[go: up one dir, main page]

CN101938246B - Fuzzy fusion identification method of rotating speed of sensorless motor - Google Patents

Fuzzy fusion identification method of rotating speed of sensorless motor Download PDF

Info

Publication number
CN101938246B
CN101938246B CN2010102963119A CN201010296311A CN101938246B CN 101938246 B CN101938246 B CN 101938246B CN 2010102963119 A CN2010102963119 A CN 2010102963119A CN 201010296311 A CN201010296311 A CN 201010296311A CN 101938246 B CN101938246 B CN 101938246B
Authority
CN
China
Prior art keywords
speed
identification method
motor
neural network
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2010102963119A
Other languages
Chinese (zh)
Other versions
CN101938246A (en
Inventor
徐凯
许强
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chongqing Jiaotong University
Original Assignee
Chongqing Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chongqing Jiaotong University filed Critical Chongqing Jiaotong University
Priority to CN2010102963119A priority Critical patent/CN101938246B/en
Publication of CN101938246A publication Critical patent/CN101938246A/en
Application granted granted Critical
Publication of CN101938246B publication Critical patent/CN101938246B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Electric Motors In General (AREA)
  • Control Of Ac Motors In General (AREA)
  • Feedback Control In General (AREA)

Abstract

本发明公开了一种无速度传感器电机转速的模糊融合辨识方法,采用神经网络MRAS速度辨识方法和转差频率直接速度辨识方法同时对电机转速进行识别;采用模糊融合的方法对神经网络MRAS速度辨识方法和转差频率直接速度辨识方法进行融合,得到电机转速的确信值。本发明的有益技术效果是:优化了电机的动、稳态性能两个技术指标;使电动机在起动和状态切换过程中,速度辨识快速性好、动态跟踪性能强,速度辨识精度高且鲁棒性强;对无速度传感器电机矢量控制系统实现真正意义上的智能交叉综合在线速度辨识,取得最佳速度辨识效果,从而实现对电机的有效控制。

Figure 201010296311

The invention discloses a fuzzy fusion identification method for the rotational speed of a speed sensorless motor, which uses a neural network MRAS speed identification method and a slip frequency direct speed identification method to simultaneously identify the motor rotational speed; adopts a fuzzy fusion method to identify the neural network MRAS speed The method is fused with the slip frequency direct speed identification method to obtain the reliable value of the motor speed. The beneficial technical effects of the present invention are: the two technical indexes of the dynamic and steady-state performance of the motor are optimized; during the starting and state switching process of the motor, the speed identification is fast, the dynamic tracking performance is strong, and the speed identification accuracy is high and robust. Strong performance; for the speed sensorless motor vector control system, it realizes the real intelligent cross comprehensive online speed identification, and obtains the best speed identification effect, so as to realize the effective control of the motor.

Figure 201010296311

Description

无速度传感器电机转速的模糊融合辨识方法Fuzzy Fusion Identification Method of Speed Sensorless Motor Speed

技术领域 technical field

    本发明涉及一种电机控制技术,尤其涉及一种无速度传感器电机转速的模糊融合辨识方法。 The present invention relates to a motor control technology, in particular to a fuzzy fusion identification method for a motor speed without a speed sensor.

背景技术 Background technique

在交流异步电机(后文简称“电机”或“电动机”)速度控制系统中,最低端的方法是采用速度传感器来检测电机转速反馈信号;这些速度传感器安装在电动机轴上,不仅需要对其进行安装、维护,而且增加了控制系统成本,不适合在恶劣环境中工作,降低了系统的可靠性。如果不用速度传感器,只根据变频器输出的电压、电流信号得到电机的转速进行闭环控制,就可以省去速度传感器,满足电机速度控制的简便性、廉价性和可靠性要求,这也是目前本领域的主流研究方向。 In the speed control system of AC asynchronous motor (hereinafter referred to as "motor" or "motor"), the lowest-end method is to use speed sensors to detect motor speed feedback signals; these speed sensors are installed on the motor shaft, not only need to install , maintenance, and increase the cost of the control system, it is not suitable for working in harsh environments and reduces the reliability of the system. If the speed sensor is not used, only the motor speed is obtained according to the voltage and current signals output by the frequency converter for closed-loop control, the speed sensor can be omitted, and the requirements of simplicity, cheapness and reliability of the motor speed control can be met. mainstream research directions.

国内外学者在这方面做了大量的工作,提出了开环直接辨识、基于转子磁链的MRAS辨识、基于反电势的MRAS辨识、全阶磁通观测器、扩展卡尔曼滤波、高频注入法等多种速度辨识方法。前述方法均是传统的无传感器速度辨识,为改善控制系统性能,许多学者将模糊、神经网络等智能控制技术引入电机的速度辨识中,这是无速度传感器电机控制的研究热点和发展方向。 Scholars at home and abroad have done a lot of work in this area, and proposed open-loop direct identification, MRAS identification based on rotor flux linkage, MRAS identification based on back EMF, full-order flux observer, extended Kalman filter, and high-frequency injection method. and other speed identification methods. The aforementioned methods are all traditional sensorless speed identification. In order to improve the performance of the control system, many scholars have introduced intelligent control technologies such as fuzzy and neural networks into the speed identification of the motor. This is the research hotspot and development direction of the speed sensorless motor control.

用智能的方法进行电机速度辨识,最直接的就是利用易于检测的电机定子电压和电流,设计BP神经网络来辨识速度,但这种方法存在着难以确定网络隐层及其节点数目的问题。目前,确定具体的网络结构尚无好方法,仍根据经验试凑。同时,学习算法的收敛速度慢,且收敛速度与初始权的选择有关。 The most direct way to identify the motor speed with an intelligent method is to use the easy-to-detect motor stator voltage and current to design a BP neural network to identify the speed, but this method has the problem that it is difficult to determine the hidden layer and the number of nodes in the network. At present, there is no good way to determine the specific network structure, and it is still based on experience. At the same time, the convergence speed of the learning algorithm is slow, and the convergence speed is related to the selection of the initial weight.

针对用BP神经网络进行速度辨识实时性差的问题,有学者提出了用对角递归神经网络来辨识速度;如:杨俊友,陈大明,“对角递归神经网络永磁同步电机的无传感器控制”,[J].沈阳工业大学学报,2008, 30(1):24-27,文献中所记载的方法是,将实际测得的电压、电流经过坐标变换后用对角递归神经网络观测器估计出电流和角速度,用估计值与实际值的差值调节神经网络观测器连接权值,直到预测误差达到设定值;但该方法存在的问题是,在预测角速度的同时,还要对定子电流进行预测,用了两个神经网络观测器。使得学习算法更为繁杂,难以调节。 Aiming at the problem of poor real-time speed identification using BP neural network, some scholars have proposed using diagonal recursive neural network to identify speed; such as: Yang Junyou, Chen Daming, "Sensorless Control of Permanent Magnet Synchronous Motor with Diagonal Recurrent Neural Network", [J]. Journal of Shenyang University of Technology, 2008, 30(1): 24-27, the method recorded in the literature is to estimate the actual measured voltage and current with a diagonal recursive neural network observer after coordinate transformation For current and angular velocity, the difference between the estimated value and the actual value is used to adjust the connection weight of the neural network observer until the prediction error reaches the set value; but the problem with this method is that while predicting the angular velocity, the stator current must be For prediction, two neural network observers are used. It makes the learning algorithm more complicated and difficult to adjust.

因此,在电机的速度辨识中,引入了神经网络MRAS(模型参考自适应系统)速度辨识的方法,如:陈冰,冬雷等,“低速下异步电机无速度传感器矢量控制研究”,[J]. 西北大学学报(自然科学版),2007, 37(1):45-47,文献中所记载的方法是,由电流模型推导出神经元模型作为MARS的可调模型,其权值含有电机转速信息,按梯度法推导出的神经元权值δ学习规则代替PI自适应律,使得速度辨识方法结构简单、自学习能力强、具有很好的系统稳定性。但该方法存在着电机起动速度波动大,甚至出现负值波动,振荡次数多、调节时间长的问题。不仅如此,在研究中还进一步发现,当由一种稳态向另一稳态进行较大幅度切换时,速度估计收敛到一个错误的值,导致实际速度不能收敛到给定值(其在控制系统中所处的环节参见图1中的标号2处,其辨识效果如图10所示)。因此,神经网络MRAS速度辨识方法在现有技术中还不能得到实际应用。 Therefore, in the speed identification of the motor, the neural network MRAS (Model Reference Adaptive System) speed identification method is introduced, such as: Chen Bing, Dong Lei, etc., "Research on Sensorless Vector Control of Asynchronous Motors at Low Speed", [J ]. Journal of Northwest University (Natural Science Edition), 2007, 37(1): 45-47, the method recorded in the literature is that the neuron model is derived from the current model as an adjustable model of MARS, and its weight contains motor For speed information, the neuron weight δ learning rule derived from the gradient method replaces the PI adaptive law, which makes the speed identification method simple in structure, strong in self-learning ability, and has good system stability. However, this method has the problems of large fluctuations in the starting speed of the motor, even negative fluctuations, many oscillation times, and long adjustment time. Not only that, but it is further found in the research that when switching from one steady state to another, the speed estimation converges to a wrong value, which causes the actual speed to fail to converge to the given value (which is in the control The links in the system refer to the mark 2 in Figure 1, and the identification effect is shown in Figure 10). Therefore, the neural network MRAS speed identification method cannot be practically applied in the prior art.

发明内容 Contents of the invention

为解决背景技术中存在的问题,本发明提出了一种无速度传感器电机转速的模糊融合辨识方法,采用神经网络MRAS速度辨识方法和转差频率直接速度辨识方法同时对电机转速进行识别;为神经网络MRAS速度辨识方法和转差频率直接速度辨识方法分配各自的作用强度值,采用下式计算电机转速的确信值: In order to solve the problems existing in the background technology, the present invention proposes a fuzzy fusion identification method of the speed sensorless motor speed, which uses the neural network MRAS speed identification method and the slip frequency direct speed identification method to simultaneously identify the motor speed; The network MRAS speed identification method and the slip frequency direct speed identification method assign their respective action strength values, and use the following formula to calculate the sure value of the motor speed:

Figure 2010102963119100002DEST_PATH_IMAGE001
Figure 2010102963119100002DEST_PATH_IMAGE001

Figure 790841DEST_PATH_IMAGE002
为转差频率直接速度辨识方法所识别出的电机转速值;
Figure 2010102963119100002DEST_PATH_IMAGE003
为神经网络MRAS速度辨识方法所识别出的电机转速值;
Figure 275043DEST_PATH_IMAGE004
为最终识别出的电机运行时的转速确信值;
Figure 2010102963119100002DEST_PATH_IMAGE005
为神经网络MRAS速度辨识方法的作用强度值;
Figure 865512DEST_PATH_IMAGE006
为转差频率直接速度辨识方法的作用强度值。
Figure 790841DEST_PATH_IMAGE002
is the motor speed value identified by the slip frequency direct speed identification method;
Figure 2010102963119100002DEST_PATH_IMAGE003
The motor speed value identified by the neural network MRAS speed identification method;
Figure 275043DEST_PATH_IMAGE004
is the final recognized value of the motor speed when it is running;
Figure 2010102963119100002DEST_PATH_IMAGE005
is the action strength value of the neural network MRAS speed identification method;
Figure 865512DEST_PATH_IMAGE006
is the action intensity value of slip frequency direct speed identification method.

前述的“为神经网络MRAS速度辨识方法和转差频率直接速度辨识方法分配各自的作用强度值”包括: The aforementioned "assigning respective action strength values to the neural network MRAS speed identification method and the slip frequency direct speed identification method" includes:

1)按数值设定数值连续的误差阈值范围,为每个误差阈值范围设定对应的

Figure 938510DEST_PATH_IMAGE005
Figure 719515DEST_PATH_IMAGE006
,同一误差阈值范围内的
Figure 877964DEST_PATH_IMAGE005
Figure 464935DEST_PATH_IMAGE006
满足
Figure 2010102963119100002DEST_PATH_IMAGE007
,形成作用强度分布表; 1) Set the numerical continuous error threshold range according to the value, and set the corresponding error threshold range for each error threshold range
Figure 938510DEST_PATH_IMAGE005
and
Figure 719515DEST_PATH_IMAGE006
, within the same error threshold
Figure 877964DEST_PATH_IMAGE005
and
Figure 464935DEST_PATH_IMAGE006
satisfy
Figure 2010102963119100002DEST_PATH_IMAGE007
, to form the action intensity distribution table;

2)实时计算神经网络MRAS速度辨识方法的辨识值与电机转速期望值之间的误差

Figure 471068DEST_PATH_IMAGE008
; 2) Real-time calculation of the error between the identification value of the neural network MRAS speed identification method and the expected value of the motor speed
Figure 471068DEST_PATH_IMAGE008
;

3)判断步骤2)中的误差

Figure 485291DEST_PATH_IMAGE008
处于哪个误差阈值范围内,则将该误差阈值范围对应的
Figure 616190DEST_PATH_IMAGE005
Figure 193801DEST_PATH_IMAGE006
代入公式
Figure 992124DEST_PATH_IMAGE001
。 3) Judging the error in step 2)
Figure 485291DEST_PATH_IMAGE008
Which error threshold range is in, then the corresponding error threshold range
Figure 616190DEST_PATH_IMAGE005
and
Figure 193801DEST_PATH_IMAGE006
Into the formula
Figure 992124DEST_PATH_IMAGE001
.

步骤1),包括: Step 1), including:

1]将数值连续的10个误差阈值范围标记为0~9的十个等级;设定第9等级误差阈值范围对应的,神经网络MRAS速度辨识方法的作用强度为0,转差频率直接速度辨识方法的作用强度为1;第0等级误差阈值范围对应的,神经网络MRAS速度辨识方法的作用强度为1,转差频率直接速度辨识方法的作用强度为0; 1] Mark the 10 error threshold ranges with continuous values as ten levels from 0 to 9; set the error threshold range corresponding to the 9th level, the effect strength of the neural network MRAS speed identification method is 0, and the slip frequency directly identifies the speed The action strength of the method is 1; corresponding to the 0th grade error threshold range, the action strength of the neural network MRAS speed identification method is 1, and the action strength of the slip frequency direct speed identification method is 0;

2]采用对称型函数计算第1至8等级误差阈值范围的神经网络MRAS速度辨识方法和转差频率直接速度辨识方法的作用强度分布; 2] Calculate the action intensity distribution of the neural network MRAS speed identification method and the slip frequency direct speed identification method in the error threshold range of the 1st to 8th grades using a symmetrical function;

制作作用强度分布表。 Make a table of action intensity distribution.

步骤2],包括:根据对称型

Figure 2010102963119100002DEST_PATH_IMAGE009
函数,计算第1至8等级时,神经网络MRAS速度辨识方法和转差频率直接速度辨识方法的作用强度分布: Step 2], including: according to the symmetrical
Figure 2010102963119100002DEST_PATH_IMAGE009
Function to calculate the action intensity distribution of the neural network MRAS speed identification method and the slip frequency direct speed identification method for grades 1 to 8:

Figure 233707DEST_PATH_IMAGE010
Figure 233707DEST_PATH_IMAGE010
,

其中,

Figure 789584DEST_PATH_IMAGE012
为误差等级的级数;
Figure 2010102963119100002DEST_PATH_IMAGE013
Figure 718357DEST_PATH_IMAGE009
函数的参数;
Figure 371186DEST_PATH_IMAGE013
分别取0.1、0.2、0.3、0.4、0.5、0.6、0.7、0.8或0.9,
Figure 914163DEST_PATH_IMAGE013
的每个取值,分别对应一组互相匹配的神经网络MRAS速度辨识方法和转差频率直接速度辨识方法的作用强度取值。 in,
Figure 789584DEST_PATH_IMAGE012
is the series of error levels;
Figure 2010102963119100002DEST_PATH_IMAGE013
for
Figure 718357DEST_PATH_IMAGE009
function parameters;
Figure 371186DEST_PATH_IMAGE013
Take 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8 or 0.9 respectively,
Figure 914163DEST_PATH_IMAGE013
Each value of , corresponds to a group of matching neural network MRAS speed identification method and slip frequency direct speed identification method respectively.

步骤2)中,计算

Figure 347549DEST_PATH_IMAGE008
的方法,包括: In step 2), calculate
Figure 347549DEST_PATH_IMAGE008
methods, including:

Figure 752117DEST_PATH_IMAGE014
Figure 752117DEST_PATH_IMAGE014

其中,

Figure 2010102963119100002DEST_PATH_IMAGE015
为电机转速期望值;
Figure 649666DEST_PATH_IMAGE003
为神经网络MRAS速度辨识方法的辨识值。 in,
Figure 2010102963119100002DEST_PATH_IMAGE015
is the expected value of motor speed;
Figure 649666DEST_PATH_IMAGE003
is the identification value of the neural network MRAS speed identification method.

    本发明的有益技术效果是:同时优化了电机在采用智能方法进行速度辨识时的动、稳态性能两个技术指标;解决了单一的神经网络MRAS速度辨识方法在起动时波动大、实时性差,以及由一种稳态向另一稳态进行较大幅度切换时,速度辨识不能正确收敛到给定值的问题;使电动机在起动和状态切换过程中,速度辨识快速性好、动态跟踪性能强;稳态过程中,速度辨识精度高且鲁棒性强;对无速度传感器电机矢量控制系统实现真正意义上的智能交叉综合在线速度辨识,取得最佳速度辨识效果,从而实现对电机的有效控制。 The beneficial technical effects of the present invention are: at the same time, the two technical indicators of the dynamic and steady-state performance of the motor are optimized when the speed identification method is adopted by an intelligent method; And the problem that the speed identification cannot converge to the given value correctly when switching from one steady state to another steady state; the speed identification is fast and the dynamic tracking performance is strong during the starting and state switching process of the motor ;In the steady state process, the speed identification accuracy is high and the robustness is strong; for the speed sensorless motor vector control system, the real sense of the intelligent cross comprehensive online speed identification is achieved, and the best speed identification effect is obtained, so as to realize the effective control of the motor .

附图说明 Description of drawings

图1、现有技术中电机矢量控制系统的速度辨识框图; Fig. 1, the speed identification block diagram of motor vector control system in the prior art;

图2、采用本发明方案的一种电机矢量控制系统速度辨识框图; Fig. 2, adopt a kind of motor vector control system speed identification block diagram of the scheme of the present invention;

图3、神经网络MRAS速度辨识方法控制系统结构示意图; Fig. 3. Schematic diagram of the control system structure of the neural network MRAS speed identification method;

图4、改进型电压模型模块原理框图; Figure 4. Block diagram of the improved voltage model module;

图5、神经网电流模型模块原理框图; Fig. 5, block diagram of neural network current model module principle;

图6、转差频率的直接速度辨识方法控制系统结构示意图; Figure 6. Schematic diagram of the control system structure of the direct speed identification method of slip frequency;

图7、神经网络MRAS速度辨识方法与转差频率直接速度辨识方法模糊融合原理示意图; Figure 7. Schematic diagram of fuzzy fusion principle of neural network MRAS speed identification method and slip frequency direct speed identification method;

图8、电机起动及状态切换过程中的速度辨识流程图; Figure 8. Flow chart of speed identification during motor starting and state switching;

图9、值与作用强度变化的关系示意图; Figure 9, Schematic diagram of the relationship between the value and the change of the action intensity;

图10、图1中电机矢量控制系统的速度辨识效果图; Figure 10, the speed identification effect diagram of the motor vector control system in Figure 1;

图11、本发明方案的电机矢量控制系统速度辨识效果图。 Fig. 11 is a speed identification effect diagram of the motor vector control system according to the solution of the present invention.

具体实施方式 Detailed ways

从“背景技术”的问题出发,发明人经过潜心研究,发现神经网络MRAS速度辨识方法存在如下特性:收敛速度较慢,在电机起动、转速变化等动态阶段速度波动大,甚至出现负值波动,振荡次数多,实时性较差,甚至速度估计收敛到一个错误值;而神经网络需要不断学习、调整权值,具有较强的自调节能力,在误差较小的稳态阶段较为稳定,稳态精度高且鲁棒性强。 Proceeding from the problem of "background technology", the inventor, after painstaking research, found that the neural network MRAS speed identification method has the following characteristics: the convergence speed is slow, and the speed fluctuates greatly in dynamic stages such as motor starting and speed change, and even negative fluctuations occur. The number of oscillations is large, the real-time performance is poor, and even the speed estimation converges to an error value; while the neural network needs to continuously learn and adjust the weights, and has a strong self-regulation ability. It is relatively stable in the steady-state stage with small errors. High precision and strong robustness.

与此同时,发明人还发现:现有的转差频率直接速度辨识方法是一种简单直接而运算量较少的有效方法,无延迟、动态性好,可大大提高速度辨识的快速性,但该方法的缺点是,计算结果无矫正,速度辨识效果严重依赖于电机参数的准确性,抗干扰性差。 At the same time, the inventor also found that the existing slip frequency direct speed identification method is a simple, direct and effective method with less computation, no delay, good dynamics, and can greatly improve the rapidity of speed identification. The disadvantage of this method is that the calculation results are not corrected, the speed identification effect is heavily dependent on the accuracy of the motor parameters, and the anti-interference performance is poor.

基于前述的分析,发明人考虑将两种辨识方法的优点结合起来;一种思路就是采用变结构切换的速度辨识,即在稳态阶段采用神经网络MRAS速度辨识方法进行转速识别,在动态阶段则切换到采用转差频率直接速度辨识方法进行转速识别;但经更深入的研究,发明人发现这种变结构的切换速度辨识存在两个问题:其一,不同速度辨识方法之间的切换,切换点的选取具有盲目性,需要进行反复的实验调试和比较;其二,变结构切换的速度辨识是一个非0即1的精确选择,不同速度辨识方法之间的切换,容易产生辨识量的突变,辨识量的突变会引起速度抖动,产生噪声,直接影响到控制效果。 Based on the aforementioned analysis, the inventor considers to combine the advantages of the two identification methods; one way of thinking is to use the speed identification of variable structure switching, that is, to use the neural network MRAS speed identification method to identify the speed in the steady state stage, and to identify the speed in the dynamic stage. Switch to the speed identification method using slip frequency direct speed identification; but after more in-depth research, the inventor found that there are two problems in this variable-structure switching speed identification: first, switching between different speed identification methods, switching The selection of points is blind, which requires repeated experimental debugging and comparison; second, the speed identification of variable structure switching is an accurate choice of either 0 or 1, and switching between different speed identification methods is prone to sudden changes in the identification amount , the sudden change of the identification value will cause speed jitter, generate noise, and directly affect the control effect.

上述变结构的切换速度辨识,在动态阶段,绝对化地选择某个单一的速度辨识方法,将丢失其它速度辨识方法的有用信息。事实上,不同速度辨识方法在不同的误差域都是有一定效果的,差别仅在辨识性能的好坏而已。虽然神经网络MRAS速度辨识方法在动态过程中存在着缺陷,但还是提供了一定的有用特征信息,只是该有用信息不多,且在不同的误差阶段,该有用信息还存在一定差异。 In the above-mentioned variable structure switching speed identification, in the dynamic stage, if a single speed identification method is absolutely selected, the useful information of other speed identification methods will be lost. In fact, different speed identification methods have certain effects in different error domains, and the difference is only in the identification performance. Although the neural network MRAS speed identification method has defects in the dynamic process, it still provides some useful feature information, but the useful information is not much, and there are still some differences in the useful information in different error stages.

综合以上因素,发明人提出如下方案:在转速给定发生较大变化的动态过程中,对两种转速辨识方法的辨识值进行模糊融合,使两种转速辨识方法的有用信息都发挥作用:在误差域大的阶段,转差频率直接速度辨识方法的信息(即识别出的转速)起主导作用,以便使系统加快其收敛速度,实现快速的速度跟踪;而在误差域较小时,起主导作用的信息来源则转换为神经网络MRAS速度辨识方法;在电机稳态阶段(即一种极端情况,神经网络MRAS速度辨识方法的作用强度为1,转差频率直接速度辨识方法的作用强度为0;与之对应的,在动态阶段中也有一种极端情况,即神经网络MRAS速度辨识方法的作用强度为0,转差频率直接速度辨识方法的作用强度为1,此时,相当于仅有转差频率直接速度辨识方法起作用),仅采用神经网络MRAS速度辨识方法对电机转速进行识别,其原理参见图7。 Based on the above factors, the inventor proposes the following scheme: in the dynamic process of a large change in the given rotational speed, fuzzy fusion is performed on the identification values of the two rotational speed identification methods, so that the useful information of the two rotational speed identification methods can play a role: In the stage where the error domain is large, the information of the slip frequency direct speed identification method (that is, the identified rotational speed) plays a leading role in order to speed up the convergence speed of the system and achieve fast speed tracking; while when the error domain is small, it plays a leading role The source of information is converted to the neural network MRAS speed identification method; in the steady state of the motor (that is, an extreme case, the action strength of the neural network MRAS speed identification method is 1, and the action strength of the slip frequency direct speed identification method is 0; Correspondingly, there is also an extreme situation in the dynamic stage, that is, the action strength of the neural network MRAS speed identification method is 0, and the action strength of the slip frequency direct speed identification method is 1. At this time, it is equivalent to only slip The frequency direct speed identification method works), only the neural network MRAS speed identification method is used to identify the motor speed, and its principle is shown in Figure 7.

下面结合附图对神经网络MRAS速度辨识、转差频率直接速度辨识及两者模糊融合方法的基本步骤进行介绍: The basic steps of neural network MRAS speed identification, slip frequency direct speed identification and fuzzy fusion method of the two are introduced below in conjunction with the accompanying drawings:

(一)神经网络MRAS速度辨识方法 (1) Neural network MRAS speed identification method

本发明中对电机稳态段和动态段速度辨识采用基于神经网络的模型参考自适应速度辨识方法(其在控制系统中所处环节如图2中50处所示),其所涉及的模块详细结构如图3中虚框52所示,它由改进型电压模型模块54、神经网络电流模型模块60、学习算法(也叫最小方差法、LMS算法)模块82等组成。 In the present invention, the model reference adaptive speed identification method based on the neural network is adopted for the speed identification of the motor steady-state section and dynamic section (the link in the control system is shown at 50 in Figure 2), and the modules involved are detailed The structure is shown in the dotted box 52 in Fig. 3, which consists of an improved voltage model module 54, a neural network current model module 60, a learning algorithm (also called minimum variance method, LMS algorithm) module 82 and so on.

该方法的原理如下:在图3中的虚框52内有两个磁链辨识单元,一个是54处采用改进型电压模型作为转子磁链的期望值单元,另一个是60处采用神经网络作为转子磁链的估计值单元。将通过改进型电压模型得到的转子磁链

Figure 786958DEST_PATH_IMAGE016
与神经网络电流模型的估计磁链
Figure 2010102963119100002DEST_PATH_IMAGE017
,二者在80处求误差:当辨识的速度与实际速度转速一致时,二者辨识的磁链相等;与实际值不符时,磁链就会产生误差。误差通过82处LMS算法模块反向调节网络的权值,即改变速度的辨识结果。通过不断地调整使辨识的速度能够跟踪实际速度的变化。 The principle of this method is as follows: There are two flux linkage identification units in the virtual frame 52 in Fig. 3, one uses the improved voltage model as the expected value unit of the rotor flux linkage at 54, and the other uses the neural network as the rotor flux identification unit at 60 Estimated value unit for flux linkage. The rotor flux linkage obtained by the improved voltage model
Figure 786958DEST_PATH_IMAGE016
Estimating Flux Linkages with Neural Network Current Models
Figure 2010102963119100002DEST_PATH_IMAGE017
, the two calculate the error at 80: when the identified speed is consistent with the actual speed, the flux linkage identified by the two is equal; when it does not match the actual value, the flux linkage will produce an error. The error reversely adjusts the weight of the network through the 82 LMS algorithm modules, that is, the identification result of changing the speed. By constantly adjusting, the identified speed can track the change of the actual speed.

下面对组成该部分的改进型电压模型模块54、神经网络电流模型模块60和LMS算法模块82三个模块作一详细介绍。 The three modules comprising the improved voltage model module 54 , the neural network current model module 60 and the LMS algorithm module 82 will be introduced in detail below.

(1)改进型电压模型模块 (1) Improved voltage model module

-

Figure 934223DEST_PATH_IMAGE013
坐标系下,由定子电压方程和磁链方程推导出磁链的电压模型: exist -
Figure 934223DEST_PATH_IMAGE013
In the coordinate system, the voltage model of the flux linkage is derived from the stator voltage equation and the flux linkage equation:

,  

Figure 445101DEST_PATH_IMAGE020
,
Figure 445101DEST_PATH_IMAGE020

上式中,

Figure 2010102963119100002DEST_PATH_IMAGE021
Figure 649817DEST_PATH_IMAGE022
Figure 661767DEST_PATH_IMAGE018
轴和
Figure 206011DEST_PATH_IMAGE013
轴的转子磁链;
Figure 2010102963119100002DEST_PATH_IMAGE023
Figure 68882DEST_PATH_IMAGE024
Figure 2010102963119100002DEST_PATH_IMAGE025
Figure 760895DEST_PATH_IMAGE026
分别为
Figure 576535DEST_PATH_IMAGE018
轴和
Figure 162237DEST_PATH_IMAGE013
轴定子电压与电流在两相静止坐标系下的
Figure 201868DEST_PATH_IMAGE018
Figure 318860DEST_PATH_IMAGE013
轴分量; In the above formula,
Figure 2010102963119100002DEST_PATH_IMAGE021
,
Figure 649817DEST_PATH_IMAGE022
for
Figure 661767DEST_PATH_IMAGE018
axis and
Figure 206011DEST_PATH_IMAGE013
The rotor flux linkage of the shaft;
Figure 2010102963119100002DEST_PATH_IMAGE023
,
Figure 68882DEST_PATH_IMAGE024
and
Figure 2010102963119100002DEST_PATH_IMAGE025
,
Figure 760895DEST_PATH_IMAGE026
respectively
Figure 576535DEST_PATH_IMAGE018
axis and
Figure 162237DEST_PATH_IMAGE013
Shaft stator voltage and current in two-phase stationary coordinate system
Figure 201868DEST_PATH_IMAGE018
,
Figure 318860DEST_PATH_IMAGE013
axis component;

Figure 2010102963119100002DEST_PATH_IMAGE027
为漏感系数,
Figure 547978DEST_PATH_IMAGE028
为互感系数,
Figure 2010102963119100002DEST_PATH_IMAGE029
为定子电感,
Figure 801236DEST_PATH_IMAGE030
为转子电感,为微分算子,
Figure 333806DEST_PATH_IMAGE032
为定子电阻。
Figure 2010102963119100002DEST_PATH_IMAGE027
is the leakage inductance coefficient,
Figure 547978DEST_PATH_IMAGE028
is the mutual inductance coefficient,
Figure 2010102963119100002DEST_PATH_IMAGE029
is the stator inductance,
Figure 801236DEST_PATH_IMAGE030
is the rotor inductance, is a differential operator,
Figure 333806DEST_PATH_IMAGE032
is the stator resistance.

将上式变成矢量形式(图4中56处): Turn the above formula into vector form (at 56 in Figure 4):

Figure 2010102963119100002DEST_PATH_IMAGE033
Figure 2010102963119100002DEST_PATH_IMAGE033

将矢量形式表达式中的纯积分环节用图4中58处的一阶惯性滤波环节代替,而惯性环节产生的状态估计相位滞后由参考转子磁链

Figure 672514DEST_PATH_IMAGE034
在59处滤波后所得信号补偿,并令滞后环节的时间常数等于转子时间常数
Figure 2010102963119100002DEST_PATH_IMAGE035
,得到改进的电压方程: The pure integral link in the vector form expression is replaced by the first-order inertial filter link at 58 in Fig. 4, and the state estimation phase lag generated by the inertial link is determined by the reference rotor flux linkage
Figure 672514DEST_PATH_IMAGE034
The signal obtained after filtering at 59 is compensated, and the time constant of the hysteresis link is equal to the rotor time constant
Figure 2010102963119100002DEST_PATH_IMAGE035
, get the improved voltage equation:

Figure 705323DEST_PATH_IMAGE036
Figure 705323DEST_PATH_IMAGE036

该方法的优点是,取消了普通电压模型法关于反电动势

Figure 2010102963119100002DEST_PATH_IMAGE037
的纯积分环节,不存在积分漂移的问题,克服了电机参数偏差经积分的累积产生漂移,影响到系统的调速精度和稳定性的问题。 The advantage of this method is that the common voltage model method is canceled about the back electromotive force
Figure 2010102963119100002DEST_PATH_IMAGE037
The pure integral link does not have the problem of integral drift, which overcomes the problem that the motor parameter deviation will drift through the accumulation of integral, which will affect the speed regulation accuracy and stability of the system.

(2)神经网络电流模型模块 (2) Neural network current model module

由异步电机的转子磁链方程可得转子磁链电流模型: The rotor flux current model can be obtained from the rotor flux equation of the asynchronous motor:

Figure 813088DEST_PATH_IMAGE038
,  
Figure 2010102963119100002DEST_PATH_IMAGE039
Figure 813088DEST_PATH_IMAGE038
,
Figure 2010102963119100002DEST_PATH_IMAGE039

上式中,

Figure 522418DEST_PATH_IMAGE040
Figure 2010102963119100002DEST_PATH_IMAGE041
Figure 348423DEST_PATH_IMAGE018
轴和
Figure 106294DEST_PATH_IMAGE013
轴电流模型估计的转子磁链;分别为
Figure 521817DEST_PATH_IMAGE018
轴和
Figure 83380DEST_PATH_IMAGE013
轴定子电流在两相静止坐标系下的
Figure 165736DEST_PATH_IMAGE018
轴分量;
Figure 955149DEST_PATH_IMAGE028
为互感系数,
Figure 54823DEST_PATH_IMAGE035
为转子时间常数,
Figure 444216DEST_PATH_IMAGE031
为微分算子;
Figure 338354DEST_PATH_IMAGE042
为转子电气角速度。 In the above formula,
Figure 522418DEST_PATH_IMAGE040
,
Figure 2010102963119100002DEST_PATH_IMAGE041
for
Figure 348423DEST_PATH_IMAGE018
axis and
Figure 106294DEST_PATH_IMAGE013
Rotor flux linkage estimated by the shaft current model; , respectively
Figure 521817DEST_PATH_IMAGE018
axis and
Figure 83380DEST_PATH_IMAGE013
Shaft stator current in two-phase stationary coordinate system
Figure 165736DEST_PATH_IMAGE018
, axis component;
Figure 955149DEST_PATH_IMAGE028
is the mutual inductance coefficient,
Figure 54823DEST_PATH_IMAGE035
is the rotor time constant,
Figure 444216DEST_PATH_IMAGE031
is a differential operator;
Figure 338354DEST_PATH_IMAGE042
is the rotor electrical angular velocity.

采用后向差分法对上述电流模型离散化处理,得电流模型离散化状态方程: Using the backward difference method to discretize the above current model, the discretized state equation of the current model is obtained:

Figure 2010102963119100002DEST_PATH_IMAGE043
Figure 2010102963119100002DEST_PATH_IMAGE043

上式中,为采样周期,

Figure 2010102963119100002DEST_PATH_IMAGE045
为步数; In the above formula, is the sampling period,
Figure 2010102963119100002DEST_PATH_IMAGE045
is the number of steps;

令: make:

Figure 360239DEST_PATH_IMAGE046
Figure 2010102963119100002DEST_PATH_IMAGE047
Figure 360239DEST_PATH_IMAGE046
,
Figure 2010102963119100002DEST_PATH_IMAGE047
, ,

Figure 2010102963119100002DEST_PATH_IMAGE049
Figure 810123DEST_PATH_IMAGE050
Figure 2010102963119100002DEST_PATH_IMAGE051
Figure 132783DEST_PATH_IMAGE052
Figure 2010102963119100002DEST_PATH_IMAGE049
,
Figure 810123DEST_PATH_IMAGE050
,
Figure 2010102963119100002DEST_PATH_IMAGE051
,
Figure 132783DEST_PATH_IMAGE052

则该离散化状态方程可简化为: Then the discretized state equation can be simplified as:

Figure 2010102963119100002DEST_PATH_IMAGE053
Figure 2010102963119100002DEST_PATH_IMAGE053

由上式可见,可用图5所示的两层线性神经网络模型来代替转子磁链观测器的电流模型。在这个神经网络模型中,输入为62处

Figure 574259DEST_PATH_IMAGE054
、64处
Figure 2010102963119100002DEST_PATH_IMAGE055
和66处
Figure 807751DEST_PATH_IMAGE056
,68处
Figure 2010102963119100002DEST_PATH_IMAGE057
、70处
Figure 122320DEST_PATH_IMAGE058
和72处为网络的权值,在这个神经网络模型中,各权值都有确定的物理意义。当模型用来辨识速度时,
Figure 119226DEST_PATH_IMAGE057
Figure 364394DEST_PATH_IMAGE059
已知,而
Figure 582886DEST_PATH_IMAGE058
未知,在线调整,即可得到速度的辨识值。在74处的
Figure 739509DEST_PATH_IMAGE060
表示一步滞后(时延)环节。 It can be seen from the above formula that the current model of the rotor flux observer can be replaced by the two-layer linear neural network model shown in Figure 5. In this neural network model, the input is 62 places
Figure 574259DEST_PATH_IMAGE054
, 64 places
Figure 2010102963119100002DEST_PATH_IMAGE055
and 66 places
Figure 807751DEST_PATH_IMAGE056
, 68 places
Figure 2010102963119100002DEST_PATH_IMAGE057
, 70 places
Figure 122320DEST_PATH_IMAGE058
and 72 places is the weight of the network, in this neural network model, each weight has a definite physical meaning. When the model is used to identify velocity,
Figure 119226DEST_PATH_IMAGE057
and
Figure 364394DEST_PATH_IMAGE059
known, while
Figure 582886DEST_PATH_IMAGE058
Unknown, adjust online , the identification value of velocity can be obtained. at 74
Figure 739509DEST_PATH_IMAGE060
Indicates a one-step lag (time delay) link.

(3)学习算法(LMS算法)模块 (3) Learning algorithm (LMS algorithm) module

当神经网络中用于计算的转速与实际转速不等时,电压模型和电流模型之间就会产生误差

Figure 2010102963119100002DEST_PATH_IMAGE061
。此误差通过LMS学习算法来对电机的估计转速
Figure 522788DEST_PATH_IMAGE003
进行调整。LMS算法也称为最小方差法,即是
Figure 340659DEST_PATH_IMAGE062
(全称为Widrow-Hoff )规则。 When the speed used for calculation in the neural network is not equal to the actual speed, there will be an error between the voltage model and the current model
Figure 2010102963119100002DEST_PATH_IMAGE061
. This error is used by the LMS learning algorithm to estimate the speed of the motor
Figure 522788DEST_PATH_IMAGE003
Make adjustments. The LMS algorithm is also called the minimum variance method, which is
Figure 340659DEST_PATH_IMAGE062
(full name Widrow-Hoff )rule.

设误差方程为

Figure DEST_PATH_IMAGE063
Let the error equation be
Figure DEST_PATH_IMAGE063

能量函数定义为:

Figure 217797DEST_PATH_IMAGE064
The energy function is defined as:
Figure 217797DEST_PATH_IMAGE064

在上述神经网络模型中,在采样周期确定后,假设电机参数不变,即

Figure 742450DEST_PATH_IMAGE049
Figure 669955DEST_PATH_IMAGE051
两个权值不变,都为定值,而3个权重中仅包含 In the above neural network model, after the sampling period is determined, it is assumed that the motor parameters remain unchanged, that is,
Figure 742450DEST_PATH_IMAGE049
,
Figure 669955DEST_PATH_IMAGE051
The two weights remain unchanged, both of which are fixed values, and among the three weights only Include

待辨识的速度

Figure 80656DEST_PATH_IMAGE003
项,只需要调整。用于权值调整的自适应学习算法为: speed to be identified
Figure 80656DEST_PATH_IMAGE003
item, only need to adjust . The adaptive learning algorithm for weight adjustment is:

Figure DEST_PATH_IMAGE065
Figure DEST_PATH_IMAGE065

训练时权值的表达式为: The expression of the weight during training is:

Figure 66377DEST_PATH_IMAGE066
Figure 66377DEST_PATH_IMAGE066

式中,

Figure DEST_PATH_IMAGE067
为学习系数,
Figure 245643DEST_PATH_IMAGE068
Figure 191733DEST_PATH_IMAGE061
的转置矩阵,最后推出速度辨识公式: In the formula,
Figure DEST_PATH_IMAGE067
is the learning coefficient,
Figure 245643DEST_PATH_IMAGE068
for
Figure 191733DEST_PATH_IMAGE061
The transposition matrix, and finally the speed identification formula is introduced:

Figure DEST_PATH_IMAGE069
Figure DEST_PATH_IMAGE069

这种方法结构简单,不需要离线训练,在电机运行后就可以在线学习,不受电机负载、转速、参数等影响。通过简单、快速运算就可得到正确辨识结果。 This method has a simple structure and does not require offline training. It can learn online after the motor is running, and it is not affected by the motor load, speed, parameters, etc. The correct identification result can be obtained through simple and fast operation.

综合图3、图4和图5,前述过程的步骤可总结如下: Combining Figure 3, Figure 4 and Figure 5, the steps of the aforementioned process can be summarized as follows:

1]对电流模型神经网络磁链辨识单元设置初始权系数: 1] Set the initial weight coefficient for the current model neural network flux linkage identification unit:

Figure 120506DEST_PATH_IMAGE049
Figure 22603DEST_PATH_IMAGE070
Figure 120506DEST_PATH_IMAGE049
,
Figure 22603DEST_PATH_IMAGE070
,

式中,

Figure 749699DEST_PATH_IMAGE057
Figure 403534DEST_PATH_IMAGE058
Figure 910870DEST_PATH_IMAGE059
为神经网络的权值;为采样周期,
Figure 358480DEST_PATH_IMAGE035
为转子时间常数,为互感系数; In the formula,
Figure 749699DEST_PATH_IMAGE057
,
Figure 403534DEST_PATH_IMAGE058
and
Figure 910870DEST_PATH_IMAGE059
is the weight of the neural network; is the sampling period,
Figure 358480DEST_PATH_IMAGE035
is the rotor time constant, is the mutual inductance coefficient;

2]根据两相静止坐标系下的电压、电流值,用改进电压模型磁链辨识单元计算出转子磁链期望值

Figure 273506DEST_PATH_IMAGE016
;改进电压模型磁链辨识方程为: 2] According to the voltage and current values in the two-phase static coordinate system, the expected value of the rotor flux linkage is calculated with the improved voltage model flux linkage identification unit
Figure 273506DEST_PATH_IMAGE016
; The flux linkage identification equation of the improved voltage model is:

Figure 971334DEST_PATH_IMAGE036
Figure 971334DEST_PATH_IMAGE036

式中,

Figure DEST_PATH_IMAGE071
Figure 176051DEST_PATH_IMAGE072
分别为定子电压与电流; In the formula,
Figure DEST_PATH_IMAGE071
,
Figure 176051DEST_PATH_IMAGE072
are stator voltage and current respectively;

Figure 188000DEST_PATH_IMAGE027
为漏感系数,
Figure 919196DEST_PATH_IMAGE028
为互感系数,
Figure 725609DEST_PATH_IMAGE029
为定子电感,
Figure 355305DEST_PATH_IMAGE030
为转子电感;
Figure 188000DEST_PATH_IMAGE027
is the leakage inductance coefficient,
Figure 919196DEST_PATH_IMAGE028
is the mutual inductance coefficient,
Figure 725609DEST_PATH_IMAGE029
is the stator inductance,
Figure 355305DEST_PATH_IMAGE030
is the rotor inductance;

Figure 154633DEST_PATH_IMAGE031
为微分算子,
Figure 491068DEST_PATH_IMAGE032
为定子电阻,
Figure 796278DEST_PATH_IMAGE035
转子时间常数,为参考转子磁链;
Figure 154633DEST_PATH_IMAGE031
is a differential operator,
Figure 491068DEST_PATH_IMAGE032
is the stator resistance,
Figure 796278DEST_PATH_IMAGE035
rotor time constant, is the reference rotor flux linkage;

3]计算网络的目标函数:神经元在

Figure 182534DEST_PATH_IMAGE045
组采样输入下转子磁链的输出值
Figure DEST_PATH_IMAGE073
为: 3] Calculate the objective function of the network: neurons in
Figure 182534DEST_PATH_IMAGE045
The output value of the rotor flux linkage under the group sampling input
Figure DEST_PATH_IMAGE073
for:

Figure 763688DEST_PATH_IMAGE074
Figure 763688DEST_PATH_IMAGE074

式中,

Figure DEST_PATH_IMAGE075
为神经网络模型的输入;
Figure DEST_PATH_IMAGE077
=1、2、3; In the formula,
Figure DEST_PATH_IMAGE075
is the input of the neural network model;
Figure DEST_PATH_IMAGE077
=1, 2, 3;

4]将

Figure 849587DEST_PATH_IMAGE016
Figure 391558DEST_PATH_IMAGE017
相减,得误差方程: 4] Will
Figure 849587DEST_PATH_IMAGE016
and
Figure 391558DEST_PATH_IMAGE017
Subtract to get the error equation:

Figure 345739DEST_PATH_IMAGE063
Figure 345739DEST_PATH_IMAGE063
;

5]定义能量函数: 5] Define the energy function:

;

6]LMS规则:用于权值

Figure 490729DEST_PATH_IMAGE058
调整的自适应学习算法为: 6] LMS rules: for weight
Figure 490729DEST_PATH_IMAGE058
The adjusted adaptive learning algorithm is:

Figure 503685DEST_PATH_IMAGE065
Figure 503685DEST_PATH_IMAGE065

训练时权值的表达式为:

Figure 261556DEST_PATH_IMAGE066
The expression of the weight during training is:
Figure 261556DEST_PATH_IMAGE066

式中,

Figure 421230DEST_PATH_IMAGE068
Figure 426095DEST_PATH_IMAGE061
的转置矩阵,
Figure 739396DEST_PATH_IMAGE067
为学习系数,
Figure 973062DEST_PATH_IMAGE045
为步数; In the formula,
Figure 421230DEST_PATH_IMAGE068
for
Figure 426095DEST_PATH_IMAGE061
The transpose matrix of
Figure 739396DEST_PATH_IMAGE067
is the learning coefficient,
Figure 973062DEST_PATH_IMAGE045
is the number of steps;

Figure 507949DEST_PATH_IMAGE058
中包含了待辨识的速度
Figure 496765DEST_PATH_IMAGE003
项,速度由下式推算: exist
Figure 507949DEST_PATH_IMAGE058
contains the velocity to be identified
Figure 496765DEST_PATH_IMAGE003
Item, the speed is calculated by the following formula:

7]重复步骤2]至6],直至电流模型神经网络磁链辨识

Figure 521669DEST_PATH_IMAGE017
跟踪上改进电压模型磁链辨识
Figure 396216DEST_PATH_IMAGE016
为止,辨识的速度就能跟踪上实际速度变化。本发明的改进就是将其计算结果与转差频率直接速度辨识方法的计算结果(图3的84处)一起在模糊融合模块(图3中的86处)中进行模糊融合。 7] Repeat steps 2] to 6] until the current model neural network flux linkage identification
Figure 521669DEST_PATH_IMAGE017
Improving Flux Linkage Identification of Voltage Model on Tracking
Figure 396216DEST_PATH_IMAGE016
So far, the identified speed can track the actual speed change. The improvement of the present invention is to carry out fuzzy fusion in the fuzzy fusion module (86 place in Fig. 3) together with the calculation result of the slip frequency direct speed identification method (84 place in Fig. 3).

(二)转差频率直接速度辨识方法 (2) Slip frequency direct speed identification method

在图2中,转差频率的直接速度辨识方法由两大模块组成;第一个模块是在32处进行转子磁链观测;第二个模块是在转子磁链观测的基础上,在40处计算出转子磁链的同步角速度、转差角速度,然后利用两者之差将转子角速度辨识出。 In Fig. 2, the direct speed identification method of slip frequency is composed of two modules; the first module is to observe the rotor flux linkage at 32; the second module is based on the rotor flux observation, at 40 Calculate the synchronous angular velocity and slip angular velocity of the rotor flux linkage, and then use the difference between the two to identify the rotor angular velocity.

这种方法出发点是,在旋转坐标系下,电流模型的直接磁场定向控制具有较好的磁链估计精度。因此,利用旋转坐标系下转子磁链的观测模型得到磁链值。由于输入的是两相静止坐标系下的定子电流信号,为此,需进行电机派克(Park)变换,利用旋转坐标系下转子磁链的观测模型得到磁链值,再将之进行派克逆(Park-1)变换,最终得到两相静止坐标系下的转子磁链值;在此基础上,先计算出转子磁链的同步角速度,并对之进行滤波处理;同时,利用得到的两相静止坐标系下转子磁链和电流值计算出转差角速度。将转子磁链的同步角速度减去转差角速度便可将电机转子的角速度辨识出来。 The starting point of this method is that in the rotating coordinate system, the direct field oriented control of the current model has better flux linkage estimation accuracy. Therefore, the flux linkage value is obtained by using the observation model of the rotor flux linkage in the rotating coordinate system. Since the input is the stator current signal in the two-phase static coordinate system, it is necessary to carry out the Park transformation of the motor, and use the observation model of the rotor flux linkage in the rotating coordinate system to obtain the flux linkage value, and then perform the Parker inverse ( Park -1 ) transformation, and finally obtain the rotor flux value in the two-phase static coordinate system; on this basis, first calculate the synchronous angular velocity of the rotor flux, and filter it; at the same time, use the obtained two-phase static The slip angular velocity is calculated from the rotor flux linkage and current value in the coordinate system. The angular velocity of the motor rotor can be identified by subtracting the slip angular velocity from the synchronous angular velocity of the rotor flux linkage.

采用这种速度估计方法的优点是,这是一种简单直接而运算量较少的有效方法,在理论上没有延时,具有较好的动态性能,在部分产品中得到了实际应用。 The advantage of using this speed estimation method is that it is a simple, direct and effective method with less computation. It has no delay in theory and has good dynamic performance. It has been practically applied in some products.

参见图6,在图中的34处将两相静止坐标系下的电流

Figure 555933DEST_PATH_IMAGE078
Figure DEST_PATH_IMAGE079
经过Park变换为两相旋转坐标系下的电流
Figure 843826DEST_PATH_IMAGE080
Figure DEST_PATH_IMAGE081
。转子闭环磁链
Figure DEST_PATH_IMAGE083
的估计采用了36处的电流模型(
Figure 673646DEST_PATH_IMAGE082
Figure 925636DEST_PATH_IMAGE083
上标中的
Figure 638508DEST_PATH_IMAGE084
表示由电流模型得到)。将在两相旋转坐标系下观测到的磁链
Figure 266936DEST_PATH_IMAGE082
Figure 443970DEST_PATH_IMAGE083
经38处的Park逆变换为两相静止坐标系下的转子磁链
Figure DEST_PATH_IMAGE085
。以上便完成了转子磁链的估计,这将为下一步的转差频率的直接速度辨识作好了准备。将得到的两相静止坐标系下转子磁链
Figure 125247DEST_PATH_IMAGE086
在42处可计算出转子磁链角的正余弦
Figure DEST_PATH_IMAGE087
Figure 908787DEST_PATH_IMAGE088
值,并将之用于如图2中28处的旋转/固定坐标变换。同时,计算出同步角速度
Figure DEST_PATH_IMAGE089
,由于该角速度是由微分信号产生的,它会放大噪声信号,因此需在44处用一个一阶低通滤波器,将放大的噪声信号滤除得到
Figure 643525DEST_PATH_IMAGE090
。而转差角速度
Figure DEST_PATH_IMAGE091
的值可由电动机电流检测值和两相静止坐标系下磁链值
Figure 940776DEST_PATH_IMAGE085
Figure 176585DEST_PATH_IMAGE086
在46处计算得到。这样就可在48处,根据滤波后的同步角速度值
Figure 316DEST_PATH_IMAGE090
与转差角速度
Figure 843638DEST_PATH_IMAGE091
值,计算出当前的转速值。 Referring to Fig. 6, the electric current under the two-phase static coordinate system is put at 34 in the figure
Figure 555933DEST_PATH_IMAGE078
,
Figure DEST_PATH_IMAGE079
After Park transformation, it is the current in the two-phase rotating coordinate system
Figure 843826DEST_PATH_IMAGE080
,
Figure DEST_PATH_IMAGE081
. Rotor closed-loop flux linkage ,
Figure DEST_PATH_IMAGE083
is estimated using a current model at 36 (
Figure 673646DEST_PATH_IMAGE082
,
Figure 925636DEST_PATH_IMAGE083
in superscript
Figure 638508DEST_PATH_IMAGE084
means obtained from the current model). The flux linkage observed in the two-phase rotating coordinate system
Figure 266936DEST_PATH_IMAGE082
,
Figure 443970DEST_PATH_IMAGE083
The rotor flux linkage in the two-phase stationary coordinate system is transformed by Park inverse transformation at 38
Figure DEST_PATH_IMAGE085
, . The estimation of the rotor flux linkage is completed above, which will be ready for the next step of direct speed identification of slip frequency. The obtained rotor flux linkage in the two-phase stationary coordinate system ,
Figure 125247DEST_PATH_IMAGE086
The sine and cosine of the rotor flux linkage angle can be calculated at 42
Figure DEST_PATH_IMAGE087
,
Figure 908787DEST_PATH_IMAGE088
value, and use it for the rotation/fixed coordinate transformation at 28 in Figure 2. At the same time, calculate the synchronous angular velocity
Figure DEST_PATH_IMAGE089
, since the angular velocity is generated by the differential signal, it will amplify the noise signal, so a first-order low-pass filter needs to be used at 44 to filter the amplified noise signal to obtain
Figure 643525DEST_PATH_IMAGE090
. while the slip angular velocity
Figure DEST_PATH_IMAGE091
The value of can be determined by the motor current detection value and the flux linkage value in the two-phase static coordinate system
Figure 940776DEST_PATH_IMAGE085
,
Figure 176585DEST_PATH_IMAGE086
Calculated at 46. In this way, at 48, according to the filtered synchronous angular velocity value
Figure 316DEST_PATH_IMAGE090
and slip angular velocity
Figure 843638DEST_PATH_IMAGE091
value, calculate the current speed value .

前述速度辨识方法,可归纳为以下步骤: The foregoing speed identification method can be summarized into the following steps:

1]将两相静止坐标系下的定子电流

Figure 526740DEST_PATH_IMAGE078
经过Park变换为两相旋转坐标系下的定子电流
Figure 468469DEST_PATH_IMAGE080
Figure 859087DEST_PATH_IMAGE081
; 1] The stator current in the two-phase stationary coordinate system
Figure 526740DEST_PATH_IMAGE078
, The stator current in the two-phase rotating coordinate system after Park transformation
Figure 468469DEST_PATH_IMAGE080
,
Figure 859087DEST_PATH_IMAGE081
;

2]按下式进行转子磁链的估计: 2] Estimate the rotor flux linkage according to the following formula:

Figure DEST_PATH_IMAGE093
Figure 859535DEST_PATH_IMAGE094
Figure DEST_PATH_IMAGE093
,
Figure 859535DEST_PATH_IMAGE094

式中,

Figure DEST_PATH_IMAGE095
为互感,
Figure 782491DEST_PATH_IMAGE031
为微分算子,转子时间常数
Figure 905299DEST_PATH_IMAGE096
; In the formula,
Figure DEST_PATH_IMAGE095
for mutual inductance,
Figure 782491DEST_PATH_IMAGE031
is the differential operator, the rotor time constant
Figure 905299DEST_PATH_IMAGE096
;

得到两相旋转坐标系下转子磁链值

Figure 38340DEST_PATH_IMAGE082
,上标中表示由电流模型得到; Obtain the rotor flux linkage value in the two-phase rotating coordinate system
Figure 38340DEST_PATH_IMAGE082
, , in the superscript means obtained from the current model;

3]对

Figure 162919DEST_PATH_IMAGE082
Figure 268410DEST_PATH_IMAGE083
进行Park逆变换,得两相静止坐标系下转子磁链
Figure 995014DEST_PATH_IMAGE085
Figure 564667DEST_PATH_IMAGE086
; 3] Yes
Figure 162919DEST_PATH_IMAGE082
,
Figure 268410DEST_PATH_IMAGE083
Perform Park inverse transformation to obtain the rotor flux linkage in the two-phase stationary coordinate system
Figure 995014DEST_PATH_IMAGE085
,
Figure 564667DEST_PATH_IMAGE086
;

4]根据

Figure 278545DEST_PATH_IMAGE085
Figure 136911DEST_PATH_IMAGE086
,计算出转子磁链角正余弦
Figure 407486DEST_PATH_IMAGE087
Figure 18596DEST_PATH_IMAGE088
值以及同步角速度
Figure 982004DEST_PATH_IMAGE089
: 4] According to
Figure 278545DEST_PATH_IMAGE085
,
Figure 136911DEST_PATH_IMAGE086
, calculate the sine and cosine of the rotor flux linkage angle
Figure 407486DEST_PATH_IMAGE087
,
Figure 18596DEST_PATH_IMAGE088
value and synchronous angular velocity
Figure 982004DEST_PATH_IMAGE089
:

Figure DEST_PATH_IMAGE097
Figure DEST_PATH_IMAGE097

5]对所得同步角速度

Figure 124404DEST_PATH_IMAGE089
一阶低通滤波得到
Figure 136353DEST_PATH_IMAGE090
,滤波按下式进行: 5] For the obtained synchronous angular velocity
Figure 124404DEST_PATH_IMAGE089
First-order low-pass filtering to get
Figure 136353DEST_PATH_IMAGE090
, the filtering is performed as follows:

式中,

Figure 736279DEST_PATH_IMAGE031
为微分算子,
Figure DEST_PATH_IMAGE099
Figure 360115DEST_PATH_IMAGE100
是滤波器的截止频率。 In the formula,
Figure 736279DEST_PATH_IMAGE031
is a differential operator,
Figure DEST_PATH_IMAGE099
,
Figure 360115DEST_PATH_IMAGE100
is the cutoff frequency of the filter.

6]同时,根据

Figure 972493DEST_PATH_IMAGE085
Figure 801089DEST_PATH_IMAGE078
Figure DEST_PATH_IMAGE101
计算出转差角速度
Figure 465550DEST_PATH_IMAGE091
: 6] Meanwhile, according to
Figure 972493DEST_PATH_IMAGE085
, and
Figure 801089DEST_PATH_IMAGE078
,
Figure DEST_PATH_IMAGE101
Calculate the slip angular velocity
Figure 465550DEST_PATH_IMAGE091
:

Figure 68570DEST_PATH_IMAGE102
Figure DEST_PATH_IMAGE103
Figure 400457DEST_PATH_IMAGE104
Figure DEST_PATH_IMAGE105
Figure 610989DEST_PATH_IMAGE106
Figure 232855DEST_PATH_IMAGE025
Figure 68570DEST_PATH_IMAGE102
Figure DEST_PATH_IMAGE103
Figure 400457DEST_PATH_IMAGE104
Figure DEST_PATH_IMAGE105
Figure 610989DEST_PATH_IMAGE106
Figure 232855DEST_PATH_IMAGE025
)

7]根据

Figure 373986DEST_PATH_IMAGE090
Figure 747330DEST_PATH_IMAGE091
计算出电机当前转速值
Figure 128764DEST_PATH_IMAGE092
: 7] According to
Figure 373986DEST_PATH_IMAGE090
and
Figure 747330DEST_PATH_IMAGE091
Calculate the current speed value of the motor
Figure 128764DEST_PATH_IMAGE092
:

Figure DEST_PATH_IMAGE107
Figure DEST_PATH_IMAGE107

从而实现对电机的转差频率直接速度辨识。 In this way, the direct speed identification of the slip frequency of the motor can be realized.

(三)神经网络MRAS速度辨识方法和转差频率直接速度辨识方法在本发明中的具体结合: (3) The specific combination of the neural network MRAS speed identification method and the slip frequency direct speed identification method in the present invention:

结合图7,该模糊融合速度辨识方法的原理是:在电机动态阶段(如电机起动、状态切换等情况),采用神经网络MRAS速度辨识方法和转差频率直接速度辨识方法同时对电机转速进行识别,使两个转速值中有价值的信息都参与转速计算,得出电机转速的确信值:按数值设定数值连续的误差阈值范围,在不同的误差阈值范围,为神经网络MRAS速度辨识方法和转差频率直接速度辨识方法分配各自的作用强度值

Figure 220348DEST_PATH_IMAGE108
。其中,转差频率直接速度辨识法的作用强度值
Figure 978220DEST_PATH_IMAGE006
随着误差阈值的减小而减小,而神经网络MRAS速度辨识方法的作用强度值
Figure DEST_PATH_IMAGE109
则与之相反,参见图7中的箭头方向。当
Figure 206070DEST_PATH_IMAGE006
减为0时,
Figure 961667DEST_PATH_IMAGE109
则增为1,速度辨识进入稳态区域,此时仅由神经网络MRAS速度辨识方法对电机速度进行辨识。 Combined with Figure 7, the principle of the fuzzy fusion speed identification method is: in the dynamic stage of the motor (such as motor starting, state switching, etc.), the neural network MRAS speed identification method and the slip frequency direct speed identification method are used to simultaneously identify the motor speed , so that the valuable information in the two speed values participates in the calculation of the speed, and the sure value of the motor speed is obtained: set the numerical continuous error threshold range according to the value, and in different error threshold ranges, the neural network MRAS speed identification method and Slip Frequency Direct Velocity Identification Method Assigns Respective Action Intensity Values
Figure 220348DEST_PATH_IMAGE108
. Among them, the action strength value of the slip frequency direct speed identification method
Figure 978220DEST_PATH_IMAGE006
Decreases with the decrease of the error threshold, while the action intensity value of the neural network MRAS speed identification method
Figure DEST_PATH_IMAGE109
On the contrary, see the direction of the arrow in FIG. 7 . when
Figure 206070DEST_PATH_IMAGE006
When reduced to 0,
Figure 961667DEST_PATH_IMAGE109
If it is increased to 1, the speed identification enters the steady-state region. At this time, only the neural network MRAS speed identification method is used to identify the motor speed.

该方法的程序框图如图8所示,其具体步骤为: The program block diagram of this method is shown in Figure 8, and its specific steps are:

1)实时计算神经网络MRAS速度辨识方法的辨识值与电机转速期望值之间的误差

Figure 274968DEST_PATH_IMAGE008
;计算
Figure 757902DEST_PATH_IMAGE008
的方法,包括: 1) Real-time calculation of the error between the identification value of the neural network MRAS speed identification method and the expected value of the motor speed
Figure 274968DEST_PATH_IMAGE008
;calculate
Figure 757902DEST_PATH_IMAGE008
methods, including:

Figure 99978DEST_PATH_IMAGE014
Figure 99978DEST_PATH_IMAGE014

其中,

Figure 760898DEST_PATH_IMAGE015
为电机转速期望值;
Figure 748446DEST_PATH_IMAGE003
为神经网络MRAS速度辨识方法的辨识值。 in,
Figure 760898DEST_PATH_IMAGE015
is the expected value of motor speed;
Figure 748446DEST_PATH_IMAGE003
is the identification value of the neural network MRAS speed identification method.

2)按数值设定数值连续的误差阈值范围,为每个误差阈值范围设定对应的

Figure 785803DEST_PATH_IMAGE005
Figure 175196DEST_PATH_IMAGE006
,同一误差阈值范围内的
Figure 334913DEST_PATH_IMAGE005
Figure 560489DEST_PATH_IMAGE006
满足
Figure 385226DEST_PATH_IMAGE007
,形成作用强度分布表; 2) Set the numerical continuous error threshold range according to the value, and set the corresponding error threshold range for each error threshold range
Figure 785803DEST_PATH_IMAGE005
and
Figure 175196DEST_PATH_IMAGE006
, within the same error threshold
Figure 334913DEST_PATH_IMAGE005
and
Figure 560489DEST_PATH_IMAGE006
satisfy
Figure 385226DEST_PATH_IMAGE007
, to form the action intensity distribution table;

3)判断步骤1)中的误差

Figure 379857DEST_PATH_IMAGE008
处于哪个误差阈值范围内,也即查找作用强度分布表。采用该误差阈值范围对应的作用强度分布值,对神经网络MRAS速度辨识方法和转差频率直接速度辨识方法所识别出的两个电机转速值进行模糊融合,计算出电机运行时的转速确信值;  3) Judging the error in step 1)
Figure 379857DEST_PATH_IMAGE008
In which error threshold range, that is, look up the action intensity distribution table. Using the action intensity distribution value corresponding to the error threshold range, fuzzy fusion is performed on the two motor speed values identified by the neural network MRAS speed identification method and the slip frequency direct speed identification method to calculate the speed confidence value when the motor is running;

4)重复步骤3),对电机转速进行实时识别。当速度达到指令给定值

Figure 710476DEST_PATH_IMAGE015
,动态过程结束,电机进入稳态运行阶段。 4) Repeat step 3) to identify the motor speed in real time. When the speed reaches the command given value
Figure 710476DEST_PATH_IMAGE015
, the dynamic process ends, and the motor enters the steady-state operation stage.

步骤2)中,作用强度分布表可根据实验数据进行绘制,但这种方法具有一定的盲目性,增大了工作量,使最终得到的结果误差偏大。对此,发明人提出了如下的作用强度分布表的制作方法: In step 2), the action intensity distribution table can be drawn according to the experimental data, but this method has a certain degree of blindness, increases the workload, and makes the error of the final result larger. In this regard, the inventor proposes the following method for making the action intensity distribution table:

1]将数值连续的10个误差阈值范围标记为0~9的十个等级;设定第9等级误差阈值范围对应的,神经网络MRAS速度辨识方法的作用强度为0,转差频率直接速度辨识方法的作用强度为1;第0等级误差阈值范围对应的,神经网络MRAS速度辨识方法的作用强度为1,转差频率直接速度辨识方法的作用强度为0; 1] Mark the 10 error threshold ranges with continuous values as ten levels from 0 to 9; set the error threshold range corresponding to the 9th level, the effect strength of the neural network MRAS speed identification method is 0, and the slip frequency directly identifies the speed The action strength of the method is 1; corresponding to the 0th grade error threshold range, the action strength of the neural network MRAS speed identification method is 1, and the action strength of the slip frequency direct speed identification method is 0;

2]采用对称型函数计算第1至8等级误差阈值范围的神经网络MRAS速度辨识方法和转差频率直接速度辨识方法的作用强度分布; 2] Calculate the action intensity distribution of the neural network MRAS speed identification method and the slip frequency direct speed identification method in the error threshold range of the 1st to 8th grades using a symmetrical function;

制作作用强度分布表。 Make a table of action intensity distribution.

把速度辨识作用赋予“作用强度”的概念,这与模糊隶属度的意义是吻合的。制作作用强度分布表时,可以用分段线性函数来进行计算,比如: The concept of "action strength" is assigned the speed identification function, which is consistent with the meaning of fuzzy membership degree. When making action intensity distribution table, piecewise linear function can be used for calculation, such as:

Figure 672616DEST_PATH_IMAGE110
Figure 672616DEST_PATH_IMAGE110

但分段线性函数的斜率k只能取一个固定的值,得到的作用强度分布表只是一个一维的表,作用强度取值不便于调整,灵活性不好。 However, the slope k of the piecewise linear function can only take a fixed value, and the obtained action intensity distribution table is only a one-dimensional table. The value of action intensity is not easy to adjust, and the flexibility is not good.

也可考虑如下表达式的函数: Functions of the following expressions can also be considered:

   

其中,为误差等级的级数,

Figure 19688DEST_PATH_IMAGE112
为系统的设定值,
Figure 521208DEST_PATH_IMAGE045
Figure 721376DEST_PATH_IMAGE031
为待定参数。通过设置合理的
Figure 857140DEST_PATH_IMAGE045
Figure 716511DEST_PATH_IMAGE031
值,作用强度
Figure DEST_PATH_IMAGE113
可以根据
Figure 13763DEST_PATH_IMAGE012
值的变化灵活地调整,但此函数参数多达三个,不易设置和调整。 in, is the series of error levels,
Figure 19688DEST_PATH_IMAGE112
is the set value of the system,
Figure 521208DEST_PATH_IMAGE045
,
Figure 721376DEST_PATH_IMAGE031
is an undetermined parameter. by setting a reasonable ,
Figure 857140DEST_PATH_IMAGE045
and
Figure 716511DEST_PATH_IMAGE031
value, strength
Figure DEST_PATH_IMAGE113
can be based on
Figure 13763DEST_PATH_IMAGE012
The change of the value can be adjusted flexibly, but there are as many as three parameters in this function, which is not easy to set and adjust.

是非线性函数,其特点是函数本身及其导数都是连续的,在处理上较为方便。因此本发明选取的一种优选方案为:采用对称型

Figure 73302DEST_PATH_IMAGE009
函数来计算作用强度;对称型
Figure 103575DEST_PATH_IMAGE009
函数也称正切型
Figure 12757DEST_PATH_IMAGE114
型函数,其表达式如下: and It is a nonlinear function, and its characteristic is that the function itself and its derivatives are continuous, which is more convenient in processing. Therefore, a preferred scheme selected by the present invention is: adopt symmetrical
Figure 73302DEST_PATH_IMAGE009
function to calculate the action strength; symmetric type
Figure 103575DEST_PATH_IMAGE009
function also called tangent type
Figure 12757DEST_PATH_IMAGE114
type function, its expression is as follows:

Figure 521098DEST_PATH_IMAGE010
Figure 459055DEST_PATH_IMAGE011
Figure 521098DEST_PATH_IMAGE010
,
Figure 459055DEST_PATH_IMAGE011

根据上述表达式,即可计算第1至8等级时,神经网络MRAS速度辨识方法和转差频率直接速度辨识方法的作用强度分布; According to the above expression, the action strength distribution of the neural network MRAS speed identification method and the slip frequency direct speed identification method can be calculated for grades 1 to 8;

其中,

Figure 473279DEST_PATH_IMAGE012
为误差等级的级数;
Figure 932073DEST_PATH_IMAGE013
Figure 244106DEST_PATH_IMAGE009
函数的参数;为避免此曲线出现饱和的状态,
Figure 42429DEST_PATH_IMAGE013
取小于1的值,即分别取0.1、0.2、0.3、0.4、0.5、0.6、0.7、0.8、0.9。
Figure 414504DEST_PATH_IMAGE013
的每个取值,分别对应一组互相匹配的神经网络MRAS速度辨识方法和转差频率直接速度辨识方法的作用强度取值。 in,
Figure 473279DEST_PATH_IMAGE012
is the series of error levels;
Figure 932073DEST_PATH_IMAGE013
for
Figure 244106DEST_PATH_IMAGE009
parameter of the function; to avoid saturation of this curve,
Figure 42429DEST_PATH_IMAGE013
Take a value less than 1, that is, take 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 respectively.
Figure 414504DEST_PATH_IMAGE013
Each value of , corresponds to a group of matching neural network MRAS speed identification method and slip frequency direct speed identification method respectively.

通过调整参数

Figure 298278DEST_PATH_IMAGE013
,可改变
Figure 227051DEST_PATH_IMAGE009
函数的曲线形状,也就对两种速度辨识的作用强度进行了调整,从而获得不同的辨识效果。对表1(见后文)分析可看出,当
Figure 129147DEST_PATH_IMAGE013
在0.1~0.9的范围内: By adjusting parameters
Figure 298278DEST_PATH_IMAGE013
, can be changed
Figure 227051DEST_PATH_IMAGE009
The shape of the curve of the function also adjusts the strength of the two speed identifications, so as to obtain different identification effects. From the analysis of Table 1 (see later), it can be seen that when
Figure 129147DEST_PATH_IMAGE013
In the range of 0.1~0.9:

1)若

Figure 422857DEST_PATH_IMAGE013
值较小,则在融合区域的前期,随着误差减小,
Figure 777615DEST_PATH_IMAGE006
变化较大,曲线的陡度大,即转差频率直接速度辨识方法的作用强度值迅速减小。在融合区域的中、后期,
Figure 447762DEST_PATH_IMAGE006
的变化较小,曲线较为平缓,即转差频率直接速度辨识方法的作用强度值缓慢减小; 1) if
Figure 422857DEST_PATH_IMAGE013
If the value is small, then in the early stage of the fusion area, as the error decreases,
Figure 777615DEST_PATH_IMAGE006
The change is large, and the steepness of the curve is large, that is, the action intensity value of the slip frequency direct speed identification method decreases rapidly. In the middle and late stages of the fusion region,
Figure 447762DEST_PATH_IMAGE006
The change of is small, and the curve is gentler, that is, the action strength value of the slip frequency direct speed identification method decreases slowly;

2)若

Figure 204365DEST_PATH_IMAGE013
值较大,在融合区域的前期和中期,随着误差减小,
Figure 686554DEST_PATH_IMAGE006
变化不大,曲线较为平缓,即转差频率直接速度辨识方法的作用强度缓慢减小。在融合区域的后期时,变化较大,曲线的陡度大,即转差频率直接速度辨识方法的作用强度值迅速减小。前面描述的
Figure 2445DEST_PATH_IMAGE013
与作用强度变化的关系见图9。 2) if
Figure 204365DEST_PATH_IMAGE013
The value is larger, in the early and middle stages of the fusion area, as the error decreases,
Figure 686554DEST_PATH_IMAGE006
The change is not large, and the curve is relatively gentle, that is, the effect strength of the slip frequency direct speed identification method decreases slowly. At the later stage of the fusion region, The change is large, and the steepness of the curve is large, that is, the action intensity value of the slip frequency direct speed identification method decreases rapidly. previously described
Figure 2445DEST_PATH_IMAGE013
The relationship with the change of action intensity is shown in Figure 9.

通过上述选择不同

Figure 613555DEST_PATH_IMAGE013
值可调整两种速度辨识的作用强度的分析,可得到
Figure 514646DEST_PATH_IMAGE013
的选取依据: Different from the above selection
Figure 613555DEST_PATH_IMAGE013
The value can be adjusted for the analysis of the strength of the two speed identifications, which can be obtained
Figure 514646DEST_PATH_IMAGE013
is selected based on:

1)当电机运行时的转速期望值与辨识值的误差绝对值

Figure 843997DEST_PATH_IMAGE008
较大时,应赋予转差频率直接速度辨识方法较大的作用强度,以尽快消除偏差,提高响应速度,此时
Figure 652684DEST_PATH_IMAGE013
应取较大的值。 1) The absolute value of the error between the expected speed value and the identification value when the motor is running
Figure 843997DEST_PATH_IMAGE008
When the value is large, the slip frequency direct speed identification method should be assigned a greater action strength to eliminate the deviation as soon as possible and improve the response speed.
Figure 652684DEST_PATH_IMAGE013
A larger value should be taken.

2)当电机运行时的转速期望值与辨识值的误差绝对值

Figure 134612DEST_PATH_IMAGE008
较小时,应赋予转差频率直接速度辨识方法较小的作用强度,而神经网络MRAS速度辨识方法给予较大的作用强度,以尽快地进入稳态,使速度辨识稳定,此时
Figure 268921DEST_PATH_IMAGE013
应取较小的值。 2) The absolute value of the error between the expected speed value and the identification value when the motor is running
Figure 134612DEST_PATH_IMAGE008
When the slip frequency is small, the slip frequency direct speed identification method should be given a smaller action strength, while the neural network MRAS speed identification method should be given a larger action strength, so as to enter the steady state as soon as possible and make the speed identification stable.
Figure 268921DEST_PATH_IMAGE013
Should take a smaller value.

表1、表2即为计算出的作用强度分布表: Table 1 and Table 2 are the calculated action intensity distribution tables:

表1、转差频率直接速度辨识方法的作用强度分布表 Table 1. The action intensity distribution table of slip frequency direct speed identification method

表2、神经网络MRAS速度辨识方法的作用强度分布表 Table 2. The action strength distribution table of the neural network MRAS speed identification method

Figure 633037DEST_PATH_IMAGE116
Figure 633037DEST_PATH_IMAGE116

表中:E表示误差阈值范围的等级。表1和表2中的误差强度值互相对应。 In the table: E represents the grade of error threshold range. The error strength values in Table 1 and Table 2 correspond to each other.

在具体应用时,先要确定

Figure 697945DEST_PATH_IMAGE013
的数值,按
Figure 96697DEST_PATH_IMAGE013
数值查找对应的作用强度分布,确定在不同误差等级时的作用强度。  In specific applications, it is necessary to determine
Figure 697945DEST_PATH_IMAGE013
value, press
Figure 96697DEST_PATH_IMAGE013
Numerically find the corresponding action intensity distribution, and determine The strength of action at different error levels.

查找到神经网络MRAS速度辨识方法和转差频率直接速度辨识方法各自对应的作用强度值后,按下式对神经网络MRAS速度辨识方法和转差频率直接速度辨识方法所识别出的两个电机转速值进行模糊融合: After finding the corresponding action intensity values of the neural network MRAS speed identification method and the slip frequency direct speed identification method, the two motor speeds identified by the neural network MRAS speed identification method and the slip frequency direct speed identification method are as follows: Values are fuzzy blended:

Figure DEST_PATH_IMAGE117
Figure DEST_PATH_IMAGE117

其中,

Figure 185144DEST_PATH_IMAGE002
为转差频率直接速度辨识方法所识别出的电机转速值;
Figure 788163DEST_PATH_IMAGE003
为神经网络MRAS速度辨识方法所识别出的电机转速值;
Figure 979104DEST_PATH_IMAGE004
为最终识别出的电机动态运行时的转速确信值;
Figure 642167DEST_PATH_IMAGE006
为查找作用强度分布表得到的转差频率直接速度辨识方法的作用强度值;
Figure 918558DEST_PATH_IMAGE005
为查找作用强度分布表得到的神经网络MRAS速度辨识方法的作用强度值。 in,
Figure 185144DEST_PATH_IMAGE002
is the motor speed value identified by the slip frequency direct speed identification method;
Figure 788163DEST_PATH_IMAGE003
The motor speed value identified by the neural network MRAS speed identification method;
Figure 979104DEST_PATH_IMAGE004
is the final identified speed assurance value of the motor during dynamic operation;
Figure 642167DEST_PATH_IMAGE006
The action intensity value of the slip frequency direct speed identification method obtained by looking up the action intensity distribution table;
Figure 918558DEST_PATH_IMAGE005
It is the action intensity value obtained by searching the action intensity distribution table of the neural network MRAS speed identification method.

本发明方案可采用以DSP为核心的数字控制系统来实现。如TMS320F2812的运算速度高达150MIPS,可将它同时用作速度辨识、矢量控制算法和SVPWM波的产生等。 The scheme of the present invention can be realized by using a digital control system with DSP as the core. For example, the computing speed of TMS320F2812 is as high as 150MIPS, and it can be used as speed identification, vector control algorithm and SVPWM wave generation at the same time.

采用本发明方案后,控制系统的速度辨识效果如图11所示。采用现在有的单一神经网络MRAS速度辨识方法,由图10可看出,电机起动时速度波动大,甚至出现负值波动,振荡次数多、调节时间长。同时,当由一种稳态向另一稳态进行较大幅度切换时,速度估计收敛到一个错误的值。而采用本发明提出的模糊融合速度辨识方法后,由图11可看出,电机在起动时辨识出的速度除有少许毛刺外,几乎没有振荡和波动,对速度指令的动态跟踪性能较强;同时,当由一种稳态向另一稳态进行较大幅度切换时,速度辨识虽也存在少许毛刺,但能正确收敛到指令给定值,并且稳态精度高,从而可实现对电机的有效控制。 After adopting the solution of the present invention, the speed identification effect of the control system is shown in FIG. 11 . Using the existing single neural network MRAS speed identification method, it can be seen from Figure 10 that the speed fluctuates greatly when the motor starts, and even negative fluctuations occur, the number of oscillations is large, and the adjustment time is long. At the same time, the velocity estimate converges to an erroneous value when switching from one steady state to another by a large amount. However, after adopting the fuzzy fusion speed identification method proposed by the present invention, it can be seen from Figure 11 that the speed identified by the motor at startup has almost no oscillation and fluctuation except for a few glitches, and the dynamic tracking performance of the speed command is relatively strong; At the same time, when switching from one steady state to another steady state, although there are a few glitches in the speed identification, it can correctly converge to the command given value, and the steady state accuracy is high, so that the motor can be realized Effective control.

Claims (3)

1. A fuzzy fusion identification method for the rotating speed of a motor without a speed sensor is characterized in that: identifying the rotating speed of the motor simultaneously by adopting a neural network MRAS speed identification method and a slip frequency direct speed identification method; distributing respective action intensity values for a neural network MRAS speed identification method and a slip frequency direct speed identification method, and calculating a confident value of the motor rotating speed by adopting the following formula:
Figure 328825DEST_PATH_IMAGE002
Figure 258866DEST_PATH_IMAGE004
the motor rotating speed value is identified by a slip frequency direct speed identification method;
Figure 471673DEST_PATH_IMAGE006
the motor rotating speed value identified by the neural network MRAS speed identification method;
Figure 302095DEST_PATH_IMAGE008
a rotation speed confident value for the finally identified motor operation;
Figure 574944DEST_PATH_IMAGE010
the action strength value of the neural network MRAS speed identification method is obtained;
Figure 989352DEST_PATH_IMAGE012
the value is the action intensity value of the slip frequency direct speed identification method;
distributing respective action intensity values for a neural network MRAS speed identification method and a slip frequency direct speed identification method, wherein the action intensity values comprise the following steps:
1) setting error threshold value ranges with continuous numerical values according to numerical values, and setting corresponding error threshold value ranges for each error threshold value range
Figure 192800DEST_PATH_IMAGE010
Andwithin the same error thresholdAnd
Figure 39161DEST_PATH_IMAGE012
satisfy the requirement of
Figure 859350DEST_PATH_IMAGE014
Forming an action intensity distribution table;
2) real-time calculation of error between identification value of neural network MRAS speed identification method and motor rotating speed expected value
Figure 398784DEST_PATH_IMAGE016
3) Judging the error in the step 2)
Figure 279016DEST_PATH_IMAGE016
Within which error threshold range, the error threshold range is corresponding to
Figure 402436DEST_PATH_IMAGE010
And
Figure 760736DEST_PATH_IMAGE012
substitution formula
Figure 420257DEST_PATH_IMAGE002
Step 1), comprising:
(1) marking 10 error threshold value ranges with continuous numerical values as ten grades of 0-9; setting the action intensity of a neural network MRAS speed identification method to be 0 and the action intensity of a slip frequency direct speed identification method to be 1 corresponding to the 9 th grade error threshold range; corresponding to the 0 th level error threshold range, the action intensity of the neural network MRAS speed identification method is 1, and the action intensity of the slip frequency direct speed identification method is 0;
(2) calculating the action intensity distribution of a neural network MRAS speed identification method and a slip frequency direct speed identification method within the error threshold range of 1 st to 8 th grades by adopting a symmetrical function;
and (5) making an action intensity distribution table.
2. The method of claim 1The fuzzy fusion identification method of the rotating speed of the motor without the speed sensor is characterized in that: step (2), comprising: according to the symmetrical type
Figure 471389DEST_PATH_IMAGE018
And (3) function, when the levels 1 to 8 are calculated, the action intensity distribution of the neural network MRAS speed identification method and the slip frequency direct speed identification method is as follows:
Figure 85035DEST_PATH_IMAGE020
wherein,the number of stages corresponding to the error threshold range;
Figure 717508DEST_PATH_IMAGE026
is composed of
Figure 815521DEST_PATH_IMAGE018
Parameters of the function;
Figure 781203DEST_PATH_IMAGE026
respectively taking 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8 or 0.9,
Figure 149736DEST_PATH_IMAGE026
each value of (1) is respectively corresponding to the action strength value of a group of mutually matched neural network MRAS speed identification method and slip frequency direct speed identification method.
3. The fuzzy fusion identification method of the rotating speed of the motor without the speed sensor according to claim 1, characterized in that: in step 2), calculating
Figure 277092DEST_PATH_IMAGE016
The method of (1), comprising:
Figure 865330DEST_PATH_IMAGE028
wherein,
Figure 369124DEST_PATH_IMAGE030
the expected value of the rotating speed of the motor is obtained;
Figure 795426DEST_PATH_IMAGE006
is the identification value of the neural network MRAS speed identification method.
CN2010102963119A 2010-09-29 2010-09-29 Fuzzy fusion identification method of rotating speed of sensorless motor Expired - Fee Related CN101938246B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2010102963119A CN101938246B (en) 2010-09-29 2010-09-29 Fuzzy fusion identification method of rotating speed of sensorless motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2010102963119A CN101938246B (en) 2010-09-29 2010-09-29 Fuzzy fusion identification method of rotating speed of sensorless motor

Publications (2)

Publication Number Publication Date
CN101938246A CN101938246A (en) 2011-01-05
CN101938246B true CN101938246B (en) 2012-07-04

Family

ID=43391412

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2010102963119A Expired - Fee Related CN101938246B (en) 2010-09-29 2010-09-29 Fuzzy fusion identification method of rotating speed of sensorless motor

Country Status (1)

Country Link
CN (1) CN101938246B (en)

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI399563B (en) 2010-03-16 2013-06-21 Univ Nat Cheng Kung System and method for estimating torque and rotation speed
EP2421145B1 (en) * 2010-08-16 2015-02-11 Baumüller Nürnberg GmbH Apparatus and method for identifying equivalent circuit parameters of an alternating current asynchronous motor without using a rotary encoder
CN102589770A (en) * 2011-01-11 2012-07-18 成功大学 Motor torque and rotational speed estimation system and estimation method
CN102055402B (en) * 2011-01-17 2012-10-03 哈尔滨工业大学 Rotation speed and parameter simultaneous identification method of induction machine
CN102176653A (en) * 2011-01-19 2011-09-07 哈尔滨工业大学 Method for observing rotary speed of induction motor of Kalman filter with index fading factor
CN102208894B (en) * 2011-03-16 2013-04-03 浙江理工大学 Rotating speed evaluation method used for speed-sensorless induction motor vector controlling
CN102340278A (en) * 2011-09-30 2012-02-01 哈尔滨工业大学(威海) Estimation Method of Motor Stator Flux Linkage in Vector Frequency Converter
CN102437816B (en) * 2011-10-25 2014-05-07 武汉鑫通科创科技发展有限公司 Adaptive motor motion control apparatus based on neural network
CN102497156B (en) * 2011-12-27 2015-04-29 东南大学 Neural-network self-correcting control method of permanent magnet synchronous motor speed loop
CN102611382B (en) * 2012-02-21 2014-07-09 常州联力自动化科技有限公司 Online rotor resistance identification method of asynchronous motor
CN102710205B (en) * 2012-06-13 2016-05-25 深圳市汇川技术股份有限公司 The directed control system of asynchronous machine and method
CN102769425B (en) * 2012-07-16 2014-08-27 电子科技大学 Permanent magnet synchronous motor control method based on model reference adaptive system (MRAS) and fuzzy control
CN103259485B (en) * 2013-06-14 2015-04-22 重庆交通大学 Method of improving identification precision of speedless sensor under condition of unbalanced network voltage
CN103684178B (en) * 2013-12-17 2016-01-13 清华大学 A permanent magnet synchronous motor speed filtering device and filtering method
CN103746631B (en) * 2014-01-13 2016-03-30 上海应用技术学院 A kind of energy-saving control method of asynchronous machine
CN105337547A (en) * 2014-06-27 2016-02-17 上海电机学院 Rotation speed identification method of asynchronous motor speed sensor-free vector control system
CN104378038B (en) * 2014-11-18 2017-03-22 东华大学 Permanent magnet synchronous motor parameter identification method based on artificial neural network
CN104579088B (en) * 2014-12-25 2018-05-22 绵阳赛恩新能源科技有限公司 A kind of highly reliable electric drive motor control method
CN104811116B (en) * 2015-04-24 2017-07-14 上海新时达电气股份有限公司 A kind of asynchronous machine slip method of estimation and system
FR3062762B1 (en) * 2017-02-08 2020-08-07 Valeo Siemens Eautomotive France Sas METHOD FOR ESTIMATING THE ANGULAR POSITION OF A ROTOR OF AN ELECTRICAL DRIVE SYSTEM
CN109560740A (en) * 2018-11-28 2019-04-02 武汉理工大学 A kind of non-synchronous motor parameter identification method of model reference adaptive
CN111693289B (en) * 2020-06-15 2022-03-11 西安艾科特声学科技有限公司 Aircraft engine speed identification method and system
CN112081913B (en) * 2020-09-14 2021-09-24 中国一拖集团有限公司 AMT transmission variable parameter gear shifting process control method
CN112269131B (en) * 2020-12-21 2021-04-06 季华实验室 Velocity loop PI oscillation detection method, device, electronic device and storage medium
CN113131825B (en) * 2021-04-26 2022-07-26 湖南大学 A current predictive control method and system for a modular multi-winding permanent magnet motor
CN113556072B (en) * 2021-07-29 2022-11-04 西南大学 An online parameter identification method for ultra-high-speed motor
CN116979849B (en) * 2023-09-25 2024-01-26 江西五十铃汽车有限公司 Control method and system of permanent magnet synchronous motor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1393746A (en) * 2001-07-02 2003-01-29 李晓枫 Self-adaptive fuzzy controller for PID parameters
CN101582677A (en) * 2009-06-10 2009-11-18 重庆交通大学 Motor non-speed sensor control method for smoothly switching composite rotating speed identification
CN101630936A (en) * 2009-08-12 2010-01-20 江苏大学 Neural network inverse controller of brushless DC motor and construction method thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1393746A (en) * 2001-07-02 2003-01-29 李晓枫 Self-adaptive fuzzy controller for PID parameters
CN101582677A (en) * 2009-06-10 2009-11-18 重庆交通大学 Motor non-speed sensor control method for smoothly switching composite rotating speed identification
CN101630936A (en) * 2009-08-12 2010-01-20 江苏大学 Neural network inverse controller of brushless DC motor and construction method thereof

Also Published As

Publication number Publication date
CN101938246A (en) 2011-01-05

Similar Documents

Publication Publication Date Title
CN101938246B (en) Fuzzy fusion identification method of rotating speed of sensorless motor
CN110572091B (en) A Sensorless Control Method for Optimizing Permanent Magnet Synchronous Motors
CN109873586B (en) A method and system for mechanical parameter identification of motor based on high-order sliding mode observer
CN101582677B (en) Motor speed sensorless control method for smooth switching compound speed identification
CN102624320A (en) Electromotor dynamic/stable stage parameter identification method based on stator resistance observer
CN105680746A (en) Method for designing current of permanent-magnet synchronous motor and parameter of speed controller PI by using online particle swarm optimization algorithm
CN103259479B (en) A kind of permanent magnet synchronous electric machine neural network left inverse state observation method
CN106130426B (en) Based on EKF without sensor ultrahigh speed permanent magnet synchronous motor method for controlling number of revolution
CN109510539B (en) Model prediction flux linkage control system and method based on gain matrix
CN108599645A (en) Permanent magnet synchronous motor method for controlling position-less sensor based on sliding mode observer
CN109067274A (en) The integral sliding mode control method of PMSM Speed based on interference compensation
CN111510035A (en) A control method and device for a permanent magnet synchronous motor
CN111948947B (en) A nonlinear current simulation and robust control method for a motor simulator
CN104779873B (en) A kind of predictive functional control algorithm for PMSM servo-drive systems
CN104009696A (en) An interactive model reference adaptive speed and stator resistance identification method based on sliding mode control
CN108365785A (en) A kind of asynchronous machine repetition forecast Control Algorithm
CN110649851B (en) Multi-parameter decoupling online identification method for asynchronous motor
CN115001335B (en) Rotor suspension control method of bearingless flux switching motor based on neural network
US20240429845A1 (en) Parameter Identification Method for Synchronous Motor Based on Neural Network
CN109600083B (en) Two-degree-of-freedom bearingless permanent magnet synchronous motor suspension force subsystem decoupling controller
CN112904713B (en) High-precision strong-robustness control method of spatial motion servo mechanism
Zhu et al. Double vibration suppression of pmsm servo system based on strong tracking of reference trajectory
CN111371360B (en) A three-phase squirrel cage asynchronous motor control method based on anti-disturbance observer
CN113691179A (en) Permanent magnet synchronous motor sliding mode control method based on variable power exponent approach law of fixed time
CN113067506B (en) A Periodic Disturbance Suppression Method for Permanent Magnet Synchronous Motors with Internal Model Equivalent Input Disturbance

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20120704

Termination date: 20120929