CN101921784B - Gene with Δ6 fatty acid dehydrogenase function and its application - Google Patents
Gene with Δ6 fatty acid dehydrogenase function and its application Download PDFInfo
- Publication number
- CN101921784B CN101921784B CN2010101676333A CN201010167633A CN101921784B CN 101921784 B CN101921784 B CN 101921784B CN 2010101676333 A CN2010101676333 A CN 2010101676333A CN 201010167633 A CN201010167633 A CN 201010167633A CN 101921784 B CN101921784 B CN 101921784B
- Authority
- CN
- China
- Prior art keywords
- leu
- phe
- gene
- rnd6c
- ala
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/52—Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
Landscapes
- Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
Description
本申请是申请号为2007101194771的专利申请的分案申请。This application is a divisional application of the patent application whose application number is 2007101194771.
技术领域 technical field
本发明涉及植物编码基因及其应用。具体地,涉及两个具有完整阅读框架的基因RnD6C和RnD6D,其分别来源于黑茶藨子(Ribes nigrum L.)的两段DNA序列,以及以此为基础克隆的两个具有完整阅读框架的基因序列。本发明还涉及该基因所编码具有Δ6脂肪酸脱氢酶功能的多肽,以及含有该DNA序列的低等真核细胞表达载体和植物表达载体、宿主细胞以及利用该基因分别转化低等真核生物和植物生产GLA和SDA的应用。The present invention relates to plant coding gene and its application. Specifically, it involves two genes with complete reading frames, RnD6C and RnD6D, which are respectively derived from two DNA sequences of black currant (Ribes nigrum L.), and two genes with complete reading frames cloned on this basis. gene sequence. The present invention also relates to the polypeptide encoded by the gene with the function of Δ6 fatty acid dehydrogenase, as well as lower eukaryotic cell expression vectors and plant expression vectors containing the DNA sequence, host cells and transformation of lower eukaryotic organisms using the gene and plant production of GLA and SDA applications.
背景技术 Background technique
多不饱和脂肪酸(Polyunsaturated fatty acids,PUFAs)是指含有两个或两个以上双键且碳链长为18~22个碳原子的直链脂肪酸,主要包括亚油酸(linoleic acid,LA,18:2Δ9,12)、γ-亚麻酸(γ-linolenic acid,GLA,18:3,Δ6,9,12)、花生四烯酸(Arachidonic Acid,AA,20:4Δ5,8,11,14、二十碳五烯酸(Eicosapentaenoic Acid,EPA,20:5Δ5,8,11,14,17)、二十二碳六烯酸(Decosahexaenoic Acid,DHA,20:5Δ4,7,10,11,16,19)等。其中,亚油酸及亚麻酸被公认为人体必需脂肪酸(Essential fatty acids,EFA),可进一步衍化成具有不同功能的高度不饱和脂肪酸,如AA、EPA、DHA等。Polyunsaturated fatty acids (PUFAs) refer to straight-chain fatty acids containing two or more double bonds and a carbon chain length of 18-22 carbon atoms, mainly including linoleic acid (LA, 18 :2Δ 9,12 ), γ-linolenic acid (γ-linolenic acid, GLA, 18:3, Δ 6,9,12 ), arachidonic acid (Arachidonic Acid, AA, 20:4Δ 5,8,11, 14. Eicosapentaenoic Acid (EPA, 20: 5Δ5,8,11,14,17 ), Docosahexaenoic Acid (DHA, 20: 5Δ4,7,10, 11, 16, 19 ), etc. Among them, linoleic acid and linolenic acid are recognized as essential fatty acids (EFA), which can be further derivatized into highly unsaturated fatty acids with different functions, such as AA, EPA, DHA, etc. .
PUFAs具有非常重要的生理功能。第一,PUFAs在心血管运动、大脑、视网膜和神经组织发育等生理功能中发挥重要作用。第二,DHA和EPA具有较好的抗癌作用,如可以预防(尤其是绝经后妇女)乳腺癌的发生。第三,花生四烯酸、EPA和DHA等多不饱和脂肪酸在免疫调节中发挥了重要的作用。第四,多不饱和脂肪酸还能具有防止皮肤老化、延缓衰老、促进毛发生长等作用。PUFAs have very important physiological functions. First, PUFAs play important roles in physiological functions such as cardiovascular exercise, brain, retinal and nervous tissue development. Second, DHA and EPA have good anti-cancer effects, such as preventing (especially postmenopausal women) breast cancer. Third, polyunsaturated fatty acids such as arachidonic acid, EPA, and DHA play an important role in immune regulation. Fourth, polyunsaturated fatty acids can also prevent skin aging, delay aging, and promote hair growth.
在脂肪酸代谢过程中,Δ6脂肪酸脱氢酶(Δ6-fatty acid desaturase,D6D)分别催化底物亚油酸(LA)和α-亚麻酸(ALA)的第6位碳原子脱氢形成γ-亚麻酸(GLA)[1]和十八碳四烯酸(Stearidonic acid,SDA,18:4Δ6,9,12,15)。In the process of fatty acid metabolism, Δ 6 fatty acid desaturase (Δ 6 -fatty acid desaturase, D6D) catalyzes the dehydrogenation of the sixth carbon atom of the substrates linoleic acid (LA) and α-linolenic acid (ALA) respectively to form γ - Linolenic acid (GLA) [1] and stearidonic acid (SDA, 18: 4Δ6,9,12,15 ).
γ-亚麻酸又可通过碳链延长和脱氢作用进一步形成AA、前列腺素和白三烯类生理活性物质,这些产物在人的大脑发育、视觉、过敏反应及心血管运动等一系列生理功能中产生重要影响。作为人体的一种必需的不饱和脂肪酸,γ-亚麻酸具有降血脂、抗脂质过氧化、减肥、抑制溃疡、增强胰岛素、抗血栓性心血管疾病等一系列生物学功能[1,2],目前国际上已作为一种新的维生素-维生素F被研究利用[3]。SDA是EPA和DHA的代谢前体,在人体内很容易转化为EPA和DHA,利用效率是ALA的4倍,可以有效缓解与EPA和DHA缺乏有关的生理疾病。当然通过直接补充EPA或DHA也可以获得同样效果。γ-linolenic acid can further form AA, prostaglandins and leukotriene physiologically active substances through carbon chain extension and dehydrogenation. These products play a series of physiological functions in human brain development, vision, allergic reactions and cardiovascular exercise have an important impact. As an essential unsaturated fatty acid in the human body, γ-linolenic acid has a series of biological functions such as lowering blood fat, anti-lipid peroxidation, weight loss, inhibiting ulcer, enhancing insulin, and anti-thrombotic cardiovascular disease[1,2] At present, vitamin F has been studied and utilized as a new vitamin in the world [3]. SDA is the metabolic precursor of EPA and DHA. It is easily converted into EPA and DHA in the human body, and its utilization efficiency is 4 times that of ALA. It can effectively alleviate the physiological diseases related to the lack of EPA and DHA. Of course, the same effect can also be obtained by directly supplementing EPA or DHA.
然而,PUFAs的现行商业来源主要是特定的种子植物、海洋鱼类和一些动物组织。除了LA以外,现有的来源在总产量和质量两个方面都不能满足日益增长的PUFAs的市场需求。这主要是基于下面的一些原因:However, the current commercial sources of PUFAs are mainly certain seed plants, marine fish and some animal tissues. Except for LA, existing sources cannot meet the growing market demand for PUFAs in terms of both total yield and quality. This is mainly based on the following reasons:
(1)PUFAs的植物资源受到季节和地域限制,PUFAs产量和质量的不稳定;而且植物资源大都产量低、不适合大面积种植。例如:含有γ-亚麻酸的月见草、琉璃苣和黑茶藨子等植物产量仅300~600kg/ha,远远低于常规油料作物如油菜的3t/ha的产量[4]。(1) The plant resources of PUFAs are limited by seasons and regions, and the yield and quality of PUFAs are unstable; moreover, most plant resources have low yields and are not suitable for large-scale planting. For example, the yield of evening primrose, borage and black currant containing γ-linolenic acid is only 300-600kg/ha, which is far lower than the 3t/ha yield of conventional oil crops such as rape [4].
(2)有限的天然海洋渔业资源由于过度捕捞造成渔业资源缺乏,而且鱼油固有的鱼腥味和氧化不稳定性,限制了PUFAs的进一步利用;(2) The limited natural marine fishery resources are lack of fishery resources due to overfishing, and the inherent fishy smell and oxidative instability of fish oil limit the further utilization of PUFAs;
(3)由于需对低品质的油进行提炼,大大增加了PUFAs的生产成本。由此造成了纯品PUFAs的高昂市场价格,阻碍了其许多潜在的用途。(3) Due to the need to refine low-quality oils, the production cost of PUFAs is greatly increased. The resulting high market price of pure PUFAs hinders many of their potential uses.
鉴于PUFAs的供应量很快将不能满足其需求量及其应用于生物药品所需纯品PUFAs供应量的不足,因此有必要寻求商业化生产的可替代性来源。In view of the fact that the supply of PUFAs will soon be unable to meet its demand and the insufficient supply of pure PUFAs required for application in biopharmaceuticals, it is necessary to seek alternative sources for commercial production.
所以,作为GLA和SDA生产中的关键酶-Δ6脂肪酸脱氢酶已被越来越多的研究和利用。迄今为止,Δ6脂肪酸脱氢酶基因已从动物[5]、植物[4]、真菌[6]和线虫[7]等不同生物中克隆获得,并在酿酒酵母[7,8]、番茄[9]、烟草[4,10]、油菜[6,8]和大豆[11]中成功获得了表达。Therefore, as the key enzyme in the production of GLA and SDA- Δ6 fatty acid dehydrogenase has been more and more researched and utilized. So far, Δ6 fatty acid dehydrogenase genes have been cloned from different organisms such as animals[5], plants[4], fungi[6] and nematodes[7], and have been cloned in Saccharomyces cerevisiae[7,8], tomato[ 9], tobacco [4, 10], rapeseed [6, 8] and soybean [11] were successfully expressed.
在植物中,GLA和SDA仅存在于月见草(Oenothera sp.)、琉璃苣(Borago officinalis L.)、黑茶藨子等少数几种植物中[12],而这些植物的种子油生产亦成为目前世界上GLA和SDA的主要商业来源。利用产油真菌发酵也可提取获得GLA和SDA。但通过现有的这些生产方式获得的GLA和SDA产量都很低,远远不能满足日益增长的市场需求[13]。因此,利用酿酒酵母或转基因油料作物植株表达外源Δ6脂肪酸脱氢酶来生产GLA和SDA具有重要的研究意义和经济价值。此外,虽然琉璃苣[5]具有Δ6脂肪酸脱氢酶基因在国外已有研究报道,但本申请的两个基因是来源于黑茶藨子的Δ6脂肪酸脱氢酶基因,迄今在国内外未见报道。In plants, GLA and SDA only exist in a few plants such as evening primrose (Oenothera sp.), borage (Borago officinalis L.), and black currant [12], and the seed oil production of these plants is also Become the main commercial source of GLA and SDA in the world. GLA and SDA can also be extracted by fermentation of oleaginous fungi. However, the yields of GLA and SDA obtained through these existing production methods are very low, which is far from meeting the growing market demand [13]. Therefore, using Saccharomyces cerevisiae or transgenic oil crop plants to express exogenous Δ6 fatty acid dehydrogenase to produce GLA and SDA has important research significance and economic value. In addition, although borage [5] has a Δ 6 fatty acid dehydrogenase gene that has been reported abroad, the two genes of the present application are Δ 6 fatty acid dehydrogenase genes derived from black currant, which have so far been studied at home and abroad. None reported.
发明内容 Contents of the invention
本发明提供了两个基因RnD6C、RnD6D,其核苷酸酸序列分别如SEQID NO:1和SEQID NO:2所示,这两个基因分别来源于黑茶藨子(Ribesnigrum L.)的DNA片段,所编码的多肽分别如SEQ ID NO:3,SEQ ID NO:4所示。The present invention provides two genes RnD6C and RnD6D, the nucleotide sequences of which are respectively shown in SEQID NO: 1 and SEQID NO: 2, and these two genes are respectively derived from the DNA fragments of Black Currant (Ribesnigrum L.) , the encoded polypeptides are shown in SEQ ID NO: 3 and SEQ ID NO: 4 respectively.
本发明的另一个目的是提供含基因RnD6C、RnD6D的低等真核细胞表达载体如酵母表达载体,以及利用该表达载体转化的酵母细胞。在转化的酵母细胞中所表达的多肽具有Δ6脂肪酸脱氢酶功能,可以分别催化外加底物亚油酸和α-亚麻酸分别生成γ-亚麻酸(GLA)和十八碳四烯酸(SDA)。Another object of the present invention is to provide lower eukaryotic cell expression vectors containing genes RnD6C and RnD6D, such as yeast expression vectors, and yeast cells transformed with the expression vectors. The polypeptide expressed in the transformed yeast cells has the function of Δ6 fatty acid dehydrogenase, which can respectively catalyze the addition of substrates linoleic acid and α-linolenic acid to generate γ-linolenic acid (GLA) and stearidonic acid ( SDA).
由于这类基因所编码的是一个蛋白,可采用酿酒酵母表达体系来进行体外表达,但由于该蛋白为膜蛋白,在体外表达体系中即使表达出来,亦较难分离纯化。故一般采用考察所表达的蛋白对外加底物的催化活性的方法来进行功能鉴定。Since this type of gene encodes a protein, it can be expressed in vitro using the Saccharomyces cerevisiae expression system, but since the protein is a membrane protein, even if it is expressed in the in vitro expression system, it is difficult to separate and purify. Therefore, the method of investigating the catalytic activity of the expressed protein to the external substrate is generally used for functional identification.
在所采用的酿酒酵母表达体系中,受体菌是尿嘧啶缺陷型INV ScI,本身不含LA(亚油酸)、ALA(α-亚麻酸)、GLA(γ-亚麻酸)和SDA,因此,在添加底物亚油酸的条件下,如若在酵母工程菌中检测到催化产物GLA或SDA,就可以确定外源基因所编码蛋白在酿酒酵母表达体系中获得了表达,对外加底物产生了催化作用。所以酿酒酵母已经作为研究外源的Δ6、Δ12-脂肪酸脱氢酶基因功能性鉴定的最常用、最有效的表达体系,且已有许多成功的研究报道[4,6,7]。脂肪酸的检测主要采用GC-MS(气相色谱-质谱联用技术)来完成。其原理是通过GC(气相色谱)将不同的脂肪酸组分分离,然后通过MS(质谱)检测器分别对每种组分进行质谱定性分析,从而确定每一种组分的成分及含量的比较成熟的联用分析技术。In the Saccharomyces cerevisiae expression system adopted, the recipient strain is uracil-deficient INV ScI, which does not contain LA (linoleic acid), ALA (α-linolenic acid), GLA (γ-linolenic acid) and SDA, so , under the condition of adding the substrate linoleic acid, if the catalytic product GLA or SDA is detected in the yeast engineered bacteria, it can be confirmed that the protein encoded by the exogenous gene has been expressed in the Saccharomyces cerevisiae expression system, and the additional substrate produced Catalyzed. Therefore, Saccharomyces cerevisiae has been used as the most commonly used and effective expression system for the functional identification of exogenous Δ6 and Δ12-fatty acid dehydrogenase genes, and there have been many successful research reports [4, 6, 7]. The detection of fatty acids is mainly accomplished by GC-MS (gas chromatography-mass spectrometry). The principle is to separate different fatty acid components through GC (gas chromatography), and then conduct mass spectrometry qualitative analysis on each component through MS (mass spectrometry) detector, so as to determine the composition and content of each component. combined analysis techniques.
本发明的又一个目的是提供一种含基因RnD6C、RnD6D的植物表达载体。可使用任何一种可以引导外源基因在植物中表达的表达载体。这些植物表达载体包括但不限于,双元农杆菌载体,例如pBIN19、pBI121、pB221,pCambia 1300,pGreen等的植物表达载体。Another object of the present invention is to provide a plant expression vector containing genes RnD6C and RnD6D. Any expression vector that can direct expression of foreign genes in plants can be used. These plant expression vectors include, but are not limited to, binary Agrobacterium vectors, such as pBIN19, pBI121, pB221, pCambia 1300, pGreen and other plant expression vectors.
本发明的载体也可含有适当的启动子。在本发明中可使用任何一种强启动子。这些启动子包括但不限于花椰菜花叶病毒(CaMV 35S)、Ubiqutin、Actin启动子。它可单独使用或与其它的植物启动子结合使用。The vectors of the present invention may also contain an appropriate promoter. Any strong promoter can be used in the present invention. These promoters include, but are not limited to, cauliflower mosaic virus (
本发明的表达载体可通过使用Ti质粒,Ri质粒,植物病毒载体,直接的DNA转化,微注射,电穿孔等方式导入植物细胞。The expression vector of the present invention can be introduced into plant cells by using Ti plasmid, Ri plasmid, plant virus vector, direct DNA transformation, microinjection, electroporation and the like.
可使用本发明的方法转化的低等真核宿主选自由酵母、藻类等低等真核生物组成的组。The lower eukaryotic hosts that can be transformed using the method of the present invention are selected from the group consisting of yeast, algae and other lower eukaryotic organisms.
可使用本发明的方法转化的植物宿主包括烟草、油菜、向日葵、大豆、番茄、蓖麻、芝麻和花生等植物。Plant hosts that can be transformed using the method of the present invention include plants such as tobacco, rapeseed, sunflower, soybean, tomato, castor, sesame and peanut.
本发明还涉及基因RnD6C、RnD6D在生产GLA和SDA中的应用。The invention also relates to the application of genes RnD6C and RnD6D in the production of GLA and SDA.
附图说明 Description of drawings
图1.RnD6C片段核苷酸序列,SEQ ID NO:1。Figure 1. RnD6C fragment nucleotide sequence, SEQ ID NO:1.
图2.RnD6D片段核苷酸序列,SEQ ID NO:2。Figure 2. RnD6D fragment nucleotide sequence, SEQ ID NO:2.
图3.基因RnD6C所编码的多肽序列,SEQ ID NO:3,其中划线部分分别为Cytb5功能域和三个His Box功能域。Figure 3. The polypeptide sequence encoded by the gene RnD6C, SEQ ID NO: 3, where the underlined parts are the Cytb5 functional domain and the three His Box functional domains.
图4.基因RnD6D所编码的多肽序列,SEQ ID NO:4,其中划线部分分别为Cytb5功能域和三个His Box功能域。Figure 4. The polypeptide sequence encoded by the gene RnD6D, SEQ ID NO: 4, where the underlined parts are the Cytb5 functional domain and three His Box functional domains.
图5.基因RnD6C和RnD6D的酵母表达载体图。Figure 5. Map of yeast expression vectors for genes RnD6C and RnD6D.
图6.基因RnD6C和RnD6D的植物表达载体图。a)以潮霉素(Hyg)作为筛选标记的RnD6C/D的植物表达载体图;b)去除筛选标记的RnD6C/D的植物表达载体图。Figure 6. Map of plant expression vectors for genes RnD6C and RnD6D. a) Map of the plant expression vector of RnD6C/D with hygromycin (Hyg) as the selectable marker; b) Map of the plant expression vector of RnD6C/D without the selectable marker.
图7.基因RnD6C和RnD6D在酿酒酵母表达中表达的总脂肪酸GC-MS分析Figure 7. GC-MS analysis of total fatty acids expressed by genes RnD6C and RnD6D in Saccharomyces cerevisiae
a)INV ScI酵母菌株脂肪酸组成的GC-MS;a) GC-MS of fatty acid composition of INV ScI yeast strain;
b)INV ScI酵母菌株脂肪酸组成和加有LA(亚油酸)、GLA(γ-亚麻酸)标准样品的GC-MS;b) GC-MS of fatty acid composition of INV ScI yeast strain and standard samples added with LA (linoleic acid) and GLA (γ-linolenic acid);
c)含空载pYES2表达质粒酵母的总脂肪酸GC-MS;c) GC-MS of total fatty acids of yeast containing empty pYES2 expression plasmid;
d)含空载pYES2表达质粒酵母在添加LA底物诱导后的总脂肪酸GC-MS;d) Total fatty acid GC-MS of yeast containing empty pYES2 expression plasmid induced by adding LA substrate;
e)表达RnD6C基因的酵母在添加LA底物诱导后的总脂肪酸GC-MS,红色箭头所指为产物峰;e) GC-MS of total fatty acids in yeast expressing RnD6C gene induced by adding LA substrate, the red arrow indicates the product peak;
f)表达RnD6D基因的酵母在添加LA底物诱导后的总脂肪酸GC-MS,红色箭头所指为产物峰;f) GC-MS of total fatty acids in yeast expressing RnD6D gene induced by adding LA substrate, the red arrow indicates the product peak;
g)含空载pYES2表达质粒酵母在添加ALA底物诱导后的总脂肪酸GC-MS;g) Total fatty acid GC-MS of yeast containing empty pYES2 expression plasmid induced by adding ALA substrate;
h)表达RnD6C基因的酵母在添加ALA底物诱导后的总脂肪酸GC-MS,红色箭头所指为产物峰;h) GC-MS of total fatty acids in yeast expressing RnD6C gene induced by adding ALA substrate, the red arrow indicates the product peak;
i)表达RnD6D基因的酵母在添加ALA底物诱导后的总脂肪酸GC-MS,红色箭头所指为产物峰;i) GC-MS of total fatty acids in yeast expressing RnD6D gene induced by adding ALA substrate, the red arrow indicates the product peak;
j)由napin启动子启动RnD6D基因表达的转基因油菜H165种子的总脂肪酸GC-MS,红色箭头所指为产物峰;j) GC-MS of total fatty acids of transgenic rapeseed H165 seeds whose expression of RnD6D gene is activated by napin promoter, the red arrow indicates the product peak;
k)对照-未转化的油菜H165种子的总脂肪酸GC-MS。k) GC-MS of total fatty acids of control-untransformed rapeseed H165 seeds.
图8.酿酒酵母中RnD6C、RnD6D基因表达催化产物GC-MS分析中MS图谱,a:RnD6C、RnD6D的酵母表达催化产物GLA的MS图;b:γ-亚麻酸标准品的MS图。Figure 8. MS spectrum in GC-MS analysis of catalytic products of RnD6C and RnD6D gene expression in Saccharomyces cerevisiae, a: MS chart of GLA, the catalytic product expressed by RnD6C and RnD6D in yeast; b: MS chart of γ-linolenic acid standard.
具体实施方式 Detailed ways
下面参考实施例和附图详细描述本发明。本领域的普通技术人员可以理解的是,下述实施例是举例说明的目的,其不应以任何方式解释为对本发明的限制。本发明的保护范围由后附的权利要求所限定。The present invention is described in detail below with reference to Examples and drawings. Those of ordinary skill in the art can understand that the following examples are for the purpose of illustration and should not be construed as limiting the present invention in any way. The protection scope of the present invention is defined by the appended claims.
实施例一、RnD6C、RnD6D基因的获得
1.黑茶藨子基因组DNA的制备1. Preparation of black currant genomic DNA
以北京植物园中种植的黑茶藨子(Ribes nigrum L.)活体植株为材料,取其幼嫩叶片(约100mg),于7ml Ep管中加入钢珠(直径5mm),置于液氮中冷冻20-30min,于漩涡器上高速破碎,反复操作2-3次,至材料完全破碎。加入1-2ml预热的CTAB抽提液(参见“精编分子生物学实验指南”2001,科学出版社,颜子颖,王海林译),混匀。65℃水浴30min。加入等体积氯仿,轻柔抽提约5min。于12000rpm室温离心10min。取上清,加入1/2体积异丙醇混匀,室温放置10min沉淀DNA。用Tip头将沉淀出的DNA挑出,用70%乙醇中洗涤两次,于70%乙醇中室温放置30min。除去70%乙醇,空气中吹干。溶于适量灭菌ddH2O,-20℃保存。Using the live plant of black tea currant (Ribes nigrum L.) grown in Beijing Botanical Garden as the material, take its young leaves (about 100mg), add steel balls (diameter 5mm) into a 7ml Ep tube, and freeze in liquid nitrogen for 20 -30min, high-speed crushing on the vortex machine, repeat the operation 2-3 times until the material is completely crushed. Add 1-2ml of preheated CTAB extract solution (see "Refined Molecular Biology Experiment Guide" 2001, Science Press, translated by Yan Ziying and Wang Hailin), and mix well. 65°C water bath for 30min. Add an equal volume of chloroform, and gently extract for about 5 minutes. Centrifuge at 12000rpm room temperature for 10min. Take the supernatant, add 1/2 volume of isopropanol to mix well, and place at room temperature for 10 min to precipitate DNA. The precipitated DNA was picked out with a Tip, washed twice with 70% ethanol, and placed in 70% ethanol at room temperature for 30 min. Remove 70% ethanol and dry in air. Dissolve in appropriate amount of sterilized ddH 2 O and store at -20°C.
2.RnD6C、RnD6D DNA片段的克隆2. Cloning of RnD6C and RnD6D DNA fragments
设计引物分别从前面所提取的DNA中克隆RnD6C、RnD6D的DNA片段。所用反应体系如下:Design primers to clone the DNA fragments of RnD6C and RnD6D from the DNA extracted above. The reaction system used is as follows:
PCR反应体系(50μl):PCR reaction system (50μl):
PCR产物电泳(1%琼脂糖凝胶浓度)后切胶回收目的片段(RnD6C、RnD6D,约1.3kb),连入pGEM-T载体(购自Promega公司),测序验证。After PCR product electrophoresis (1% agarose gel concentration), the target fragment (RnD6C, RnD6D, about 1.3 kb) was recovered by gel cutting, connected into pGEM-T vector (purchased from Promega Company), and sequenced for verification.
所用引物分别如下:The primers used are as follows:
1).RnD6C DNA片段的克隆所用引物1). Primers used for cloning of RnD6C DNA fragment
正向引物forward primer
Kpn IKpn I
5′-CGCGGGTACCATGGCTAATGCAATCAAG-3′(SEQ ID NO:5)5'-CGCG GGTACC ATGGCTAATGCAATCAAG-3' (SEQ ID NO: 5)
反向引物Sac Ireverse primer Sac I
5′-CGCCGAGCTCTCAGCCATAGGTGTTGAC-3′(SEQ ID NO:6)5'-CGCC GAGCTC TCAGCCATAGGTGTTGAC-3' (SEQ ID NO: 6)
2).RnD6D DNA片段的克隆所用引物2). Primers used for cloning of RnD6D DNA fragment
正向引物Kpn IForward primer Kpn I
5’-CGCGGGTACCATGGGTGAAAATGGAAGG-3’(SEQ ID NO:7)5'-CGCG GGTACC ATGGGTGAAAATGGAAGG-3' (SEQ ID NO: 7)
反向引物Sac Ireverse primer Sac I
5’-CGCCGAGCTCTCAACCATAGGTGTTGAC-3’(SEQ ID NO:8)5'-CGCC GAGCTC TCAACCATAGGTGTTGAC-3' (SEQ ID NO: 8)
实施例二、RnD6C、RnD6D基因酵母载体的构建Embodiment two, the construction of RnD6C, RnD6D gene yeast vector
从含有基因RnD6C和RnD6D的pGEM-T载体中,利用Kpn I、Sac I酶切位点,双切后获得RnD6C和RnD6D基因,定向克隆于酵母表达载体pYES2(购自Ivitrogen公司),获得酵母表达质粒pYRnD6C和pYRnD6D,转化大肠杆菌DH-5α(由本实验室保存)保存。其载体图见图5。From the pGEM-T vector containing the genes RnD6C and RnD6D, use the Kpn I and Sac I restriction sites to obtain the RnD6C and RnD6D genes after double cutting, and directionally clone them into the yeast expression vector pYES2 (purchased from Ivitrogen Company) to obtain yeast expression Plasmids pYRnD6C and pYRnD6D, transformed into Escherichia coli DH-5α (preserved by our laboratory) were preserved. Its vector diagram is shown in Figure 5.
实施例三、RnD6C、RnD6D基因在酵母中的表达Example 3, Expression of RnD6C and RnD6D genes in yeast
1.酵母的转化1. Transformation of Yeast
参照Invitrogen公司pYES2 Kit(Cat# V285-20)所述方法,将上述嵌合基因的酵母表达质粒pYRnD6C和pYRnD6D,采用醋酸锂介导转化酿酒酵母营养缺陷型菌株INV Sc I(购于Invitrogen公司),以空载pYES2质粒为对照,获得含有各表达质粒的酵母细胞。Referring to the method described in Invitrogen's pYES2 Kit (Cat# V285-20), the yeast expression plasmids pYRnD6C and pYRnD6D of the above-mentioned chimeric genes were transformed into Saccharomyces cerevisiae auxotrophic strain INV Sc I (purchased from Invitrogen) using lithium acetate. , with the empty pYES2 plasmid as a control, yeast cells containing each expression plasmid were obtained.
2.转化酵母细胞的诱导表达2. Induced expression in transformed yeast cells
取含目的基因酵母表达质粒转化的酵母单菌落,接种于50ml SC-U培养液(参照Invitrogen公司pYES2 Kit所述配方)含2%绵子糖的SC-U培养液中,250rpm,28℃,培养过夜;加入NP-40(购自BBI公司)(终浓度1%)、外源亚油酸和α-亚麻酸底物(购自Sigma公司)(终浓度为0.003%),以及酵母表达诱导物D-半乳糖(购自Amresco公司)(终浓度为2%)250rpm,22℃培养48h诱导表达。Get the yeast single colony transformed with the yeast expression plasmid containing the target gene, and inoculate it in 50ml SC-U culture fluid (with reference to the formula described in Invitrogen company pYES2 Kit) containing 2% raffinose SC-U culture fluid, 250rpm, 28°C, Cultivate overnight; add NP-40 (purchased from BBI Company) (
实施例四、RnD6C、RnD6D基因酵母表达物对Δ6脂肪酸脱氢酶底物催化产物的GC-MS分析Embodiment four, RnD6C, the GC-MS analysis of RnD6D gene yeast expression product to Δ 6 fatty acid dehydrogenase substrate catalytic product
1.脂肪酸的提取与甲酯化。1. Extraction and methyl esterification of fatty acids.
离心收集取诱导后的酵母菌体,去离子水洗涤,50℃烘干。取40mg酵母粉(在实例3.2中所诱导获得的酵母经50℃烘干即得)充分研磨,加入5ml 5%KOH-CH3OH,70℃水浴5h后加入HCl酸化至其pH值达2.0。再加入4ml14%BF3-CH3OH(购自Aldtich公司)溶液,70℃水浴1.5h。加入2ml 0.9%NaCl溶液,混匀后静止片刻。加入2ml氯仿∶正己烷(V/V1∶4)抽提,吸取抽提液,N2吹干。最后溶于100μl乙酸乙酯。The induced yeast cells were collected by centrifugation, washed with deionized water, and dried at 50°
2.终产物GC-MS检测分析实验。2. GC-MS detection and analysis experiment of the final product.
所用GC-/MS仪为TurboMass(PerkinElmer公司),柱子:BPX-70,30m×0.25mm×0.25vm,柱温120℃,气化室温度230℃。取1μl终产物上样,分流比10∶1。The GC-/MS instrument used is TurboMass (PerkinElmer Company), the column: BPX-70, 30m×0.25mm×0.25vm, the column temperature is 120°C, and the gasification chamber temperature is 230°
3.GC-MS结果分析。3. GC-MS result analysis.
对比图7-1a、7-1b和7-1e,表明在不添加亚油酸底物条件下,所用酵母工程植株以及含经诱导的空载pYES2表达质粒酵母中没有新的产物峰出现,说明所用酵母工程菌株及空载pYES2表达质粒酵母的总脂肪酸中不含外加底物亚油酸(LA)、α-亚麻酸(ALA)和催化产物γ-亚麻酸(GLA)、十八碳四烯酸(SDA)。Comparing Figures 7-1a, 7-1b and 7-1e, it shows that no new product peaks appear in the yeast engineered plants used and the yeast containing the induced empty pYES2 expression plasmid without the addition of linoleic acid substrate, indicating that The total fatty acids of the yeast engineering strains used and the empty pYES2 expression plasmid yeast do not contain additional substrates linoleic acid (LA), α-linolenic acid (ALA) and catalytic products γ-linolenic acid (GLA), steadetraene acid (SDA).
当添加亚油酸底物,并进行诱导表达时,对照(空载pYES2)亦没有产物峰γ-亚麻酸(GLA)的出现(参见图7-1d)。而pYRnD6C/D的酵母表达菌被诱导后,外加底物亚油酸(LA)可以被催化生成γ-亚麻酸(GLA)(参见图7-1e和7-1f)。When the linoleic acid substrate was added and the expression was induced, the control (empty pYES2) also had no product peak γ-linolenic acid (GLA) (see Figure 7-1d). After the pYRnD6C/D yeast expression strain is induced, the additional substrate linoleic acid (LA) can be catalyzed to generate γ-linolenic acid (GLA) (see Figure 7-1e and 7-1f).
对比图7-1d、7-1e和7-1f,可以发现在保留时间为7.25min左右时,有一个新的物质生成。其出峰时间和质谱图与标准品γ-亚麻酸(购自Sigma公司)的峰图及质谱图一致(参见图8a和图b),确定为γ-亚麻酸。Comparing Figures 7-1d, 7-1e and 7-1f, it can be found that when the retention time is about 7.25min, a new substance is formed. Its peak time and mass spectrum are consistent with those of the standard γ-linolenic acid (purchased from Sigma Company) (see Figure 8a and Figure b), and it is determined to be γ-linolenic acid.
当添加α-亚麻酸底物,并进行诱导表达时,对照(空载pYES2)亦没有产物峰SDA的出现(参见图7-2g)。而pYRnD6C/D的酵母表达菌被诱导后,外加底物α-亚麻酸可以被催化生成SDA(参见图7-2h和7-2i)。When the α-linolenic acid substrate was added and the expression was induced, the control (empty pYES2) also had no product peak SDA (see Figure 7-2g). After the pYRnD6C/D yeast expression strain is induced, the additional substrate α-linolenic acid can be catalyzed to generate SDA (see Figure 7-2h and 7-2i).
对比图7-2g、7-2h和7-2i,可以发现在保留时间为7.75min左右时,有一个新的物质生成。根据其出峰时间和质谱图确定为SDA。Comparing Figures 7-2g, 7-2h and 7-2i, it can be found that when the retention time is about 7.75min, a new substance is formed. Determined as SDA according to its peak time and mass spectrum.
以上结果证明来源于黑茶藨子的两个基因RnD6C、RnD6D在酿酒酵母中成功表达,所表达的蛋白可以分别催化底物亚油酸(LA)和α-亚麻酸(ALA)生成γ-亚麻酸和SDA。The above results prove that the two genes RnD6C and RnD6D derived from black currant were successfully expressed in S. acid and SDA.
实施例五、RnD6C、RnD6D基因植物表达载体的构建Embodiment five, the construction of RnD6C, RnD6D gene plant expression vector
1.napin启动子napin-T中间载体的构建1. Construction of napin promoter napin-T intermediate vector
提取(芥菜型)油菜总DNA,(方法参见实施例1.1)。napin启动子片段的克隆所用引物:The total DNA of rapeseed (mustard type) was extracted, (see Example 1.1 for the method). Primers used for cloning napin promoter fragments:
正向引物:Hind IIIForward primer: Hind III
5′-CGCGAAGCTTACTACAATGTCGGAGAGACAAGG-3′(SEQID NO:9)5'-CGCG AAGCTT ACTACAATGTCGGAGAGACAAGG-3' (SEQ ID NO: 9)
反向引物:BamH IReverse primer: BamH I
5′-CGCGGGATCCTTGTGTATGTTCTGTAGTGATGAGTTTTG-3′(SEQ ID NO:10)5'-CGCG GGATCC TTGTGTATGTTCTGTAGTGATGAGTTTTG-3' (SEQ ID NO: 10)
用Pyrobest DNA Polymerase PCR扩增(反应体系参见实施例1.2),PCR产物电泳(1%琼脂糖凝胶浓度)后切胶回收目的片段(约1.8kb),连入pGEM-T载体(购自Promega公司),测序验证。Use Pyrobest DNA Polymerase PCR amplification (see Example 1.2 for the reaction system), PCR product electrophoresis (1% agarose gel concentration) and gel cutting to recover the target fragment (about 1.8kb), connected into the pGEM-T vector (purchased from Promega company), sequence verification.
2.RnD6C、RnD6D基因的RnFD6C/D-T中间载体的构建2. Construction of the RnFD6C/D-T intermediate vector of RnD6C and RnD6D genes
根据RnFD6C/D的基因序列,分别设计含酶切位点为BamH I和Sac I的上下游特异引物,用Pyrobest DNA Polymerase扩增目的片段RnFD6C和RnFD6D,回收目的片段定向克隆到pGEM-T载体上,挑取单菌落,经PCR、酶切和测序验证,得到RnFD6C/D-T中间载体。According to the gene sequence of RnFD6C/D, design upstream and downstream specific primers containing restriction sites BamH I and Sac I respectively, use Pyrobest DNA Polymerase to amplify the target fragments RnFD6C and RnFD6D, recover the target fragments and clone them into the pGEM-T vector , picked a single colony, and verified by PCR, enzyme digestion and sequencing to obtain the RnFD6C/D-T intermediate vector.
3.RnD6C、RnD6D基因的植物表达载体的构建3. Construction of plant expression vectors of RnD6C and RnD6D genes
1)pC1300-napin的构建1) Construction of pC1300-napin
用Hind III和BamH I分别双酶切Napin-T和pCambia 1300,并回收napin启动子片段和pCambia 1300载体片段,连接转化大肠杆菌,随机挑取单克隆,经PCR,酶切验证得到替换35S启动子为napin启动子的pC1300-napin植物表达载体。Double digest Napin-T and pCambia 1300 with Hind III and BamH I, respectively, and recover the napin promoter fragment and pCambia 1300 vector fragment, connect and transform Escherichia coli, pick a single clone at random, and obtain the
2)pC1300-nRnD6C/D植物表达载体的构建2) Construction of pC1300-nRnD6C/D plant expression vector
用BamH I和Sac I分别双酶切RnD6C/D-T和pC1300-napin,并回收RnD6C/D目的片段和pC1300-napin载体片段,连接转化大肠杆菌,随机挑取单克隆,经PCR,酶切验证得到pC1300-n RnD6C/D的植物表达载体。其载体图见图6a。RnD6C/D-T and pC1300-napin were double-digested with BamH I and Sac I respectively, and the RnD6C/D target fragment and pC1300-napin vector fragment were recovered, connected and transformed into Escherichia coli, single clones were randomly selected, and obtained by PCR and enzyme digestion verification The plant expression vector of pC1300-n RnD6C/D. Its vector diagram is shown in Figure 6a.
3)去除潮霉素(Hyg)筛选标记的pC1300-nRnD6C/D的构建3) Construction of pC1300-nRnD6C/D removing hygromycin (Hyg) selection marker
在构建好之后,用Xho I单酶切,然后回收大片断,连接转化后,随机挑取单克隆进行PCR、酶切验证获得去除潮霉素(Hyg)筛选标记的pC1300-nRnD6C/D植物表达载体。其载体图见图6b。After the construction is complete, use Xho I to single-enzyme digest, then recover the large fragment, and after ligation and transformation, randomly pick a single clone for PCR and enzyme digestion verification to obtain the pC1300-nRnD6C/D plant expression that removes the hygromycin (Hyg) selection marker carrier. Its carrier map is shown in Figure 6b.
实施例六、RnD6C、RnD6D基因及在植物中的转化
1.植物表达载体转入农杆菌1. Transformation of plant expression vector into Agrobacterium
挑取农杆菌单菌落接种在5ml YEP液体培养基中,28℃,200rpm,振荡过夜培养。将2ml过夜培养的菌液加到含有50ml YEP培养基中,28℃,220rpm,振荡培养至OD600在0.5-1.0之间。5000rpm离心菌液,弃上清,沉淀悬浮于10ml 0.5M NaCl,4℃,5000rpm离心5min,弃上清,用1ml预冷的20mM CaCl2重悬细胞。取0.2ml加入约0.5-1μg质粒DNA,轻轻混匀,液氮速冻1min,37℃热激5min,加入1ml YEP溶液,28℃振荡培养2-4h。5000rpm离心菌液,弃上清,将细胞重悬于0.2ml YEP培养基中,均匀涂布在含Kan的YEP平板上,28℃培养48h。随机挑取单菌落进行PCR和酶切验证。Pick a single colony of Agrobacterium and inoculate it in 5ml of YEP liquid medium, culture at 28°C, 200rpm, shake overnight. Add 2ml of overnight cultured bacterial solution to 50ml of YEP medium, at 28°C, 220rpm, shake culture until OD 600 is between 0.5-1.0. Centrifuge the bacterial solution at 5000rpm, discard the supernatant, suspend the pellet in 10ml of 0.5M NaCl, centrifuge at 5000rpm for 5min at 4°C, discard the supernatant, and resuspend the cells with 1ml of pre-cooled 20mM CaCl2. Take 0.2ml and add about 0.5-1μg plasmid DNA, mix gently, freeze in liquid nitrogen for 1min, heat shock at 37°C for 5min, add 1ml of YEP solution, and incubate at 28°C for 2-4h. Centrifuge the bacterial solution at 5000rpm, discard the supernatant, resuspend the cells in 0.2ml YEP medium, spread evenly on the YEP plate containing Kan, and incubate at 28°C for 48h. A single colony was randomly picked for PCR and enzyme digestion verification.
2.Floral-dip法转化油菜(H165)2. Transformation of rapeseed (H165) by Floral-dip method
选择初花期的甘蓝型油菜植株处理,前1d田间浇透水。去除主花序和每个分枝花序的顶端花蕾,同时除去已开放的花朵,只保留快要开放的花蕾用于转化。Brassica napus plants at the initial flowering stage were selected for treatment, and the field was watered thoroughly for the first 1 day. The top flower buds of the main inflorescence and each branch inflorescence are removed, and the flowers that have opened are removed at the same time, and only the flower buds that are about to open are kept for transformation.
用10ml新鲜的YEP+kan的培养基28℃过夜培养含有目标基因植物表达载体的农杆菌至次日10:00,再取5ml转入100ml新鲜的YEP+kan的培养基,过夜培养22h。2500rpm离心农杆菌菌液,弃上清后,用100ml转化Bufer(MS基本培养基+蔗糖5%+Silwet-77,pH5.8)重悬至OD600=1.0后浸渍油菜花序。10d内间隔1d连续处理5次。浸渍完后套上纸袋。浸渍处理24h后除去纸袋直至收获种子。Use 10ml of fresh YEP+kan medium to cultivate Agrobacterium containing the plant expression vector of the target gene overnight at 28°C until 10:00 the next day, then transfer 5ml into 100ml fresh YEP+kan medium, and culture overnight for 22h. Centrifuge the Agrobacterium liquid at 2500rpm, discard the supernatant, resuspend with 100ml Transformation Bufer (MS basic medium + 5% sucrose + Silwet-77, pH 5.8) to OD 600 =1.0, and then soak the rape inflorescence. 5 consecutive treatments at intervals of 1d within 10d. Put on a paper bag after soaking. After soaking for 24 hours, the paper bag was removed until the seeds were harvested.
实施例七、T1代种子的筛选Embodiment seven, the screening of T1 generation seed
对浸渍处理后获得的油菜T1代种子经75%酒精表面消毒30s,0.1%HgCl2消毒10min,铺在预先倒好的筛选培养基上,经7~15d筛选培养,将正常生长的绿色苗进行第2次抗性筛选(7~15d),将第2次筛选后的抗性植株进行第3次抗性筛选(7~15d),第2次,第3次筛选培养基为:Ms+Kan(150mg/L)。将第三次筛选后的绿苗转入花盆,温室培养至种子收获。The T1 generation seeds of rapeseed obtained after dipping treatment were surface sterilized with 75% alcohol for 30 seconds and 0.1% HgCl 2 for 10 minutes, spread on the pre-poured screening medium, and were screened and cultivated for 7-15 days, and the green seedlings with normal growth were subjected to the second 2 times of resistance selection (7-15d), the resistant plants after the 2nd selection were subjected to the 3rd resistance selection (7-15d), the medium for the 2nd and 3rd selection was: Ms+Kan( 150mg/L). The green seedlings after the third screening are transferred to flowerpots and cultivated in the greenhouse until the seeds are harvested.
对于用含有去除筛选标记的pC1300-n RnD6C/D的农杆菌处理后获得的T1代油菜种子直接播种于田间,提取叶片DNA,通过PCR筛选阳性植株。For the T1 generation rapeseed obtained after treatment with Agrobacterium containing pC1300-n RnD6C/D that removes the screening marker, they were directly sown in the field, leaf DNA was extracted, and positive plants were screened by PCR.
实施例八、RnD6C、RnD6D基因植物表达物对Δ6脂肪酸脱氢酶底物催化产物的GC-MS分析Embodiment eight, RnD6C, RnD6D gene plant expression thing is to the GC-MS analysis of Δ 6 fatty acid dehydrogenase substrate catalytic product
1.脂肪酸的提取与甲酯化。1. Extraction and methyl esterification of fatty acids.
取50-100mg成熟对照或转基因油菜种子,液氮中充分研磨,加入5ml 5%KOH-CH3OH,70℃水浴5h后加入HCl酸化至其pH值达2.0。再加入4ml 14%BF3-CH3OH(购自Aldrich公司)溶液,70℃水浴1.5h。加入2ml 0.9%NaCl溶液,混匀后静止片刻。加入2ml氯仿∶正己烷(V/V 1∶4)抽提,吸取抽提液,N2吹干。最后溶于100μl乙酸乙酯。Take 50-100 mg of mature control or transgenic rape seeds, grind them thoroughly in liquid nitrogen, add 5 ml of 5% KOH-CH 3 OH, bathe in water at 70°C for 5 hours, then add HCl to acidify until the pH reaches 2.0. Add 4ml of 14% BF 3 -CH 3 OH (purchased from Aldrich) solution, and bathe in water at 70°C for 1.5h. Add 2ml of 0.9% NaCl solution, mix well and let stand for a while. Add 2ml of chloroform:n-hexane (V/V 1:4) for extraction, absorb the extract, and blow dry with N2 . Finally dissolved in 100 μl ethyl acetate.
2.终产物GC-MS检测分析实验。2. GC-MS detection and analysis experiment of the final product.
所用GC/MS仪为TurboMass(PerkinElmer公司),柱子:BPX-70,30m×0.25mm×0.25vm,柱温120℃,气化室温度230℃。取1μl终产物上样,分流比10∶1。The GC/MS instrument used is TurboMass (PerkinElmer Company), the column: BPX-70, 30m×0.25mm×0.25vm, the column temperature is 120°C, and the gasification chamber temperature is 230°
3.GC-MS结果分析。3. GC-MS result analysis.
对比图7-2j和7-2k,与未进行转化的油菜种子对照相比,转化株油菜出现两个新的产物峰,与标准品和酵母GC-MS结果比较,可以发现在保留时间为7.25min左右时,出现GLA的产物峰;在保留时间为7.75min左右时,出现SDA的产物峰。以上结果证明来源于黑茶藨子的基因RnD6D在油菜种子中成功表达,所表达的蛋白可以分别催化底物亚油酸(LA)和α-亚麻酸(ALA)生成GLA和SDA。这也就表明,将RnD6C/D转入油菜,可以用转基因油菜作为生物反应器生产GLA和SDA。Comparing Figures 7-2j and 7-2k, compared with the non-transformed rapeseed control, two new product peaks appeared in the transformed rapeseed. Compared with the results of the standard and yeast GC-MS, it can be found that the retention time is 7.25 When the retention time is about 7.75 min, the product peak of GLA appears; when the retention time is about 7.75 min, the product peak of SDA appears. The above results proved that the gene RnD6D from black currant was successfully expressed in rapeseed, and the expressed protein could catalyze the production of GLA and SDA from the substrates linoleic acid (LA) and α-linolenic acid (ALA), respectively. This also shows that by transferring RnD6C/D into rapeseed, the transgenic rapeseed can be used as a bioreactor to produce GLA and SDA.
参考文献:references:
1.Gunstone FD(1992)Gamma linolenic acid-occurrence and physical andchemical properties.Prog Lipid Res 31:145-161.1. Gunstone FD (1992) Gamma linolenic acid-occurrence and physical and chemical properties. Prog Lipid Res 31: 145-161.
2.Horrobin DF(1992)Nutritional and medical importance of gamma-linolenicacid.Prog Lipid Res 31:163-194.2. Horrobin DF (1992) Nutritional and medical importance of gamma-linolenic acid. Prog Lipid Res 31: 163-194.
3.Huang YS and Milles DE(1996)Gamma-Linolenic Acid:Metabolism andIts Roles in Nutrition and Medicine.AOCS Press,Champaign,IL.3. Huang YS and Milles DE(1996) Gamma-Linolenic Acid: Metabolism and Its Roles in Nutrition and Medicine. AOCS Press, Champaign, IL.
4.Sayanova O,Smith MA,Lapinskas P,Stobart AK,Dobson G,Christie WW,Shewry PR and Napier JA(1997)Expression of a borage desaturase cDNAcontaining an N-terminal cytochrome b5 domain results in the accumulationof high levels ofΔ6-desaturated fatty acids in transgenic tobacco.Proc NatlAcad Sci USA 94:4211-4216.4. Sayanova O, Smith MA, Lapinskas P, Stobart AK, Dobson G, Christie WW, Shewry PR and Napier JA (1997) Expression of a borage desaturase cDNA containing an N-terminal cytochrome b5 domain results in the accumulation of high levels of Δ 6 - desaturated fatty acids in transgenic tobacco. Proc Natl Acad Sci USA 94: 4211-4216.
5.Hyekyung PC,Manabu TN and Steven DC(1999)Cloning,Expression,andNutritional Regulation of the MammalianΔ6-Desaturase.J Biol Chem274(1):471-477.5. Hyekyung PC, Manabu TN and Steven DC (1999) Cloning, Expression, and Nutritional Regulation of the MammalianΔ 6 -Desaturase. J Biol Chem274 (1): 471-477.
6.Hong HP,Datla N,Reed DW.,Covello PS,MacKenzie SL and Qiu X(2002)High-Level Production ofγ-Linolenic Acid in Brassica juncea Using aΔ6Desaturase from Pythium irregulare.Plant Physiol 129:354-362.6. Hong HP, Datla N, Reed DW., Covello PS, MacKenzie SL and Qiu X (2002) High-Level Production ofγ-Linolenic Acid in Brassica juncea Using aΔ 6 Desaturase from Pythium irregulare. Plant Physiol 129: 354-362.
7.Napier JA,Hey SJ,Lacey DJ and Shewry PR(1998)Identification of aCaenorhabditis elegans Δ6-fatty-acid-desaturse by heterologousexpression in Saccharomyces cerevisiae.Biochem J 330:611-614.7. Napier JA, Hey SJ, Lacey DJ and Shewry PR (1998) Identification of aCaenorhabditis elegans Δ 6 -fatty-acid-desaturse by heterologous expression in Saccharomyces cerevisiae. Biochem J 330: 611-614.
8.Qiu X,Hong HP,Datla N,MacKenzie SL,Tayler CD and Thomas LT(2002)Expression of borageΔ6-desaturase in Saccharomyces cerevisiaeand oilseed crops.Can J Bot 80:42-49.8. Qiu X, Hong HP, Datla N, MacKenzie SL, Tayler CD and Thomas LT (2002) Expression of boreageΔ 6 -desaturase in Saccharomyces cerevisiae and oilseed crops. Can J Bot 80: 42-49.
9.Cook D,Grierson D,Jones C,Wallace A,West G and Tucker G(2002)Modification of fatty acid composition in tomato(Lycopersicon esculentum)by expression of a borageΔ6-desaturase.Mol Biotechnol.21(2):123-128.9. Cook D, Grierson D, Jones C, Wallace A, West G and Tucker G (2002) Modification of fatty acid composition in tomato (Lycopersicon esculentum) by expression of a borageΔ 6 -desaturase. Mol Biotechnol.21 (2): 123-128.
10.Sayanova O,Smith MA,Lapinskas P,Stobart AK,Dobson G,ChristieWW,Shewry PR and Napier JA(1997)Expression of a borage desaturasecDNA containing an N-terminal cytochrome b5 domain results in theaccumulation of high levels ofΔ6-desaturated fatty acids in transgenictobacco.Proc Natl Acad Sci USA 94:4211-4216.10. Sayanova O, Smith MA, Lapinskas P, Stobart AK, Dobson G, Christie WW, Shewry PR and Napier JA (1997) Expression of a borage desaturasecDNA containing an N-terminal cytochrome b5 domain results in the accumulation of high levels of Δ 6 -desaturated fatty acids in transgenic tobacco. Proc Natl Acad Sci USA 94: 4211-4216.
11.Sato S,Xing AQ,Ye XG,Schweiger B,Kinney A,Graef G and Clemente T(2004)Production ofγ-Linolenic Acid and Stearidonic Acid in Seeds ofMarker-Free Transgenic Soybean.Crop Sci 44:646-652.11. Sato S, Xing AQ, Ye XG, Schweiger B, Kinney A, Graef G and Clemente T(2004) Production ofγ-Linolenic Acid and Stearidonic Acid in Seeds of Marker-Free Transgenic Soybean. Crop Sci 44:646-652.
12.Ucciani E(1995)Nouveau Dictionnaire des Huiles Végétales-Composition en Acides Gras.Lavoisier,Paris pp 3-596.12. Ucciani E (1995) Nouveau Dictionnaire des Huiles Végétales-Composition en Acides Gras. Lavoisier, Paris pp 3-596.
13.Gyves EM,Sparks CA,Sayanova O,Lazzeri P,Napier JA and Jones HD(2004)Genetic manipulation ofγ-linolenic acid(GLA)synthesis in acommercial variety of evening primrose(Oenothera sp.)Plant Biotech2(4):351-357.13. Gyves EM, Sparks CA, Sayanova O, Lazzeri P, Napier JA and Jones HD (2004) Genetic manipulation of γ-linolenic acid (GLA) synthesis in commercial variety of evening primrose (Oenothera sp.) Plant Biotech2 (4): 351 -357.
序列表sequence listing
<110>中国科学院遗传与发育生物学研究所<110> Institute of Genetics and Developmental Biology, Chinese Academy of Sciences
<120>具有Δ6脂肪酸脱氢酶功能的基因及其应用<120> Gene with Δ6 fatty acid dehydrogenase function and its application
<130>1<130>1
<160>8<160>8
<170>PatentIn version 3.1<170>PatentIn version 3.1
<210>1<210>1
<211>1347<211>1347
<212>DNA<212> DNA
<213>Ribes nigrum L.<213>Ribes nigrum L.
<400>1<400>1
atggctaatg caatcaagaa gtacatgaca gttgaggagc taaaagtgca taacaagcca 60atggctaatg caatcaagaa gtacatgaca gttgaggagc taaaagtgca taacaagcca 60
gaggatttgt ggatctctat tcagggtaag gtttacaatg tcactgattg gaaaaaggaa 120gaggatttgt ggatctctat tcagggtaag gtttacaatg tcactgattg gaaaaaggaa 120
cacccaggtg gggatagctc tctcctgaat ctaggtggtc aagatgtcac agatgcattc 180cacccaggtg gggatagctc tctcctgaat ctaggtggtc aagatgtcac agatgcattc 180
attgcttatc atccaggtac tgcttggcaa tatcttgaca ggttctttac tgggtattat 240attgcttatc atccaggtac tgcttggcaa tatcttgaca ggttctttac tgggtattat 240
ctcaaagatt tcaatgtctc agatgtatcc aaagattata gaaaacttgc atctgagttt 300ctcaaagatt tcaatgtctc agatgtatcc aaagattata gaaaacttgc atctgagttt 300
accaaaatgg gtctttttgc aaagaaaggg catggtgttt tctactcctt ttgtcttggg 360accaaaatgg gtctttttgc aaagaaaggg catggtgttt tctactcctt ttgtcttggg 360
gcattcttgt ttgctgtttg tgtttatggt gttttgtatt ctcaaagttt gtttgtgcat 420gcattcttgt ttgctgtttg tgtttatggt gttttgtatt ctcaaagttt gtttgtgcat 420
ttgtgttgtg gtgggatttt ggggttttta tggatgcaaa gtggttatgc tggtcacgat 480ttgtgttgtg gtgggatttt ggggttttta tggatgcaaa gtggttatgc tggtcacgat 480
tctgggcatt atcagacaat gtctactcct ttttatacca atttggctca aattcttact 540tctgggcatt atcagacaat gtctactcct ttttatacca atttggctca aattcttact 540
ggaaattgcc ttagtggtat tagtatggct tggtggaaat ggacccacaa tgctcaccac 600ggaaattgcc ttagtggtat tagtatggct tggtggaaat ggacccacaa tgctcaccac 600
gttgctgtta atagtattga ccatgaccct gatcttcagt acatgccatt ttttgtcctc 660gttgctgtta atagtattga ccatgaccct gatcttcagt acatgccatt ttttgtcctc 660
tctcccaaat tgttcaatgg cataacttct cgcttttatg ggaggaagtt ggagtttgat 720tctcccaaat tgttcaatgg cataacttct cgcttttatg ggaggaagtt ggagtttgat 720
gcttttgcta ggttcatggt aagttatcag cattggacat tttatccggt gatgattttt 780gcttttgcta ggttcatggt aagttatcag cattggacat tttatccggt gatgattttt 780
gcacgatttt atatgtttgt gcccacgttt tttatgttgc tttcaaagaa aaaagtaccc 840gcacgatttt atatgtttgt gcccacgttt tttatgttgc tttcaaagaa aaaagtaccc 840
aacagacctt tgaatatagc gggaattatt gtgttctgga tttggtttcc tcttcttgtt 900aacagacctt tgaatatagc gggaattatt gtgttctgga tttggtttcc tcttcttgtt 900
tcatgccttc ccaattggac tgagaggatg atgtttgtgc tagtgagctt tacagttact 960tcatgccttc ccaattggac tgagaggatg atgtttgtgc tagtgagctt tacagttact 960
tcaattcaac acgttacatt ttgtttgaat cactactcgg ctgataatta tatgggacat 1020tcaattcaac acgttacatt ttgtttgaat cactactcgg ctgataatta tatgggacat 1020
cctactggga acgattggtt tgagaagcag acaagtggga ctttggacat ttcgtgcccg 1080cctactggga acgattggtt tgagaagcag acaagtggga ctttggacat ttcgtgcccg 1080
tcttggatgg attggtttca tggtgggctg caattccaaa ttgagcatca tttgttccca 1140tcttggatgg attggtttca tggtgggctg caattccaaa ttgagcatca tttgttccca 1140
agattgcctc gatgccagct taggaaggtc tctccttttg tgaaagagct ttgcaagaaa 1200agattgcctc gatgccagct taggaaggtc tctccttttg tgaaagagct ttgcaagaaa 1200
cacaatttgc cttataggag tttatcattt tttgaggcca atgttgcaat cattaagacg 1260cacaatttgc cttataggag tttatcattt tttgaggcca atgttgcaat cattaagacg 1260
ttgaggactg ccgccttgca agctcgcgac ctatccaacc ctatttcaaa gaatttgcta 1320ttgaggactg ccgccttgca agctcgcgac ctatccaacc ctatttcaaa gaatttgcta 1320
tgggaagctg tcaacaccta tggctga 1347tgggaagctg tcaacaccta tggctga 1347
<210>2<210>2
<211>1347<211>1347
<212>DNA<212>DNA
<213>Ribes nigrum L.<213>Ribes nigrum L.
<400>2<400>2
atgggtgaaa atggaaggaa gtacatgaca gttgaggagc taaaagtgca taataagcca 60atgggtgaaa atggaaggaa gtacatgaca gttgaggagc taaaagtgca taataagcca 60
gaggatttgt ggatctctat tcagggtaag gtttacaatg tcactgattg gaaaaaggaa 120gaggatttgt ggatctctat tcagggtaag gtttacaatg tcactgattg gaaaaaggaa 120
cacccaggtg gggatagctc actcctgaat ctgggtggtc aagatgtcac agatgcattc 180cacccaggtg gggatagctc actcctgaat ctgggtggtc aagatgtcac agatgcattc 180
attgcttatc atccaggtac tgtttggcaa tatcttgaca ggttctttac tgggtattat 240attgcttatc atccaggtac tgtttggcaa tatcttgaca ggttctttac tgggtattat 240
ctcaaagatt tcaaagtctc agatgtatcc aaagattaca gaaaacttgc atctgagttt 300ctcaaagatt tcaaagtctc agatgtatcc aaagattaca gaaaacttgc atctgagttt 300
accaaaatgg gtctttttgc aaagaaaggg catggtgttt tctactcctt ttgtcttggg 360accaaaatgg gtctttttgc aaagaaaggg catggtgttt tctactcctt ttgtcttggg 360
gcattcttgt ttgctgtttg tgtttatggt gttttgtatt ctcaaagttt gtttgtgcat 420gcattcttgt ttgctgtttg tgtttatggt gttttgtatt ctcaaagttt gtttgtgcat 420
ttatgttgtg gtgggatttt ggggttttta tggatgcaaa gtggttatgc tggtcatgat 480ttatgttgtg gtgggatttt ggggttttta tggatgcaaa gtggttatgc tggtcatgat 480
tctgggcatt accagacaat gtctactcct ttttatacca atttggctca aattcttact 540tctgggcatt accagacaat gtctactcct ttttatacca atttggctca aattcttact 540
ggaaattgcc ttagtggtat tagtatggct tggtggaaat ggacccacaa tgctcaccac 600ggaaattgcc ttagtggtat tagtatggct tggtggaaat ggacccacaa tgctcaccac 600
attgctgtta atagtattga ccatgaccct gatcttcagt acatgccatt ttttgttctc 660attgctgtta atagtattga ccatgaccct gatcttcagt acatgccatt ttttgttctc 660
tctcccaaat tgttcaatag cataacttct cgcttttatg ggaggaagtt ggagtttgat 720tctcccaaat tgttcaatag cataacttct cgcttttatg ggaggaagtt ggagtttgat 720
gcttttgcta ggttcatggt gagttatcag cattggacat tttatccggt gatgattttt 780gcttttgcta ggttcatggt gagttatcag cattggacat tttatccggt gatgattttt 780
gcacgatttt atatgtttgt gcctacgttt tttttgttgc tttcaaagaa aaaagtaccc 840gcacgatttt atatgtttgt gcctacgttt tttttgttgc tttcaaagaa aaaagtaccc 840
aacagacttt tgaatatagc tggaattatt gtgttctgga tttggtttcc tcttcttgtt 900aacagacttt tgaatatagc tggaattatt gtgttctgga tttggtttcc tcttcttgtt 900
tcatgcctac ccaattggac tgagaggatg atgtttgtgc tagtgagctt tacggttact 960tcatgcctac ccaattggac tgagaggatg atgtttgtgc tagtgagctt tacggttat 960
tcaattcaac acgttacatt ttgtttgaat cactactcgg ctgataatta tatgggacat 1020tcaattcaac acgttacatt ttgtttgaat cactactcgg ctgataatta tatgggacat 1020
cctactggga acgattggtt tgaaaagcag acaagtggga ctttggacat ttcgtgcccg 1080cctactggga acgattggtt tgaaaagcag acaagtggga ctttggacat ttcgtgcccg 1080
tcttggatgg attggtttca tggtgggctg caattccaac ttgagcatca tttgttccct 1140tcttggatgg attggtttca tggtgggctg caattccaac ttgagcatca tttgttccct 1140
cgaatgcctc gatgtcagct taggaaggtc tctccttttg tgaaggaact ttgccagaag 1200cgaatgcctc gatgtcagct taggaaggtc tctccttttg tgaaggaact ttgccagaag 1200
cataatttgc cttataggag tttgtcattt ttcgaggcca atgtcgcgac cattaagacg 1260cataatttgc cttataggag tttgtcattt ttcgaggcca atgtcgcgac cattaagacg 1260
ttgaggactg cagccttgca agctcgtgac ctgtccaacc ctattacaaa gaatttgcta 1320ttgaggactg cagccttgca agctcgtgac ctgtccaacc ctattacaaa gaatttgcta 1320
tgggaagctg tcaacaccta tggttga 1347tgggaagctg tcaacaccta tggttga 1347
<210>3<210>3
<211>448<211>448
<212>PRT<212>PRT
<213>Ribes nigrum L.<213>Ribes nigrum L.
<400>3<400>3
Met Ala Asn Ala Ile Lys Lys Tyr Met Thr Val Glu Glu Leu Lys ValMet Ala Asn Ala Ile Lys Lys Tyr Met Thr Val Glu Glu Leu Lys Val
1 5 10 151 5 10 15
His Asn Lys Pro Glu Asp Leu Trp Ile Ser Ile Gln Gly Lys Val TyrHis Asn Lys Pro Glu Asp Leu Trp Ile Ser Ile Gln Gly Lys Val Tyr
20 25 3020 25 30
Asn Val Thr Asp Trp Lys Lys Glu His Pro Gly Gly Asp Ser Ser LeuAsn Val Thr Asp Trp Lys Lys Glu His Pro Gly Gly Asp Ser Ser Leu
35 40 4535 40 45
Leu Asn Leu Gly Gly Gln Asp Val Thr Asp Ala Phe Ile Ala Tyr HisLeu Asn Leu Gly Gly Gln Asp Val Thr Asp Ala Phe Ile Ala Tyr His
50 55 6050 55 60
Pro Gly Thr Ala Trp Gln Tyr Leu Asp Arg Phe Phe Thr Gly Tyr TyrPro Gly Thr Ala Trp Gln Tyr Leu Asp Arg Phe Phe Thr Gly Tyr Tyr
65 70 75 8065 70 75 80
Leu Lys Asp Phe Asn Val Ser Asp Val Ser Lys Asp Tyr Arg Lys LeuLeu Lys Asp Phe Asn Val Ser Asp Val Ser Lys Asp Tyr Arg Lys Leu
85 90 9585 90 95
Ala Ser Glu Phe Thr Lys Met Gly Leu Phe Ala Lys Lys Gly His GlyAla Ser Glu Phe Thr Lys Met Gly Leu Phe Ala Lys Lys Gly His Gly
100 105 110100 105 110
Val Phe Tyr Ser Phe Cys Leu Gly Ala Phe Leu Phe Ala Val Cys ValVal Phe Tyr Ser Phe Cys Leu Gly Ala Phe Leu Phe Ala Val Cys Val
115 120 125115 120 125
Tyr Gly Val Leu Tyr Ser Gln Ser Leu Phe Val His Leu Cys Cys GlyTyr Gly Val Leu Tyr Ser Gln Ser Leu Phe Val His Leu Cys Cys Gly
130 135 140130 135 140
Gly Ile Leu Gly Phe Leu Trp Met Gln Ser Gly Tyr Ala Gly His AspGly Ile Leu Gly Phe Leu Trp Met Gln Ser Gly Tyr Ala Gly His Asp
145 150 155 160145 150 155 160
Ser Gly His Tyr Gln Thr Met Ser Thr Pro Phe Tyr Thr Asn Leu AlaSer Gly His Tyr Gln Thr Met Ser Thr Pro Phe Tyr Thr Asn Leu Ala
165 170 175165 170 175
Gln Ile Leu Thr Gly Asn Cys Leu Ser Gly Ile Ser Met Ala Trp TrpGln Ile Leu Thr Gly Asn Cys Leu Ser Gly Ile Ser Met Ala Trp Trp
180 185 190180 185 190
Lys Trp Thr His Asn Ala His His Val Ala Val Asn Ser Ile Asp HisLys Trp Thr His Asn Ala His His Val Ala Val Asn Ser Ile Asp His
195 200 205195 200 205
Asp Pro Asp Leu Gln Tyr Met Pro Phe Phe Val Leu Ser Pro Lys LeuAsp Pro Asp Leu Gln Tyr Met Pro Phe Phe Val Leu Ser Pro Lys Leu
210 215 220210 215 220
Phe Asn Gly Ile Thr Ser Arg Phe Tyr Gly Arg Lys Leu Glu Phe AspPhe Asn Gly Ile Thr Ser Arg Phe Tyr Gly Arg Lys Leu Glu Phe Asp
225 230 235 240225 230 235 240
Ala Phe Ala Arg Phe Met Val Ser Tyr Gln His Trp Thr Phe Tyr ProAla Phe Ala Arg Phe Met Val Ser Tyr Gln His Trp Thr Phe Tyr Pro
245 250 255245 250 255
Val Met Ile Phe Ala Arg Phe Tyr Met Phe Val Pro Thr Phe Phe MetVal Met Ile Phe Ala Arg Phe Tyr Met Phe Val Pro Thr Phe Phe Met
260 265 270260 265 270
Leu Leu Ser Lys Lys Lys Val Pro Asn Arg Pro Leu Asn Ile Ala GlyLeu Leu Ser Lys Lys Lys Val Pro Asn Arg Pro Leu Asn Ile Ala Gly
275 280 285275 280 285
Ile Ile Val Phe Trp Ile Trp Phe Pro Leu Leu Val Ser Cys Leu ProIle Ile Val Phe Trp Ile Trp Phe Pro Leu Leu Val Ser Cys Leu Pro
290 295 300290 295 300
Asn Trp Thr Glu Arg Met Met Phe Val Leu Val Ser Phe Thr Val ThrAsn Trp Thr Glu Arg Met Met Phe Val Leu Val Ser Phe Thr Val Thr
305 310 315 320305 310 315 320
Ser Ile Gln His Val Thr Phe Cys Leu Asn His Tyr Ser Ala Asp AsnSer Ile Gln His Val Thr Phe Cys Leu Asn His Tyr Ser Ala Asp Asn
325 330 335325 330 335
Tyr Met Gly His Pro Thr Gly Asn Asp Trp Phe Glu Lys Gln Thr SerTyr Met Gly His Pro Thr Gly Asn Asp Trp Phe Glu Lys Gln Thr Ser
340 345 350340 345 350
Gly Thr Leu Asp Ile Ser Cys Pro Ser Trp Met Asp Trp Phe His GlyGly Thr Leu Asp Ile Ser Cys Pro Ser Trp Met Asp Trp Phe His Gly
355 360 365355 360 365
Gly Leu Gln Phe Gln Ile Glu His His Leu Phe Pro Arg Leu Pro ArgGly Leu Gln Phe Gln Ile Glu His His Leu Phe Pro Arg Leu Pro Arg
370 375 380370 375 380
Cys Gln Leu Arg Lys Val Ser Pro Phe Val Lys Glu Leu Cys Lys LysCys Gln Leu Arg Lys Val Ser Pro Phe Val Lys Glu Leu Cys Lys Lys
385 390 395 400385 390 395 400
His Asn Leu Pro Tyr Arg Ser Leu Ser Phe Phe Glu Ala Asn Val AlaHis Asn Leu Pro Tyr Arg Ser Leu Ser Phe Phe Glu Ala Asn Val Ala
405 410 415405 410 415
Ile Ile Lys Thr Leu Arg Thr Ala Ala Leu Gln Ala Arg Asp Leu SerIle Ile Lys Thr Leu Arg Thr Ala Ala Leu Gln Ala Arg Asp Leu Ser
420 425 430420 425 430
Asn Pro Ile Ser Lys Asn Leu Leu Trp Glu Ala Val Asn Thr Tyr GlyAsn Pro Ile Ser Lys Asn Leu Leu Trp Glu Ala Val Asn Thr Tyr Gly
435 440 445435 440 445
<210>4<210>4
<211>448<211>448
<212>PRT<212>PRT
<213>Ribes nigrum L.<213>Ribes nigrum L.
<400>4<400>4
Met Gly Glu Asn Gly Arg Lys Tyr Met Thr Val Glu Glu Leu Lys ValMet Gly Glu Asn Gly Arg Lys Tyr Met Thr Val Glu Glu Leu Lys Val
1 5 10 151 5 10 15
His Asn Lys Pro Glu Asp Leu Trp Ile Ser Ile Gln Gly Lys Val TyrHis Asn Lys Pro Glu Asp Leu Trp Ile Ser Ile Gln Gly Lys Val Tyr
20 25 3020 25 30
Asn Val Thr Asp Trp Lys Lys Glu His Pro Gly Gly Asp Ser Ser LeuAsn Val Thr Asp Trp Lys Lys Glu His Pro Gly Gly Asp Ser Ser Leu
35 40 4535 40 45
Leu Asn Leu Gly Gly Gln Asp Val Thr Asp Ala Phe Ile Ala Tyr HisLeu Asn Leu Gly Gly Gln Asp Val Thr Asp Ala Phe Ile Ala Tyr His
50 55 6050 55 60
Pro Gly Thr Val Trp Gln Tyr Leu Asp Arg Phe Phe Thr Gly Tyr TyrPro Gly Thr Val Trp Gln Tyr Leu Asp Arg Phe Phe Thr Gly Tyr Tyr
65 70 75 8065 70 75 80
Leu Lys Asp Phe Lys Val Ser Asp Val Ser Lys Asp Tyr Arg Lys LeuLeu Lys Asp Phe Lys Val Ser Asp Val Ser Lys Asp Tyr Arg Lys Leu
85 90 9585 90 95
Ala Ser Glu Phe Thr Lys Met Gly Leu Phe Ala Lys Lys Gly His GlyAla Ser Glu Phe Thr Lys Met Gly Leu Phe Ala Lys Lys Gly His Gly
100 105 110100 105 110
Val Phe Tyr Ser Phe Cys Leu Gly Ala Phe Leu Phe Ala Val Cys ValVal Phe Tyr Ser Phe Cys Leu Gly Ala Phe Leu Phe Ala Val Cys Val
115 120 125115 120 125
Tyr Gly Val Leu Tyr Ser Gln Ser Leu Phe Val His Leu Cys Cys GlyTyr Gly Val Leu Tyr Ser Gln Ser Leu Phe Val His Leu Cys Cys Gly
130 135 140130 135 140
Gly Ile Leu Gly Phe Leu Trp Met Gln Ser Gly Tyr Ala Gly His AspGly Ile Leu Gly Phe Leu Trp Met Gln Ser Gly Tyr Ala Gly His Asp
145 150 155 160145 150 155 160
Ser Gly His Tyr Gln Thr Met Ser Thr Pro Phe Tyr Thr Asn Leu AlaSer Gly His Tyr Gln Thr Met Ser Thr Pro Phe Tyr Thr Asn Leu Ala
165 170 175165 170 175
Gln Ile Leu Thr Gly Asn Cys Leu Ser Gly Ile Ser Met Ala Trp TrpGln Ile Leu Thr Gly Asn Cys Leu Ser Gly Ile Ser Met Ala Trp Trp
180 185 190180 185 190
Lys Trp Thr His Asn Ala His His Ile Ala Val Asn Ser Ile Asp HisLys Trp Thr His Asn Ala His His Ile Ala Val Asn Ser Ile Asp His
195 200 205195 200 205
Asp Pro Asp Leu Gln Tyr Met Pro Phe Phe Val Leu Ser Pro Lys LeuAsp Pro Asp Leu Gln Tyr Met Pro Phe Phe Val Leu Ser Pro Lys Leu
210 215 220210 215 220
Phe Asn Ser Ile Thr Ser Arg Phe Tyr Gly Arg Lys Leu Glu Phe AspPhe Asn Ser Ile Thr Ser Arg Phe Tyr Gly Arg Lys Leu Glu Phe Asp
225 230 235 240225 230 235 240
Ala Phe Ala Arg Phe Met Val Ser Tyr Gln His Trp Thr Phe Tyr ProAla Phe Ala Arg Phe Met Val Ser Tyr Gln His Trp Thr Phe Tyr Pro
245 250 255245 250 255
Val Met Ile Phe Ala Arg Phe Tyr Met Phe Val Pro Thr Phe Phe LeuVal Met Ile Phe Ala Arg Phe Tyr Met Phe Val Pro Thr Phe Phe Leu
260 265 270260 265 270
Leu Leu Ser Lys Lys Lys Val Pro Asn Arg Leu Leu Asn Ile Ala GlyLeu Leu Ser Lys Lys Lys Val Pro Asn Arg Leu Leu Asn Ile Ala Gly
275 280 285275 280 285
Ile Ile Val Phe Trp Ile Trp Phe Pro Leu Leu Val Ser Cys Leu ProIle Ile Val Phe Trp Ile Trp Phe Pro Leu Leu Val Ser Cys Leu Pro
290 295 300290 295 300
Asn Trp Thr Glu Arg Met Met Phe Val Leu Val Ser Phe Thr Val ThrAsn Trp Thr Glu Arg Met Met Phe Val Leu Val Ser Phe Thr Val Thr
305 310 315 320305 310 315 320
Ser Ile Gln His Val Thr Phe Cys Leu Asn His Tyr Ser Ala Asp AsnSer Ile Gln His Val Thr Phe Cys Leu Asn His Tyr Ser Ala Asp Asn
325 330 335325 330 335
Tyr Met Gly His Pro Thr Gly Asn Asp Trp Phe Glu Lys Gln Thr SerTyr Met Gly His Pro Thr Gly Asn Asp Trp Phe Glu Lys Gln Thr Ser
340 345 350340 345 350
Gly Thr Leu Asp Ile Ser Cys Pro Ser Trp Met Asp Trp Phe His GlyGly Thr Leu Asp Ile Ser Cys Pro Ser Trp Met Asp Trp Phe His Gly
355 360 365355 360 365
Gly Leu Gln Phe Gln Leu Glu His His Leu Phe Pro Arg Met Pro ArgGly Leu Gln Phe Gln Leu Glu His His Leu Phe Pro Arg Met Pro Arg
370 375 380370 375 380
Cys Gln Leu Arg Lys Val Ser Pro Phe Val Lys Glu Leu Cys Gln LysCys Gln Leu Arg Lys Val Ser Pro Phe Val Lys Glu Leu Cys Gln Lys
385 390 395 400385 390 395 400
序列表sequence listing
His Asn Lcu Pro Tyr Arg Ser Leu Ser Phe Phe Glu Ala Asn Val AlaHis Asn Lcu Pro Tyr Arg Ser Leu Ser Phe Phe Glu Ala Asn Val Ala
405 410 415405 410 415
Thr Ile Lys Thr Leu Arg Thr Ala Ala Leu Gln Ala Arg Asp Leu SerThr Ile Lys Thr Leu Arg Thr Ala Ala Leu Gln Ala Arg Asp Leu Ser
420 425 430420 425 430
Asn Pro Ile Thr Lys Asn Leu Leu Trp Glu Ala Val Asn Thr Tyr GlyAsn Pro Ile Thr Lys Asn Leu Leu Trp Glu Ala Val Asn Thr Tyr Gly
435 440 445435 440 445
<210>5<210>5
<211>28<211>28
<212>DNA<212>DNA
<213>人工序列<213> Artificial sequence
<400>5<400>5
cgcgggtacc atggctaatg caatcaag 28cgcgggtacc atggctaatg caatcaag 28
<210>6<210>6
<211>28<211>28
<212>DNA<212>DNA
<213>人工序列<213> Artificial sequence
<400>6<400>6
cgccgagct c tcagccatag gtgttgac 28cgccgagct c tcagccatag gtgttgac 28
<210>7<210>7
<211>28<211>28
<212>DNA<212>DNA
<213>人工序列<213> Artificial sequence
<400>7<400>7
cgcgggtacc atgggtgaaa atggaagg 28cgcgggtacc atgggtgaaa atggaagg 28
<210>8<210>8
<211>28<211>28
<212>DNA<212>DNA
<213>人工序列<213> Artificial sequence
<400>8<400>8
cgccgagctc tcaaccatag gtgttgac 28cgccgagctc tcaaccatag gtgttgac 28
<210>9<210>9
<211>33<211>33
<212>DNA<212>DNA
<213>人工序列<213> Artificial sequence
<400>9<400>9
cgcgaagctt actacaatgt cggagagaca agg 33cgcgaagctt actacaatgt cggagagaca agg 33
<210>10<210>10
<211>39<211>39
<212>DNA<212>DNA
<213>人工序列<213> Artificial sequence
<400>10<400>10
cgcgggatcc ttgtgtatgt tctgtagtga tgagtttg 39cgcgggatcc ttgtgtatgt tctgtagtga tgagtttg 39
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2010101676333A CN101921784B (en) | 2007-07-25 | 2007-07-25 | Gene with Δ6 fatty acid dehydrogenase function and its application |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2010101676333A CN101921784B (en) | 2007-07-25 | 2007-07-25 | Gene with Δ6 fatty acid dehydrogenase function and its application |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2007101194771A Division CN101353661B (en) | 2007-07-25 | 2007-07-25 | Gene with Δ6 fatty acid dehydrogenase function and its application |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101921784A CN101921784A (en) | 2010-12-22 |
CN101921784B true CN101921784B (en) | 2012-05-30 |
Family
ID=43336999
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2010101676333A Expired - Fee Related CN101921784B (en) | 2007-07-25 | 2007-07-25 | Gene with Δ6 fatty acid dehydrogenase function and its application |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101921784B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102965351B (en) * | 2012-11-09 | 2014-08-06 | 浙江工业大学 | Cordyceps sinensis omega-6 fatty acid-dehydrogenase, gene and application of gene |
-
2007
- 2007-07-25 CN CN2010101676333A patent/CN101921784B/en not_active Expired - Fee Related
Non-Patent Citations (4)
Title |
---|
Libisch B,et al.AF133728.1.<<GenBank>>.2001,1. * |
卜云萍等.深黄被孢霉△~6-脂肪酸脱氢酶基因导入大豆.《生物技术》.2003,(第03期), * |
张秀春等.Δ~6-脂肪酸脱氢酶基因克隆及其共转化表达载体的构建.《热带作物学报》.2004,(第04期), * |
张秀春等.双T-DNA表达载体转化大豆的研究.《大豆科学》.2005,(第04期), * |
Also Published As
Publication number | Publication date |
---|---|
CN101921784A (en) | 2010-12-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2644241C2 (en) | Dga and other lcpusfa production in plants | |
US10174297B2 (en) | Fatty acid desaturases from primula | |
JP6059138B2 (en) | Production of DHA and other LC-PUFAs in plants | |
JP4515904B2 (en) | Fatty acid desaturase from fungi | |
RU2558302C2 (en) | Novel delta-9-elongase for producing polyunsaturated fatty acid-enriched oils | |
EP1885862B1 (en) | Safflower with elevated gamma-linolenic acid | |
US20220042028A1 (en) | Production of dha and other lc pufas in plants | |
CN101353661B (en) | Gene with Δ6 fatty acid dehydrogenase function and its application | |
Chi et al. | Fatty acid biosynthesis in eukaryotic photosynthetic microalgae: identification of a microsomal delta 12 desaturase in Chlamydomonas reinhardtii | |
CN109402079B (en) | Application of polypeptide in improving content of plant ultra-long chain fatty acid | |
CN101921784B (en) | Gene with Δ6 fatty acid dehydrogenase function and its application | |
CN109837290B (en) | Application of ShFAD2 Gene Family and ShFAD3 Gene Family in Creation of Transgenic Plants High-yielding ALA | |
TW200520679A (en) | Arachidonic acid-containing plants and use of the plants | |
CN100413969C (en) | Chimeric gene with delta 6 fatty acid dehydrogenase function and its use | |
CN102399758B (en) | Mutant gene with function of Δ6 fatty acid dehydrogenase and its application | |
KR102184816B1 (en) | Metabolic engineering of the DHA biosynthetic pathway into transgenic perilla | |
WO2007113608A1 (en) | Production of polyunsaturated fatty acids in brassica using novel delta-6-desaturase | |
CN101724638A (en) | Nucleotide sequence of euglenagracilis coded delta 8 dehydrogenase and application thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20120530 Termination date: 20170725 |