm;When preparing the composite preform, the weight ratio of diatomite iron oxide composite to dolomite is 1:0.06, and the size of dolomite particles is 0.05mm;
镁合金液的准备:按重量百分含量Al为7%,Th为0.04%,Si为0.8%,Sb为0.008%,其余为Mg进行配料;在680-720℃温度下熔化成合金液;Preparation of magnesium alloy liquid: according to weight percentage, Al is 7%, Th is 0.04%, Si is 0.8%, Sb is 0.008%, and the rest is Mg for batching; it is melted into alloy liquid at a temperature of 680-720°C;
制备过程同实施例一,制备中控制藻土氧化铁复合物占复合材料的体积百分比为45%。The preparation process is the same as that in Example 1, and the volume percentage of the alginate iron oxide composite in the composite material is controlled to be 45%.
实施例四:(原料配比不在本发明配比范围内的实例)Embodiment four: (raw material proportioning is not the example within the proportioning scope of the present invention)
硅藻土氧化铁复合物的准备:Preparation of diatomaceous earth iron oxide complex:
制备硅藻土氧化铁复合物时,氯化铁、硫酸亚铁铵及硅藻土的重量比为1∶1∶0.9,硅藻土颗粒尺寸为0.4mm;When preparing the diatomite iron oxide composite, the weight ratio of ferric chloride, ammonium ferrous sulfate and diatomite is 1:1:0.9, and the particle size of diatomite is 0.4mm;
制备复合物预制体时,硅藻土氧化铁复合物和白云石的重量比为1∶0.04,白云石颗粒的尺寸为0.005mm;控制硅藻土氧化铁复合物占复合材料的体积百分比为45%;When preparing the composite prefabricated body, the weight ratio of the diatomite iron oxide composite to dolomite is 1:0.04, and the size of the dolomite particles is 0.005mm; the volume percentage of the diatomite iron oxide composite in the composite material is controlled to be 45 %;
镁合金液的准备:按重量百分含量:Al为2%,Th为0.0055%,Si为0.4,Sb为0.004%,其余为Mg进行配料,在680-720℃温度下熔化成合金液;Preparation of magnesium alloy liquid: by weight percentage: Al is 2%, Th is 0.0055%, Si is 0.4%, Sb is 0.004%, and the rest is Mg for batching, melting into alloy liquid at a temperature of 680-720°C;
制备过程同实施例一。The preparation process is the same as in Example 1.
实施例五:(原料配比不在本发明配比范围内的实例)Embodiment five: (raw material proportioning is not the example within the proportioning scope of the present invention)
硅藻土氧化铁复合物的准备:Preparation of diatomaceous earth iron oxide complex:
形成硅藻土氧化铁复合物时,氯化铁、硫酸亚铁铵及硅藻土的重量比为1∶1∶2.1,硅藻土颗粒尺寸为1.2mm;When forming diatomite iron oxide complex, the weight ratio of ferric chloride, ammonium ferrous sulfate and diatomite is 1:1:2.1, and the particle size of diatomite is 1.2mm;
制备复合物预制体时,硅藻土氧化铁复合物和白云石的重量比为1∶0.1,白云石颗粒的尺寸为0.7mm;控制硅藻土氧化铁复合物占复合材料的体积百分比为40%;When preparing the composite prefabricated body, the weight ratio of the diatomite iron oxide composite to dolomite is 1:0.1, and the size of the dolomite particles is 0.7mm; the volume percentage of the diatomite iron oxide composite in the composite material is controlled to be 40 %;
镁合金液的准备:该镁合金基体的化学成分的重量百分含量:Al为9%,Th为0.06%,Si为1.1%,Sb为0.02%,其余为Mg;在680-720℃温度下熔化成合金液;Preparation of magnesium alloy liquid: the weight percentage of the chemical composition of the magnesium alloy matrix: Al is 9%, Th is 0.06%, Si is 1.1%, Sb is 0.02%, and the rest is Mg; at a temperature of 680-720°C Melted into alloy liquid;
制备过程同实施例一。The preparation process is the same as in Example 1.
下表为不同成份与配比的合金性能对照表:The following table is a comparison table of alloy properties with different components and proportions:
表1Table 1
镁合金合金基硅藻土氧化铁复合材料,复合物的颗粒尺寸过小,既减小了吸波单元,降低了吸波强度和减振强度,又不利于不利于复合材料制造;复合物的颗粒尺寸过大,吸波单元增大,减小了单位复合材料体积中吸波单元的数量,也不利于吸波和减振。Magnesium alloy-based diatomite iron oxide composite material, the particle size of the composite is too small, which reduces the absorbing unit, reduces the absorbing strength and vibration damping strength, and is not conducive to the manufacture of composite materials; If the particle size is too large, the wave-absorbing unit increases, which reduces the number of wave-absorbing units per unit volume of the composite material, and is not conducive to wave absorption and vibration reduction.
镁合金基硅藻土氧化铁复合材料制备时,硅藻土数量过小,氯化铁、硫酸亚铁铵不易全部进入硅藻土间隙,复合材料总的氧化铁数量少,吸波强度弱;硅藻土数量过多,不易形成完善的复合材料,硅藻土间隙内容纳的氧化铁数量少,吸波强度也弱。When the magnesium alloy-based diatomite iron oxide composite material is prepared, the amount of diatomite is too small, and it is difficult for ferric chloride and ferrous ammonium sulfate to enter the diatomite gap. The total amount of iron oxide in the composite material is small, and the absorbing strength is weak; If the amount of diatomite is too much, it is difficult to form a perfect composite material. The amount of iron oxide contained in the gap of diatomite is small, and the absorbing strength is also weak.
镁合金基硅藻土氧化铁复合材料制备时,白云石数量过少或白云石颗粒过小,隔不开硅藻土颗粒,不利于镁合金液体的浸渗,白云石数量过多或白云石颗粒过大,会影响镁合金基硅藻土氧化铁复合材料的力学性能。When the magnesium alloy-based diatomite iron oxide composite material is prepared, the amount of dolomite is too small or the dolomite particles are too small to separate the diatomite particles, which is not conducive to the infiltration of magnesium alloy liquid. The amount of dolomite is too large or the dolomite particles are too small. If the particles are too large, the mechanical properties of the magnesium alloy-based diatomite-iron oxide composite will be affected.
镁合金基体中的Al、Th、Si、Sb在本申请范围内,复合材料具有良好的性能。这些元素超出本申请配比范围,脆性化合物数量多,镁合金难与硅藻土界面结合,钛合金自身的力学性能降低,也大大降低复合材料的吸波性及减振性。Al, Th, Si, and Sb in the magnesium alloy matrix are within the scope of this application, and the composite material has good performance. These elements exceed the ratio range of the present application, the number of brittle compounds is large, the magnesium alloy is difficult to combine with the diatomite interface, the mechanical properties of the titanium alloy itself are reduced, and the wave absorption and vibration damping properties of the composite material are also greatly reduced.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2010102204039A CN101942588B (en) | 2010-07-06 | 2010-07-06 | Magnesium alloy diatomite ferric oxide composite material and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2010102204039A CN101942588B (en) | 2010-07-06 | 2010-07-06 | Magnesium alloy diatomite ferric oxide composite material and preparation method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101942588A CN101942588A (en) | 2011-01-12 |
CN101942588B true CN101942588B (en) | 2012-08-22 |
Family
ID=43434792
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2010102204039A Expired - Fee Related CN101942588B (en) | 2010-07-06 | 2010-07-06 | Magnesium alloy diatomite ferric oxide composite material and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101942588B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102501454B (en) * | 2011-11-08 | 2014-09-10 | 北京工业大学 | High-performance magnesium alloy wave-absorbing composite plate and preparation method thereof |
CN104004948B (en) * | 2014-04-30 | 2016-04-06 | 燕山大学 | A kind of ultralight composite wave-absorbing sheet material and preparation method thereof |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20020024848A (en) * | 2000-09-27 | 2002-04-03 | 황해웅 | Cu-Ni-Mn-Sn-Al, Si-Ce, La, Nd, Pr alloys for high strength wire or plate and its manufacturing method |
CN1930314A (en) * | 2004-03-12 | 2007-03-14 | 住友金属工业株式会社 | Copper alloy and process for producing the same |
-
2010
- 2010-07-06 CN CN2010102204039A patent/CN101942588B/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20020024848A (en) * | 2000-09-27 | 2002-04-03 | 황해웅 | Cu-Ni-Mn-Sn-Al, Si-Ce, La, Nd, Pr alloys for high strength wire or plate and its manufacturing method |
CN1930314A (en) * | 2004-03-12 | 2007-03-14 | 住友金属工业株式会社 | Copper alloy and process for producing the same |
Non-Patent Citations (1)
Title |
---|
蔚晓嘉.锰铜减振合金的研究.《科学之友》.2007,全文. * |
Also Published As
Publication number | Publication date |
---|---|
CN101942588A (en) | 2011-01-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104209498B (en) | Preparing method of interface modification layer of ceramic particle enhanced metal base composite material | |
CN104498759B (en) | A kind of preparation method mixing hollow ball Metal Substrate light composite material | |
CN113560540A (en) | Method for preparing ZTA ceramic particle reinforced high-chromium cast iron based wear-resistant composite material | |
CN109434118A (en) | A kind of amorphous enhances preparation and the manufacturing process of metal-base composites | |
CN107398544B (en) | A kind of lost-foam casting method of three-dimensional network ceramics-iron base composite material | |
CN109049267B (en) | A kind of multi-channel ceramic preform under the coating of Ti-Fe micropowder and its preparation method and application | |
CN101942588B (en) | Magnesium alloy diatomite ferric oxide composite material and preparation method thereof | |
CN101876036B (en) | Zinc alloy based diatomite pumice iron oxide cobalt composite material and preparation method thereof | |
CN101942587A (en) | Magnesium alloy pumice ferric oxide cobalt composite material and preparation method thereof | |
CN112281009B (en) | A method for preparing titanium-based composite material by sintering pre-dispersed graphite composite titanium hydride | |
CN109652669A (en) | A kind of micro-nano Mg2Si particle reinforced aluminum alloy powder and preparation method thereof | |
CN101876037B (en) | Copper alloy-based diatomite sepiolite iron-cobalt oxide composite material and preparation method thereof | |
CN101942584B (en) | Zinc alloys, sepiolite-ferric oxide and vermiculite-barium ferrate composite material and preparation method thereof | |
CN101942594B (en) | Aluminium alloys, pumice-ferric oxide and vermiculite-barium ferrate composite material and preparation method thereof | |
CN101942595A (en) | Magnesium-base copper-fiber pumice iron-barium oxide composite and preparation method thereof | |
CN1039747A (en) | A Method of Increasing the Thickness of Cast Infiltrated Alloy Layer | |
CN114367663B (en) | A preparation method for fully dense and complex-shaped titanium alloy thin-walled parts | |
CN101942623B (en) | Magnesium alloy vermiculite pumice ferric oxide composite material and preparation method thereof | |
CN102051554B (en) | Damping wear-resistant aluminum alloy material and preparation method thereof | |
CN101880813A (en) | Titanium alloy diatomite iron oxide composite material and preparation method thereof | |
CN101876038B (en) | Copper alloy based diatomite, pumice and ferric oxide composite material and preparation method thereof | |
CN101239396B (en) | Preparation process of in-situ generation of wear-resistant composite material with alloy powder core tube wire | |
CN101942622B (en) | Zinc alloy-sepiolite-pumice-ferric oxide composite material and preparation method thereof | |
CN101880811A (en) | Copper alloy-based sepiolite iron oxide vermiculite barium iron oxide composite material and preparation method thereof | |
CN101880812A (en) | Titanium alloy diatomite iron oxide barium composite material and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C41 | Transfer of patent application or patent right or utility model | ||
TR01 | Transfer of patent right |
Effective date of registration: 20151104 Address after: 402, building 1, North Tower, 223001 Yao Yao Road, Qinghe New District, Jiangsu, Huaian Patentee after: Qinghe District, Huaian science and technology transformation service center Address before: 210044 Nanjing City, Pukou Province, Nanjing Road, No. 219, No. six, No. Patentee before: Nanjing University of Information Science and Technology |
|
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20120822 Termination date: 20160706 |
|
CF01 | Termination of patent right due to non-payment of annual fee |