CN101934233B - Preparation method of catalyst Cu-ZnO/HZSM-5 for directly synthesizing dimethyl ether by using synthesis gas - Google Patents
Preparation method of catalyst Cu-ZnO/HZSM-5 for directly synthesizing dimethyl ether by using synthesis gas Download PDFInfo
- Publication number
- CN101934233B CN101934233B CN2010102792365A CN201010279236A CN101934233B CN 101934233 B CN101934233 B CN 101934233B CN 2010102792365 A CN2010102792365 A CN 2010102792365A CN 201010279236 A CN201010279236 A CN 201010279236A CN 101934233 B CN101934233 B CN 101934233B
- Authority
- CN
- China
- Prior art keywords
- catalyst
- hzsm
- dimethyl ether
- reaction
- zno
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000003054 catalyst Substances 0.000 title claims abstract description 61
- LCGLNKUTAGEVQW-UHFFFAOYSA-N Dimethyl ether Chemical compound COC LCGLNKUTAGEVQW-UHFFFAOYSA-N 0.000 title claims abstract description 51
- 238000002360 preparation method Methods 0.000 title claims abstract description 24
- 230000015572 biosynthetic process Effects 0.000 title claims abstract description 20
- 238000003786 synthesis reaction Methods 0.000 title claims abstract description 19
- 230000002194 synthesizing effect Effects 0.000 title claims abstract description 5
- 238000006243 chemical reaction Methods 0.000 claims abstract description 47
- 238000000034 method Methods 0.000 claims abstract description 32
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 claims abstract description 14
- 229910002091 carbon monoxide Inorganic materials 0.000 claims abstract description 14
- 238000005984 hydrogenation reaction Methods 0.000 claims abstract description 13
- 239000002808 molecular sieve Substances 0.000 claims abstract description 10
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 claims abstract description 10
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 claims abstract description 9
- 239000004202 carbamide Substances 0.000 claims abstract description 9
- 239000002994 raw material Substances 0.000 claims abstract description 9
- 238000001556 precipitation Methods 0.000 claims abstract description 4
- 239000000126 substance Substances 0.000 claims abstract description 4
- 238000003756 stirring Methods 0.000 claims description 14
- 239000000725 suspension Substances 0.000 claims description 12
- ONDPHDOFVYQSGI-UHFFFAOYSA-N zinc nitrate Chemical compound [Zn+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O ONDPHDOFVYQSGI-UHFFFAOYSA-N 0.000 claims description 12
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 8
- XTVVROIMIGLXTD-UHFFFAOYSA-N copper(II) nitrate Chemical compound [Cu+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O XTVVROIMIGLXTD-UHFFFAOYSA-N 0.000 claims description 6
- 238000010438 heat treatment Methods 0.000 claims description 5
- 239000008367 deionised water Substances 0.000 claims description 4
- 229910021641 deionized water Inorganic materials 0.000 claims description 4
- 238000010992 reflux Methods 0.000 claims description 4
- XIOUDVJTOYVRTB-UHFFFAOYSA-N 1-(1-adamantyl)-3-aminothiourea Chemical compound C1C(C2)CC3CC2CC1(NC(=S)NN)C3 XIOUDVJTOYVRTB-UHFFFAOYSA-N 0.000 claims description 3
- 239000010949 copper Substances 0.000 claims description 3
- SXTLQDJHRPXDSB-UHFFFAOYSA-N copper;dinitrate;trihydrate Chemical compound O.O.O.[Cu+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O SXTLQDJHRPXDSB-UHFFFAOYSA-N 0.000 claims description 3
- 239000011701 zinc Substances 0.000 claims description 3
- JPVYNHNXODAKFH-UHFFFAOYSA-N Cu2+ Chemical compound [Cu+2] JPVYNHNXODAKFH-UHFFFAOYSA-N 0.000 claims description 2
- 229910001431 copper ion Inorganic materials 0.000 claims description 2
- 239000011258 core-shell material Substances 0.000 claims description 2
- 239000000463 material Substances 0.000 claims description 2
- 239000011259 mixed solution Substances 0.000 claims description 2
- 229910052725 zinc Inorganic materials 0.000 claims description 2
- 230000000694 effects Effects 0.000 abstract description 21
- 239000012535 impurity Substances 0.000 abstract description 4
- 239000006185 dispersion Substances 0.000 abstract description 3
- 150000002500 ions Chemical class 0.000 abstract description 3
- 239000002245 particle Substances 0.000 abstract description 3
- 239000012065 filter cake Substances 0.000 abstract description 2
- 150000002823 nitrates Chemical class 0.000 abstract description 2
- 238000005406 washing Methods 0.000 abstract description 2
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 39
- XLOMVQKBTHCTTD-UHFFFAOYSA-N zinc oxide Inorganic materials [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 28
- 239000011787 zinc oxide Substances 0.000 description 20
- 239000000047 product Substances 0.000 description 10
- 230000018044 dehydration Effects 0.000 description 9
- 238000006297 dehydration reaction Methods 0.000 description 9
- 239000000376 reactant Substances 0.000 description 9
- QPLDLSVMHZLSFG-UHFFFAOYSA-N Copper oxide Chemical compound [Cu]=O QPLDLSVMHZLSFG-UHFFFAOYSA-N 0.000 description 8
- 239000005751 Copper oxide Substances 0.000 description 8
- 229910000431 copper oxide Inorganic materials 0.000 description 8
- 238000011156 evaluation Methods 0.000 description 8
- 238000000975 co-precipitation Methods 0.000 description 4
- -1 HZSM-5 Chemical compound 0.000 description 3
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 3
- 238000005470 impregnation Methods 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- 229910002651 NO3 Inorganic materials 0.000 description 2
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 2
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 2
- 230000002378 acidificating effect Effects 0.000 description 2
- 238000002485 combustion reaction Methods 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000000446 fuel Substances 0.000 description 2
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 2
- 239000007791 liquid phase Substances 0.000 description 2
- 239000012071 phase Substances 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- 229910018134 Al-Mg Inorganic materials 0.000 description 1
- 239000005995 Aluminium silicate Substances 0.000 description 1
- 229910018467 Al—Mg Inorganic materials 0.000 description 1
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 1
- 239000002028 Biomass Substances 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- 229910017773 Cu-Zn-Al Inorganic materials 0.000 description 1
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- YKTSYUJCYHOUJP-UHFFFAOYSA-N [O--].[Al+3].[Al+3].[O-][Si]([O-])([O-])[O-] Chemical compound [O--].[Al+3].[Al+3].[O-][Si]([O-])([O-])[O-] YKTSYUJCYHOUJP-UHFFFAOYSA-N 0.000 description 1
- 239000000443 aerosol Substances 0.000 description 1
- 239000002386 air freshener Substances 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000008044 alkali metal hydroxides Chemical class 0.000 description 1
- 239000002168 alkylating agent Substances 0.000 description 1
- 229940100198 alkylating agent Drugs 0.000 description 1
- 235000012211 aluminium silicate Nutrition 0.000 description 1
- 239000013556 antirust agent Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 239000003344 environmental pollutant Substances 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000008266 hair spray Substances 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 239000002917 insecticide Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 231100000719 pollutant Toxicity 0.000 description 1
- 238000012805 post-processing Methods 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 239000003507 refrigerant Substances 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000011973 solid acid Substances 0.000 description 1
- 239000011949 solid catalyst Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-N sulfuric acid Substances OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- 239000002351 wastewater Substances 0.000 description 1
Landscapes
- Catalysts (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
本发明是一种合成气直接合成二甲醚的催化剂Cu-ZnO/HZSM-5的制备方法,以Cu(NO)2·3H2O、Zn(NO)2·6H2O、HZSM-5(Si/Al=22)分子筛为原料,采用化学均匀沉淀法制备而成。本发明所用原料为硝酸盐和尿素,廉价易得,反应中无任何杂质离子生成,无需进行繁琐的滤饼洗涤,经过高温焙烧可以获得颗粒均匀、分散良好的纯净催化剂,本发明工序简单,方法新颖,在一氧化碳直接加氢生成二甲醚的反应中,催化剂在220~240℃的低温下具有很高的活性和稳定性。 The invention is a preparation method of catalyst Cu - ZnO /HZSM-5 for directly synthesizing dimethyl ether from synthesis gas. Si/Al=22) molecular sieve is used as raw material and prepared by chemical homogeneous precipitation method. The raw materials used in the present invention are nitrates and urea, which are cheap and easy to obtain, and no impurity ions are generated in the reaction, and there is no need for cumbersome filter cake washing. After high-temperature roasting, a pure catalyst with uniform particles and good dispersion can be obtained. The process of the present invention is simple and the method Novel, in the reaction of direct hydrogenation of carbon monoxide to dimethyl ether, the catalyst has high activity and stability at a low temperature of 220-240 °C.
Description
技术领域 technical field
本发明涉及一种由合成气直接合成二甲醚的催化剂Cu-ZnO/HZSM-5的制备方法。 The invention relates to a preparation method of a catalyst Cu-ZnO/HZSM-5 for directly synthesizing dimethyl ether from synthesis gas.
背景技术 Background technique
二甲醚(分子式:CH3OCH3,分子量:46)是一种优良的溶剂,可用做杀虫剂、抛光剂、防锈剂、烷基化试剂,另外还可于气雾剂、发胶、空气清新剂、民用燃料等,由于二甲醚的十六烷值高(55~60)、燃烧性能好、燃烧时尾气污染小等,因此二甲醚作为柴油发动机的替代燃料具有突出的优点。同时,二甲醚还是一种很好的环境友好制冷剂,和传统的氟氯烃相比,它对臭氧层没有破坏、温室效应系数小,因此,二甲醚被誉为是21世纪的清洁能源。 Dimethyl ether (molecular formula: CH 3 OCH 3 , molecular weight: 46) is an excellent solvent, which can be used as insecticide, polishing agent, antirust agent, alkylating agent, and can also be used in aerosol, hair spray, Air fresheners, civil fuels, etc. Due to the high cetane number (55~60) of dimethyl ether, good combustion performance, and low exhaust pollution during combustion, dimethyl ether has outstanding advantages as an alternative fuel for diesel engines. At the same time, dimethyl ether is also a very good environment-friendly refrigerant. Compared with traditional chlorofluorocarbons, it has no damage to the ozone layer and has a small greenhouse effect coefficient. Therefore, dimethyl ether is known as a clean energy source in the 21st century. .
目前,二甲醚的制备主要有两条工艺,一条采用甲醇脱水工艺,甲醇脱水工艺又可以分为液相甲醇脱水和气相甲醇脱水: At present, there are two main processes for the preparation of dimethyl ether, one adopts the methanol dehydration process, and the methanol dehydration process can be divided into liquid phase methanol dehydration and gas phase methanol dehydration:
2CH3OH → CH3OCH3 + H2O 2CH 3 OH → CH 3 OCH 3 + H 2 O
传统的液相甲醇脱水采用浓硫酸作催化剂,具有反应温度低、转化率高等优点,但腐蚀严重,对设备要求高,而且残液及废水对环境污染严重,操作条件苛刻,产品后处理困难。目前该法已基本被淘汰。 The traditional liquid-phase methanol dehydration uses concentrated sulfuric acid as a catalyst, which has the advantages of low reaction temperature and high conversion rate, but it is severely corroded, requires high equipment, and the residual liquid and waste water seriously pollute the environment, operating conditions are harsh, and product post-processing is difficult. At present, this law has basically been eliminated.
气相甲醇脱水一般采用活性氧化铝或者硅酸铝等作为催化剂,将甲醇蒸汽通过固体催化剂,发生非均相反应生成二甲醚,反应温度一般在330~400℃、压力为15~20MPa,但是这种工艺的反应温度比较高,对反应装置的要求较苛刻。 Gas-phase methanol dehydration generally uses activated alumina or aluminum silicate as a catalyst. Methanol vapor passes through a solid catalyst, and a heterogeneous reaction occurs to generate dimethyl ether. The reaction temperature is generally 330~400°C and the pressure is 15~20MPa, but this The reaction temperature of this process is relatively high, and the requirements for the reaction device are relatively strict.
制备二甲醚的另外一条生产工艺是采用合成气(CO/H2)直接合成。该工艺在双功能催化剂作用下,在一个反应器中由合成气直接制取二甲醚。相对而言,这种方法由于在热力学上有利和经济上合理,越来越受到工业界的关注,一步法工艺的主要反应过程如下: Another production process for the preparation of DME is the direct synthesis of synthesis gas (CO/H 2 ). The process uses a dual-functional catalyst to directly produce dimethyl ether from synthesis gas in a reactor. Relatively speaking, this method has attracted more and more attention from the industry because it is thermodynamically favorable and economically reasonable. The main reaction process of the one-step process is as follows:
4H2 + 2CO → 2CH3OH 4H 2 + 2CO → 2CH 3 OH
2CH3OH → CH3OCH3 + H2O 2CH 3 OH → CH 3 OCH 3 + H 2 O
CO + H2O → CO2 + H2 CO + H 2 O → CO 2 + H 2
由此可见,由合成气一步法合成二甲醚需要一种同时具有一氧化碳加氢和甲醇脱水的双功能催化剂,其中,合成甲醇的催化剂主要为铜基催化剂,而催化甲醇脱水的催化剂主要有γ-氧化铝、HZSM-5、高岭土等固体酸。 It can be seen that the one-step synthesis of DME from synthesis gas requires a dual-functional catalyst capable of hydrogenation of carbon monoxide and dehydration of methanol. Among them, the catalyst for methanol synthesis is mainly copper-based catalysts, and the catalyst for methanol dehydration is mainly γ - Alumina, HZSM-5, kaolin and other solid acids.
中国发明专利ZL98107687.4中采用共沉淀浸渍法制备CuMnMx/载体(Mx为V、Cr、Fe、Co、Ni、Zn、W或Mo中的一种或两种,载体为Al2O3、ZrO2、MgO、SiO2或分子筛中的一种或两种组合)催化剂,在H2/CO=3/2(体积比)、压力为2.0MPa 、反应温度为250~270℃以及空速1500h-1的条件下,CO转化率为43~65%。中国发明专利ZL200410052571.6中先以乙醇为溶剂、草酸盐为沉淀剂制备甲醇合成催化剂,再与HZSM-5型分子筛机械混合制得二甲醚合成催化剂,以配氢生物质气为原料,在压力为3.0~3.5MPa、反应温度为239~284℃、空速为2000~3000h-1的条件下,CO转化率为53.8~76.9%。中国发明专利ZL200710185215.5中通过组成为Cu-Zn-Al(O)的甲醇合成催化剂和γ-氧化铝、HZSM-5等甲醇脱水催化剂机械混合制备二甲醚催化剂,在H2/CO=1(体积比)、压力为4.0MPa、反应温度为280℃下CO转化率为16.21~40.07%。中国发明专利申请200710139634.5中采用Cu-Mn-Zn/商品分子筛为二甲醚催化剂,在H2/CO=1.0(体积比)、压力为4.0MPa、反应温度为280℃下CO转化率为10.92~19.97%,二甲醚选择性为60.1~80.9%。中国发明专利申请200810202609.1将酸性改性高岭土与铜基催化剂混合制备而成的催化剂,在H2/CO=1(体积比)、压力为3.0MPa、反应温度为240~290℃下CO转化率为40~60%。中国发明专利申请200810046592.5以碱金属盐为沉淀剂,采用共沉淀浸渍法制备Cu-Zn-Al-Mg(O)-γ-Al2O3,在H2/CO=1.5~2.5(体积比)、压力为4.0~6.0MPa、反应温度为275~285℃下CO转化率为80%左右,CO2选择性高达28.53%。 In Chinese invention patent ZL98107687.4, CuMnMx/carrier is prepared by co-precipitation impregnation method (Mx is one or two of V, Cr, Fe, Co, Ni, Zn, W or Mo, and the carrier is Al 2 O 3 , ZrO 2. One or a combination of MgO, SiO 2 or molecular sieves) catalyst, under H 2 /CO=3/2 (volume ratio), pressure 2.0MPa, reaction temperature 250~270℃ and space velocity 1500h - Under the condition of 1 , the conversion rate of CO is 43-65%. In the Chinese invention patent ZL200410052571.6, methanol synthesis catalyst is first prepared by using ethanol as solvent and oxalate as precipitant, and then mechanically mixed with HZSM-5 molecular sieve to obtain dimethyl ether synthesis catalyst, using hydrogen-combined biomass gas as raw material, Under the conditions of pressure 3.0~3.5MPa, reaction temperature 239~284℃, and space velocity 2000~3000h -1 , the conversion rate of CO is 53.8~76.9%. In Chinese invention patent ZL200710185215.5, a dimethyl ether catalyst is prepared by mechanically mixing a methanol synthesis catalyst composed of Cu-Zn-Al(O) and a methanol dehydration catalyst such as γ-alumina and HZSM-5, at H 2 /CO=1 (volume ratio), the pressure is 4.0MPa, and the reaction temperature is 280°C, the conversion rate of CO is 16.21~40.07%. In the Chinese invention patent application 200710139634.5, Cu-Mn-Zn/commercial molecular sieve is used as the dimethyl ether catalyst, and the conversion rate of CO is 10.92~ 19.97%, and the selectivity of dimethyl ether is 60.1~80.9%. Chinese invention patent application 200810202609.1 is a catalyst prepared by mixing acidic modified kaolin with a copper-based catalyst. The CO conversion rate is 40~60%. Chinese invention patent application 200810046592.5 uses alkali metal salt as a precipitant, and prepares Cu-Zn-Al-Mg(O)-γ-Al 2 O 3 by co-precipitation and impregnation method, at H 2 /CO=1.5~2.5 (volume ratio) , the pressure is 4.0~6.0MPa, and the reaction temperature is 275~285℃, the CO conversion rate is about 80%, and the CO 2 selectivity is as high as 28.53%.
由此可见,目前普遍采用共沉淀浸渍法或机械混合法制备二甲醚合成催化剂,所用原料为硝酸盐或醋酸盐,沉淀剂多为碱金属的氢氧化物、碳酸盐或草酸盐。所制催化剂均匀性和分散性不够高,且存在杂质离子的影响等问题,因此,所制备的催化剂活性有限,对反应条件的要求苛刻。如:上述专利中由合成气直接合成二甲醚反应的压力大多为4.0MPa以上,反应温度一般高于250℃,最佳工作温度在280℃以上甚至更高,反应中一氧化碳的转化率低、二甲醚的收率低。 It can be seen that the DME synthesis catalyst is generally prepared by coprecipitation impregnation method or mechanical mixing method. The raw material used is nitrate or acetate, and the precipitant is mostly alkali metal hydroxide, carbonate or oxalate. . The homogeneity and dispersion of the prepared catalyst are not high enough, and there are problems such as the influence of impurity ions. Therefore, the activity of the prepared catalyst is limited and the requirements for the reaction conditions are harsh. For example: in the above-mentioned patents, the pressure of direct synthesis of dimethyl ether from synthesis gas is mostly above 4.0MPa, the reaction temperature is generally higher than 250°C, the optimum working temperature is above 280°C or even higher, and the conversion rate of carbon monoxide in the reaction is low, The yield of dimethyl ether is low.
发明内容 Contents of the invention
本发明的目的是提供一种高活性、高选择性和高稳定性的合成气直接合成二甲醚的催化剂的制备方法。在该制备方法中,原料价廉易得、流程简单明了、无任何污染物排放,非常易于大规模工业化生产的推广。 The purpose of the present invention is to provide a method for preparing a catalyst for the direct synthesis of dimethyl ether from synthesis gas with high activity, high selectivity and high stability. In the preparation method, the raw materials are cheap and easy to obtain, the process is simple and clear, and there is no discharge of any pollutants, which is very easy to promote large-scale industrial production.
为了克服传统催化剂及制备方法的许多不足,本发明作出了以下改良和创新: In order to overcome many deficiencies of traditional catalysts and preparation methods, the present invention has made the following improvements and innovations:
1、摈弃传统的共沉淀法,采用别具一格的化学均匀沉淀法制备催化剂,目的是简化制备流程,同时可以获得高分散、高活性催化剂; 1. Abandon the traditional co-precipitation method, and adopt a unique chemical uniform precipitation method to prepare catalysts. The purpose is to simplify the preparation process and obtain highly dispersed and highly active catalysts;
2、选择硝酸盐(而非有机盐)为前驱体,目的是为了降低原料成本和减少环境污染; 2. Choose nitrate (rather than organic salt) as the precursor, the purpose is to reduce the cost of raw materials and reduce environmental pollution;
3、选择尿素为缓慢沉淀剂,目的是热分解温度较低且不会产生杂质; 3. Urea is selected as the slow precipitant, the purpose is that the thermal decomposition temperature is low and no impurities will be produced;
4、采用了连续加热回流的敞开体系(而非传统高压反应釜的密闭体系)以及高度稀释的反应溶液,目的是为了减少金属氨络离子的形成,减少催化剂制备过程的浪费和损失; 4. The open system of continuous heating and reflux (instead of the closed system of the traditional high-pressure reactor) and highly diluted reaction solution are adopted, the purpose is to reduce the formation of metal ammonium ions and reduce the waste and loss of the catalyst preparation process;
5、采用酸性较强的HZSM-5(Si/Al=22)分子筛为载体,促进化学反应过程正向进行,增大目标产物DME的选择性。 5. Use the highly acidic HZSM-5 (Si/Al=22) molecular sieve as the carrier to promote the forward progress of the chemical reaction process and increase the selectivity of the target product DME.
本发明提供的是一种合成气直接合成二甲醚的催化剂Cu-ZnO/HZSM-5的制备方法,是以Cu(NO)2·3H2O、Zn(NO)2·6H2O、HZSM-5(Si/Al=22)分子筛为原料,采用化学均匀沉淀法制备而成,步骤如下: The present invention provides a method for preparing a catalyst Cu- ZnO /HZSM-5 for directly synthesizing dimethyl ether from synthesis gas. -5 (Si/Al=22) molecular sieve is used as raw material, prepared by chemical uniform precipitation method, the steps are as follows:
(1) 称取一定量的三水合硝酸铜和六水合硝酸锌,控制硝酸铜与硝酸锌的摩尔比为1:1~20:1,加入一定量的水,搅拌溶解,控制水与铜离子的摩尔比为1700:1; (1) Weigh a certain amount of copper nitrate trihydrate and zinc nitrate hexahydrate, control the molar ratio of copper nitrate and zinc nitrate to 1:1~20:1, add a certain amount of water, stir to dissolve, and control the water and copper ions The molar ratio is 1700:1;
(2) 称取一定量的尿素加入到上述混合溶液中,搅拌溶解,控制尿素与硝酸铜加硝酸锌的摩尔比为2:1~4:1; (2) Weigh a certain amount of urea and add it to the above mixed solution, stir and dissolve, and control the molar ratio of urea to copper nitrate plus zinc nitrate to be 2:1~4:1;
(3) 再加入一定量的HZSM-5(Si/Al=22),并剧烈搅拌使之形成均一的悬浊液,控制HZSM-5分子筛与硝酸铜加硝酸锌的质量之比为1:10~10:1; (3) Then add a certain amount of HZSM-5 (Si/Al=22), and stir vigorously to form a uniform suspension, and control the mass ratio of HZSM-5 molecular sieve to copper nitrate plus zinc nitrate to 1:10 ~10:1;
(4) 将上述悬浊液转入到三颈烧瓶中,继续剧烈搅拌30分钟; (4) Transfer the above suspension into a three-necked flask and continue stirring vigorously for 30 minutes;
(5) 将三颈烧瓶放置于油浴锅内,加热至90~100摄氏度,搅拌、回流15~20小时; (5) Place the three-necked flask in an oil bath, heat to 90-100 degrees Celsius, stir and reflux for 15-20 hours;
(6) 待悬浊液PH达到7.0左右,停止加热,将悬浊液立即冷却至室温,经减压抽滤、用200毫升去离子水洗涤后,再转入80摄氏度烘箱干燥24小时; (6) When the pH of the suspension reaches about 7.0, stop heating, immediately cool the suspension to room temperature, filter under reduced pressure, wash with 200 ml of deionized water, and then transfer to an oven at 80 degrees Celsius to dry for 24 hours;
(7) 将干燥后的物质放入马弗炉中,以2摄氏度/分钟升温至350摄氏度并焙烧4小时。获得高活性的核壳状Cu-ZnO(壳)/HZSM-5(核)催化剂。 (7) Put the dried material into a muffle furnace, raise the temperature to 350 degrees Celsius at 2 degrees Celsius/min and bake for 4 hours. A highly active core-shell Cu-ZnO (shell)/HZSM-5 (core) catalyst was obtained.
本发明制备的Cu-ZnO/HZSM-5催化剂,用于一氧化碳直接加氢合成二甲醚的反应中,在反应压力为2.0MPa,温度在220~280℃之间,反应空速1500 h-1和H2/CO=2(体积比)的条件下,CO转化率最高可达90.9%。 The Cu-ZnO/HZSM-5 catalyst prepared by the present invention is used in the reaction of direct hydrogenation of carbon monoxide to synthesize dimethyl ether. The reaction pressure is 2.0 MPa, the temperature is between 220 and 280 ° C, and the reaction space velocity is 1500 h -1 Under the condition of H 2 /CO=2 (volume ratio), the conversion rate of CO can reach up to 90.9%.
本发明所用原料为硝酸盐和尿素,廉价易得,反应中无任何杂质离子生成,无需进行繁琐的滤饼洗涤,经过高温焙烧可以获得颗粒均匀、分散良好的纯净催化剂,本发明工序简单,方法新颖,在一氧化碳直接加氢生成二甲醚的反应中,催化剂在220~240℃的低温下具有很高的活性和稳定性。 The raw materials used in the present invention are nitrates and urea, which are cheap and easy to obtain, and no impurity ions are generated in the reaction, and there is no need for cumbersome filter cake washing. After high-temperature roasting, a pure catalyst with uniform particles and good dispersion can be obtained. The process of the present invention is simple and the method Novel, in the reaction of direct hydrogenation of carbon monoxide to dimethyl ether, the catalyst has high activity and stability at a low temperature of 220-240 °C.
具体实施方式 Detailed ways
本发明将参照下列实施例进一步描述: The present invention will be further described with reference to the following examples:
实施例 1 Example 1
称取9.418克三水合硝酸铜和5.801克六水合硝酸锌于烧杯中,加入1200毫升去离子水,搅拌溶解,再称取8.784克尿素加入到上述混合液中,待尿素溶解后,加入4.690克HZSM-5分子筛,并剧烈搅拌使之形成均一的悬浊液,将上述悬浊液转入三颈烧瓶中,继续搅拌30分钟,将三颈烧瓶放置于油浴锅内,于100摄氏度搅拌并回流加热15~20小时。待悬浊液PH达到7.0时,停止加热,将悬浊液立即冷却至室温,然后减压抽滤、用200毫升去离子水洗涤,再转入80摄氏度烘箱干燥24小时,将干燥后的物质放入马弗炉中,以2摄氏度/分钟升温至350摄氏度并焙烧4小时,获得(氧化铜+氧化锌)/HZSM-5重量比为1:1的Cu-ZnO/HZSM-5催化剂。 Weigh 9.418 grams of copper nitrate trihydrate and 5.801 grams of zinc nitrate hexahydrate in a beaker, add 1200 milliliters of deionized water, stir to dissolve, then weigh 8.784 grams of urea and add it to the above mixture. After the urea dissolves, add 4.690 grams of HZSM-5 molecular sieve, and vigorously stir to form a uniform suspension, transfer the above suspension into a three-necked flask, continue to stir for 30 minutes, place the three-necked flask in an oil bath, stir at 100 degrees Celsius and Heating at reflux for 15-20 hours. When the pH of the suspension reaches 7.0, stop heating, immediately cool the suspension to room temperature, then filter under reduced pressure, wash with 200 ml of deionized water, and then dry in an oven at 80 degrees Celsius for 24 hours. Put it into a muffle furnace, raise the temperature to 350 degrees Celsius at 2 degrees Celsius/minute and bake it for 4 hours to obtain a Cu-ZnO/HZSM-5 catalyst with a weight ratio of (copper oxide + zinc oxide)/HZSM-5 of 1:1.
称取用上述方法制备的、粒径为20~40目的催化剂2克,在固定床反应器中进行一氧化碳加氢活性评价。反应条件:H2/CO=2(体积比),压力2 MPa,反应温度220~280℃,反应物空速1500h-1。不同温度下的反应物的转化率和产物的选择性如表1所示: Weigh 2 grams of the catalyst prepared by the above method with a particle size of 20-40 mesh, and evaluate the hydrogenation activity of carbon monoxide in a fixed-bed reactor. Reaction conditions: H 2 /CO=2 (volume ratio), pressure 2 MPa, reaction temperature 220~280°C, reactant space velocity 1500h -1 . The conversion rate of reactant under different temperatures and the selectivity of product are as shown in table 1:
表1 实施方式1催化剂的活性评价结果 Table 1 The activity evaluation result of the catalyst of embodiment 1
实施例2 Example 2
参照实施例1的制备方法和步骤,不同的是HZSM-5的量为3.126克。获得(氧化铜+氧化锌)/HZSM-5重量比为1.5:1的Cu-ZnO/HZSM-5催化剂。 Referring to the preparation method and steps of Example 1, the difference is that the amount of HZSM-5 is 3.126 grams. A Cu-ZnO/HZSM-5 catalyst with a (copper oxide+zinc oxide)/HZSM-5 weight ratio of 1.5:1 was obtained.
通过同样的方法和条件对催化剂的一氧化碳加氢活性进行了评价。不同温度下的反应物的转化率和产物的选择性如表2所示: The carbon monoxide hydrogenation activity of the catalyst was evaluated by the same method and conditions. The conversion rate of reactant under different temperatures and the selectivity of product are as shown in table 2:
表2 实施方式2催化剂的活性评价结果 Table 2 The activity evaluation result of the catalyst of embodiment 2
实施例3 Example 3
参照实施例1的制备方法和步骤,不同的是HZSM-5的量为2.680克。获得(氧化铜+氧化锌)/HZSM-5重量比为1.75:1的Cu-ZnO/HZSM-5催化剂。 Referring to the preparation method and steps of Example 1, the difference is that the amount of HZSM-5 is 2.680 grams. A Cu-ZnO/HZSM-5 catalyst with a (copper oxide+zinc oxide)/HZSM-5 weight ratio of 1.75:1 was obtained.
通过同样的方法和条件对催化剂的一氧化碳加氢活性进行了评价。不同温度下的反应物的转化率和产物的选择性如表3所示: The carbon monoxide hydrogenation activity of the catalyst was evaluated by the same method and conditions. The conversion rate of reactant under different temperatures and the selectivity of product are as shown in table 3:
表3 实施方式3催化剂的活性评价结果 Table 3 The activity evaluation result of the catalyst of embodiment 3
实施例4 Example 4
参照实施例1的制备方法和步骤,不同的是HZSM-5的量为2.345克。获得(氧化铜+氧化锌)/HZSM-5重量比为2:1的Cu-ZnO/HZSM-5催化剂。 Referring to the preparation method and steps of Example 1, the difference is that the amount of HZSM-5 is 2.345 grams. A Cu-ZnO/HZSM-5 catalyst with a (copper oxide+zinc oxide)/HZSM-5 weight ratio of 2:1 was obtained.
通过同样的方法和条件对催化剂的一氧化碳加氢活性进行了评价。不同温度下的反应物的转化率和产物的选择性如表4所示: The carbon monoxide hydrogenation activity of the catalyst was evaluated by the same method and conditions. The conversion rate of reactant under different temperatures and the selectivity of product are as shown in table 4:
表4 实施方式4催化剂的活性评价结果 Table 4 The activity evaluation result of the catalyst of embodiment 4
实施例5 Example 5
参照实施例1的制备方法和步骤,不同的是HZSM-5的量为1.876克。获得(氧化铜+氧化锌)/HZSM-5重量比为2.5:1的Cu-ZnO/HZSM-5催化剂。 Referring to the preparation method and steps of Example 1, the difference is that the amount of HZSM-5 is 1.876 grams. A Cu-ZnO/HZSM-5 catalyst with a (copper oxide+zinc oxide)/HZSM-5 weight ratio of 2.5:1 was obtained.
通过同样的方法和条件对催化剂的一氧化碳加氢活性进行了评价。不同温度下的反应物的转化率和产物的选择性如表5所示: The carbon monoxide hydrogenation activity of the catalyst was evaluated by the same method and conditions. The conversion rate of reactant under different temperatures and the selectivity of product are as shown in table 5:
表5实施方式5催化剂的活性评价结果 The activity evaluation result of table 5 embodiment 5 catalyst
实施例6 Example 6
参照实施例2的制备方法和步骤,不同的是油浴温度调整为95摄氏度。获得(氧化铜+氧化锌)/HZSM-5重量比为1.5:1的Cu-ZnO/HZSM-5催化剂。 Referring to the preparation method and steps of Example 2, the difference is that the temperature of the oil bath is adjusted to 95 degrees Celsius. A Cu-ZnO/HZSM-5 catalyst with a (copper oxide+zinc oxide)/HZSM-5 weight ratio of 1.5:1 was obtained.
通过同样的方法和条件对催化剂的一氧化碳加氢活性进行了评价。不同温度下的反应物的转化率和产物的选择性如表6所示: The carbon monoxide hydrogenation activity of the catalyst was evaluated by the same method and conditions. The conversion rate of reactant under different temperatures and the selectivity of product are as shown in table 6:
表6实施方式6催化剂的活性评价结果 The activity evaluation result of table 6 embodiment 6 catalyst
实施例7 Example 7
参照实施例3的制备方法和步骤,不同的是油浴温度调整为95摄氏度。获得(氧化铜+氧化锌)/HZSM-5重量比为1.75:1的Cu-ZnO/HZSM-5催化剂。 Referring to the preparation method and steps of Example 3, the difference is that the temperature of the oil bath is adjusted to 95 degrees Celsius. A Cu-ZnO/HZSM-5 catalyst with a (copper oxide+zinc oxide)/HZSM-5 weight ratio of 1.75:1 was obtained.
通过同样的方法和条件对催化剂的一氧化碳加氢活性进行了评价。不同温度下的反应物的转化率和产物的选择性如表7所示: The carbon monoxide hydrogenation activity of the catalyst was evaluated by the same method and conditions. The conversion rate of reactant under different temperatures and the selectivity of product are as shown in table 7:
表7实施方式7催化剂的活性评价结果 The activity evaluation result of table 7 embodiment 7 catalyst
实施例8 Example 8
参照实施例4的制备方法和步骤,不同的是油浴温度调整为95摄氏度。获得(氧化铜+氧化锌)/HZSM-5重量比为2:1的Cu-ZnO/HZSM-5催化剂。 Referring to the preparation method and steps of Example 4, the difference is that the temperature of the oil bath is adjusted to 95 degrees Celsius. A Cu-ZnO/HZSM-5 catalyst with a (copper oxide+zinc oxide)/HZSM-5 weight ratio of 2:1 was obtained.
通过同样的方法和条件对催化剂的一氧化碳加氢活性进行了评价。不同温度下的反应物的转化率和产物的选择性如表8所示: The carbon monoxide hydrogenation activity of the catalyst was evaluated by the same method and conditions. The conversion rate of reactant under different temperatures and the selectivity of product are as shown in table 8:
表8实施方式8催化剂的活性评价结果 The activity evaluation result of table 8 embodiment 8 catalyst
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2010102792365A CN101934233B (en) | 2010-09-13 | 2010-09-13 | Preparation method of catalyst Cu-ZnO/HZSM-5 for directly synthesizing dimethyl ether by using synthesis gas |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2010102792365A CN101934233B (en) | 2010-09-13 | 2010-09-13 | Preparation method of catalyst Cu-ZnO/HZSM-5 for directly synthesizing dimethyl ether by using synthesis gas |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101934233A CN101934233A (en) | 2011-01-05 |
CN101934233B true CN101934233B (en) | 2011-12-07 |
Family
ID=43387944
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2010102792365A Expired - Fee Related CN101934233B (en) | 2010-09-13 | 2010-09-13 | Preparation method of catalyst Cu-ZnO/HZSM-5 for directly synthesizing dimethyl ether by using synthesis gas |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101934233B (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102698762B (en) * | 2012-05-22 | 2013-12-11 | 太原理工大学 | Method for preparing dimethyl ether (DME) catalyst from synthesis gas |
CN103910611A (en) * | 2013-01-09 | 2014-07-09 | 杨凯善 | Coal-based one-step synthesis method of dimethyl ether |
CN103212418B (en) * | 2013-04-25 | 2015-05-20 | 太原理工大学 | Dual-function catalyst for directly preparing dimethyl ether from synthesis gas and preparation method of dual-function catalyst |
GB201418475D0 (en) * | 2014-10-17 | 2014-12-03 | Johnson Matthey Plc | Catalyst and process |
CN108745277B (en) * | 2018-06-07 | 2021-03-09 | 天津鼎芯膜科技有限公司 | Three-dimensional assembly core-shell structure material and preparation method and application thereof |
CN110420658A (en) * | 2019-08-08 | 2019-11-08 | 中国科学院兰州化学物理研究所 | A kind of preparation and application of the bifunctional catalyst with core-shell structure |
CN110560153B (en) * | 2019-09-24 | 2021-08-17 | 东北大学 | A kind of aluminum shared metal-zeolite bifunctional catalyst and preparation method and application |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1142021C (en) * | 2000-08-11 | 2004-03-17 | 中国石油化工股份有限公司 | Catalyst for preparing dimethyl ether |
CN100553771C (en) * | 2005-06-22 | 2009-10-28 | 中国石油化工股份有限公司 | The catalyst that is used for direct preparation of dimethyl ether by using synthesis gas |
CN101722029A (en) * | 2008-10-30 | 2010-06-09 | 邹运湖 | Method for preparing catalyst for synthesizing dimethyl ether on fluidized bed |
-
2010
- 2010-09-13 CN CN2010102792365A patent/CN101934233B/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
CN101934233A (en) | 2011-01-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101934233B (en) | Preparation method of catalyst Cu-ZnO/HZSM-5 for directly synthesizing dimethyl ether by using synthesis gas | |
CN103433039B (en) | A kind of preparation method of acetic ester hydrogenation catalyst | |
CN102716744B (en) | Preparation method for synthesizing copper-based catalyst by sol-gel ammonia still process | |
CN103447059B (en) | Preparation method of acetate hydrogenation catalyst | |
CN101485983A (en) | Catalyst for hydrogen production from dimethyl ether-steam reforming and preparation method thereof | |
CN103480375A (en) | Carbon monoxide methanating catalyst and preparation method thereof | |
CN101850244B (en) | Preparation method of core-shell structure Al2O3-SiO2 solid acid catalyst | |
CN104549412A (en) | A kind of mesoporous metal oxide catalyst and preparation method for photocatalytic reduction of CO2 | |
CN101940934B (en) | Catalyst for producing dimethyl ether from synthetic gas and its preparation method and application | |
CN102600852B (en) | Catalyst for preparing dimethyl ether as well as preparation method and application thereof | |
CN110280261B (en) | Catalyst for directly synthesizing ethanol from synthesis gas and preparation method and application thereof | |
Zhang et al. | Conversion of biomass-derived levulinate esters to γ-valerolactone with a robust CuNi bimetallic catalyst | |
CN100548478C (en) | A kind of catalyst and method for making and application by the synthesis gas synthesizing methanol | |
CN102350355A (en) | Iron-based water gas transformation catalyst and preparation method thereof | |
CN101306370B (en) | Mixed oxide catalyst and use thereof in steam reforming bio-oil hydrogen making | |
CN101367041A (en) | Preparation of a solid base catalyst and its application in aldol condensation reaction | |
WO2012065326A1 (en) | Auxiliary-modified catalyst for producing methanol by catalytic hydrogenation of carbon dioxide and preparation thereof | |
CN103464157B (en) | A kind of preparation method of acetic ester hydrogenation catalyst | |
CN112121805A (en) | A kind of carbon dioxide hydrogenation catalyst to synthesize methanol and its preparation and application | |
CN105854859A (en) | Efficient bifunctional catalyst as well as preparation and application thereof | |
CN112221509A (en) | Preparation method of high-stability methanol synthesis catalyst | |
CN102688759B (en) | Catalyst for hydrogen production from methanol reforming as well as preparation method and application of catalyst | |
WO2023071244A1 (en) | Catalyst for synthesizing carbon dioxide into methanol, preparation method therefor, and use thereof | |
CN101934232B (en) | Preparation method of catalyst for direct synthesis of dimethyl ether from biomass gasification synthesis gas | |
CN112275304B (en) | Carbon-supported cobalt carbide catalyst containing auxiliary agent and preparation method and application thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20111207 Termination date: 20140913 |
|
EXPY | Termination of patent right or utility model |