CN101928156B - Ceramic substrate and manufacturing method thereof - Google Patents
Ceramic substrate and manufacturing method thereof Download PDFInfo
- Publication number
- CN101928156B CN101928156B CN2010101104512A CN201010110451A CN101928156B CN 101928156 B CN101928156 B CN 101928156B CN 2010101104512 A CN2010101104512 A CN 2010101104512A CN 201010110451 A CN201010110451 A CN 201010110451A CN 101928156 B CN101928156 B CN 101928156B
- Authority
- CN
- China
- Prior art keywords
- oxide
- buffer layer
- ceramic substrate
- parts
- weight
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000000919 ceramic Substances 0.000 title claims abstract description 152
- 239000000758 substrate Substances 0.000 title claims abstract description 104
- 238000004519 manufacturing process Methods 0.000 title abstract description 4
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 claims description 28
- YBMRDBCBODYGJE-UHFFFAOYSA-N germanium dioxide Chemical compound O=[Ge]=O YBMRDBCBODYGJE-UHFFFAOYSA-N 0.000 claims description 26
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 20
- 239000000203 mixture Substances 0.000 claims description 19
- 229910052814 silicon oxide Inorganic materials 0.000 claims description 19
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 18
- 230000003746 surface roughness Effects 0.000 claims description 18
- 229910052810 boron oxide Inorganic materials 0.000 claims description 16
- JKWMSGQKBLHBQQ-UHFFFAOYSA-N diboron trioxide Chemical compound O=BOB=O JKWMSGQKBLHBQQ-UHFFFAOYSA-N 0.000 claims description 16
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 claims description 16
- 229910001392 phosphorus oxide Inorganic materials 0.000 claims description 15
- VSAISIQCTGDGPU-UHFFFAOYSA-N tetraphosphorus hexaoxide Chemical compound O1P(O2)OP3OP1OP2O3 VSAISIQCTGDGPU-UHFFFAOYSA-N 0.000 claims description 15
- MCMNRKCIXSYSNV-UHFFFAOYSA-N ZrO2 Inorganic materials O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 claims description 13
- 229910000287 alkaline earth metal oxide Inorganic materials 0.000 claims description 13
- 229940119177 germanium dioxide Drugs 0.000 claims description 13
- MRELNEQAGSRDBK-UHFFFAOYSA-N lanthanum(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[La+3].[La+3] MRELNEQAGSRDBK-UHFFFAOYSA-N 0.000 claims description 13
- QGLKJKCYBOYXKC-UHFFFAOYSA-N nonaoxidotritungsten Chemical compound O=[W]1(=O)O[W](=O)(=O)O[W](=O)(=O)O1 QGLKJKCYBOYXKC-UHFFFAOYSA-N 0.000 claims description 13
- SIWVEOZUMHYXCS-UHFFFAOYSA-N oxo(oxoyttriooxy)yttrium Chemical compound O=[Y]O[Y]=O SIWVEOZUMHYXCS-UHFFFAOYSA-N 0.000 claims description 13
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 claims description 13
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 claims description 13
- 229910001887 tin oxide Inorganic materials 0.000 claims description 13
- 229910001930 tungsten oxide Inorganic materials 0.000 claims description 13
- 239000011787 zinc oxide Substances 0.000 claims description 10
- 239000004408 titanium dioxide Substances 0.000 claims description 5
- KZHJGOXRZJKJNY-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Si]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O KZHJGOXRZJKJNY-UHFFFAOYSA-N 0.000 claims description 4
- 229910052863 mullite Inorganic materials 0.000 claims description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 3
- 229910052581 Si3N4 Inorganic materials 0.000 claims description 3
- 239000010438 granite Substances 0.000 claims description 3
- 229910002804 graphite Inorganic materials 0.000 claims description 3
- 239000010439 graphite Substances 0.000 claims description 3
- 239000004579 marble Substances 0.000 claims description 3
- 238000004806 packaging method and process Methods 0.000 claims description 3
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 claims description 3
- 229910010271 silicon carbide Inorganic materials 0.000 claims description 3
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims description 3
- 239000010409 thin film Substances 0.000 claims description 3
- 238000000034 method Methods 0.000 abstract description 12
- 239000010410 layer Substances 0.000 description 74
- 238000002360 preparation method Methods 0.000 description 12
- 229910005793 GeO 2 Inorganic materials 0.000 description 9
- 229910006404 SnO 2 Inorganic materials 0.000 description 9
- 229910021193 La 2 O 3 Inorganic materials 0.000 description 8
- 229910052796 boron Inorganic materials 0.000 description 8
- 229910010293 ceramic material Inorganic materials 0.000 description 7
- 239000011521 glass Substances 0.000 description 7
- 238000000576 coating method Methods 0.000 description 6
- 239000010408 film Substances 0.000 description 6
- 239000004615 ingredient Substances 0.000 description 6
- 239000011248 coating agent Substances 0.000 description 5
- 238000000227 grinding Methods 0.000 description 5
- 229910052746 lanthanum Inorganic materials 0.000 description 5
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- 229910010413 TiO 2 Inorganic materials 0.000 description 3
- 239000005380 borophosphosilicate glass Substances 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 2
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 229910000464 lead oxide Inorganic materials 0.000 description 2
- HTUMBQDCCIXGCV-UHFFFAOYSA-N lead oxide Chemical compound [O-2].[Pb+2] HTUMBQDCCIXGCV-UHFFFAOYSA-N 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000010943 off-gassing Methods 0.000 description 2
- YEXPOXQUZXUXJW-UHFFFAOYSA-N oxolead Chemical compound [Pb]=O YEXPOXQUZXUXJW-UHFFFAOYSA-N 0.000 description 2
- 238000005498 polishing Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 230000035882 stress Effects 0.000 description 2
- 229910015902 Bi 2 O 3 Inorganic materials 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 229910000272 alkali metal oxide Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical group 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000003486 chemical etching Methods 0.000 description 1
- 239000008199 coating composition Substances 0.000 description 1
- 239000011247 coating layer Substances 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 239000003344 environmental pollutant Substances 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical group [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- BHEPBYXIRTUNPN-UHFFFAOYSA-N hydridophosphorus(.) (triplet) Chemical compound [PH] BHEPBYXIRTUNPN-UHFFFAOYSA-N 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000001465 metallisation Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000005693 optoelectronics Effects 0.000 description 1
- 231100000719 pollutant Toxicity 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000013557 residual solvent Substances 0.000 description 1
- 238000004439 roughness measurement Methods 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 230000008646 thermal stress Effects 0.000 description 1
- 239000002341 toxic gas Substances 0.000 description 1
Landscapes
- Compositions Of Oxide Ceramics (AREA)
Abstract
Description
技术领域 technical field
本发明涉及一种陶瓷基板,特别涉及一种具有平坦表面的陶瓷基板。The invention relates to a ceramic substrate, in particular to a ceramic substrate with a flat surface.
背景技术 Background technique
陶瓷材料因具有良好的机械、热传导及耐高温特性,尤其具有极佳的介电特性,近年来已广泛应用于通讯、计算机、医学、甚至军事用途。其中,以陶瓷材料所制成的陶瓷基板,进一步可应用到半导体、储存元件、发光二极管、及光电产品的制备工艺,例如在陶瓷基板表面加工制作各种微机电或是作为太阳能电池、发光二极管的承载基板,都为目前相当热门的应用之一。Ceramic materials have been widely used in communications, computers, medicine, and even military applications in recent years due to their good mechanical, thermal conductivity, and high temperature resistance, especially excellent dielectric properties. Among them, ceramic substrates made of ceramic materials can be further applied to the preparation process of semiconductors, storage elements, light-emitting diodes, and optoelectronic products, such as processing various micro-electromechanical devices on the surface of ceramic substrates or as solar cells, light-emitting diodes, etc. The carrier substrate is one of the very popular applications at present.
但是,传统陶瓷材料的缺点之一就是其表面粗糙度过高,表面会有许多大小不一的坑洞,这种现象会造成以陶瓷材料制成的陶瓷基板表面的平整度不佳,尤其,在陶瓷基板表面运用半导体制备工艺进行加工、或是在其上形成太阳能电池或发光二极管所需的膜层时,陶瓷基板高的表面平均粗糙度(roughness average)经常会导致制备工艺良率的大幅降低。However, one of the disadvantages of traditional ceramic materials is that their surface roughness is too high, and there will be many pits of different sizes on the surface. This phenomenon will cause poor flatness on the surface of ceramic substrates made of ceramic materials. In particular, When the surface of the ceramic substrate is processed by the semiconductor preparation process, or the film layer required for solar cells or light-emitting diodes is formed on it, the high surface roughness average of the ceramic substrate often leads to a significant decrease in the yield of the preparation process. reduce.
为了解决陶瓷基材表面粗糙度过高的问题,现行所采用的方法有:一般机械研磨法(mechanical polishing)、化学机械研磨法(chemical mechanicalplanarization、CMP)、化学蚀刻法、涂布式玻璃(spin-on glass)法、或是硼磷硅玻璃(Boron Phosphorous Silicated Glass、BPSG)高温重流法。一般来说,利用机械研磨法来提升陶瓷基材表面的平整度,由于陶瓷材料本身的关系,在机械研磨过程中又会产生新的坑洞;化学机械研磨法除了所使用的化学浆料相对基材本身而言相当昂贵,制备工艺复杂且不容易掌控,并且缺乏有效的化学机械研磨终点侦测系统,以及研磨过程易导入污染物;硼磷硅玻璃(BPSG)制备工艺所需的B2H6及PH3都为具有毒性的气体,且仅适用于金属化前的隔离;至于涂布式玻璃制备工艺,仅能提供局部(local)的平坦,且对于陶瓷基材的附着力(adhesive)不佳,此外尚有残余溶剂出气(outgassing)的问题。综上所述,已知的陶瓷基材平坦方法除了都需付出相当的成本外,并受限原始基板的热膨胀系数,无法与高温制备工艺兼容,在使用上与效能上,都具有一定程度上的限制。In order to solve the problem of excessive surface roughness of ceramic substrates, the currently used methods are: general mechanical polishing (mechanical polishing), chemical mechanical planarization (CMP), chemical etching, coated glass (spin -on glass) method, or boron phosphorosilicate glass (Boron Phosphorous Silicated Glass, BPSG) high temperature reflow method. Generally speaking, the mechanical grinding method is used to improve the flatness of the surface of the ceramic substrate. Due to the relationship between the ceramic material itself, new pits will be generated during the mechanical grinding process; the chemical mechanical grinding method, in addition to the chemical slurry used is relatively The substrate itself is quite expensive, the preparation process is complicated and difficult to control, and it lacks an effective chemical-mechanical grinding end point detection system, and the grinding process is easy to introduce pollutants; the B 2 required for the preparation process of borophosphosilicate glass (BPSG) Both H 6 and PH 3 are toxic gases, and are only suitable for isolation before metallization; as for the coating glass preparation process, it can only provide local flatness and adhesion to ceramic substrates. ) is not good, and there is still the problem of residual solvent outgassing (outgassing). To sum up, the known ceramic substrate flattening methods not only require considerable cost, but also are limited by the thermal expansion coefficient of the original substrate, and cannot be compatible with high-temperature preparation processes. limits.
为解决上述问题,玻化(Vitreous)物质被使用来作为某些陶瓷基材的涂层(或缓冲层),以改善陶瓷基材的表面性质(抗化学侵蚀性、不透液体与气体、较光滑,耐磨耗、及增加机械强度),进而增加其实用性及提高附加价值。而较高的制备工艺温度可使元件具有较佳的接合与较佳的电性表现,因此对陶瓷基材的热膨胀系数(coefficient of thermal expansion、CTE)要求也愈来愈高。举例来说,像是包含陶瓷基材的光学元件,若陶瓷基材具有较高热膨胀系数,则陶瓷基材与其它光学材料(玻璃或石英)的热膨胀系数差异会产生应力(造成变形或扭曲),导致原先设定的光学性质改变;此外,例如以陶瓷基材作为发光二极管(LED)或太阳能电池(solar cell)的承载基板时,过大的热膨胀系数差异将导致之后沉积于其上的膜层或元件产生翘曲或拱起的现象,另外其粗糙的表面,将会使元件发生失效的问题。In order to solve the above problems, vitrified (Vitreous) substances are used as coatings (or buffer layers) of certain ceramic substrates to improve the surface properties of ceramic substrates (chemical resistance, impervious to liquid and gas, relatively Smooth, wear-resistant, and increased mechanical strength), thereby increasing its practicality and increasing added value. A higher manufacturing process temperature can make the device have better bonding and better electrical performance, so the requirements for the coefficient of thermal expansion (coefficient of thermal expansion, CTE) of the ceramic substrate are also getting higher and higher. For example, optical components that include ceramic substrates, if the ceramic substrate has a high thermal expansion coefficient, the difference in thermal expansion coefficient between the ceramic substrate and other optical materials (glass or quartz) can cause stress (causing deformation or distortion) , resulting in a change in the optical properties originally set; in addition, when a ceramic substrate is used as a light-emitting diode (LED) or a solar cell (solar cell) carrier substrate, the excessive difference in thermal expansion coefficient will cause the film deposited on it later Layers or components produce warping or arching, and their rough surfaces will cause components to fail.
因此,设计出具有较低表面粗糙度及整体热膨胀系数较匹配的陶瓷基板,以解决上述问题,实为陶瓷材料技术上极需研究的重点。Therefore, designing a ceramic substrate with a lower surface roughness and a better overall thermal expansion coefficient to solve the above-mentioned problems is actually the focus of research in ceramic material technology.
发明内容 Contents of the invention
本发明的目的在于提供一种具有较低表面粗糙度且整体热膨胀系数较匹配的陶瓷基板。The purpose of the present invention is to provide a ceramic substrate with relatively low surface roughness and relatively matched overall thermal expansion coefficient.
综上所述,本发明提出一种陶瓷基板,其具有一陶瓷主体及一平坦缓冲层形成于其上,该平坦缓冲层可通过改变组成来调控其热膨胀系数以匹配具有较低的热膨胀系数的陶瓷主体。该陶瓷基板除了可通过该平坦缓冲层达到降低表面粗糙度的目的外,由于平坦缓冲层的热膨胀系数可被调控至接近后续膜层或元件的热膨胀系数,可以缓和因热膨胀系数的差异所的残留应力。此外,该平坦缓冲层同时可作为一阻障层,阻隔不纯物扩散至后续的膜层或元件。To sum up, the present invention proposes a ceramic substrate, which has a ceramic body and a flat buffer layer formed thereon, and the flat buffer layer can adjust its thermal expansion coefficient by changing its composition to match that of a substrate with a lower thermal expansion coefficient. Ceramic body. In addition to reducing the surface roughness of the ceramic substrate through the flat buffer layer, since the thermal expansion coefficient of the flat buffer layer can be adjusted to be close to the thermal expansion coefficient of the subsequent film layer or element, it can ease the residue caused by the difference in thermal expansion coefficient. stress. In addition, the flat buffer layer can also serve as a barrier layer to prevent impurities from diffusing to subsequent film layers or components.
本发明所述的陶瓷基板,包含一陶瓷主体;以及一平坦缓冲层(planar bufferlayer、PBL)配置于该陶瓷主体之上,其中该平坦缓冲层由以下成份组成:30-95重量份的氧化硅;1-40重量份的氧化铝;2-35重量份的氧化硼、氧化磷及碱土族氧化物;以及0.1-46重量份的二氧化锆(ZrO2)、氧化锌(ZnO)、二氧化钛(TiO2)、氧化钇(Y2O3)、氧化镧(La2O3)、氧化钨(WOx)、氧化锡(SnO2)及二氧化锗(GeO2),其中x为2或3;其中为了维持陶瓷基板的翘曲度<0.5%,该陶瓷主体的热膨胀系数CTEm与该平坦缓冲层的热膨胀系数CTEp符合关系式(1)The ceramic substrate of the present invention comprises a ceramic body; and a planar buffer layer (planar buffer layer, PBL) is disposed on the ceramic body, wherein the planar buffer layer is composed of the following components: 30-95 parts by weight of silicon oxide ; 1-40 parts by weight of alumina; 2-35 parts by weight of boron oxide, phosphorus oxide and alkaline earth oxides; and 0.1-46 parts by weight of zirconium dioxide (ZrO 2 ), zinc oxide (ZnO), titanium dioxide ( TiO 2 ), yttrium oxide (Y 2 O 3 ), lanthanum oxide (La 2 O 3 ), tungsten oxide (WO x ), tin oxide (SnO 2 ) and germanium dioxide (GeO 2 ), where x is 2 or 3 ; wherein in order to maintain the warpage of the ceramic substrate<0.5%, the coefficient of thermal expansion CTE m of the ceramic body and the coefficient of thermal expansion CTE p of the flat buffer layer conform to the relationship (1)
|CTEm-CTEp|≤3×10-6/℃ 关系式(1)。|CTE m -CTE p |≤3×10 -6 /°C Relational formula (1).
本发明的优点在于可针对具有较低热膨胀系数的陶瓷主体提供一可调控热膨胀系数的平坦缓冲层形成于其表面上,由于该平坦缓冲层可通过组成改变达到调控热膨胀系数的目的,因此本发明所述的平坦缓冲层具有的热膨胀系数小于7×10-6/℃,更甚者可介于2×10-6/℃至7×10-6/℃之间,非常适合该热膨胀系数不大于10×10-6/℃的陶瓷主体。此外,所形成的陶瓷基板非常适合应用于太阳能电池(solar cell)、发光二极管(light emitting diode)、IC封装、微机电、电子装置、或是薄膜晶体管。The advantage of the present invention is that it can provide a flat buffer layer with an adjustable thermal expansion coefficient to be formed on the surface of the ceramic body with a lower thermal expansion coefficient. Since the flat buffer layer can achieve the purpose of regulating the thermal expansion coefficient by changing the composition, the present invention The flat buffer layer has a coefficient of thermal expansion of less than 7×10 -6 /°C, more preferably between 2×10 -6 /°C and 7×10 -6 /°C, and it is very suitable that the coefficient of thermal expansion is not greater than 10×10 -6 /°C ceramic body. In addition, the formed ceramic substrate is very suitable for application in solar cells, light emitting diodes, IC packaging, micro-electromechanical systems, electronic devices, or thin film transistors.
以下通过数个实施例及比较实施例,以更进一步说明本发明的方法、特征及优点,但并非用来限制本发明的范围,本发明的范围应以所附的权利要求书的范围为基准。Through several examples and comparative examples below, to further illustrate the methods, features and advantages of the present invention, but not intended to limit the scope of the present invention, the scope of the present invention should be based on the scope of the appended claims .
具体实施方式 Detailed ways
本发明提供一陶瓷基板,通过改变涂层热膨胀系数,使之与承载元件具有相近的热膨胀系数,减缓陶瓷主体与后续薄膜之间热膨胀系数差异所产生的热应力,避免掉后续制备工艺产生的缺陷,故称之为平坦缓冲层(PBL),用以改善上述问题,可以适用于太阳能电池、发光二极管、IC封装、微机电、电子装置、或是薄膜晶体管。一般陶瓷主体的热膨胀系数通常较高,若涂层的热膨胀系数过低,两者易在结合的过程中,产生翘曲,经由实验与计算结果我们发现当|CTEm-CTEp|>3×10-6/℃,无论使用哪一种PBL材料,在不同厚度下,仍会造成基板的翘曲>0.5%,造成后续制备工艺的困扰,因此本发明深入研究此类陶瓷基板,提出最佳的实施结构。The invention provides a ceramic substrate. By changing the thermal expansion coefficient of the coating, the thermal expansion coefficient of the coating is similar to that of the bearing element, so as to slow down the thermal stress caused by the difference in the thermal expansion coefficient between the ceramic body and the subsequent film, and avoid the defects caused by the subsequent preparation process. , so it is called a planar buffer layer (PBL), which is used to improve the above problems, and can be applied to solar cells, light-emitting diodes, IC packaging, micro-electromechanical, electronic devices, or thin-film transistors. Generally, the thermal expansion coefficient of the ceramic body is usually high. If the thermal expansion coefficient of the coating is too low, the two will easily warp during the bonding process. Through experiments and calculation results, we found that when |CTE m -CTE p |>3× 10 -6 /°C, no matter which PBL material is used, the warpage of the substrate will still be greater than 0.5% under different thicknesses, which will cause troubles in the subsequent preparation process. implementation structure.
参照表1,是显示已知技术所公开可作为陶瓷主体的涂层组合物的热膨胀系数范围(4.9~9.0),其低热膨胀系数部份(<7.0),添加了碱金族、氧化铅或氧化铁,使之具有较低的软化温度,易于与陶瓷主体结合,而这类元素容易在高温的制备工艺中,扩散至后续薄膜中,造成元件效能衰减:Referring to Table 1, it shows the thermal expansion coefficient range (4.9~9.0) of the coating composition disclosed by the known technology as the ceramic main body, and its low thermal expansion coefficient part (<7.0) has added alkali metal group, lead oxide or Iron oxide, which has a low softening temperature, is easy to combine with the ceramic body, and this type of element is easy to diffuse into the subsequent film during the high-temperature preparation process, resulting in attenuation of component performance:
表1Table 1
已知作为陶瓷基材主体的涂层,当形成于热膨胀系数较低的陶瓷基材主体(例如热膨胀系数接近玻璃的陶瓷材料(CTE:2.6~3.3×10-6/℃))之上时,其热膨胀系数差值将对其后续应用产生隐患(扭曲、破裂、变形等问题)。It is known that when a coating layer of a ceramic substrate body is formed on a ceramic substrate body with a low thermal expansion coefficient (for example, a ceramic material with a thermal expansion coefficient close to glass (CTE: 2.6 to 3.3×10 -6 /°C)), The difference in its thermal expansion coefficient will cause hidden dangers (distortion, cracking, deformation, etc.) to its subsequent application.
本发明提供的一种陶瓷基板,包含:一陶瓷主体;以及一平坦缓冲层配置于该陶瓷主体之上,其中该陶瓷主体的热膨胀系数CTEm与该平坦缓冲层的热膨胀系数CTEp符合关系式(1)A ceramic substrate provided by the present invention includes: a ceramic body; and a flat buffer layer disposed on the ceramic body, wherein the coefficient of thermal expansion CTE m of the ceramic body and the coefficient of thermal expansion CTE p of the flat buffer layer conform to the relational expression (1)
|CTEm-CTEp|≤3×10-6/℃ 关系式(1);|CTE m -CTE p |≤3×10 -6 /℃ Relational formula (1);
其中该陶瓷基板的翘曲度<0.5%;该陶瓷主体的软化温度不小于800℃;该平坦缓冲层的软化温度不小于500℃。Wherein the warpage of the ceramic substrate is less than 0.5%; the softening temperature of the ceramic body is not less than 800°C; the softening temperature of the flat buffer layer is not less than 500°C.
本发明所述的陶瓷基板,包含:一平坦缓冲层(PBL)配置于该陶瓷主体之上。该平坦缓冲层由以下成份组成:30-95重量份的氧化硅;1-40重量份的氧化铝;以及2-35重量份的氧化硼、氧化磷及碱土族氧化物。上述的陶瓷基板的平坦缓冲层成份组成可更包括:0.1-46重量份的二氧化锆(ZrO2)、氧化锌(ZnO)、二氧化钛(TiO2)、氧化钇(Y2O3)、氧化镧(La2O3)、氧化钨(WOx)、氧化锡(SnO2)及二氧化锗(GeO2),其中x为2或3。其中该陶瓷主体的热膨胀系数CTEm与该平坦缓冲层的热膨胀系数CTEp符合关系式(1)The ceramic substrate of the present invention includes: a planar buffer layer (PBL) disposed on the ceramic body. The flat buffer layer is composed of the following components: 30-95 parts by weight of silicon oxide; 1-40 parts by weight of aluminum oxide; and 2-35 parts by weight of boron oxide, phosphorus oxide and alkaline earth oxides. The composition of the flat buffer layer of the above-mentioned ceramic substrate may further include: 0.1-46 parts by weight of zirconium dioxide (ZrO 2 ), zinc oxide (ZnO), titanium dioxide (TiO 2 ), yttrium oxide (Y 2 O 3 ), oxide Lanthanum (La 2 O 3 ), tungsten oxide (WO x ), tin oxide (SnO 2 ) and germanium dioxide (GeO 2 ), wherein x is 2 or 3. Wherein the coefficient of thermal expansion CTE m of the ceramic body and the coefficient of thermal expansion CTE p of the flat buffer layer conform to the relational formula (1)
|CTEm-CTEp|≤3×10-6/℃ 关系式(1)。|CTE m -CTE p |≤3×10 -6 /°C Relational formula (1).
该平坦缓冲层的厚度不大于200μm,较佳是介于5~150μm。值得注意的是,本发明所述的平坦缓冲层并不包含碱金族金属氧化物(例如:Na2O、或K2O),避免碱金族原子在处理过程中扩散(diffuse);此外,本发明所述的平坦缓冲层不包含氧化铅,以符合安全性的需求。而为了增加陶瓷基板的高温稳定性,因此平坦缓冲层的组成中2-35重量份的氧化硼、氧化磷及碱土族氧化物,当氧化硼与碱土族氧化物比例大于1.56时具有较高的软化温度,而当此比例小于1.56时,可适当添加二氧化锆(ZrO2)、氧化锌(ZnO)、二氧化钛(TiO2)、氧化钇(Y2O3)、氧化镧(La2O3)、氧化钨(WOx)、氧化锡(SnO2)及二氧化锗(GeO2)于成份之中,达到较高的软化温度。除此之外,也可以调整氧化硼与氧化硅的比例,当大于0.182时具有较高的软化温度,而当此比例小于0.182时,可适当添加二氧化锆(ZrO2)、氧化锌(ZnO)、二氧化钛(TiO2)、氧化钇(Y2O3)、氧化镧(La2O3)、氧化钨(WOx)、氧化锡(SnO2)及二氧化锗(GeO2)于成份之中,达到较高的软化温度。The thickness of the flat buffer layer is not greater than 200 μm, preferably between 5˜150 μm. It is worth noting that the planar buffer layer of the present invention does not contain alkali metal oxides (for example: Na 2 O, or K 2 O), so as to avoid diffusion of alkali gold atoms during processing; in addition , the flat buffer layer of the present invention does not contain lead oxide to meet the safety requirements. In order to increase the high-temperature stability of the ceramic substrate, boron oxide, phosphorus oxide and alkaline earth oxides of 2-35 parts by weight in the composition of the flat buffer layer have a higher softening temperature, and when this ratio is less than 1.56, zirconium dioxide (ZrO 2 ), zinc oxide (ZnO), titanium dioxide (TiO 2 ), yttrium oxide (Y 2 O 3 ), lanthanum oxide (La 2 O 3 ), tungsten oxide (WO x ), tin oxide (SnO 2 ) and germanium dioxide (GeO 2 ) are among the ingredients to achieve a higher softening temperature. In addition, the ratio of boron oxide to silicon oxide can also be adjusted. When it is greater than 0.182, it has a higher softening temperature. When the ratio is less than 0.182, zirconium dioxide (ZrO 2 ), zinc oxide (ZnO ), titanium dioxide (TiO 2 ), yttrium oxide (Y 2 O 3 ), lanthanum oxide (La 2 O 3 ), tungsten oxide (WO x ), tin oxide (SnO 2 ) and germanium dioxide (GeO 2 ) among the ingredients , reaching a higher softening temperature.
该陶瓷主体的热膨胀系数可不大于10×10-6/℃,该平坦缓冲层的热膨胀系数小于7×10-6/℃,更甚者介于2×10-6/℃~7×10-6/℃间,根据本发明其它实施例,该平坦缓冲层的热膨胀系数也可介于2×10-6/℃~4.8×10-6/℃,且具有平坦缓冲层覆盖的该陶瓷基板表面平均粗糙小于150nm。该陶瓷主体可包含石墨、氮化硅、碳化硅、氧化硅、氧化铝、富铝红柱石(mullite)、花岗石、大理石、或其混合,此外该平坦缓冲层所包含的氧化硅及氧化铝的总重量百分比W1与该陶瓷主体所包含的石墨、氮化硅、碳化硅、氧化硅、氧化铝、富铝红柱石(mullite)、花岗石、及大理石的总重量百分比W2符合关系式(2)The coefficient of thermal expansion of the ceramic main body may not be greater than 10×10 -6 /°C, and the coefficient of thermal expansion of the flat buffer layer is less than 7×10 -6 /°C, or even between 2×10 -6 /°C and 7×10 -6 /°C, according to other embodiments of the present invention, the thermal expansion coefficient of the flat buffer layer may also be between 2×10 -6 / °C and 4.8× 10 -6 /°C, and the surface of the ceramic substrate covered by the flat buffer layer has an average The roughness is less than 150nm. The ceramic body may include graphite, silicon nitride, silicon carbide, silicon oxide, aluminum oxide, mullite, granite, marble, or a mixture thereof, and the flat buffer layer includes silicon oxide and oxide The total weight percentage W1 of aluminum and the total weight percentage W2 of graphite, silicon nitride, silicon carbide, silicon oxide, aluminum oxide, mullite, granite, and marble contained in the ceramic body conform to the relational formula (2)
0.5≤W1/W2≤2 关系式(2)。0.5≤W1/W2≤2 Relational formula (2).
本发明所使用的陶瓷主体的软化温度(temperature of softening point)可不小于800℃,而该平坦缓冲层的软化温度可不小于500℃。The softening temperature of the ceramic body used in the present invention may not be less than 800°C, and the softening point of the flat buffer layer may not be less than 500°C.
本发明所述的陶瓷基板,其平坦缓冲层也可由以下成份组成:30-75重量份的氧化硅;5-40重量份的氧化铝;以及0.1-35重量份的氧化硼、氧化磷及碱土族氧化物。上述的陶瓷基板的平坦缓冲层成份组成可更包括:25-46重量份的二氧化锆、氧化锌、二氧化钛、氧化钇、氧化镧、氧化钨WOx、氧化锡及二氧化锗,其中x为2或3。该陶瓷基板的表面平均粗糙小于100nm。该平坦缓冲层的厚度不大于150μm。In the ceramic substrate of the present invention, the flat buffer layer can also be composed of the following components: 30-75 parts by weight of silicon oxide; 5-40 parts by weight of aluminum oxide; and 0.1-35 parts by weight of boron oxide, phosphorus oxide and alkaline earth family of oxides. The composition of the flat buffer layer of the above-mentioned ceramic substrate may further include: 25-46 parts by weight of zirconium dioxide, zinc oxide, titanium dioxide, yttrium oxide, lanthanum oxide, tungsten oxide WO x , tin oxide and germanium dioxide, where x is 2 or 3. The average surface roughness of the ceramic substrate is less than 100nm. The thickness of the flat buffer layer is not greater than 150 μm.
本发明所述的陶瓷基板,其平坦缓冲层也可由以下成份组成:76-95重量份的氧化硅;1-25重量份的氧化铝;以及4-35重量份的氧化硼、氧化磷及碱土族氧化物。上述的陶瓷基板的平坦缓冲层成份组成可更包括:0.1-40重量份的二氧化锆、氧化锌、二氧化钛、氧化钇、氧化镧、氧化钨WOx、氧化锡及二氧化锗,其中x为2或3。该陶瓷基板的表面平均粗糙小于100nm。其中该平坦缓冲层的厚度不大于150μm。In the ceramic substrate of the present invention, the flat buffer layer may also be composed of the following components: 76-95 parts by weight of silicon oxide; 1-25 parts by weight of aluminum oxide; and 4-35 parts by weight of boron oxide, phosphorus oxide and alkaline earth family of oxides. The composition of the flat buffer layer of the above-mentioned ceramic substrate may further include: 0.1-40 parts by weight of zirconium dioxide, zinc oxide, titanium dioxide, yttrium oxide, lanthanum oxide, tungsten oxide WO x , tin oxide and germanium dioxide, wherein x is 2 or 3. The average surface roughness of the ceramic substrate is less than 100nm. Wherein the thickness of the flat buffer layer is not greater than 150 μm.
本发明所述的陶瓷基板,其平坦缓冲层也可由以下成份组成:Ceramic substrate of the present invention, its flat buffer layer also can be made up of following composition:
30-85重量份的氧化硅;1-40重量份的氧化铝;以及2-30重量份的氧化硼、氧化磷及碱土族氧化物。上述的陶瓷基板的平坦缓冲层成份组成可更包括:0.1-50重量份的二氧化锆(ZrO2)、氧化锌(ZnO)、二氧化钛(TiO2)、氧化钇(Y2O3)、氧化镧(La2O3)、氧化钨(WOx)、氧化锡(SnO2)及二氧化锗(GeO2),其中x为2或3。30-85 parts by weight of silicon oxide; 1-40 parts by weight of aluminum oxide; and 2-30 parts by weight of boron oxide, phosphorus oxide and alkaline earth oxides. The composition of the flat buffer layer of the above-mentioned ceramic substrate may further include: 0.1-50 parts by weight of zirconium dioxide (ZrO 2 ), zinc oxide (ZnO), titanium dioxide (TiO 2 ), yttrium oxide (Y 2 O 3 ), oxide Lanthanum (La 2 O 3 ), tungsten oxide (WO x ), tin oxide (SnO 2 ) and germanium dioxide (GeO 2 ), where x is 2 or 3.
本发明所述的陶瓷基板,其平坦缓冲层也可由以下成份组成:Ceramic substrate of the present invention, its flat buffer layer also can be made up of following composition:
30-55重量份的氧化硅;8-30重量份的氧化铝;以及7-33重量份的氧化硼、氧化磷及碱土族氧化物。上述的陶瓷基板的平坦缓冲层成份组成可更包括:0.1-46重量份的二氧化锆(ZrO2)、氧化锌(ZnO)、二氧化钛(TiO2)、氧化钇(Y2O3)、氧化镧(La2O3)、氧化钨(WOx)、氧化锡(SnO2)及二氧化锗(GeO2),其中x为2或3。30-55 parts by weight of silicon oxide; 8-30 parts by weight of aluminum oxide; and 7-33 parts by weight of boron oxide, phosphorus oxide and alkaline earth oxides. The composition of the flat buffer layer of the above-mentioned ceramic substrate may further include: 0.1-46 parts by weight of zirconium dioxide (ZrO 2 ), zinc oxide (ZnO), titanium dioxide (TiO 2 ), yttrium oxide (Y 2 O 3 ), oxide Lanthanum (La 2 O 3 ), tungsten oxide (WO x ), tin oxide (SnO 2 ) and germanium dioxide (GeO 2 ), where x is 2 or 3.
根据本发明所述的陶瓷基板,其平坦缓冲层也可由以下成份组成:According to the ceramic substrate of the present invention, its flat buffer layer may also consist of the following components:
56-77重量份的氧化硅;10-30重量份的氧化铝;以及12-22重量份的氧化硼、氧化磷及碱土族氧化物。上述的陶瓷基板的平坦缓冲层成份组成可更包括:0.1-10重量份的二氧化锆(ZrO2)、氧化锌(ZnO)、二氧化钛(TiO2)、氧化钇(Y2O3)、氧化镧(La2O3)、氧化钨(WOx)、氧化锡(SnO2)及二氧化锗(GeO2),其中x为2或3。56-77 parts by weight of silicon oxide; 10-30 parts by weight of aluminum oxide; and 12-22 parts by weight of boron oxide, phosphorus oxide and alkaline earth oxides. The composition of the flat buffer layer of the above-mentioned ceramic substrate may further include: 0.1-10 parts by weight of zirconium dioxide (ZrO 2 ), zinc oxide (ZnO), titanium dioxide (TiO 2 ), yttrium oxide (Y 2 O 3 ), oxide Lanthanum (La 2 O 3 ), tungsten oxide (WO x ), tin oxide (SnO 2 ) and germanium dioxide (GeO 2 ), where x is 2 or 3.
此外,根据本发明其它较佳实施例所述的陶瓷基板,其平坦缓冲层由以下成份组成:In addition, according to the ceramic substrate described in other preferred embodiments of the present invention, the flat buffer layer is composed of the following components:
78-95重量份的氧化硅;1-10重量份的氧化铝;以及15-17重量份的氧化硼、氧化磷及碱土族氧化物。上述的陶瓷基板的平坦缓冲层成份组成可更包括:0.1-5重量份的二氧化锆(ZrO2)、氧化锌(ZnO)、二氧化钛(TiO2)、氧化钇(Y2O3)、氧化镧(La2O3)、氧化钨(WOx)、氧化锡(SnO2)及二氧化锗(GeO2),其中x为2或3。78-95 parts by weight of silicon oxide; 1-10 parts by weight of aluminum oxide; and 15-17 parts by weight of boron oxide, phosphorus oxide and alkaline earth oxides. The composition of the flat buffer layer of the above-mentioned ceramic substrate may further include: 0.1-5 parts by weight of zirconium dioxide (ZrO 2 ), zinc oxide (ZnO), titanium dioxide (TiO 2 ), yttrium oxide (Y 2 O 3 ), oxide Lanthanum (La 2 O 3 ), tungsten oxide (WO x ), tin oxide (SnO 2 ) and germanium dioxide (GeO 2 ), where x is 2 or 3.
以下,是列举数个实施例,说明符合本发明所述的平坦缓冲层及包含其的陶瓷基板。Hereinafter, several embodiments are listed to illustrate the planar buffer layer and the ceramic substrate comprising the same according to the present invention.
平坦缓冲层组合物的制备Preparation of Flat Buffer Layer Composition
实施例1Example 1
依表2所显示的各成份及组成,分别制备平坦缓冲层1-33(厚度20μm)。According to the ingredients and compositions shown in Table 2, planar buffer layers 1-33 (thickness 20 μm) were prepared respectively.
表2Table 2
平坦缓冲层性质测量Flat Buffer Property Measurements
实施例2Example 2
对实施例1所制备出的平坦缓冲层1-33测量其软化温度及其20℃至300℃之间温度范围的热膨胀系数(CTE),请参照表3:For the flat buffer layer 1-33 prepared in Example 1, measure its softening temperature and its coefficient of thermal expansion (CTE) in the temperature range between 20°C and 300°C, please refer to Table 3:
表3table 3
如表3所示,本发明实施例所得的平坦缓冲层可通过特定的组成来控制其热膨胀系数,且该等平坦缓冲层的软化温度都不小于550℃。As shown in Table 3, the thermal expansion coefficient of the flat buffer layer obtained in the embodiment of the present invention can be controlled by a specific composition, and the softening temperature of these flat buffer layers is not less than 550°C.
陶瓷基板的表面粗糙度测量Surface Roughness Measurement of Ceramic Substrates
实施例3Example 3
取一陶瓷基材,作为后续形成的陶瓷基板的陶瓷主体,所使用的陶瓷基材其性质请参照表4:Take a ceramic substrate as the ceramic body of the subsequent ceramic substrate. Please refer to Table 4 for the properties of the ceramic substrate used:
表4Table 4
接着,分别依据表1所述的平坦缓冲层组成1、5、7、10、16、21、26、32、及33,形成平坦缓冲层于陶瓷主体A或B之上,得到陶瓷基板1-10。最后,测量该陶瓷基板1-10的平均表面粗糙度(Ra)及翘曲度(warpage),结果请参照表5。Next, according to the flat buffer layer composition 1, 5, 7, 10, 16, 21, 26, 32, and 33 described in Table 1, a flat buffer layer is formed on the ceramic body A or B to obtain a ceramic substrate 1- 10. Finally, the average surface roughness (Ra) and warpage (warpage) of the ceramic substrates 1-10 were measured. Please refer to Table 5 for the results.
表5table 5
如表5可知,本发明所述的具有平坦缓冲层的陶瓷基板的平均表面粗糙度(Ra)较未形成有平坦缓冲层的陶瓷基材有明显的改善。此外,本发明所述的具有平坦缓冲层的陶瓷基板的平均表面粗糙度(Ra)较佳可小于100nm。As shown in Table 5, the average surface roughness (Ra) of the ceramic substrate with a flat buffer layer according to the present invention is significantly improved compared with the ceramic substrate without a flat buffer layer. In addition, the average surface roughness (Ra) of the ceramic substrate with a flat buffer layer according to the present invention is preferably less than 100 nm.
根据本发明其它较佳实施例,本发明所述的陶瓷基板适用的制备工艺温度>400℃,且整体的基板翘曲度<0.5%。此外,该平坦层的工作温度(与基板主体结合的温度)>600℃,且该平坦层的软化温度(后续镀膜或制备工艺的温度)>500℃。According to other preferred embodiments of the present invention, the applicable manufacturing process temperature of the ceramic substrate described in the present invention is >400° C., and the overall warpage of the substrate is <0.5%. In addition, the working temperature of the planar layer (the temperature combined with the main body of the substrate) is >600°C, and the softening temperature of the planar layer (the temperature of the subsequent coating or preparation process) is >500°C.
虽然本发明已以较佳实施例公开如上,然其并非用以限定本发明,任何熟悉此技艺者,在不脱离本发明的精神和范围内,当可作些许的更动与润饰,因此本发明的保护范围当视后附的权利要求书所界定的范围为基准。Although the present invention has been disclosed as above with preferred embodiments, it is not intended to limit the present invention. Anyone familiar with the art can make some changes and modifications without departing from the spirit and scope of the present invention. Therefore, this The scope of protection of the invention should be based on the scope defined by the appended claims.
Claims (12)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2010101104512A CN101928156B (en) | 2009-06-23 | 2010-02-03 | Ceramic substrate and manufacturing method thereof |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200910150473 | 2009-06-23 | ||
CN200910150473.9 | 2009-06-23 | ||
CN2010101104512A CN101928156B (en) | 2009-06-23 | 2010-02-03 | Ceramic substrate and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101928156A CN101928156A (en) | 2010-12-29 |
CN101928156B true CN101928156B (en) | 2012-11-21 |
Family
ID=43367644
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2010101104512A Active CN101928156B (en) | 2009-06-23 | 2010-02-03 | Ceramic substrate and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101928156B (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103050608B (en) * | 2013-01-16 | 2016-03-30 | 复旦大学 | Based on LED that zinc oxide bismuth composite ceramic substrate encapsulates and preparation method thereof |
KR101931616B1 (en) * | 2014-08-28 | 2019-02-13 | 비와이디 컴퍼니 리미티드 | Ceramic substrate, manufacturing method thereof, and power module |
CN104987065A (en) * | 2015-07-29 | 2015-10-21 | 长沙鼎成新材料科技有限公司 | Zirconia ceramic substrate for LED |
DE102016009730A1 (en) * | 2016-07-28 | 2018-02-01 | Forschungszentrum Jülich GmbH | Process for reinforcing transparent ceramics and ceramics |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101416570A (en) * | 2006-06-02 | 2009-04-22 | 株式会社村田制作所 | Multilayer ceramic substrate, method for producing the same and electronic component |
-
2010
- 2010-02-03 CN CN2010101104512A patent/CN101928156B/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101416570A (en) * | 2006-06-02 | 2009-04-22 | 株式会社村田制作所 | Multilayer ceramic substrate, method for producing the same and electronic component |
Non-Patent Citations (1)
Title |
---|
JP特开2007-176734A 2007.07.12 |
Also Published As
Publication number | Publication date |
---|---|
CN101928156A (en) | 2010-12-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8363189B2 (en) | Alkali silicate glass for displays | |
KR102200850B1 (en) | Supporting glass substrate and conveyance element using same | |
TWI642086B (en) | Substrate substrate and method for manufacturing composite substrate for semiconductor | |
CN101928156B (en) | Ceramic substrate and manufacturing method thereof | |
TW201121916A (en) | Glass for diffusion layer in organic led element, and organic led element utilizing same | |
US20140141205A1 (en) | Method for producing a conversion element, and conversion element | |
CN104379521A (en) | Optoelectronic component and method for producing an optoelectronic component | |
CN1893006A (en) | Method for producing an electronic component passivated by lead free glass | |
CN106573833A (en) | Supporting glass substrate and laminate using same | |
WO2016052597A1 (en) | Bonded substrate and method for manufacturing same, and support substrate for bonding | |
US10580666B2 (en) | Carrier substrates for semiconductor processing | |
KR20170048315A (en) | Supporting glass substrate and laminate using same | |
TWI467706B (en) | Ceramic substrate and method for fabricating the same | |
KR20170095798A (en) | Support glass substrate and laminate using same | |
CN104009065B (en) | Panel structure and manufacturing method thereof | |
CN101371348B (en) | Germanium on glass and glass-ceramic structures | |
CN112186048A (en) | Transparent electrode substrate and solar cell | |
TW201816204A (en) | Growth of epitaxial gallium nitride material using a thermally matched substrate | |
KR20090093819A (en) | Sintered body and member used in plasma treatment device | |
KR102119318B1 (en) | Composition of sealing glass for solid oxide fuel cell and sealing paste comprising the same | |
TW201901866A (en) | Method for manufacturing hermetic package and hermetic package | |
WO2020135297A1 (en) | Reflective structure, manufacturing method of reflective structure, and wavelength conversion device | |
CN101962289A (en) | Ceramic powder composition and substrate for photoelectric device using the same | |
CN112186047A (en) | Transparent electrode substrate and solar cell | |
KR101686605B1 (en) | Ceramic substrate composition for thin film solar cell and the manufacturing method of the substrate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |