CN101915794B - Preparation method of all-solid-state reference electrode - Google Patents
Preparation method of all-solid-state reference electrode Download PDFInfo
- Publication number
- CN101915794B CN101915794B CN 201010235890 CN201010235890A CN101915794B CN 101915794 B CN101915794 B CN 101915794B CN 201010235890 CN201010235890 CN 201010235890 CN 201010235890 A CN201010235890 A CN 201010235890A CN 101915794 B CN101915794 B CN 101915794B
- Authority
- CN
- China
- Prior art keywords
- electrode
- solid
- reference electrode
- reaction
- insulating layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000002360 preparation method Methods 0.000 title claims abstract description 14
- 239000003792 electrolyte Substances 0.000 claims abstract description 50
- 239000000243 solution Substances 0.000 claims abstract description 43
- 239000000758 substrate Substances 0.000 claims abstract description 22
- 239000007788 liquid Substances 0.000 claims abstract description 8
- 229920001940 conductive polymer Polymers 0.000 claims description 29
- 229920002521 macromolecule Polymers 0.000 claims description 18
- 239000012528 membrane Substances 0.000 claims description 14
- 238000000034 method Methods 0.000 claims description 13
- 229920000172 poly(styrenesulfonic acid) Polymers 0.000 claims description 11
- 229940005642 polystyrene sulfonic acid Drugs 0.000 claims description 11
- 239000002002 slurry Substances 0.000 claims description 10
- 239000000725 suspension Substances 0.000 claims description 10
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 10
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims description 9
- 229920000663 Hydroxyethyl cellulose Polymers 0.000 claims description 8
- JHIVVAPYMSGYDF-UHFFFAOYSA-N cyclohexanone Chemical compound O=C1CCCCC1 JHIVVAPYMSGYDF-UHFFFAOYSA-N 0.000 claims description 8
- WXHLLJAMBQLULT-UHFFFAOYSA-N 2-[[6-[4-(2-hydroxyethyl)piperazin-1-yl]-2-methylpyrimidin-4-yl]amino]-n-(2-methyl-6-sulfanylphenyl)-1,3-thiazole-5-carboxamide;hydrate Chemical compound O.C=1C(N2CCN(CCO)CC2)=NC(C)=NC=1NC(S1)=NC=C1C(=O)NC1=C(C)C=CC=C1S WXHLLJAMBQLULT-UHFFFAOYSA-N 0.000 claims description 7
- 125000000129 anionic group Chemical group 0.000 claims description 7
- 125000002091 cationic group Chemical group 0.000 claims description 7
- 239000000203 mixture Substances 0.000 claims description 7
- 239000004014 plasticizer Substances 0.000 claims description 6
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 claims description 5
- DPXJVFZANSGRMM-UHFFFAOYSA-N acetic acid;2,3,4,5,6-pentahydroxyhexanal;sodium Chemical compound [Na].CC(O)=O.OCC(O)C(O)C(O)C(O)C=O DPXJVFZANSGRMM-UHFFFAOYSA-N 0.000 claims description 5
- 239000003795 chemical substances by application Substances 0.000 claims description 5
- 239000004020 conductor Substances 0.000 claims description 5
- 239000011734 sodium Substances 0.000 claims description 5
- 229910052708 sodium Inorganic materials 0.000 claims description 5
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 claims description 4
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 claims description 4
- 239000007853 buffer solution Substances 0.000 claims description 4
- 235000010948 carboxy methyl cellulose Nutrition 0.000 claims description 4
- 239000004800 polyvinyl chloride Substances 0.000 claims description 4
- 239000004094 surface-active agent Substances 0.000 claims description 4
- 239000004354 Hydroxyethyl cellulose Substances 0.000 claims description 3
- 239000007864 aqueous solution Substances 0.000 claims description 3
- 239000011248 coating agent Substances 0.000 claims description 3
- 238000000576 coating method Methods 0.000 claims description 3
- 235000019447 hydroxyethyl cellulose Nutrition 0.000 claims description 3
- XTNGRSYBFRXFEI-UHFFFAOYSA-N n-methyldocosan-1-amine;hydrochloride Chemical group [Cl-].CCCCCCCCCCCCCCCCCCCCCC[NH2+]C XTNGRSYBFRXFEI-UHFFFAOYSA-N 0.000 claims description 3
- 229920003229 poly(methyl methacrylate) Polymers 0.000 claims description 3
- 229920000767 polyaniline Polymers 0.000 claims description 3
- 239000002861 polymer material Substances 0.000 claims description 3
- 239000004926 polymethyl methacrylate Substances 0.000 claims description 3
- 229920000128 polypyrrole Polymers 0.000 claims description 3
- 229920000123 polythiophene Polymers 0.000 claims description 3
- 239000004814 polyurethane Substances 0.000 claims description 3
- 239000011118 polyvinyl acetate Substances 0.000 claims description 3
- 229920000915 polyvinyl chloride Polymers 0.000 claims description 3
- 229910052700 potassium Inorganic materials 0.000 claims description 3
- 239000011591 potassium Substances 0.000 claims description 3
- GKWLILHTTGWKLQ-UHFFFAOYSA-N 2,3-dihydrothieno[3,4-b][1,4]dioxine Chemical compound O1CCOC2=CSC=C21 GKWLILHTTGWKLQ-UHFFFAOYSA-N 0.000 claims description 2
- NFAOATPOYUWEHM-UHFFFAOYSA-N 2-(6-methylheptyl)phenol Chemical compound CC(C)CCCCCC1=CC=CC=C1O NFAOATPOYUWEHM-UHFFFAOYSA-N 0.000 claims description 2
- 239000002202 Polyethylene glycol Substances 0.000 claims description 2
- 229920000620 organic polymer Polymers 0.000 claims description 2
- 229920001223 polyethylene glycol Polymers 0.000 claims description 2
- 229920002635 polyurethane Polymers 0.000 claims description 2
- 229920002689 polyvinyl acetate Polymers 0.000 claims description 2
- 239000002904 solvent Substances 0.000 claims description 2
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 claims description 2
- 239000001768 carboxy methyl cellulose Substances 0.000 claims 2
- 229920002134 Carboxymethyl cellulose Polymers 0.000 claims 1
- 239000008112 carboxymethyl-cellulose Substances 0.000 claims 1
- 235000019812 sodium carboxymethyl cellulose Nutrition 0.000 claims 1
- 229920001027 sodium carboxymethylcellulose Polymers 0.000 claims 1
- 238000005259 measurement Methods 0.000 abstract description 10
- 238000005516 engineering process Methods 0.000 abstract description 8
- 238000007639 printing Methods 0.000 abstract description 6
- 239000007787 solid Substances 0.000 abstract description 6
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 abstract description 5
- 238000004519 manufacturing process Methods 0.000 abstract description 4
- 238000003860 storage Methods 0.000 abstract description 3
- 239000008151 electrolyte solution Substances 0.000 abstract 1
- 238000007650 screen-printing Methods 0.000 description 23
- 239000010408 film Substances 0.000 description 21
- 150000002500 ions Chemical class 0.000 description 18
- 239000000463 material Substances 0.000 description 10
- -1 silver ions Chemical class 0.000 description 10
- 229920001609 Poly(3,4-ethylenedioxythiophene) Polymers 0.000 description 9
- 230000004044 response Effects 0.000 description 9
- 229910021607 Silver chloride Inorganic materials 0.000 description 6
- HKZLPVFGJNLROG-UHFFFAOYSA-M silver monochloride Chemical compound [Cl-].[Ag+] HKZLPVFGJNLROG-UHFFFAOYSA-M 0.000 description 6
- 150000001450 anions Chemical class 0.000 description 5
- 150000003839 salts Chemical class 0.000 description 5
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 4
- 229910052799 carbon Inorganic materials 0.000 description 4
- 229920003123 carboxymethyl cellulose sodium Polymers 0.000 description 4
- 229940063834 carboxymethylcellulose sodium Drugs 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 239000000017 hydrogel Substances 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 239000006174 pH buffer Substances 0.000 description 4
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 4
- 229910052709 silver Inorganic materials 0.000 description 4
- 239000004332 silver Substances 0.000 description 4
- 239000007784 solid electrolyte Substances 0.000 description 4
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 3
- 239000013504 Triton X-100 Substances 0.000 description 3
- 229920004890 Triton X-100 Polymers 0.000 description 3
- 239000000872 buffer Substances 0.000 description 3
- 239000002322 conducting polymer Substances 0.000 description 3
- 238000001704 evaporation Methods 0.000 description 3
- 230000008020 evaporation Effects 0.000 description 3
- 229920000642 polymer Polymers 0.000 description 3
- 239000012462 polypropylene substrate Substances 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 238000005507 spraying Methods 0.000 description 3
- 239000010409 thin film Substances 0.000 description 3
- QKNYBSVHEMOAJP-UHFFFAOYSA-N 2-amino-2-(hydroxymethyl)propane-1,3-diol;hydron;chloride Chemical compound Cl.OCC(N)(CO)CO QKNYBSVHEMOAJP-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 2
- PYGXAGIECVVIOZ-UHFFFAOYSA-N Dibutyl decanedioate Chemical group CCCCOC(=O)CCCCCCCCC(=O)OCCCC PYGXAGIECVVIOZ-UHFFFAOYSA-N 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- 210000001124 body fluid Anatomy 0.000 description 2
- 239000010839 body fluid Substances 0.000 description 2
- 229940075397 calomel Drugs 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- ZOMNIUBKTOKEHS-UHFFFAOYSA-L dimercury dichloride Chemical compound Cl[Hg][Hg]Cl ZOMNIUBKTOKEHS-UHFFFAOYSA-L 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 230000009977 dual effect Effects 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- 229920001467 poly(styrenesulfonates) Polymers 0.000 description 2
- 229920000728 polyester Polymers 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- 238000004528 spin coating Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 125000000020 sulfo group Chemical group O=S(=O)([*])O[H] 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- DBSSKVANIRDWJE-UHFFFAOYSA-N B(O)(O)O.FC(C=1C=C(C=C(C1)C(F)(F)F)[K])(F)F Chemical compound B(O)(O)O.FC(C=1C=C(C=C(C1)C(F)(F)F)[K])(F)F DBSSKVANIRDWJE-UHFFFAOYSA-N 0.000 description 1
- FZXQPXWWKDIRTB-UHFFFAOYSA-N C(CCCCCCC)OC1=C(C(=CC=C1)[N+](=O)[O-])[N+](=O)[O-] Chemical compound C(CCCCCCC)OC1=C(C(=CC=C1)[N+](=O)[O-])[N+](=O)[O-] FZXQPXWWKDIRTB-UHFFFAOYSA-N 0.000 description 1
- BHPQYMZQTOCNFJ-UHFFFAOYSA-N Calcium cation Chemical compound [Ca+2] BHPQYMZQTOCNFJ-UHFFFAOYSA-N 0.000 description 1
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 1
- DWGWCWDDNTVOGF-UHFFFAOYSA-N Cl.Cl.Cl.Cl.Cl.Cl Chemical compound Cl.Cl.Cl.Cl.Cl.Cl DWGWCWDDNTVOGF-UHFFFAOYSA-N 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- 229940045714 alkyl sulfonate alkylating agent Drugs 0.000 description 1
- 150000008052 alkyl sulfonates Chemical class 0.000 description 1
- ZFMQKOWCDKKBIF-UHFFFAOYSA-N bis(3,5-difluorophenyl)phosphane Chemical compound FC1=CC(F)=CC(PC=2C=C(F)C=C(F)C=2)=C1 ZFMQKOWCDKKBIF-UHFFFAOYSA-N 0.000 description 1
- 239000001110 calcium chloride Substances 0.000 description 1
- 235000011148 calcium chloride Nutrition 0.000 description 1
- 229910001628 calcium chloride Inorganic materials 0.000 description 1
- 229910001424 calcium ion Inorganic materials 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 229920000547 conjugated polymer Polymers 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- GCODXQZNEMRCBU-UHFFFAOYSA-N dioctan-2-yl decanedioate Chemical compound CCCCCCC(C)OC(=O)CCCCCCCCC(=O)OC(C)CCCCCC GCODXQZNEMRCBU-UHFFFAOYSA-N 0.000 description 1
- TVWTZAGVNBPXHU-FOCLMDBBSA-N dioctyl (e)-but-2-enedioate Chemical compound CCCCCCCCOC(=O)\C=C\C(=O)OCCCCCCCC TVWTZAGVNBPXHU-FOCLMDBBSA-N 0.000 description 1
- 238000002848 electrochemical method Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 238000007646 gravure printing Methods 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 238000007644 letterpress printing Methods 0.000 description 1
- 150000004668 long chain fatty acids Chemical class 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- MINVSWONZWKMDC-UHFFFAOYSA-L mercuriooxysulfonyloxymercury Chemical compound [Hg+].[Hg+].[O-]S([O-])(=O)=O MINVSWONZWKMDC-UHFFFAOYSA-L 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 229910000371 mercury(I) sulfate Inorganic materials 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 238000007645 offset printing Methods 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- NFHFRUOZVGFOOS-UHFFFAOYSA-N palladium;triphenylphosphane Chemical compound [Pd].C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 NFHFRUOZVGFOOS-UHFFFAOYSA-N 0.000 description 1
- 235000021317 phosphate Nutrition 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- 238000002294 plasma sputter deposition Methods 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920006254 polymer film Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229960002796 polystyrene sulfonate Drugs 0.000 description 1
- 239000011970 polystyrene sulfonate Substances 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000012086 standard solution Substances 0.000 description 1
- 229920001059 synthetic polymer Polymers 0.000 description 1
- 239000013077 target material Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- SBHRWOBHKASWGU-UHFFFAOYSA-M tridodecyl(methyl)azanium;chloride Chemical compound [Cl-].CCCCCCCCCCCC[N+](C)(CCCCCCCCCCCC)CCCCCCCCCCCC SBHRWOBHKASWGU-UHFFFAOYSA-M 0.000 description 1
Images
Landscapes
- Hybrid Cells (AREA)
Abstract
本发明提供了一种基于厚膜印刷技术的全固态参比电极,包括基板、电极基底系统、电解质层、参比膜和绝缘层。电极基底系统由位于基板上的反应电极、接触电极和连接这两个电极的引线组成,电解质层位于电极基底系统的反应电极上,电解质层上覆有参比膜,绝缘层将参比膜包覆,绝缘层上设有使参比膜裸露的开口,开口区域作为实际测量中参比膜与待测溶液发生接触的反应区域。本发明全固态参比电极摒弃了传统的内充电解液,消除了由于含有液体成分所带来的在携带、保存等方面的不利因素。本发明还提供了该全固态参比电极的制备方法,具有制作工艺简单、适合于大批量生产、成本低的优点。
The invention provides an all-solid reference electrode based on thick film printing technology, which includes a substrate, an electrode base system, an electrolyte layer, a reference film and an insulating layer. The electrode base system consists of a reaction electrode on the substrate, a contact electrode and a lead wire connecting the two electrodes. The electrolyte layer is located on the reaction electrode of the electrode base system. The electrolyte layer is covered with a reference film, and the insulating layer wraps the reference film. The insulating layer is provided with an opening to expose the reference film, and the opening area is used as a reaction area where the reference film contacts the solution to be measured in actual measurement. The all-solid-state reference electrode of the present invention abandons the traditional internal electrolytic solution, and eliminates the unfavorable factors in terms of carrying and storage due to the liquid component. The invention also provides a preparation method of the all-solid reference electrode, which has the advantages of simple manufacturing process, suitable for mass production and low cost.
Description
技术领域 technical field
本发明涉及化学传感器技术领域,尤其涉及一种全固态参比电极及其制备方法。 The invention relates to the technical field of chemical sensors, in particular to an all-solid-state reference electrode and a preparation method thereof. the
背景技术 Background technique
在电化学测量中,需要一个电极电位稳定、准确且其数值已知的电极作为基准电极。氢电极装置由于其稳定的性能,常用作一级基准电极。但是,氢电极装置及其采用该装置的实验过程均较烦琐,实际常用微溶盐电极如甘汞电极、氯化银电极或硫酸亚汞电极等作为二级基准电极,这类电极称为参比电极。 In electrochemical measurement, an electrode whose electrode potential is stable, accurate and whose value is known is required as a reference electrode. The hydrogen electrode device is often used as a primary reference electrode due to its stable performance. However, the hydrogen electrode device and the experimental process using the device are cumbersome. In practice, slightly soluble salt electrodes such as calomel electrodes, silver chloride electrodes, or mercurous sulfate electrodes are commonly used as secondary reference electrodes. These electrodes are called reference electrodes. than the electrode. the
电解质是指在溶液中能解离成带电离子而具有导电性能的一类物质。目前,检测体液和环境水所采用的电解质都是离子选择性电极(ion selective electrode,简称ISE)。这是一类利用膜电势测定溶液中某特定离子活度或浓度的电化学传感器。测量时需要将离子选择性电极与参比电极组合,浸没入被测溶液中,构成电化学电池。参比电极在测量离子选择性电极的电势时作为参照比较,要求其电极电势稳定,并有良好的重现性。 Electrolyte refers to a class of substances that can dissociate into charged ions in solution and have conductivity. At present, the electrolytes used to detect body fluids and environmental water are ion selective electrodes (ISE for short). This is a type of electrochemical sensor that uses membrane potential to measure the activity or concentration of a specific ion in a solution. During the measurement, it is necessary to combine the ion-selective electrode with the reference electrode and immerse it in the solution to be measured to form an electrochemical cell. The reference electrode is used as a reference comparison when measuring the potential of the ion-selective electrode, and the electrode potential is required to be stable and have good reproducibility. the
常用的参比电极有银/氯化银参比电极和甘汞参比电极。这两种参比电极都是在相应的金属表面镀上该金属难溶盐的涂层而制得。在测量时,将其浸入与该金属难溶盐有相同阴离子的溶液中,其电极电位随溶液中难溶盐的阴离子活度变化而变化。当溶液中该阴离子活度保持不变时,电极电位稳定不变。但是如果待测溶液中含有其他能与该金属阳离子(汞、银离子)形成难溶盐的阴离子,这些阴离子会对参比电极的电极电位产生干扰。 Commonly used reference electrodes are silver/silver chloride reference electrode and calomel reference electrode. These two reference electrodes are prepared by coating the corresponding metal surface with a coating of the metal's refractory salt. When measuring, it is immersed in the solution with the same anion as the insoluble metal salt, and its electrode potential changes with the anion activity of the insoluble salt in the solution. When the anion activity in the solution remains constant, the electrode potential remains stable. However, if the solution to be tested contains other anions that can form insoluble salts with the metal cations (mercury, silver ions), these anions will interfere with the electrode potential of the reference electrode. the
由于传统参比电极含有液态的内充电解质,使其在运输、保存和使用方面受到了很多限制,不能够在高温高压下工作。而全固态的外参比电极由于不含液体部分能够克服上述缺点。目前,相当一部分的全固态外参比电极的研究都是基于Ag/AgCl机理的,也就是以Ag/AgCl为基底,通过在Ag/AgCl电极上涂覆含有固定氯离子浓度的水凝胶或高聚物膜等方式,保持电极的电位稳定。但是,水凝胶中水分流失会引起水凝胶层体积变化,从而导致水凝胶中的氯离子浓度变化,造成电位不稳定。这是此类固态参比电极的一大缺陷。 Because the traditional reference electrode contains a liquid inner electrolyte, it is subject to many restrictions in transportation, storage and use, and cannot work under high temperature and high pressure. The all-solid-state external reference electrode can overcome the above-mentioned shortcomings because it does not contain a liquid part. At present, a considerable part of the research on the all-solid-state external reference electrode is based on the Ag/AgCl mechanism, that is, the Ag/AgCl is used as the substrate, and the Ag/AgCl electrode is coated with a hydrogel containing a fixed concentration of chloride ions or High polymer film, etc., to keep the potential of the electrode stable. However, the loss of water in the hydrogel will cause the volume change of the hydrogel layer, which will lead to the change of the chloride ion concentration in the hydrogel, resulting in the potential instability. This is a major drawback of this type of solid reference electrode. the
随着导电聚合物将离子导电转换为电子导电的特性逐渐被人们发现,将各种进行修饰的导电聚合物用于全固态外参比电极的研究也越来越引起各国科学家的兴趣。这些导电聚合物涵盖了多种具有离子导电和/或电子 导电能力的聚合物材料,包括:1)掺杂的共轭聚合物;2)氧化还原聚合物;3)合成聚合物;4)聚合物电解质。其中p型掺杂的共轭导电聚合物,比如聚吡咯、聚苯胺、聚噻吩及其衍生物由于其具备将离子导电转换为电子导电的作用,成为适合做参比电极的固态内充电解质的材料。其中掺杂了聚苯乙烯磺酸(poly(styrenesulfonate),PSS)的聚3,4-乙撑二氧噻吩(poly(3,4-ethylenedioxythiophene),PEDOT)是一种电位相对稳定的新型导电聚合物,具有对O2和CO2(pH)不敏感的优良特性,适合用作内参比电解质。通过在PEDOT(PSS)中引入含有磺基基团的pH缓冲体系,使电极具备了导电聚合物固态电解质和pH缓冲体系的双重优势,从而达到在广泛的待测液范围中电极电位稳定的效果。 As the properties of conducting polymers to convert ion conduction to electron conduction are gradually discovered, the research on using various modified conducting polymers for all-solid-state external reference electrodes has attracted more and more interest of scientists from various countries. These conducting polymers cover a variety of polymer materials with ion-conducting and/or electronic-conducting capabilities, including: 1) doped conjugated polymers; 2) redox polymers; 3) synthetic polymers; 4) polymeric matter electrolyte. Among them, p-type doped conjugated conductive polymers, such as polypyrrole, polyaniline, polythiophene and their derivatives, are suitable for solid-state filling electrolytes for reference electrodes due to their ability to convert ion conduction into electron conduction. Material. Among them, poly(3,4-ethylenedioxythiophene) (PEDOT) doped with polystyrenesulfonate (poly(styrenesulfonate), PSS) is a new type of conductive polymer with relatively stable potential. It has excellent characteristics of insensitivity to O 2 and CO 2 (pH), and is suitable for use as an internal reference electrolyte. By introducing a pH buffer system containing sulfo groups into PEDOT (PSS), the electrode has the dual advantages of a conductive polymer solid electrolyte and a pH buffer system, thereby achieving stable electrode potential in a wide range of liquids to be tested. .
丝网印刷技术属于孔版印刷,它与胶印、凸印、凹印一起被称为四大印刷方法。在孔版印刷中,应用最广泛的是丝网印刷。将丝、尼龙、聚酯纤维或不锈钢金属丝网绷在网框上,使其张紧固定,采用手工刻漆膜或光化学制版的方法制作丝网印版。现代较普遍使用的是光化学制版法。光化学制版技术是利用感光材料通过照相制版的方法制作丝网印版,使丝网印版上图文部分的丝网孔为通透孔,而非图文部分的丝网网孔被堵住。将丝网印刷用浆料(油墨)放入网框内,用橡皮刮墨板在网框内加压刮动,浆料通过图文部分的网孔转移到承印物上,形成与原稿一样的图文。这种工艺属于厚膜成膜技术。丝网印刷设备简单、操作方便,印刷、制版简易且成本低廉,操作方便,适应性强。薄膜成膜技术利用高温蒸发或等离子溅射的原理,使材料堆积在基板表面形成薄膜,与丝网印刷相比,成膜均匀,但价格较高。 Screen printing technology belongs to stencil printing, and it is called the four major printing methods together with offset printing, letterpress printing and gravure printing. In stencil printing, the most widely used is screen printing. Stretch silk, nylon, polyester fiber or stainless steel wire mesh on the screen frame to make it tensioned and fixed, and make screen printing plates by hand engraving paint film or photochemical plate making. The more common use in modern times is the photochemical plate-making method. Photochemical plate-making technology is to use photosensitive materials to make screen printing plates by means of photographic plate making, so that the screen holes of the graphic part on the screen printing plate are transparent holes, and the screen holes of the non-graphic part are blocked. Put the slurry (ink) for screen printing into the screen frame, pressurize and scrape the screen frame with a squeegee, and transfer the slurry to the substrate through the mesh of the graphic part to form the same pattern as the original. graphic. This process belongs to thick film film forming technology. Screen printing equipment is simple, easy to operate, easy to print and plate-making, and low in cost, easy to operate, and strong in adaptability. Thin-film film-forming technology uses the principle of high-temperature evaporation or plasma sputtering to accumulate materials on the surface of the substrate to form a thin film. Compared with screen printing, the film-forming is uniform, but the price is higher. the
发明内容 Contents of the invention
本发明提供了一种平板型全固态的参比电极,与离子选择性电极配对可测量体液和环境水质中的离子浓度。本发明还提供了该全固态参比电极的制备方法,简化了制作流程,适合大批量生产。 The invention provides a flat-plate all-solid-state reference electrode, which can measure the ion concentration in body fluid and environmental water quality when paired with an ion-selective electrode. The invention also provides a preparation method of the all-solid reference electrode, which simplifies the production process and is suitable for mass production. the
一种全固态参比电极,包括基板、电极基底系统、电解质层、参比膜和绝缘层; An all-solid-state reference electrode, including a substrate, an electrode base system, an electrolyte layer, a reference membrane and an insulating layer;
所述的电极基底系统由位于所述基板上的反应电极、接触电极和连接这两个电极的引线组成; The electrode base system is composed of a reaction electrode on the substrate, a contact electrode and a lead wire connecting the two electrodes;
所述的电解质层位于电极基底系统的反应电极上,电解质层上覆有参比膜; The electrolyte layer is located on the reaction electrode of the electrode base system, and the electrolyte layer is covered with a reference membrane;
所述的绝缘层将参比膜包覆,绝缘层上设有使参比膜裸露的开口,开口区域作为实际测量中参比膜与待测溶液发生接触的反应区域。 The insulating layer covers the reference film, and an opening for exposing the reference film is provided on the insulating layer, and the opening area is used as a reaction area where the reference film contacts the solution to be measured in actual measurement. the
上述全固态参比电极的制备方法,包括以下步骤: The preparation method of above-mentioned all-solid-state reference electrode, comprises the following steps:
(1)采用丝网印刷方法在有机高分子材料基板(如聚丙烯、聚酯、 聚乙烯或聚氯乙烯等)上印刷导电丝网印刷材料,形成反应电极、接触电极和连接这两个电极的导电引线; (1) Use screen printing method to print conductive screen printing materials on organic polymer material substrates (such as polypropylene, polyester, polyethylene or polyvinyl chloride, etc.) to form reaction electrodes, contact electrodes and connect these two electrodes conductive leads;
反应电极可采用碳、金、铂或钛等性质较稳定的导电材料制成,导电引线和接触电极可采用银、碳、金、铂或钛等材料制成,银的电化学特性不稳定,但导电性能良好,故一般不用来制作反应电极,而可用来制作接触电极和导电引线; The reaction electrodes can be made of stable conductive materials such as carbon, gold, platinum or titanium, and the conductive leads and contact electrodes can be made of materials such as silver, carbon, gold, platinum or titanium. The electrochemical properties of silver are unstable. However, it has good electrical conductivity, so it is generally not used to make reaction electrodes, but can be used to make contact electrodes and conductive leads;
也可采用薄膜蒸涂技术将上述导电材料作为蒸涂材料蒸涂在基板上;或将上述导电材料作为靶材,将其溅射到基板上形成反应电极、接触电极和导电引线。 The above-mentioned conductive material can also be evaporate-coated on the substrate as an evaporation material by thin film evaporation technology; or the above-mentioned conductive material can be used as a target material and sputtered onto the substrate to form a reaction electrode, a contact electrode and a conductive lead. the
(2)使用表面活性剂溶液对反应电极表面进行预处理,用来清洁反应电极表面,并增强反应电极的亲水性,加强反应电极与固态电解质层之间的粘附力。 (2) Use a surfactant solution to pretreat the surface of the reaction electrode to clean the surface of the reaction electrode, enhance the hydrophilicity of the reaction electrode, and strengthen the adhesion between the reaction electrode and the solid electrolyte layer. the
表面活性剂溶液可采用质量百分比为1‰~1%的羧甲基纤维素钠(CMC)溶液或羟乙基纤维素钠(HEC)溶液; The surfactant solution can be 1‰~1% carboxymethylcellulose sodium (CMC) solution or hydroxyethylcellulose sodium (HEC) solution;
(3)将导电聚合物分散在水中形成悬浮液,配制比例为导电聚合物∶水=1∶99~5∶95,以悬浮液的总量计,在悬浮液中加入质量百分比为0.1~1‰的处理剂和质量百分比为1.5~5.0%的CMC或HEC,配制成电解质浆料,用点喷、旋涂或丝网印刷的方法将该电解质浆料覆涂在反应电极表面,避光干燥,形成电解质层。 (3) Dispersing the conductive polymer in water to form a suspension, the preparation ratio is conductive polymer: water = 1:99 to 5:95, based on the total amount of the suspension, adding 0.1 to 1% by mass to the suspension ‰ treatment agent and 1.5-5.0% by mass of CMC or HEC, prepared as electrolyte slurry, and coated with the electrolyte slurry on the surface of the reaction electrode by dot spraying, spin coating or screen printing, and dried in the dark , forming an electrolyte layer. the
所述的导电聚合物选自P型掺杂的聚吡咯及其衍生物、聚苯胺及其衍生物、聚噻吩及其衍生物中的一种。 The conductive polymer is selected from one of P-type doped polypyrrole and its derivatives, polyaniline and its derivatives, polythiophene and its derivatives. the
优选的,导电聚合物选用掺杂了聚苯乙烯磺酸(PSS)的聚3,4-乙撑二氧噻吩(以下简称PEDOT/PSS),这种导电聚合物对溶液中的O2和CO2(pH)不敏感,使参比电极在各种类型的待测溶液中保持电极电位稳定。 Preferably, the conductive polymer is selected to be doped with polystyrene sulfonic acid (PSS) poly-3,4-ethylenedioxythiophene (hereinafter referred to as PEDOT/PSS), this conductive polymer is to O in the solution and CO 2 (pH) insensitive, so that the reference electrode can keep the electrode potential stable in various types of solutions to be tested.
所述的处理剂可采用聚乙烯乙二醇异辛酚醚(Triton X-100),处理剂可使电解质层与反应电极更好的粘合; Described treatment agent can adopt polyethylene glycol isooctylphenol ether (Triton X-100), and treatment agent can make electrolyte layer and reaction electrode better bonding;
(4)将亲脂性大分子物质、非导电高分子聚合物溶解在增塑剂中形成混合物,以混合物总质量计,亲脂性大分子物质的质量百分比为1.1~2.6%,亲脂性大分子物质包括亲脂性阴离子大分子物质和亲脂性阳离子大分子物质两种,其中亲脂性阴离子大分子物质和亲脂性阳离子大分子物质的质量之比为0.8∶1~1.2∶1,非导电高分子聚合物的质量百分比为32.0~38.0%,增塑剂的质量百分比为58.0~66.0%;将该混合物溶解在四氢呋喃或环己酮溶剂中,配制成参比膜液,使非导电高分子聚合物在溶液中的浓度为46.8~72.6mg/mL,将参比膜液通过点喷、旋涂或丝网印刷的方法覆涂在电解质层表面,避光干燥,形成固态疏水性的参比膜。参比膜能够保护被其覆盖的机械性能较差的电解质层,使电解质层在测量中保持电位稳定。 (4) Dissolving lipophilic macromolecular substances and non-conductive macromolecular polymers in plasticizers to form a mixture, based on the total mass of the mixture, the mass percentage of lipophilic macromolecular substances is 1.1 to 2.6%, and lipophilic macromolecular substances Including lipophilic anionic macromolecular substances and lipophilic cationic macromolecular substances, wherein the mass ratio of lipophilic anionic macromolecular substances to lipophilic cationic macromolecular substances is 0.8:1 to 1.2:1, and the mass of non-conductive polymers The percentage is 32.0-38.0%, and the mass percentage of the plasticizer is 58.0-66.0%; the mixture is dissolved in tetrahydrofuran or cyclohexanone solvent, and prepared as a reference membrane solution, so that the non-conductive high molecular polymer in the solution The concentration is 46.8-72.6 mg/mL, and the reference film solution is coated on the surface of the electrolyte layer by dot spraying, spin coating or screen printing, and dried in the dark to form a solid hydrophobic reference film. The reference membrane can protect the electrolyte layer covered by it with poor mechanical properties, so that the electrolyte layer can maintain a stable potential during the measurement. the
所述的亲脂性阴离子大分子物质选自四苯硼钠、四氯苯硼化钾、四 [3,5-二(三氟代甲基)苯基]硼酸钾中的一种或几种。亲脂性阳离子大分子物质采用甲基三十二烷基氯化胺。亲脂性大分子物质可以排除待测溶液中亲脂性离子(如长链脂肪酸、长链烷基磺酸盐或长链二烷基磷酸盐等)对参比膜的干扰,并且可以降低电极的电阻。 The lipophilic anionic macromolecular substance is selected from one or more of sodium tetraphenylborate, potassium tetrachlorophenylborate, tetrakis [3,5-bis(trifluoromethyl)phenyl]potassium borate. The lipophilic cationic macromolecular substance adopts methyl tridodecyl ammonium chloride. Lipophilic macromolecular substances can eliminate the interference of lipophilic ions (such as long-chain fatty acids, long-chain alkyl sulfonates or long-chain dialkyl phosphates, etc.) in the solution to be tested on the reference membrane, and can reduce the resistance of the electrode . the
所述的非导电高分子聚合物选自聚氯乙烯(PVC)、聚氨酯(PU)、聚醋酸乙烯(PVA)、聚甲基丙烯酸甲酯(PMMA)中的一种或几种。 The non-conductive polymer is selected from one or more of polyvinyl chloride (PVC), polyurethane (PU), polyvinyl acetate (PVA) and polymethyl methacrylate (PMMA). the
所述的增塑剂自癸二酸二丁酯、己二酸二辛酯、己二酸二(1-丁基戊烷)酯、二硝基苯辛基醚、癸二酸二仲辛酯、顺丁烯二酸二乙辛酯、富马酸二辛酯中的一种或几种。增塑剂可提高混合物的塑性,便于在后续的丝网印刷中成塑。 Described plasticizer is selected from dibutyl sebacate, dioctyl adipate, bis(1-butylpentane) adipate, dinitrophenyl octyl ether, di-sec-octyl sebacate , one or more of diethyloctyl maleate and dioctyl fumarate. Plasticizers can improve the plasticity of the mixture, which facilitates molding in subsequent screen printing. the
(5)在基板上通过丝网印刷的方法印制绝缘层,绝缘层覆盖参比膜,并设有参比膜裸露的开口,此开口区域为实际测量参比膜与待测溶液发生接触的反应区域,即制得全固态参比电极。 (5) Print an insulating layer on the substrate by screen printing, the insulating layer covers the reference film, and is provided with an opening where the reference film is exposed. This opening area is where the actual measurement reference film contacts the solution to be measured. The reaction area is the all-solid-state reference electrode. the
为了使参比电极达到更好的效果,在进行上述第(4)步之前,将基板上的电解质层部分在0.1mol/L的磺基水杨酸(SSA)缓冲液中浸泡12~24小时,避光干燥,磺基水杨酸缓冲液须用NaOH将溶液的pH值调至为7。此步骤对电极进行改性,通过在PEDOT/PSS中引入含有磺基集团的pH缓冲体系,使电极具备了导电聚合物固态电解质和pH缓冲体系的双重优势,从而达到在广泛的待测液范围中保持电极电位稳定的效果。 In order to achieve a better effect of the reference electrode, before performing the above step (4), soak the electrolyte layer on the substrate in 0.1mol/L sulfosalicylic acid (SSA) buffer for 12 to 24 hours , and dry in the dark, the sulfosalicylic acid buffer must be adjusted to pH 7 with NaOH. In this step, the electrode is modified. By introducing a pH buffer system containing a sulfo group into PEDOT/PSS, the electrode has the dual advantages of a conductive polymer solid electrolyte and a pH buffer system, so as to achieve a wide range of liquids to be tested. to keep the electrode potential stable. the
在实际测量时,将制得全固态参比电极与离子选择性电极组合,浸没入被测溶液中,构成电化学电池。参比电极通过基板上的接触电极与外接的测量装置连接。电解质层中的导电聚合物具有电子接受体的功能,可以将离子导电转换为电子导电,其过程可以写作: In the actual measurement, the prepared all-solid-state reference electrode is combined with the ion-selective electrode, and immersed in the measured solution to form an electrochemical cell. The reference electrode is connected with the external measuring device through the contact electrode on the substrate. The conductive polymer in the electrolyte layer has the function of an electron acceptor, which can convert ion conduction to electron conduction, and the process can be written as:
其中,M+表示电解质层中被氧化的导电聚合物单元;e是电子;M表示中性的导电聚合物单元;A-表示导电聚合物中带负电的掺杂成分。由于在导电聚合物中M+/M的比值恒定,故而使固态电解质层的电位保持恒定,起到了传统参比电极的作用。导电聚合物作为一种电子导电材料,使电解质层与反应电极之间形成欧姆接触,有效降低了电极的电阻,将参比膜检测到的待测溶液中离子信号转换为电子信号,并通过反应电极、导电引线、接触电极供外接的测试电路检测。实际测量中,参比电极的电极电位保持稳定,为离子选择性电极提供稳定的参考电位。 Among them, M + represents the oxidized conductive polymer unit in the electrolyte layer; e is an electron; M represents a neutral conductive polymer unit; A - represents a negatively charged doping component in the conductive polymer. Since the ratio of M + /M in the conductive polymer is constant, the potential of the solid electrolyte layer is kept constant, which acts as a traditional reference electrode. Conductive polymer, as an electronically conductive material, forms an ohmic contact between the electrolyte layer and the reaction electrode, effectively reduces the resistance of the electrode, converts the ion signal in the solution to be tested detected by the reference membrane into an electronic signal, and passes the reaction The electrodes, conductive leads, and contact electrodes are used for detection by an external test circuit. In actual measurement, the electrode potential of the reference electrode remains stable, providing a stable reference potential for the ion-selective electrode.
本发明全固态参比电极采用固态内充电解质,摒弃了传统的内充电解液,消除了由于含有液体成分所带来的在携带、保存等方面的不利因素。同时,本发明平板型结构实现了参比电极微型化,缩短参比电极的反应时间,并可以在高温高压下进行测量。 The all-solid-state reference electrode of the present invention adopts a solid internal charge electrolyte, abandons the traditional internal charge electrolyte, and eliminates the unfavorable factors in terms of carrying and storage caused by containing liquid components. At the same time, the flat plate structure of the present invention realizes the miniaturization of the reference electrode, shortens the reaction time of the reference electrode, and can perform measurement under high temperature and high pressure. the
附图说明 Description of drawings
图1为全固态参比电极的结构示意图; Fig. 1 is the schematic diagram of the structure of the all-solid-state reference electrode;
图2为图1所示全固态参比电极的俯视图; Fig. 2 is the top view of all-solid-state reference electrode shown in Fig. 1;
图3为实施例1所制得的全固态参比电极在不同浓度NaCl溶液中的电位响应; Fig. 3 is the potential response of the all-solid-state reference electrode prepared in embodiment 1 in different concentrations of NaCl solutions;
图4为实施例1所制得的全固态参比电极在不同浓度KCl溶液中的电位响应; Fig. 4 is the potential response of the all-solid-state reference electrode prepared in embodiment 1 in different concentrations of KCl solutions;
图5为实施例2所制得的全固态参比电极在不同浓度CaCl2溶液中的电位响应; Fig. 5 is the potential response of the all-solid-state reference electrode prepared in embodiment 2 in different concentrations of CaCl2solutions ;
图6为实施例2所制得的全固态参比电极在不同pH的Tris-HCl缓冲液中的电位响应。 Fig. 6 is the potential response of the all-solid-state reference electrode prepared in Example 2 in Tris-HCl buffer solutions with different pHs. the
具体实施方式 Detailed ways
如图1所示,一种全固态参比电极,包括基板1、电极基底系统、电解质层3、参比膜4和绝缘层5;
As shown in Figure 1, a kind of all-solid-state reference electrode comprises substrate 1, electrode base system,
电极基底系统由位于基板1上的反应电极2a、接触电极2c和连接这两个电极的引线2b组成;由图2看出,反应电极2a和接触电极2c均为矩形,连接这两个电极的引线2b为长条形,这样的形状使得在采用丝网印刷方法制备过程中,使丝网印版的制作更为简便;
The electrode substrate system consists of a
电解质层3位于电极基底系统的反应电极2a上,电解质层2a上覆有参比膜4,且参比膜4将电解质层3完全包覆;
The
绝缘层5位于参比膜4表面,绝缘层5上设有使参比膜4裸露的开口6,开口区域作为实际测量中参比膜4与待测溶液发生接触的反应区域。由图1所示,绝缘层5将反应电极2a也完全覆盖,并将引线2b部分覆盖,接触电极2c上无绝缘层5而完全裸露,在测量时接触电极2c与外接的测量装置连接。
The insulating
实施例1 Example 1
一种全固态参比电极的制备包括以下步骤: A kind of preparation of all-solid-state reference electrode comprises the following steps:
(1)将碳印刷材料通过丝网印刷技术在聚丙烯基板上,形成反应电极、接触电极和连接这两个电极的引线; (1) The carbon printing material is printed on the polypropylene substrate by screen printing technology to form a reaction electrode, a contact electrode and a lead connecting the two electrodes;
(2)使用质量分数为3‰的CMC水溶液对反应电极表面进行擦洗,然后擦拭干净。 (2) Use a CMC aqueous solution with a mass fraction of 3‰ to scrub the surface of the reaction electrode, and then wipe it clean. the
(3)将PEDOT/PSS(采用德国H.C.Starck公司的Clevios P,CAS No.155090-83-8)分散在水中形成悬浮液,配置比例为PEDOT/PSS∶H2O=1∶99,在悬浮液中加入0.5‰的Triton X-100和2%的HEC,形成一定粘度的电解质浆料。用丝网印刷的方法将制得的电解质浆料印刷在反应电极上,避光 干燥后形成电解质层,电解质层的厚度约为20μm。所用的网板150目,网距1mm,刮板速度8mm/s,压强1.8kg/cm2。 (3) Disperse PEDOT/PSS (Clevios P from HC Starck, Germany, CAS No. 155090-83-8) in water to form a suspension, the configuration ratio is PEDOT/PSS: H 2 O = 1:99, in the suspension Add 0.5‰ of Triton X-100 and 2% of HEC to form an electrolyte slurry with a certain viscosity. The prepared electrolyte slurry was printed on the reaction electrode by screen printing, and after drying in the dark, an electrolyte layer was formed, and the thickness of the electrolyte layer was about 20 μm. The screen used is 150 mesh, the screen distance is 1 mm, the scraper speed is 8 mm/s, and the pressure is 1.8 kg/cm 2 .
(4)将聚丙烯基板上的电解质层区域在0.1mol/L的磺基水杨酸溶液中浸泡12小时,磺基水杨酸溶液须用NaOH将其pH值调至为7; (4) Soak the electrolyte layer area on the polypropylene substrate in 0.1mol/L sulfosalicylic acid solution for 12 hours, and the sulfosalicylic acid solution must be adjusted to pH 7 with NaOH;
(5)在1.2mL癸二酸二丁酯中加入33.9mg四氯苯硼钠、35.1mg甲基三十二烷基氯化胺和1120mg高分子PVC,震荡1分钟后,加入8mL环己酮,震荡溶解得到均匀透明粘稠液。通过丝网印刷的方法将该粘稠液印刷在电解质层上,避光干燥后形成参比膜。所用的网板150目,网距1mm,刮板速度8mm/s,压强1.8kg/cm2; (5) Add 33.9 mg of sodium tetrachlorophenylborate, 35.1 mg of methyl docosyl ammonium chloride and 1120 mg of high molecular weight PVC to 1.2 mL of dibutyl sebacate. After shaking for 1 minute, add 8 mL of cyclohexanone , shake and dissolve to obtain a uniform transparent viscous liquid. The viscous solution was printed on the electrolyte layer by screen printing, and dried in the dark to form a reference film. The stencil used is 150 mesh, the mesh distance is 1mm, the scraper speed is 8mm/s, and the pressure is 1.8kg/cm 2 ;
(6)采用丝网印刷的方法印制绝缘层,绝缘层上设有直径1mm的圆形开口使参比膜部分裸露。绝缘层的材料采用宝华实业中国有限公司生产的绝缘染料SS8391。 (6) The insulating layer is printed by screen printing, and a circular opening with a diameter of 1 mm is provided on the insulating layer to partially expose the reference film. The material of the insulating layer is the insulating dye SS8391 produced by Baohua Industrial China Co., Ltd. the
测定制得的全固态参比电极相对于Ag/AgCl|(3mol/LKCl)标准参比电极在各种不同离子浓度的标准溶液中的电极电位,记录15s时的电位值,以离子浓度为横轴,响应电位值为纵轴,其结果分别如图3、4所示。 Measure the electrode potential of the prepared all-solid-state reference electrode relative to the Ag/AgCl|(3mol/LKCl) standard reference electrode in various standard solutions with different ion concentrations, record the potential value at 15s, and take the ion concentration as horizontal axis, the response potential value is on the vertical axis, and the results are shown in Figures 3 and 4, respectively. the
图3为所制得的全固态参比电极在不同浓度的溶液NaCl(此溶液中含有1mmol/LCaCl2和4mmol/LKCl背景电解质)中的电位响应,测得的电位波动范围为199.5±0.7mV。 Figure 3 is the potential response of the prepared all-solid-state reference electrode in different concentrations of NaCl (the solution contains 1mmol/LCaCl2 and 4mmol/LKCl background electrolyte), and the measured potential fluctuation range is 199.5±0.7mV. the
图4为所制得的全固态参比电极在不同浓度的KCl溶液(此溶液中含有140mmol/LNaCl和1mmol/LCaCl2背景电解质)中的电位响应,测得的电位波动范围为109.4±0.6mV。 Figure 4 is the potential response of the prepared all-solid-state reference electrode in different concentrations of KCl solutions (the solution contains 140mmol/LNaCl and 1mmol/ LCaCl2 background electrolyte), and the measured potential fluctuation range is 109.4±0.6mV .
实施例2 Example 2
一种全固态参比电极的制备包括以下步骤: A kind of preparation of all-solid-state reference electrode comprises the following steps:
(1)将碳印刷材料通过丝网印刷技术印刷在聚丙烯基板上,形成反应电极、导电引线和接触电极; (1) Print the carbon printing material on the polypropylene substrate by screen printing technology to form reaction electrodes, conductive leads and contact electrodes;
(2)使用质量分数为2‰的HEC水溶液对反应电极表面进行擦洗,然后擦拭干净; (2) Use the HEC aqueous solution with a mass fraction of 2‰ to scrub the surface of the reaction electrode, and then wipe it clean;
(3)将PEDOT/PSS(产品采用德国H.C.Starck公司的Clevios P,CAS No.155090-83-8)分散在水中形成悬浮液,配置比例为PEDOT/PSS∶H2O=1∶99,在悬浮液中加入0.5‰的Triton X-100和2%的HEC,形成一定粘度的电解质浆料,用丝网印刷的方法将该电解质浆料印刷在反应电极表面,避光干燥后形成电解质层,电解质层的厚度约为20μm,所用的网板为150目,网距1mm,刮板速度8mm/s,压强1.8kg/cm2; (3) Disperse PEDOT/PSS (Clevios P from HC Starck, Germany, CAS No. 155090-83-8) in water to form a suspension, the configuration ratio is PEDOT/PSS: H 2 O = 1:99, Add 0.5‰ Triton X-100 and 2% HEC to the solution to form an electrolyte slurry with a certain viscosity, and print the electrolyte slurry on the surface of the reaction electrode by screen printing, and form an electrolyte layer after drying in the dark. The thickness of the layer is about 20 μm, the stencil used is 150 mesh, the mesh distance is 1mm, the scraper speed is 8mm/s, and the pressure is 1.8kg/cm 2 ;
(4)在56.2μL己二酸二(1-丁基戊烷)酯中加入0.9mg的四氯苯硼化钾、1.1mg甲基三十二烷基氯化胺、17mg PVA和68mg PU,震荡1分钟后,加入300μL环己酮,震荡溶解得到均匀透明粘稠的参比膜液,取0.5μL的参比膜液通过点喷的方法将其覆涂在电解质层表面,避光干燥后 形成参比膜; (4) Add 0.9 mg of potassium tetrachlorophenyl boride, 1.1 mg of methyl docosyl ammonium chloride, 17 mg of PVA and 68 mg of PU in 56.2 μL of bis(1-butylpentane) adipate, After shaking for 1 minute, add 300 μL of cyclohexanone, shake and dissolve to obtain a uniform, transparent and viscous reference film solution, take 0.5 μL of the reference film solution and apply it on the surface of the electrolyte layer by spot spraying, and dry it in the dark Form a reference film;
(5)采用丝网印刷的方法印制绝缘层,绝缘层上设有2×2cm2的方形开口使参比膜部分裸露。绝缘层的材料采用宝华实业中国有限公司生产的绝缘染料SS8391。 (5) The insulating layer is printed by screen printing, and a square opening of 2×2 cm 2 is arranged on the insulating layer to partially expose the reference film. The material of the insulating layer is the insulating dye SS8391 produced by Baohua Industrial China Co., Ltd.
将制得的全固态参比电极在不同浓度的CaCl2溶液(此溶液中含有140mmol/LNaCl和4mmol/LKCl背景电解质)中测量其电位响应,结果如图5所示,钙离子浓度在0.1~5mmol/L范围内,测得的全固态参比电极电位波动范围为182.7±0.5mV。 Measure the potential response of the prepared all-solid-state reference electrode in different concentrations of CaCl2 solutions (the solution contains 140mmol/LNaCl and 4mmol/LKCl background electrolyte), and the results are shown in Figure 5. The calcium ion concentration ranges from 0.1 to Within the range of 5mmol/L, the measured potential fluctuation range of the all-solid-state reference electrode is 182.7±0.5mV.
将制得的全固态参比电极在不同pH的三羟甲基氨基甲烷-盐酸(Tris-HCl)缓冲液中测量其电位响应,结果如图6所示,Tris-HCl缓冲液的pH为5.91~8.67,测得的全固态参比电极电位波动范围为182.7±0.5mV。 Measure the potential response of the prepared all-solid-state reference electrode in tris-hydrochloric acid (Tris-HCl) buffers with different pHs. The results are shown in Figure 6. The pH of the Tris-HCl buffer is 5.91 ~8.67, the measured potential fluctuation range of the all-solid-state reference electrode is 182.7±0.5mV. the
由以上的实验结果可以看出,本发明全固态参比电极在不同的离子类型、不同的离子浓度、不同的酸碱度溶液中,其电极电位都能保持电位稳定,具有良好的工作稳定性。 From the above experimental results, it can be seen that the all-solid-state reference electrode of the present invention can maintain stable potential in different ion types, different ion concentrations, and different pH solutions, and has good working stability. the
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 201010235890 CN101915794B (en) | 2010-07-23 | 2010-07-23 | Preparation method of all-solid-state reference electrode |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 201010235890 CN101915794B (en) | 2010-07-23 | 2010-07-23 | Preparation method of all-solid-state reference electrode |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101915794A CN101915794A (en) | 2010-12-15 |
CN101915794B true CN101915794B (en) | 2013-07-24 |
Family
ID=43323355
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN 201010235890 Expired - Fee Related CN101915794B (en) | 2010-07-23 | 2010-07-23 | Preparation method of all-solid-state reference electrode |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101915794B (en) |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102980926B (en) * | 2012-11-28 | 2015-04-29 | 清华大学 | Preparation method of flexible double-faced full-solid ion concentration detection sensor |
CN103424451B (en) * | 2013-08-26 | 2016-01-13 | 深圳市希莱恒医用电子有限公司 | A kind of card form potassium ion sensor and preparation method thereof |
DE102015002008A1 (en) * | 2015-02-20 | 2016-08-25 | Dräger Safety AG & Co. KGaA | Electrochemical gas sensor and electrolyte for an electrochemical gas sensor |
CN105092668B (en) * | 2015-06-03 | 2018-01-05 | 浙江大学 | All solid state acetylcholine sensor and preparation method thereof |
CN105021682B (en) * | 2015-07-02 | 2017-09-08 | 浙江大学 | A kind of needle-like chlorion sensor and preparation method thereof |
CN105067684B (en) * | 2015-07-02 | 2018-02-23 | 浙江大学 | A kind of needle-like potassium ion sensor and preparation method thereof |
CN105628757A (en) * | 2015-12-30 | 2016-06-01 | 中国科学院电子学研究所 | ORP sensing chip based on MEMS and manufacturing method of ORP sensing chip |
US10092207B1 (en) | 2016-05-15 | 2018-10-09 | Biolinq, Inc. | Tissue-penetrating electrochemical sensor featuring a co-electrodeposited thin film comprised of polymer and bio-recognition element |
WO2018071265A1 (en) * | 2016-10-10 | 2018-04-19 | Biolinq, Inc. | Electro-deposited conducting polymers for the realization of solid-state reference electrodes for use in intracutaneous and subcutaneous analyte-selective sensors |
JP6836244B2 (en) * | 2017-07-20 | 2021-02-24 | 島根県 | Flat plate type reference electrode and its manufacturing method |
CN108195909B (en) * | 2017-12-13 | 2020-08-04 | 江南大学 | Preparation method of planar solid reference electrode |
AT520779B1 (en) * | 2017-12-21 | 2020-03-15 | Erba Tech Austria Gmbh | Reference electrode for potentiometric measurement of ion concentrations |
CN108732217A (en) * | 2018-04-28 | 2018-11-02 | 深圳市西尔曼科技有限公司 | Ammonium ion microelectrode and preparation method thereof |
TWI687683B (en) * | 2019-04-08 | 2020-03-11 | 禪譜科技股份有限公司 | Long-lasting disposable reference electrode |
US11815487B2 (en) * | 2020-11-11 | 2023-11-14 | Rosemount Inc. | Solid state reference gel |
US12031938B2 (en) | 2020-12-28 | 2024-07-09 | Rosemount Inc. | Gamma-irradiation-compatible reference gel |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1514235A (en) * | 2003-07-24 | 2004-07-21 | 中国科学院海洋研究所 | All solid reference electrode |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090021263A1 (en) * | 2007-07-17 | 2009-01-22 | Chung Yuan Christian University | Multi-Ion Potential Sensor and Fabrication thereof |
-
2010
- 2010-07-23 CN CN 201010235890 patent/CN101915794B/en not_active Expired - Fee Related
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1514235A (en) * | 2003-07-24 | 2004-07-21 | 中国科学院海洋研究所 | All solid reference electrode |
Non-Patent Citations (4)
Title |
---|
BrettD.Martin等.Hydroxylatedsecondarydopantsforsurfaceresistanceenhancementintransparentpoly(3 4-ethylenedioxythiophene)- poly(styrenesulfonate) thin films.《Synthetic Metals》.2004 |
Disposable blood potassium sensors based on screen-printed thick film electrodes;Hui Xu等;《Measurement Science and Technology》;20100413(第21期);第055802页 * |
Hui Xu等.Disposable blood potassium sensors based on screen-printed thick film electrodes.《Measurement Science and Technology》.2010,(第21期),第055802页. |
Hydroxylated secondary dopants for surface resistance enhancement in transparent poly(3,4-ethylenedioxythiophene)- poly(styrenesulfonate) thin films;Brett D. Martin等;《Synthetic Metals》;20041231(第142期);第187-193页 * |
Also Published As
Publication number | Publication date |
---|---|
CN101915794A (en) | 2010-12-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101915794B (en) | Preparation method of all-solid-state reference electrode | |
CN101852761B (en) | All-solid sodium ion selective electrode and preparation method thereof | |
CN101871912B (en) | Full-solid potassium ion sensor and preparation method thereof | |
Kumar et al. | Electroanalytical determination of acetaminophen using nano-TiO2/polymer coated electrode in the presence of dopamine | |
Li et al. | All-solid-state potassium-selective electrode using graphene as the solid contact | |
US20010032785A1 (en) | Planar reference electrode | |
Wagner et al. | Durable PEDOT: PSS films obtained from modified water-based inks for electrochemical sensors | |
TW200304759A (en) | Electrochromic display device | |
CN109187688B (en) | A kind of light-operated polymer sensitive membrane electrochemical detection method and its device | |
CN103336044B (en) | All solid-state ion selective electrode and preparation method and application thereof | |
CN105606678B (en) | A kind of solid acid group electrode and preparation method thereof based on doped polyaniline | |
Zhang et al. | A solid-contact pH-selective electrode based on tridodecylamine as hydrogen neutral ionophore | |
Zine et al. | All-solid-state hydrogen sensing microelectrodes based on novel PPy [3, 3′-Co (1, 2-C2B9H11) 2] as a solid internal contact | |
WO2013019101A1 (en) | Composite electrode with in-situ polymerized polyaniline and preparation method thereof | |
US4995960A (en) | Electrochemical electrodes | |
WO2012074368A1 (en) | Phosphate sensor | |
CN117825472A (en) | Nitrate ion detection method based on cobalt-tungsten bimetallic selenide all-solid-state nitrate ion selective electrode | |
CN103063725B (en) | Solid ammonium ion electrode based on conductive polyaniline and preparing method thereof | |
JPH02160823A (en) | Method for manufacturing conductive polymer composite | |
CN103063723B (en) | Solid hydrogen ion concentration electrode based on conductive polyaniline and preparing method thereof | |
CN115184435B (en) | Method for detecting ions in water bodies of different media by using all-solid-state polymer membrane ion selective electrode based on MXene conductive layer | |
Radhi et al. | Electrochemical reduction of Mn (II) mediated by C60/Li+ modified glassy carbon electrode | |
CN112748167B (en) | A kind of needle-shaped all-solid-state sensor for dopamine detection and preparation method thereof | |
CN114563453A (en) | A kind of preparation method and application of enzyme biosensor using PEDOT/LYH as carrier | |
Krivačić et al. | Application of intense pulsed light in the development of poly (vinyl butyral)‐based all‐solid‐state Ag/AgCl reference electrodes |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20130724 Termination date: 20180723 |