CN101924162A - Method for manufacturing copper indium gallium selenide compound film - Google Patents
Method for manufacturing copper indium gallium selenide compound film Download PDFInfo
- Publication number
- CN101924162A CN101924162A CN2009101491404A CN200910149140A CN101924162A CN 101924162 A CN101924162 A CN 101924162A CN 2009101491404 A CN2009101491404 A CN 2009101491404A CN 200910149140 A CN200910149140 A CN 200910149140A CN 101924162 A CN101924162 A CN 101924162A
- Authority
- CN
- China
- Prior art keywords
- copper
- gallium
- indium
- layer
- manufacture method
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 85
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 46
- -1 copper indium gallium selenide compound Chemical class 0.000 title abstract description 52
- 229910052751 metal Inorganic materials 0.000 claims abstract description 67
- 239000002184 metal Substances 0.000 claims abstract description 67
- 239000000758 substrate Substances 0.000 claims abstract description 65
- 229910000807 Ga alloy Inorganic materials 0.000 claims abstract description 59
- CDZGJSREWGPJMG-UHFFFAOYSA-N copper gallium Chemical compound [Cu].[Ga] CDZGJSREWGPJMG-UHFFFAOYSA-N 0.000 claims abstract description 50
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 46
- 239000000956 alloy Substances 0.000 claims abstract description 46
- 229910000846 In alloy Inorganic materials 0.000 claims abstract description 34
- HVMJUDPAXRRVQO-UHFFFAOYSA-N copper indium Chemical compound [Cu].[In] HVMJUDPAXRRVQO-UHFFFAOYSA-N 0.000 claims abstract description 27
- 239000010949 copper Substances 0.000 claims description 121
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims description 44
- 229910052750 molybdenum Inorganic materials 0.000 claims description 33
- 239000011733 molybdenum Substances 0.000 claims description 33
- 239000011669 selenium Substances 0.000 claims description 25
- BUGBHKTXTAQXES-UHFFFAOYSA-N Selenium Chemical compound [Se] BUGBHKTXTAQXES-UHFFFAOYSA-N 0.000 claims description 22
- 229910052711 selenium Inorganic materials 0.000 claims description 22
- 229910052738 indium Inorganic materials 0.000 claims description 20
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 claims description 20
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 7
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 claims description 7
- 229910052733 gallium Inorganic materials 0.000 claims description 7
- 230000003746 surface roughness Effects 0.000 claims description 7
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 6
- 230000015572 biosynthetic process Effects 0.000 claims description 6
- 238000006243 chemical reaction Methods 0.000 claims description 5
- 229910052802 copper Inorganic materials 0.000 claims description 5
- 239000000126 substance Substances 0.000 claims description 5
- 229910000881 Cu alloy Inorganic materials 0.000 claims description 4
- 229910052804 chromium Inorganic materials 0.000 claims description 4
- 239000011651 chromium Substances 0.000 claims description 4
- 229910052759 nickel Inorganic materials 0.000 claims description 4
- 229910052715 tantalum Inorganic materials 0.000 claims description 4
- 229910052721 tungsten Inorganic materials 0.000 claims description 4
- 230000008020 evaporation Effects 0.000 claims description 3
- 238000001704 evaporation Methods 0.000 claims description 3
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims description 2
- 229910017052 cobalt Inorganic materials 0.000 claims description 2
- 239000010941 cobalt Substances 0.000 claims description 2
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims description 2
- 238000007747 plating Methods 0.000 claims description 2
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 claims description 2
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims description 2
- 239000010937 tungsten Substances 0.000 claims description 2
- 229940065287 selenium compound Drugs 0.000 claims 25
- 239000012528 membrane Substances 0.000 claims 22
- 239000011248 coating agent Substances 0.000 claims 7
- 238000000576 coating method Methods 0.000 claims 7
- 229910000906 Bronze Inorganic materials 0.000 claims 1
- 239000010974 bronze Substances 0.000 claims 1
- KUNSUQLRTQLHQQ-UHFFFAOYSA-N copper tin Chemical compound [Cu].[Sn] KUNSUQLRTQLHQQ-UHFFFAOYSA-N 0.000 claims 1
- 239000010410 layer Substances 0.000 abstract description 244
- 239000002243 precursor Substances 0.000 abstract description 65
- 239000012790 adhesive layer Substances 0.000 abstract description 22
- KTSFMFGEAAANTF-UHFFFAOYSA-N [Cu].[Se].[Se].[In] Chemical compound [Cu].[Se].[Se].[In] KTSFMFGEAAANTF-UHFFFAOYSA-N 0.000 abstract description 16
- 238000000137 annealing Methods 0.000 abstract 1
- 239000010408 film Substances 0.000 description 129
- 239000010409 thin film Substances 0.000 description 61
- 239000011521 glass Substances 0.000 description 42
- 238000004544 sputter deposition Methods 0.000 description 38
- 150000001875 compounds Chemical class 0.000 description 15
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 12
- 239000010936 titanium Substances 0.000 description 12
- 229910052719 titanium Inorganic materials 0.000 description 12
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 11
- 239000000463 material Substances 0.000 description 11
- 238000010438 heat treatment Methods 0.000 description 10
- 239000000203 mixture Substances 0.000 description 10
- 238000004140 cleaning Methods 0.000 description 9
- 238000009826 distribution Methods 0.000 description 9
- 238000005496 tempering Methods 0.000 description 9
- 239000004065 semiconductor Substances 0.000 description 8
- 239000007789 gas Substances 0.000 description 7
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 6
- 229910052786 argon Inorganic materials 0.000 description 6
- 229910052710 silicon Inorganic materials 0.000 description 6
- 239000010703 silicon Substances 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- 238000002441 X-ray diffraction Methods 0.000 description 4
- 238000000151 deposition Methods 0.000 description 4
- 230000008021 deposition Effects 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 238000009792 diffusion process Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000009713 electroplating Methods 0.000 description 3
- 239000011888 foil Substances 0.000 description 3
- 150000002739 metals Chemical class 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 239000006096 absorbing agent Substances 0.000 description 2
- 238000005275 alloying Methods 0.000 description 2
- DVRDHUBQLOKMHZ-UHFFFAOYSA-N chalcopyrite Chemical group [S-2].[S-2].[Fe+2].[Cu+2] DVRDHUBQLOKMHZ-UHFFFAOYSA-N 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 239000008367 deionised water Substances 0.000 description 2
- 229910021641 deionized water Inorganic materials 0.000 description 2
- ZZEMEJKDTZOXOI-UHFFFAOYSA-N digallium;selenium(2-) Chemical compound [Ga+3].[Ga+3].[Se-2].[Se-2].[Se-2] ZZEMEJKDTZOXOI-UHFFFAOYSA-N 0.000 description 2
- 238000010494 dissociation reaction Methods 0.000 description 2
- 230000005593 dissociations Effects 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 239000003921 oil Substances 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 239000002861 polymer material Substances 0.000 description 2
- 238000005086 pumping Methods 0.000 description 2
- 229910002058 ternary alloy Inorganic materials 0.000 description 2
- 230000008646 thermal stress Effects 0.000 description 2
- 230000002745 absorbent Effects 0.000 description 1
- 239000002250 absorbent Substances 0.000 description 1
- 238000000862 absorption spectrum Methods 0.000 description 1
- 239000012459 cleaning agent Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000000921 elemental analysis Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 150000002751 molybdenum Chemical class 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 150000003346 selenoethers Chemical class 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 230000035882 stress Effects 0.000 description 1
- 239000013077 target material Substances 0.000 description 1
- 229910002070 thin film alloy Inorganic materials 0.000 description 1
- 238000009827 uniform distribution Methods 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Photovoltaic Devices (AREA)
- Physical Vapour Deposition (AREA)
Abstract
Description
技术领域technical field
本发明是关于化合物半导体薄膜的制作,且特别是关于一种铜铟镓硒(Copper Indium Gallium Diselenide,CIGS)化合物薄膜的制造方法。The present invention relates to the manufacture of compound semiconductor thin films, and in particular to a method for manufacturing copper indium gallium diselenide (CIGS) compound thin films.
背景技术Background technique
目前太阳能电池主要以硅晶圆太阳能电池为主流。然而由于硅晶圆太阳能电池的制作需要规模庞大的厂房以及耗费大量能源,因此其材料成本与制作成本仍高。且基于物理性质的限制,目前硅晶圆太阳能电池的厚度通常不低于200μm,因此需要使用相当多硅原料。At present, solar cells are mainly based on silicon wafer solar cells. However, since the manufacture of silicon wafer solar cells requires a large-scale factory building and consumes a lot of energy, its material cost and manufacturing cost are still high. And based on the limitations of physical properties, the thickness of silicon wafer solar cells is usually not less than 200 μm, so a lot of silicon raw materials need to be used.
因此,近年来便发展出了有别于硅晶圆太阳能电池的众多其它类型太阳能电池制作技术,其中之一为采用铜铟镓硒(Copper Indium Gallium Diselenide,CIGS)的IB-IIIA-VIA2化合物材料的薄膜太阳能电池(thin film solar cell),其应用化学式为CuInGaSe2的铜铟镓硒(CIGS)化合物薄膜的吸光光谱范围极广且具有相当好的稳定性,因而可作为薄膜太阳能电池内的吸收层(absorber)之用。通过如上述铜铟镓硒化合物薄膜的应用,薄膜太阳能电池可采用价格相对低廉的玻璃、塑料或不锈钢等材质基板而制备,其厚度可较传统硅晶圆太阳能电池更为减少,因而有利于太阳能电池的大量生产与大面积生产等应用。Therefore, in recent years, many other types of solar cell manufacturing technologies different from silicon wafer solar cells have been developed, one of which is the IB-IIIA-VIA 2 compound using copper indium gallium diselenide (CIGS) The thin film solar cell (thin film solar cell) of the material, its application chemical formula is CuInGaSe 2 Copper indium gallium selenide (CIGS) compound thin film has extremely wide absorption spectrum range and has quite good stability, thus can be used as the thin film solar cell Absorber (absorber) purposes. Through the application of the above-mentioned copper indium gallium selenide compound thin film, thin film solar cells can be prepared using relatively cheap glass, plastic or stainless steel substrates, and their thickness can be reduced compared with traditional silicon wafer solar cells, which is conducive to solar energy. Applications such as mass production and large area production of batteries.
目前铜铟镓硒化合物薄膜的主要采用溅镀程序将包括金属、合金与化合物等材质的多个前趋物膜层形成于基板上后,接着再使用硒化程序处理这些溅镀于基板上的前驱物膜层,借以完成铜铟镓硒化合物薄膜的制作。At present, the copper indium gallium selenide compound thin film mainly adopts the sputtering process to form multiple precursor film layers including metals, alloys and compounds on the substrate, and then uses the selenization process to treat these sputtered on the substrate. The precursor film layer is used to complete the production of the copper indium gallium selenide compound thin film.
请参照图1-2,显示了一种已知铜铟镓硒化合物薄膜的制作方法。Please refer to FIG. 1-2, which shows a known manufacturing method of CIGS thin film.
如图1所示,首先提供一基板100,例如为玻璃、金属箔与高分子材料等材质的基板。在基板100上形成有一钼金属层102,其厚度约介于500~1200nm。接着在钼金属层102上则采用溅镀程序(未显示)而依序形成一铜镓合金层104、一铟金属层106与另一铜镓合金层108。堆叠于钼金属层102上的铜镓合金层104、铟金属层106与铜镓合金层108是作为制备铜铟镓硒化合物半导体薄膜的一前趋物结构110。As shown in FIG. 1 , firstly, a
请参照图2,接着依序一回火程序(未显示)与一硒化程序112,将上述铜镓合金层104、铟金属层106与铜镓合金层108合金化与硒化而形成具有黄铜矿(chalcopyrite)结构与的铜铟镓硒化合物薄膜114。Please refer to FIG. 2 , followed by a tempering process (not shown) and a
采用如图1-2所示的铜铟镓硒化合物半导体薄膜的前趋物结构以及所形成的铜铟镓硒化合物薄膜114具有薄膜平整度不佳以及厚度均匀性不一致等缺点。其原因在于铟金属层106内的铟金属的熔点为156.6℃,而采用溅镀程序形成铟金属层106时的溅镀温度通常约介于150~250℃且高于铟金属的熔点,故在铜镓合金层104上溅镀形成铟金属层106时铟金属是以融熔态或半融熔状态而形成,因而在铜镓合金层104表面的铟金属薄膜内产生颗粒状堆叠与并使得铟金属层106产生不平整的表面以及不均匀的厚度,如图1所示。且具有不平整表面以及不均匀厚度的铟金属层106亦影响包括铜镓合金层104、铟金属层106与铜镓合金层108的前驱物结构110的沉积情形,并在硒化程序112施行后产生了亦具有不平整表面的铜铟镓硒化合物薄膜114。具有如此不平整表面与不均匀厚度的铜铟镓硒化合物薄膜114将会影响到其所应用的薄膜太阳能电池的电池效率,并降低薄膜太阳能电池光电转换效率。Adopting the precursor structure of the CIGS compound semiconductor thin film as shown in FIG. 1-2 and the formed CIGS compound
另外,如图2所示的结构亦具有以下问题。即针对如图1内所示结构施行硒化程序112时,所形成的铜铟镓硒化合物薄膜114常出现膜层剥落现象,此膜层剥落现象常发生于钼金属电极层102与基板100的界面处。如此显示了铜铟镓硒化合物薄膜114在硒化程序施行时常因热应力过大而使得钼金属层102与基板100产生分离现象。上述热应力主要来自于钼金属层102与基板100内如玻璃、金属箔与高分子等材质在高温下的热膨胀系数差。由于基板100所应用的材质的热膨胀系数与钼金属层102间的热膨胀系数存在有差异,故在400℃以上的制程温度中,常会出现基于热膨胀差异所造成的大应力差现象,此现象也是造成发生于铜铟镓硒化合物薄膜114/钼金属电极层102与基板100间膜层剥落的原因。In addition, the structure shown in FIG. 2 also has the following problems. That is, when the
发明内容Contents of the invention
有鉴于此,本发明提供了铜铟镓硒化合物薄膜的制作方法,以解决上述已知问题。In view of this, the present invention provides a method for fabricating a CIGS thin film to solve the above-mentioned known problems.
依据一实施例,本发明提供了一种铜铟镓硒化合物薄膜的制造方法,包括:提供一基板;形成一粘着层于该基板上;形成一金属电极层于该粘着层上;形成一前驱物堆叠膜层于该金属电极层上,其中该前驱物堆叠膜层包括多个铜镓合金层以及夹置于该些铜镓合金层之间的至少一铜铟合金层;施行一回火程序,以转化该前驱物堆叠膜层为一铜铟镓合金层;以及施行一硒化程序,以转化该铜铟镓合金层为一铜铟镓硒化合物层。According to an embodiment, the present invention provides a method for manufacturing a copper indium gallium selenide compound thin film, comprising: providing a substrate; forming an adhesive layer on the substrate; forming a metal electrode layer on the adhesive layer; forming a precursor Precursor stacked film layer on the metal electrode layer, wherein the precursor stacked film layer includes a plurality of copper-gallium alloy layers and at least one copper-indium alloy layer sandwiched between the copper-gallium alloy layers; performing a tempering process , to convert the precursor stacked film layer into a CIGa alloy layer; and perform a selenization process to convert the CIGa alloy layer into a CIGaSe compound layer.
本发明可改善所得到的铜镓铟硒化合物薄膜的表面粗糙度,且改善其在薄膜太阳能电池应用时的电池效率以及光电转换效率。The invention can improve the surface roughness of the obtained copper gallium indium selenide compound thin film, and improve its battery efficiency and photoelectric conversion efficiency when it is applied in thin film solar cells.
为了让本发明的上述和其它目的、特征、和优点能更明显易懂,下文特举一较佳实施例,并配合所附附图,作详细说明如下:In order to make the above and other objects, features, and advantages of the present invention more comprehensible, a preferred embodiment is specifically cited below, and in conjunction with the accompanying drawings, the detailed description is as follows:
附图说明Description of drawings
图1-2显示了已知铜铟镓硒化合物半导体薄膜的制作方法;Figure 1-2 has shown the manufacturing method of known copper indium gallium selenide compound semiconductor film;
图3-5显示了依据本发明一实施例的铜铟镓硒化合物半导体薄膜的制造方法;3-5 show a method for manufacturing a copper indium gallium selenide compound semiconductor thin film according to an embodiment of the present invention;
图6-7显示了依据本发明另一实施例的铜铟镓硒化合物半导体薄膜的制造方法;6-7 show a method for manufacturing a copper indium gallium selenide compound semiconductor thin film according to another embodiment of the present invention;
图8为一流程图,显示了依据本发明一实施例的铜铟镓硒化合物半导体薄膜的制造方法;FIG. 8 is a flowchart showing a method for manufacturing a copper indium gallium selenide compound semiconductor thin film according to an embodiment of the present invention;
图9为一光谱图,显示了依据本发明的一实施例所得到的铜铟镓硒化合物薄膜的X光绕射分析结果。FIG. 9 is a spectrogram showing the X-ray diffraction analysis results of the CIGS thin film obtained according to an embodiment of the present invention.
【主要组件符号说明】[Description of main component symbols]
100~基板; 102~钼金属层;100~substrate; 102~molybdenum metal layer;
104、108~铜镓合金层; 106~铜镓合金层;104, 108~copper-gallium alloy layer; 106~copper-gallium alloy layer;
110~前趋物结构; 112~硒化程序;110~Precursor structure; 112~Selenization procedure;
114~铜铟镓硒化合物薄膜; 200~基板;114~copper indium gallium selenide thin film; 200~substrate;
202~粘着层; 204~金属电极层;202~adhesive layer; 204~metal electrode layer;
206、210~铜镓合金层; 208~铜铟合金层;206, 210~copper-gallium alloy layer; 208~copper-indium alloy layer;
212~前驱物堆叠膜层; 214~回火程序;212~precursor stacked film layer; 214~tempering procedure;
216~铜铟镓合金层; 218~硒化程序;216~copper indium gallium alloy layer; 218~selenization process;
220~铜铟镓硒化合物层; 300~基板;220~copper indium gallium selenide compound layer; 300~substrate;
302~粘着层; 304~金属电极层;302~adhesive layer; 304~metal electrode layer;
306、310、314~铜镓合金层;308、312~铜镓合金层;306, 310, 314~copper-gallium alloy layer; 308, 312~copper-gallium alloy layer;
316~前驱物堆叠膜层; 320~铜镓合金层。316~precursor stacked film layer; 320~copper-gallium alloy layer.
具体实施方式Detailed ways
本发明的实施例将通过下文并配合图3-9等附图而作一解说。Embodiments of the present invention will be explained below with reference to FIGS. 3-9 and other drawings.
请参照图3-5,显示了依据本发明一实施例的铜铟镓硒化合物薄膜的制造方法。Please refer to FIGS. 3-5 , which show a method for manufacturing a CIGS thin film according to an embodiment of the present invention.
如图3所示,首先提供一基板200,例如为玻璃、金属箔与高分子材料等材质的基板。在此,基板200为经过清洗洁净的基板,以去除其表面上残存如油渍或微颗粒等不洁物。接着在基板200上依序形成粘着层202与一金属电极层204。粘着层202用于改善金属电极层204与基板200间的热膨胀系数差异并增强金属电极层204与基板间的附着情形。在一实施例中,粘着层202例如为采用溅镀方法在高于5mtorr的一压力下而形成金属电极层204上的一钼金属层,而金属电极层204例如为采用溅镀方法于低于5mtorr的一压力下而形成于粘着层202上的一钼金属层。在本实施例中,作为粘着层202的钼金属层较佳地是在介于6~8mtorr的一压力下而形成金属电极层204上的一钼金属层。在一实施例中,粘着层202的厚度约介于50~600纳米,而金属电极层204的厚度约介于200~600nm,粘着层202与金属电极层204则具有不大于1200纳米的一结合厚度,例如是约1000纳米的一厚度。在其它实施例中,粘着层202则可含钛、钽、钴、铬、镍、钨或其合金的一金属层,借以改善后续形成的金属电极层与基板200间的热膨胀系数差异,而金属电极层则可为含钼的一金属层。As shown in FIG. 3 , firstly, a
接着,在金属电极层204的表面上形成一前驱物堆叠膜层212,其包括两铜镓合金层206与210以及夹置于这些铜镓合金层206与210间的一铜铟合金层208。在此,前驱物堆叠膜层212内的铜镓合金层206与210以及铜铟合金层208可采用如溅镀、蒸镀、电镀等方法或上述方法的组合而形成于金属电极层204之上。在一实施例中,当采用溅镀方法形成前驱物堆叠膜层212内的铜镓合金层206与210以及铜铟合金层208时,可采用CuyGa1-y与CuxIn1-x等靶材作为此些膜层的材料来源,其中CuyGa1-y合金靶材内的镓含量需小于78%(y>0.22)以及CuxIn1-x靶材内铜含量需高于4%(x>0.04),方能在溅镀程序中维持靶材与溅镀于金属电极层204上的合金膜层在固态,以利前驱物堆叠膜层的厚度与组成分布平均。因此在本实施例中,采用溅镀方法所得到的前驱物堆叠膜层212内的铜镓合金层206与210将具有一化学式CuyGa1-y,其中0.22<y<0.9,而其内铜铟合金层208则具有一化学式CuxIn1-x,其中0.04<x<0.5。在另一实施例中,铜镓合金层206与210具有介于100~600nm的一厚度而铜铟合金层208则具有介于200~700nm的一厚度。如图3所示的前驱物堆叠膜层212内于不同的膜厚深度下,各金属元素分布与组成比例可略作微调,以利与硒元素反应生成含硒的化合物薄膜后,使得所生成的化合物薄膜内不同膜厚深度的元素分布将随着膜厚变化不再是单一的组成分布,此结果有助于获得最佳的化合物薄膜。Next, a precursor
请参照图4,接着针对图3所示结构施行一回火程序214,以将前驱物堆叠膜层转化成为一铜铟镓合金层216。在一实施例中,回火程序214是在150℃~400℃的一温度下施行约10-80分钟。在另一实施例中,回火程序214的施行温度较佳地约为300℃以及较佳地施行约40分钟。在回火程序214施行后所得到的一铜铟镓合金层216亦具有平整与膜厚均匀的薄膜结构,而在铜铟镓合金层内的铜元素具有介于0.6~1.3的一元素比例,而铜铟镓合金层内的镓元素介于0.1~0.5的元素比例,以确保后续形成的铜铟镓硒化合物薄膜的品质。Referring to FIG. 4 , a
请参照图5,接着针对图4所示结构施行一硒化程序218,以将铜铟镓合金层216转化成为一铜铟镓硒化合物层220。在一实施例中,硒化程序216是在450℃~600℃的一温度下以及介于1*10-6torr~10mtorr的一压力下施行约10-100分钟。在硒化程序216施行后所得到的铜铟镓硒化合物层220亦具有平整与膜厚均匀的薄膜结构。上述硒化程序216内可采用硒蒸气或经等离子解离得到的如Se+及Se++的离子态硒与铜铟镓合金层216(见图4)进行反应,进而得到铜铟镓硒化合物层220。Referring to FIG. 5 , a
如图5所示,形成于金属电极层204上的铜铟镓硒化合物层220此时具有平整表面且其膜厚相当均匀。在此,由于铜铟镓硒化合物层220为四元化合物材料,故在其厚度方向上,镓、铟元素呈现不同且非均匀的组成分布,但在铜铟镓硒化合物层220表面组成分布上,镓、铟元素则可呈现出高程度的均匀性。As shown in FIG. 5 , the
如此,由于图5内所示的铜铟镓硒化合物层220具有均匀膜厚,因而具有均匀的面组成分布,并可在硒化程序后产生膜厚均匀的铜铟镓硒化合物薄膜。本实施例中是采用铜镓合金层206、铜铟合金层208与铜镓合金层210的堆叠膜层替代已知铜镓合金层、铟金属层与铜镓合金层的堆叠膜层,故可改善已知溅镀制程所制作的前驱物薄膜缺点并提升所制作完成的化合物薄膜太阳能电池的效率。In this way, since the
请参照图6-7,显示了依据本发明另一实施例的铜铟镓硒化合物薄膜的制造方法。本实施例是由修正图3-5的实施例而得到,在此仅描述其相异处。Please refer to FIGS. 6-7 , which show a method for manufacturing a CIGS thin film according to another embodiment of the present invention. This embodiment is obtained by modifying the embodiments shown in FIGS. 3-5 , and only the differences are described here.
如图6所示,首先提供一基板300。接着在基板300上依序形成粘着层302与一金属电极层304。接着,在金属电极层304的表面上形成一前驱物堆叠膜层316,其包括三个铜镓合金层306、310与314以及分别夹置于这些铜镓合金层306、310与314间的两个铜铟合金层308与312。As shown in FIG. 6 , a
请参照图7,接着针对图6所示结构施行一回火程序与一硒化程序(皆未显示)以形成一铜铟镓硒化合物层320。Referring to FIG. 7 , a tempering process and a selenization process (both not shown) are performed on the structure shown in FIG. 6 to form a
在本实施例中,所使用的基板300、粘着层302与金属电极层304的相关实施情形皆相同于前述实施例中的基板200、粘着层202与金属电极层204。另外,本实施例中的前驱物堆叠膜层316的组成则较前述实施例中分别多出了两个铜镓合金层以及一个铜铟合金层,这些铜镓合金层306、310与314以及铜铟合金层308与312的相关实施情形皆相同于前述实施例中的铜铟合金层206与210以及铜铟合金层208,在此则不再重复描述其实施情形。In this embodiment, the relevant implementations of the
请参照图7,在本实施例中,形成于金属电极层304上的铜铟镓硒化合物层320此时具有平整表面且其膜厚相当均匀。在此,由于铜铟镓硒化合物层320为四元化合物材料,故在其厚度方向上,镓、铟元素呈现不同且非均匀的组成分布,但在铜铟镓硒化合物层320表面组成分布上,镓、铟元素则可呈现出高程度的均匀性。如此,由于图7内所示的铜铟镓硒化合物层320具有均匀膜厚,因而具有均匀的面组成分布,并可在硒化程序后产生膜厚均匀的铜铟镓硒化合物薄膜。本实施例中是采用三个铜镓合金层306、310与314以及分别夹置于这些铜镓合金层306、310与314间的两个铜铟合金层308与312的堆叠膜层替代已知铜镓合金层、铟金属层与铜镓合金层的堆叠膜层,故可改善已知溅镀制程所制作的前驱物薄膜缺点并提升所制作完成的化合物薄膜太阳能电池的效率。Referring to FIG. 7 , in this embodiment, the
图8为一流程图,显示了依据本发明一实施例的铜铟镓硒化合物半导体薄膜的制造方法,其揭示了如图3-5与图6-7所示实施例的制造流程。FIG. 8 is a flowchart showing a method for manufacturing a CIGS compound semiconductor thin film according to an embodiment of the present invention, which reveals the manufacturing process of the embodiment shown in FIGS. 3-5 and 6-7 .
请参照图8,在步骤S801中提供一基板。此基板为经过清洗的基板,以去除基板表面所残存的油渍及微颗粒。清洗基板的方式以湿式清洗法为主,可利用清洗剂加上超声波震动增强清洗效果,最后再以烘干程序完成整个清洗过程。接着,在步骤S803中则进行金属电极层的沉积,其是将经过清洗的基板置入一沉积腔体内,采用如溅镀、蒸镀、电镀等方法或上述方法的组合,在基板上依序沉积形成一粘着层与一金属电极层。接着,在步骤S805中,则在金属电极层上采用溅镀、蒸镀、电镀或其组合的方法形成一前驱物堆叠膜层,此前驱物堆叠膜层包括数个铜镓合金层以及夹置于此些铜镓合金层之间的至少一铜铟合金层,此时前驱物堆叠膜层具有一平坦表面且具有一均匀的膜厚。接着,在步骤S807中施行一回火程序,已将此包括数个铜镓合金层以及至少一铜铟合金层的前驱物堆叠膜层转化为一铜铟镓合金层。接着,在步骤S807中施行一硒化程序,以将所得到的铜铟镓合金层转化为一铜铟镓硒化合物层,如步骤S811所示。Referring to FIG. 8 , a substrate is provided in step S801 . The substrate is a cleaned substrate to remove oil stains and particles remaining on the surface of the substrate. The method of cleaning the substrate is mainly wet cleaning method, and the cleaning effect can be enhanced by using cleaning agent and ultrasonic vibration, and finally the whole cleaning process is completed by drying procedure. Next, in step S803, the deposition of the metal electrode layer is carried out, which is to put the cleaned substrate into a deposition chamber, and adopt methods such as sputtering, evaporation, electroplating, etc. or a combination of the above methods to sequentially deposit Deposition forms an adhesion layer and a metal electrode layer. Next, in step S805, a precursor stacked film layer is formed on the metal electrode layer by sputtering, vapor deposition, electroplating or a combination thereof. The precursor stacked film layer includes several copper-gallium alloy layers and interposed There is at least one copper-indium alloy layer between the copper-gallium alloy layers. At this time, the precursor stack film layer has a flat surface and a uniform film thickness. Next, in step S807, a tempering process is performed to convert the precursor stack film layer including several copper-indium-gallium alloy layers and at least one copper-indium-alloy layer into a copper-indium-gallium alloy layer. Next, a selenization process is performed in step S807 to convert the obtained CIGa alloy layer into a CIGS compound layer, as shown in step S811 .
实施例:Example:
实施例1:Example 1:
将一玻璃基板置入于玻璃清洗剂中,再利用超声波震荡器加速玻璃清洁效果,随后将玻璃放入去离子水(DI water)中,并以DI water冲洗直至玻璃无清洁液残留为止,接着,将玻璃放入烘箱内在150℃的温度下烘干玻璃,清洁完成的玻璃基板立即置入溅镀机真空腔体内,以真空泵浦抽除空气并使真空腔体气压值低于1x10-6torr,当真空腔体压力值达背景压力后,通入流量为10sccm的氩气,使溅镀腔体真空值回升至10mtorr,此时利用DC溅镀法,在10mtorr的压力下溅镀一层厚度400nm的第一钼薄膜,在此第一钼薄膜与玻璃基板有较佳的附着性,故此第一钼薄膜是作为一粘着层,然而此第一钼薄膜导电性较差,片电阻值常高于1ohms/square。接着,提高抽气效率以维持溅镀腔体的真空值在2mtorr,再利用DC溅镀方式,在第一钼薄膜上方溅镀一第二钼薄膜,此第二钼薄膜厚度为600nm,且第二钼薄膜与玻璃基板附着性较差,因此无法作为粘着层使用。通过溅镀压力变化可控制所溅镀的钼薄膜含氧量,以调节第一与第二钼薄膜的物性,在较高的工作压力下可获得含氧量较高与附着性较佳的钼薄膜,较低的工作压力下则形成含氧量较低的钼薄膜,且具有较佳的导电性(<0.2ohms/square)。完成制作的钼薄膜/玻璃基板结构仍留在溅镀腔体内,再以DC溅镀方式制作如图6所示CuyGa1-y/CuxIn1-x/CuyGa1-y/CuxIn1-x/CuyGa1-y堆叠膜层。其是利用Cu0.73Ga0.27与Cu0.48In0.52合金靶材为前驱物材料,先在钼薄膜/玻璃基板结构基板上以160W功率溅镀一层100nm的Cu0.73Ga0.27合金薄膜,随后降低功率至60W,并溅镀一层400nm的Cu0.48In0.52合金薄膜于Cu0.73Ga0.27合金薄膜表面,接着在溅镀一层100nm的Cu0.73Ga0.27合金薄膜及400nm的Cu0.48In0.52合金薄膜,最后再溅镀一层150nm的Cu0.73Ga0.27合金薄膜,此五层交互堆叠的合金薄膜构成Cu0.48In0.52/Cu0.73Ga0.27堆叠式结构,为制作铜铟镓硒化合物层的前驱物。制作完成的五层交互堆叠Cu0.48In0.52/Cu0.73Ga0.27结构,可获得膜厚均匀的Cu0.48In0.52/Cu0.73Ga0.27前驱物堆叠膜层,其厚度约在1150nm左右。随后将此五层交互堆叠的Cu0.48In0.52/Cu0.73Ga0.27堆叠膜层取出,并立即移入硒化炉内,接着通入150cc/min的氩气,此惰性气体保护五层交互堆叠Cu0.48In0.52/Cu0.73Ga0.27前驱物堆叠膜层不被氧化,并以40℃/min升温速度对Cu0.48In0.52/Cu0.73Ga0.27前驱物堆叠膜层加热,当温度到达400℃时,持温60min,借以将前驱物堆叠膜层转化成铜镓铟合金层。接着再以15℃/min的升温速度加热铜镓铟合金层至550℃,并持温60min,当进行上述升温时,同于硒化炉内产生硒蒸气并维持硒蒸气于过饱和蒸汽压以上,进而针对铜镓铟合金层施行硒化程序并将铜镓铟合金层与硒元素反应并转化成为铜镓铟硒化合物层。此铜镓铟硒化合物层在形成后在硒化炉内降温,即可完成铜镓铟硒化合物层的制作。Put a glass substrate in a glass cleaner, and then use an ultrasonic oscillator to accelerate the glass cleaning effect, then put the glass in deionized water (DI water), and rinse it with DI water until there is no cleaning solution left on the glass, then , put the glass in an oven and dry the glass at a temperature of 150°C, put the cleaned glass substrate into the vacuum chamber of the sputtering machine immediately, use the vacuum pump to extract the air and make the pressure of the vacuum chamber lower than 1x10 -6 torr , when the pressure value of the vacuum chamber reaches the background pressure, argon gas with a flow rate of 10sccm is introduced to raise the vacuum value of the sputtering chamber to 10mtorr. 400nm first molybdenum thin film, where the first molybdenum thin film has better adhesion to the glass substrate, so the first molybdenum thin film is used as an adhesive layer, but the conductivity of the first molybdenum thin film is poor, and the sheet resistance value is often high At 1ohms/square. Then, improve the pumping efficiency to maintain the vacuum value of the sputtering chamber at 2mtorr, and then use the DC sputtering method to sputter a second molybdenum film above the first molybdenum film. The thickness of the second molybdenum film is 600nm, and the first Molybdenum film has poor adhesion to glass substrates, so it cannot be used as an adhesive layer. The oxygen content of the sputtered molybdenum film can be controlled by changing the sputtering pressure to adjust the physical properties of the first and second molybdenum films. Molybdenum with higher oxygen content and better adhesion can be obtained under higher working pressure Thin films, molybdenum thin films with lower oxygen content are formed under lower working pressure, and have better electrical conductivity (<0.2ohms/square). The completed molybdenum thin film/glass substrate structure remains in the sputtering chamber, and then it is fabricated by DC sputtering as shown in Figure 6. Cu y Ga 1-y / Cux In 1-x /Cu y Ga 1-y / Cu x In 1-x /Cu y Ga 1-y stacked film layers. It uses Cu 0.73 Ga 0.27 and Cu 0.48 In 0.52 alloy targets as precursor materials, first sputters a layer of 100nm Cu 0.73 Ga 0.27 alloy film on the molybdenum film/glass substrate structure substrate with a power of 160W, and then reduces the power to 60W, and sputtering a layer of 400nm Cu 0.48 In 0.52 alloy film on the surface of Cu 0.73 Ga 0.27 alloy film, then sputtering a layer of 100nm Cu 0.73 Ga 0.27 alloy film and 400nm Cu 0.48 In 0.52 alloy film, and finally A layer of 150nm Cu 0.73 Ga 0.27 alloy film is sputtered, and the five-layer alternately stacked alloy film forms a Cu 0.48 In 0.52 /Cu 0.73 Ga 0.27 stacked structure, which is the precursor for making the copper indium gallium selenide compound layer. The completed five-layer alternately stacked Cu 0.48 In 0.52 /Cu 0.73 Ga 0.27 structure can obtain Cu 0.48 In 0.52 /Cu 0.73 Ga 0.27 precursor stacked film with uniform film thickness, and its thickness is about 1150nm. Then the five layers of Cu 0.48 In 0.52 /Cu 0.73 Ga 0.27 stacked layers were taken out, and immediately moved into the selenization furnace, and then 150cc/min of argon gas was introduced to protect the five layers of Cu 0.48 The In 0.52 /Cu 0.73 Ga 0.27 precursor stack film is not oxidized, and the Cu 0.48 In 0.52 /Cu 0.73 Ga 0.27 precursor stack film is heated at a heating rate of 40°C/min. When the temperature reaches 400°C, the temperature is maintained 60min, so as to convert the precursor stacked film layer into a copper-gallium-indium alloy layer. Then heat the copper-gallium-indium alloy layer to 550°C at a heating rate of 15°C/min, and keep the temperature for 60 minutes. When the above-mentioned temperature rise is carried out, selenium vapor will be generated in the selenization furnace and the selenium vapor will be maintained above the supersaturated vapor pressure , and then perform a selenization process on the copper gallium indium alloy layer and react the copper gallium indium alloy layer with selenium element and convert it into a copper gallium indium selenide compound layer. After the formation of the copper gallium indium selenide compound layer, the temperature is lowered in the selenization furnace to complete the production of the copper gallium indium selenide compound layer.
接着将此铜镓铟硒化合物层以X光绕射分析(XRD)后,可得到如图9所示的光谱图及相关元素分析结果。如图9所示,所形成的铜镓铟硒化合物层具有高度结晶性而属多晶结构,其具有(112)、(220/204)、(312/116)、(400/008)及(332/316)结晶面,代表此法可产生CuIn1-xGaxSe2薄膜,特别是(112)面的优选结晶相也产生,因此,本发明可利用一Cu0.48In0.52/Cu0.73Ga0.27前驱物堆叠膜层于硒化后得到铜镓铟硒化合物层,此铜铟镓硒薄膜为多晶相,由XRD分析的结果显示结晶性佳,可做为铜镓铟硒化合物薄膜太阳能电池的吸收层使用。Then, after X-ray diffraction analysis (XRD) is performed on the copper gallium indium selenide compound layer, the spectrogram and related elemental analysis results shown in FIG. 9 can be obtained. As shown in Figure 9, the formed copper gallium indium selenide compound layer has high crystallinity and belongs to polycrystalline structure, and it has (112), (220/204), (312/116), (400/008) and ( 332/316) crystal plane, which means that this method can produce CuIn 1-x Ga x Se 2 film, especially the preferred crystal phase of (112) plane also produces, therefore, the present invention can utilize a Cu 0.48 In 0.52 /Cu 0.73 Ga The 0.27 precursor stack film layer is selenized to obtain a copper gallium indium selenide compound layer. This copper indium gallium selenide thin film is a polycrystalline phase. The results of XRD analysis show that it has good crystallinity and can be used as a copper gallium indium selenide compound thin film solar cell. The absorbent layer is used.
实施例2:Example 2:
将玻璃基板置入玻璃清洗剂中,并利用超声波震荡器加强玻璃清洁效果,清洁后的玻璃基板,立即放入去离子水(DI water)中,并以DI water冲洗直至玻璃无清洁液残留为止,接着,将玻璃放入烘箱内在150℃的温度下烘干玻璃,再将清洁完成的玻璃基板置入溅镀机真空腔体内,以泵浦抽除空气,使真空腔体气压值低于1x10-6torr,当真空腔体压力值达背景压力后,通入流量为10sccm的氩气,使溅镀腔体真空值回升至2mtorr,并维持溅镀腔体真空在2mtorr,此时利用DC溅镀法,将钛金属溅镀于玻璃基板表面,钛因属薄膜厚度为100nm,此层钛金属为粘着层,因钛与玻璃有较佳的附着性;随后在2mtorr工作压力下进行钼薄膜制作,钼薄膜厚度为800nm,此时钼薄膜片电阻值低于0.2ohms/square。以溅镀法制作钛金属薄膜于玻璃基板时,因后续会再溅镀一钼薄膜及CuyGa1-y/CuxIn1-x/CuyGa1-y堆叠式结构,故为了维持钛金属与玻璃间的稳定性,钛金属厚度应大于50nm,在此实施例中最佳的厚度为100nm。另外与钛金属有相似的功能者,还有Ta,Cr,Co,Ni,W等金属或其合金都是与玻璃有较佳的附着性,可做为玻璃基板与Mo电极的粘着层。完成制作的钛与钼薄膜/玻璃基板结构仍留在溅镀腔体内,再以DC溅镀方式制作如图6所示CuyGa1-y/CuxIn1-x/CuyGa1-y/CuxIn1-x/CuyGa1-y堆叠膜层。其是利用Cu0.73Ga0.27与Cu0.48In0.52合金靶材为前驱物材料,先在钛与钼薄膜/玻璃基板结构基板上以160W功率溅镀一层100nm的Cu0.73Ga0.27合金薄膜,随后降低功率至60W,并溅镀一层400nm的Cu0.48In0.52合金薄膜于Cu0.73Ga0.27合金薄膜表面,接着在溅镀一层100nm的Cu0.73Ga0.27合金薄膜及400nm的Cu0.48In0.52合金薄膜,最后再溅镀一层150nm的Cu0.73Ga0.27合金薄膜,此五层交互堆叠的合金薄膜构成Cu0.48In0.52/Cu0.73Ga0.27堆叠式结构,为制作铜铟镓硒化合物层的前驱物。制作完成的五层交互堆叠Cu0.48In0.52/Cu0.73Ga0.27结构,可获得膜厚均匀的Cu0.48In0.52/Cu0.73Ga0.27前驱物堆叠膜层,其厚度约在1150nm左右。随后将此五层交互堆叠的Cu0.48In0.52/Cu0.73Ga0.27堆叠膜层取出,并立即移入硒化炉内,接着通入150cc/min的氩气,此惰性气体保护五层交互堆叠Cu0.48In0.52/Cu0.73Ga0.27前驱物堆叠膜层不被氧化,并以40℃/min升温速度对Cu0.48In0.52/Cu0.73Ga0.27前驱物堆叠膜层加热,当温度到达350℃时,持温60min,借以将前驱物堆叠膜层转化成铜镓铟合金层。接着再以15℃/min的升温速度加热铜镓铟合金层至550℃,并持温60min,当进行上述升温时,同于硒化炉内产生硒蒸气并维持硒蒸气于过饱和蒸汽压以上,进而针对铜镓铟合金层施行硒化程序并将铜镓铟合金层与硒元素反应并转化成为铜镓铟硒化合物层。此铜镓铟硒化合物层于形成后在硒化炉内降温,即可完成铜镓铟硒化合物层的制作。Put the glass substrate into the glass cleaner, and use the ultrasonic oscillator to strengthen the glass cleaning effect. After cleaning the glass substrate, immediately put it into deionized water (DI water), and rinse it with DI water until there is no cleaning solution left on the glass , and then put the glass into the oven to dry the glass at a temperature of 150°C, then put the cleaned glass substrate into the vacuum chamber of the sputtering machine, and pump out the air so that the pressure value of the vacuum chamber is lower than 1x10 -6 torr, when the pressure value of the vacuum chamber reaches the background pressure, argon gas with a flow rate of 10 sccm is introduced to make the vacuum value of the sputtering chamber rise to 2mtorr, and maintain the vacuum of the sputtering chamber at 2mtorr. At this time, use DC sputtering Plating method, titanium metal is sputtered on the surface of the glass substrate. The thickness of the titanium metal film is 100nm. This layer of titanium metal is an adhesive layer, because titanium and glass have better adhesion; then the molybdenum film is produced under the working pressure of 2mtorr , the thickness of the molybdenum film is 800nm, and the sheet resistance value of the molybdenum film is lower than 0.2ohms/square at this time. When sputtering a titanium metal film on a glass substrate, a molybdenum film and Cu y Ga 1-y / Cux In 1-x /Cu y Ga 1-y stacked structure will be sputtered later, so in order to maintain For the stability between titanium metal and glass, the thickness of titanium metal should be greater than 50nm, and the optimum thickness in this embodiment is 100nm. In addition, those with similar functions to titanium metal, as well as Ta, Cr, Co, Ni, W and other metals or their alloys have better adhesion to glass, and can be used as an adhesive layer between glass substrates and Mo electrodes. The completed titanium and molybdenum film/glass substrate structure remains in the sputtering chamber, and then it is fabricated by DC sputtering as shown in Figure 6 Cu y Ga 1-y /Cu x In 1-x /Cu y Ga 1- y /Cu x In 1-x /Cu y Ga 1-y stacked film layers. It uses Cu 0.73 Ga 0.27 and Cu 0.48 In 0.52 alloy targets as precursor materials, first sputters a layer of 100nm Cu 0.73 Ga 0.27 alloy film on the titanium and molybdenum film/glass substrate structure substrate with a power of 160W, and then reduces Power to 60W, and sputtering a layer of 400nm Cu 0.48 In 0.52 alloy film on the surface of Cu 0.73 Ga 0.27 alloy film, and then sputtering a layer of 100nm Cu 0.73 Ga 0.27 alloy film and 400nm Cu 0.48 In 0.52 alloy film, Finally, a 150nm layer of Cu 0.73 Ga 0.27 alloy film was sputtered. The five layers of alternately stacked alloy film formed Cu 0.48 In 0.52 /Cu 0.73 Ga 0.27 stacked structure, which was the precursor for making the copper indium gallium selenide compound layer. The completed five-layer alternating stacked Cu 0.48 In 0.52 /Cu 0.73 Ga 0.27 structure can obtain Cu 0.48 In 0.52 /Cu 0.73 Ga 0.27 precursor stacked film with uniform film thickness, and its thickness is about 1150nm. Then the five layers of Cu 0.48 In 0.52 /Cu 0.73 Ga 0.27 stacked layers were taken out, and immediately moved into the selenization furnace, and then 150cc/min of argon gas was introduced to protect the five layers of Cu 0.48 The In 0.52 /Cu 0.73 Ga 0.27 precursor stack film is not oxidized, and the Cu 0.48 In 0.52 /Cu 0.73 Ga 0.27 precursor stack film is heated at a heating rate of 40°C/min. When the temperature reaches 350°C, the temperature is kept 60min, so as to convert the precursor stacked film layer into a copper-gallium-indium alloy layer. Then heat the copper-gallium-indium alloy layer to 550°C at a heating rate of 15°C/min, and keep the temperature for 60 minutes. When the above-mentioned temperature rise is carried out, selenium vapor will be generated in the selenization furnace and the selenium vapor will be maintained above the supersaturated vapor pressure. , and then perform a selenization process on the copper gallium indium alloy layer and react the copper gallium indium alloy layer with selenium element and convert it into a copper gallium indium selenide compound layer. After the formation of the copper gallium indium selenide compound layer, the temperature is lowered in the selenization furnace to complete the production of the copper gallium indium selenide compound layer.
实施例3:Example 3:
将含有一层粘着层的玻璃基板,以溅镀方式将钼薄膜溅镀于粘着层上,此钼薄膜厚度为600nm,而粘着层可为如实施例1内的第一钼薄膜、Ti、Ta、Cr、Co、Ni及W等金属或其合金薄膜。接着,再以DC溅镀方式制作如图3所示的Cu0.73Ga0.27/Cu0.48In0.52/Cu0.73Ga0.27前驱物堆叠膜层于钼薄膜上,此前驱物堆叠膜是利用Cu0.73Ga0.27与Cu0.48In0.52合金靶材为前驱物材料,先在包括钼薄膜与玻璃基板上的堆叠膜层上以160W功率溅镀一层100nm的Cu0.73Ga0.27合金薄膜,随后降低功率至60W,并溅镀一600nh的Cu0.48In0.52合金薄膜于Cu0.73Ga0.27合金薄膜表面,接着再溅镀一层200nm的Cu0.73Ga0.27合金薄膜,此三层交互堆叠的合金薄膜构成Cu0.73Ga0.27/Cu0.48In0.52/Cu0.73Ga0.27前驱物堆叠膜层,其中Cu0.73Ga0.27合金薄膜与Cu0.48In0.52合金薄膜厚度分别为300nm与600nm。随后,将包括此制作完成的Cu0.73Ga0.27/Cu0.48In0.52/Cu0.73Ga0.27前驱物堆叠膜层的玻璃基板置入真空硒化炉内,此时先以真空泵浦抽除空气,使得真空硒化炉压力值至1x10-6torr,在抽除空气的过程中,对含有Cu0.73Ga0.27/Cu0.48In0.52/Cu0.73Ga0.27前驱物堆叠薄膜的玻璃基板进行加热,加热速度为20℃/min,当玻璃基板与Cu0.73Ga0.27/Cu0.48In0.52/Cu0.73Ga0.27前驱物堆叠薄膜被加热至300℃时,合金薄膜产生交互扩散促使三元合金产生,此时由三层Cu0.73Ga0.27/Cu0.48In0.52/Cu0.73Ga0.27前驱物堆叠薄膜将转化成为一铜镓铟合金层,如维持温度在300℃达30min时,将可使Cu0.73Ga0.27/Cu0.48In0.52/Cu0.73Ga0.27前驱物堆叠薄膜充份混合。此时,再将铜镓铟合金层加热至520℃,加热速度为25℃/min,当进行加热时,通入5sccm的氩气为携带气体,并利用氩气将硒蒸气带出硒元素加热区,以使硒蒸气被导入硒化腔体内,而在进入硒化腔体前须先通过一等离子区,利用等离子高结离率的特性,对硒蒸气进行裂解以产生离子态硒,此离子态硒可快速通过扩散到达铜镓铟合金层表面,再由合金层表面扩散进入合金层内部,此离子态硒与铜镓铟合金层反应于钼电极上生成铜镓铟硒化合物层,在520℃持温60分钟之后可获得完整的铜镓铟硒化合物层。在本实施中所得到的铜镓铟硒化合物层同样具有高结晶性,并为黄铜矿(chalcopyrite)结构。利用真空硒化处理制程所制作的铜镓铟硒化合物层,当硒化温度在480℃以上时即可产生铜镓铟硒化合物结构。以本实施例而言硒化温度应高于520℃,在硒化持温时间上应大于30min以确保硒化完成,较佳的硒化时间是60min。另外在合金化过程中,使Cu0.73Ga0.27/Cu0.48In0.52/Cu0.73Ga0.27堆叠式结构充份混合的温度应高于200℃,以本实施例的结果可知较佳的合金化温度应在300℃,且其持温时间应高于10min。在本实施例中,参照扫瞄式电子显微镜的观察,整体膜厚约为800纳米的Cu0.73Ga0.27/Cu0.48In0.52/Cu0.73Ga0.27前驱物堆叠薄膜的表面粗糙度Ra约为150nm。With the glass substrate that contains one deck adhesive layer, molybdenum thin film is sputtered on adhesive layer by sputtering mode, and this molybdenum thin film thickness is 600nm, and adhesive layer can be as the first molybdenum thin film, Ti, Ta in embodiment 1. , Cr, Co, Ni and W and other metals or their alloy films. Next, the Cu 0.73 Ga 0.27 /Cu 0.48 In 0.52 /Cu 0.73 Ga 0.27 precursor stack film layer shown in Figure 3 is fabricated on the molybdenum film by DC sputtering. This precursor stack film is made of Cu 0.73 Ga 0.27 With Cu 0.48 In 0.52 alloy target as the precursor material, a layer of 100nm Cu 0.73 Ga 0.27 alloy film was sputtered with 160W power on the stacked film layer including molybdenum film and glass substrate, then the power was reduced to 60W, and Sputter a 600nh Cu 0.48 In 0.52 alloy film on the Cu 0.73 Ga 0.27 alloy film surface, and then sputter a 200nm layer of Cu 0.73 Ga 0.27 alloy film. This three-layer alternately stacked alloy film constitutes Cu 0.73 Ga 0.27 /Cu 0.48 In 0.52 /Cu 0.73 Ga 0.27 precursor stack film layer, in which the thickness of Cu 0.73 Ga 0.27 alloy film and Cu 0.48 In 0.52 alloy film are 300nm and 600nm respectively. Subsequently, the glass substrate including the completed Cu 0.73 Ga 0.27 /Cu 0.48 In 0.52 /Cu 0.73 Ga 0.27 precursor stacked film layer was placed in a vacuum selenization furnace. The pressure value of the selenization furnace is up to 1x10 -6 torr, and the glass substrate containing the Cu 0.73 Ga 0.27 /Cu 0.48 In 0.52 /Cu 0.73 Ga 0.27 precursor stacked film is heated during the process of extracting the air, and the heating rate is 20°C /min, when the glass substrate and the Cu 0.73 Ga 0.27 /Cu 0.48 In 0.52 /Cu 0.73 Ga 0.27 precursor stacked film are heated to 300 °C, the alloy film produces alternate diffusion to promote the formation of the ternary alloy. At this time, the three-layer Cu 0.73 Ga 0.27 /Cu 0.48 In 0.52 /Cu 0.73 Ga 0.27 precursor stack film will be transformed into a copper-gallium-indium alloy layer. If the temperature is maintained at 300°C for 30 minutes, Cu 0.73 Ga 0.27 /Cu 0.48 In 0.52 /Cu The 0.73 Ga 0.27 precursor stacked thin film was fully mixed. At this time, heat the copper-gallium-indium alloy layer to 520°C, and the heating rate is 25°C/min. When heating, 5 sccm of argon gas is introduced as the carrying gas, and the selenium vapor is taken out of the selenium element by the argon gas for heating. area, so that selenium vapor is introduced into the selenization chamber, and before entering the selenization chamber, it must first pass through a plasma area, using the characteristics of high plasma dissociation rate, to crack the selenium vapor to produce ionic selenium, the ion State selenium can quickly reach the surface of the copper-gallium-indium alloy layer through diffusion, and then diffuse into the interior of the alloy layer from the surface of the alloy layer. After holding the temperature at ℃ for 60 minutes, a complete copper gallium indium selenide compound layer can be obtained. The CuGIS compound layer obtained in this embodiment also has high crystallinity and a chalcopyrite structure. The copper gallium indium selenide compound layer produced by the vacuum selenization process can produce the copper gallium indium selenide compound structure when the selenization temperature is above 480°C. In this embodiment, the selenization temperature should be higher than 520° C., and the selenization holding time should be longer than 30 minutes to ensure the completion of the selenization. The preferred selenization time is 60 minutes. In addition, during the alloying process, the temperature at which the Cu 0.73 Ga 0.27 /Cu 0.48 In 0.52 /Cu 0.73 Ga 0.27 stacked structure is fully mixed should be higher than 200°C. The results of this example show that the better alloying temperature should be At 300°C, and the holding time should be higher than 10min. In this embodiment, referring to the observation of the scanning electron microscope, the surface roughness Ra of the Cu 0.73 Ga 0.27 /Cu 0.48 In 0.52 /Cu 0.73 Ga 0.27 precursor stack film with an overall film thickness of about 800 nm is about 150 nm.
比较例1:Comparative example 1:
将一经洁净过的玻璃基板,以溅镀方式将钼薄膜溅镀于玻璃基板上,此钼薄膜厚度为1000nm。接着,再以DC溅镀方式制作如图1所示的CuGa/In/CuGa前驱物堆叠膜层于钼薄膜上,此前驱物堆叠膜是利用Cu与Ga合金靶材为前驱物材料,先在包括钼薄膜与玻璃基板上的堆叠膜层上以160W功率溅镀一层100nm的Cu0.78Ga0.22合金薄膜,随后降低功率至60W,并溅镀一500nm的In金属层于Cu0.78Ga0.22合金薄膜表面,接着再溅镀一层300nm的Cu0.78Ga0.22合金薄膜合金薄膜,此三层交互堆叠的合金薄膜构成Cu0.78Ga0.22/In/Cu0.78Ga0.22前驱物堆叠膜层,其中Cu0.78Ga0.22合金薄膜与In金属薄膜厚度分别为400nm与500nm。随后,将包括此制作完成的Cu0.78Ga0.22/In/Cu0.78Ga0.22前驱物堆叠膜层的玻璃基板置入真空硒化炉内,此时先以真空泵浦抽除空气,使得真空硒化炉压力值至1x10-6torr,在抽除空气的过程中,对含有Cu0.78Ga0.22/In/Cu0.78Ga0.22前驱物堆叠薄膜的玻璃基板进行加热,加热速度为20℃/min,当玻璃基板与Cu0.78Ga0.22/In/Cu0.78Ga0.22前驱物堆叠薄膜被加热至300℃时,合金薄膜产生交互扩散促使三元合金产生,此时由三层Cu0.78Ga0.22/In/Cu0.78Ga0.22前驱物堆叠薄膜将转化成为一铜镓铟合金层,如维持温度在300℃达30min时,将可使Cu0.78Ga0.22/In/Cu0.78Ga0.22前驱物堆叠薄膜充份混合。接着再以15℃/min的升温速度加热铜镓铟合金层至550℃,并持温60min,当进行上述升温时,同时于硒化炉内产生硒蒸气并维持硒蒸气于过饱和蒸汽压以上以避免气态硒化物产生,进而针对铜镓铟合金层施行硒化程序与硒元素反应并转化成为铜镓铟硒化合物层。此铜镓铟硒化合物层于形成后在硒化炉内降温,即可完成铜镓铟硒化合物层的制作。在本比较例中,参照扫瞄式电子显微镜的观察整体膜厚约为900纳米的Cu0.78Ga0.22/In/Cu0.78Ga0.22前驱物堆叠薄膜的表面粗糙度Ra约为700nm。Sputtering a molybdenum thin film on a cleaned glass substrate by means of sputtering, the thickness of the molybdenum thin film is 1000nm. Next, the CuGa/In/CuGa precursor stacked film layer shown in Figure 1 was fabricated on the molybdenum film by DC sputtering. This precursor stacked film uses Cu and Ga alloy targets as precursor materials. A 100nm Cu 0.78 Ga 0.22 alloy film was sputtered at 160W on the stacked film layer including molybdenum film and glass substrate, then the power was reduced to 60W, and a 500nm In metal layer was sputtered on the Cu 0.78 Ga 0.22 alloy film surface, and then sputtered a layer of 300nm Cu 0.78 Ga 0.22 alloy thin film alloy thin film, the three layers of alternately stacked alloy thin film constitute Cu 0.78 Ga 0.22 /In/Cu 0.78 Ga 0.22 precursor stacked film layer, in which Cu 0.78 Ga 0.22 The thicknesses of the alloy film and the In metal film are 400nm and 500nm, respectively. Subsequently, the glass substrate including the fabricated Cu 0.78 Ga 0.22 /In/Cu 0.78 Ga 0.22 precursor stacked film layer is placed in a vacuum selenization furnace. The pressure value is up to 1x10 -6 torr, and the glass substrate containing the Cu 0.78 Ga 0.22 /In/Cu 0.78 Ga 0.22 precursor stacked thin film is heated during the process of pumping out the air. The heating rate is 20°C/min. When the glass substrate When the thin film stacked with Cu 0.78 Ga 0.22 /In/Cu 0.78 Ga 0.22 precursor is heated to 300 °C, the alloy thin film produces alternate diffusion and promotes the formation of ternary alloy. At this time, three layers of Cu 0.78 Ga 0.22 /In/Cu 0.78 Ga 0.22 The precursor stacked film will be transformed into a copper-gallium-indium alloy layer. If the temperature is maintained at 300° C. for 30 minutes, the Cu 0.78 Ga 0.22 /In/Cu 0.78 Ga 0.22 precursor stacked film will be fully mixed. Then heat the copper-gallium-indium alloy layer to 550°C at a heating rate of 15°C/min, and keep the temperature for 60 minutes. When the above temperature rise is carried out, selenium vapor is generated in the selenization furnace at the same time and the selenium vapor is kept above the supersaturated vapor pressure. In order to avoid the generation of gaseous selenide, a selenization process is performed on the copper gallium indium alloy layer to react with the selenium element and convert it into a copper gallium indium selenide compound layer. After the formation of the copper gallium indium selenide compound layer, the temperature is lowered in the selenization furnace to complete the production of the copper gallium indium selenide compound layer. In this comparative example, the surface roughness Ra of the Cu 0.78 Ga 0.22 /In/Cu 0.78 Ga 0.22 precursor stack film with an overall film thickness of about 900 nm observed by a scanning electron microscope is about 700 nm.
参照比较例1与实施例3中不同前驱物堆叠薄膜的表面粗糙度的表现,可以理解到本案发明所提供的铜镓铟硒化合物薄膜的制造方法可只制作出表面粗糙度不高于200Ra的前驱物堆叠薄膜,因而可改善所得到的铜镓铟硒化合物薄膜的表面粗糙度,且改善其在薄膜太阳能电池应用时的电池效率以及光电转换效率。Referring to the performance of the surface roughness of different precursor stacked films in Comparative Example 1 and Example 3, it can be understood that the manufacturing method of the copper gallium indium selenide compound film provided by the present invention can only produce a film with a surface roughness not higher than 200Ra. The precursor stacks thin films, thus improving the surface roughness of the obtained copper gallium indium selenide compound thin film, and improving its battery efficiency and photoelectric conversion efficiency when it is applied in thin film solar cells.
本发明虽以较佳实施例揭露如上,然其并非用以限定本发明的范围,任何熟悉此项技术的人员,在不脱离本发明的精神和范围内,当可做些许更动与润饰,因此本发明的保护范围当视权利要求书所界定的范围为准。Although the present invention is disclosed above with preferred embodiments, it is not intended to limit the scope of the present invention. Any person familiar with the art may make some changes and modifications without departing from the spirit and scope of the present invention. Therefore, the protection scope of the present invention should be determined by the scope defined in the claims.
Claims (22)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2009101491404A CN101924162A (en) | 2009-06-17 | 2009-06-17 | Method for manufacturing copper indium gallium selenide compound film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2009101491404A CN101924162A (en) | 2009-06-17 | 2009-06-17 | Method for manufacturing copper indium gallium selenide compound film |
Publications (1)
Publication Number | Publication Date |
---|---|
CN101924162A true CN101924162A (en) | 2010-12-22 |
Family
ID=43338930
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2009101491404A Pending CN101924162A (en) | 2009-06-17 | 2009-06-17 | Method for manufacturing copper indium gallium selenide compound film |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101924162A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103681960A (en) * | 2013-11-21 | 2014-03-26 | 山东希格斯新能源有限责任公司 | Multi-step sputtering process for preparation of CIG precursor layer of CIGS (copper indium gallium selenide) film |
CN103828063A (en) * | 2011-08-10 | 2014-05-28 | 阿森特太阳能技术公司 | Multilayer thin-film back contact system for flexible photovoltaic devices on polymer substrates |
CN103872156A (en) * | 2012-12-17 | 2014-06-18 | 财团法人工业技术研究院 | Multi-layer stacked light absorption film, manufacturing method thereof and solar cell |
US9780242B2 (en) | 2011-08-10 | 2017-10-03 | Ascent Solar Technologies, Inc. | Multilayer thin-film back contact system for flexible photovoltaic devices on polymer substrates |
-
2009
- 2009-06-17 CN CN2009101491404A patent/CN101924162A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103828063A (en) * | 2011-08-10 | 2014-05-28 | 阿森特太阳能技术公司 | Multilayer thin-film back contact system for flexible photovoltaic devices on polymer substrates |
US9780242B2 (en) | 2011-08-10 | 2017-10-03 | Ascent Solar Technologies, Inc. | Multilayer thin-film back contact system for flexible photovoltaic devices on polymer substrates |
CN103872156A (en) * | 2012-12-17 | 2014-06-18 | 财团法人工业技术研究院 | Multi-layer stacked light absorption film, manufacturing method thereof and solar cell |
CN103872156B (en) * | 2012-12-17 | 2016-04-27 | 财团法人工业技术研究院 | Multi-layer stacked light absorption film, manufacturing method thereof and solar cell |
CN103681960A (en) * | 2013-11-21 | 2014-03-26 | 山东希格斯新能源有限责任公司 | Multi-step sputtering process for preparation of CIG precursor layer of CIGS (copper indium gallium selenide) film |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20100297835A1 (en) | Methods for fabricating copper indium gallium diselenide (cigs) compound thin films | |
JP5956397B2 (en) | Copper / indium / gallium / selenium (CIGS) or copper / zinc / tin / sulfur (CZTS) thin film solar cell and method of manufacturing the same | |
JP4945088B2 (en) | Stacked photovoltaic device | |
TW201423772A (en) | Transparent conductive film laminate, method of manufacturing the same, and thin film solar cell and method of manufacturing same | |
CN104813482A (en) | Molybdenum substrates for CIGS photovoltaic devices | |
CN103151399A (en) | Flexible thin film solar cell with periodic trapping structure and preparation method for flexible thin film solar cell | |
CN103201846A (en) | Photoelectric conversion element | |
CN101924162A (en) | Method for manufacturing copper indium gallium selenide compound film | |
Sun et al. | Effect of TiN diffusion barrier layer on residual stress and carrier transport in flexible CZTSSe solar cells | |
CN102199758B (en) | Method for growing ZnO-TCO thin film with suede structure and application | |
CN107887456A (en) | A kind of preparation method of back electrode molybdenum (Mo) film | |
US8092667B2 (en) | Electroplating method for depositing continuous thin layers of indium or gallium rich materials | |
JP2009231744A (en) | I-iii-vi group chalcopyrite type thin film system solar cell and method for manufacturing it | |
CN103924168A (en) | Multi-element alloy material and solar cell containing back electrode layer formed by same | |
CN103999243B (en) | Method for manufacturing CIGS thin film for solar cell by simplified co-evaporation method and CIGS thin film for solar cell manufactured by this method | |
TWI488327B (en) | Thin film solar cell structure and process | |
CN105349966A (en) | Preparation method and application for ZnO-TCO film of suede composite structure | |
TWI492399B (en) | Method for manufacturing a thin film solar cell | |
CN109920862A (en) | Structure and preparation method of prefabricated layer capable of suppressing MoS2 layer in copper-zinc-tin-sulfur thin film | |
TW200826308A (en) | Method of forming thin film on the solar cell substrate by sputtering | |
JP5710368B2 (en) | Photoelectric conversion element and solar cell | |
TWI443840B (en) | Quaternary compound thin-film and method for preparing the same | |
KR20110001820A (en) | Solar cell and manufacturing method thereof | |
CN118825127A (en) | Method for improving hydrogen passivation effect, solar cell and preparation method and assembly thereof | |
Hamri et al. | Studies of non-vacuum processing of Cu-Chalcogenide thin films |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20101222 |