CN101901840B - Schottky diode device and manufacturing method thereof - Google Patents
Schottky diode device and manufacturing method thereof Download PDFInfo
- Publication number
- CN101901840B CN101901840B CN2009102031272A CN200910203127A CN101901840B CN 101901840 B CN101901840 B CN 101901840B CN 2009102031272 A CN2009102031272 A CN 2009102031272A CN 200910203127 A CN200910203127 A CN 200910203127A CN 101901840 B CN101901840 B CN 101901840B
- Authority
- CN
- China
- Prior art keywords
- doped region
- type doped
- region
- type
- schottky diode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 14
- 239000004065 semiconductor Substances 0.000 claims abstract description 43
- 238000002955 isolation Methods 0.000 claims abstract description 24
- 239000010410 layer Substances 0.000 claims description 58
- 238000000034 method Methods 0.000 claims description 20
- 239000011229 interlayer Substances 0.000 claims description 10
- 238000000137 annealing Methods 0.000 claims description 6
- 238000000926 separation method Methods 0.000 claims 2
- 230000015556 catabolic process Effects 0.000 abstract description 6
- 238000005468 ion implantation Methods 0.000 description 15
- 239000002019 doping agent Substances 0.000 description 6
- 239000000758 substrate Substances 0.000 description 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 239000010703 silicon Substances 0.000 description 3
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 229910052785 arsenic Inorganic materials 0.000 description 2
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- 239000007769 metal material Substances 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 239000011574 phosphorus Substances 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 2
- 229910052721 tungsten Inorganic materials 0.000 description 2
- 239000010937 tungsten Substances 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- 229910000577 Silicon-germanium Inorganic materials 0.000 description 1
- LEVVHYCKPQWKOP-UHFFFAOYSA-N [Si].[Ge] Chemical compound [Si].[Ge] LEVVHYCKPQWKOP-UHFFFAOYSA-N 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Images
Landscapes
- Electrodes Of Semiconductors (AREA)
Abstract
Description
技术领域 technical field
本发明是关于半导体装置,且特别是关于一种肖特基二极管(Schottkydiode)装置及其制造方法。The present invention relates to semiconductor devices, and more particularly to a Schottky diode device and a manufacturing method thereof.
背景技术 Background technique
肖特基二极管(Schottky diode)为具有金属-半导体接面(metal-semiconductor junction)的一种半导体装置,于此金属-半导体接面结构的电流-电压特性则按照所施加电压的极性而定。A Schottky diode is a semiconductor device with a metal-semiconductor junction, where the current-voltage characteristics of the metal-semiconductor junction structure depend on the polarity of the applied voltage. .
当肖特基二极管处于顺向偏压时(即阳极施加正电压以及于阴极施加负电压)可使得载子导通,而当肖特基二极管处于逆向偏压时(即阳极施加负电压以及于阴极施加正电压)则载子不易导通,因而与一般pn接面二极管具有同样的单向导通特性。另外,由于肖特基二极管是单载子移动,故于顺向偏压时具有相对低的临界电压且于顺逆向偏压切换时反应速度极快。When the Schottky diode is forward biased (that is, a positive voltage is applied to the anode and a negative voltage is applied to the cathode), the carriers can be turned on, and when the Schottky diode is reverse biased (that is, a negative voltage is applied to the anode and the negative voltage is applied to the anode) When a positive voltage is applied to the cathode), the carriers are not easy to conduct, so it has the same unidirectional conduction characteristics as the general pn junction diode. In addition, since the Schottky diode is a single-carrier movement, it has a relatively low threshold voltage when it is forward-biased, and its response speed is extremely fast when it is switched between forward and reverse biases.
请参照图1,显示了一种已知肖特基二极管装置100的剖面情形。如图1所示,肖特基二极管装置100包括了n型漂移区(n drift region)104、阳极电极112、阴极电极114以及形成于n型漂移区(n drift region)104内的n+掺杂区116等主要构件。n型漂移区104是形成于p型硅基底102的表面内,而于n型漂移区104表面形成有两分隔的场氧化物108,以于n型漂移区104表面定义出为场氧化物108所分隔的阳极区150以及阴极区160。于n型漂移区104表面上更形成有经图案化的层间介电层110,其覆盖了场氧化物108及其邻近的n型漂移区104与n+掺杂区116的部分表面,而由钛、氮化钛、钨、铝等金属材质所形成的阳极电极112与阴极电极114则分别覆盖并穿透层间介电层110以分别实体接触位于阳极区150内的n型漂移区104以及位于阴极区160内的n+掺杂区116。于阳极区150内邻近场氧化物108处的n型漂移区104内分别形成有一p型掺杂区106,以避免于电极112邻近n型漂移区104与场氧化物108处区域内形成高电场,通过提升肖特基二极管装置100的逆向偏压下的电压崩溃表现。于肖特基二极管装置100内的阳极电极112及相接触的n型漂移区104间的介面即为一金属-半导体接面120。Please refer to FIG. 1 , which shows a cross-section of a known Schottky
另外,为了进一步提升肖特基二极管装置100的逆向偏压下的崩溃电压,n型漂移区104内的n型掺杂浓度通常不可高于2.0×1016atoms/cm3。如此的n型漂移区104的掺杂浓度虽有助于提升肖特基二极管装置100于逆向偏压下的崩溃电压表现,但是却使得肖特基二极管装置100于顺向偏压下流通于阳极区150与阴极区160间的单位面积电流受到限制。In addition, in order to further increase the breakdown voltage of the
因此,便需要一种新颖的肖特基二极管装置,以满足逆向电压下的高崩溃电压以及顺向偏压下的高单位面积电流等元件需求。Therefore, there is a need for a novel Schottky diode device to meet device requirements such as high breakdown voltage under reverse voltage and high current per unit area under forward bias voltage.
发明内容 Contents of the invention
有鉴于此,本发明提供了一种肖特基二极管装置及其制造方法,以改善其崩溃电压与单位面积电流等电性表现。In view of this, the present invention provides a Schottky diode device and its manufacturing method to improve its electrical properties such as breakdown voltage and unit area current.
依据一实施例,本发明提供了一种肖特基二极管装置,包括:According to an embodiment, the present invention provides a Schottky diode device, comprising:
一p型半导体结构;一n型漂移区,设置于所述p型半导体结构表面,其中所述n型漂移区包括掺杂浓度相异的一第一n型掺杂区以及一第二n型掺杂区,而所述第二n型掺杂区是环绕所述第一n型掺杂区的侧壁且具有较所述第一n型掺杂区为高的掺杂浓度;多个隔离结构,设置于所述n型漂移区的所述第二n型掺杂区内,以定义出一阳极区以及一阴极区,其中所述阳极区露出所述第一n型掺杂区的表面而所述阴极区部分露出所述第二n型掺杂区的表面;一第三n型掺杂区,设置于为所述阴极区所部分露出的第二n型掺杂区表面,其中所述第三n型掺杂区具有高于所述第二n型掺杂区的掺杂浓度;一阳极电极,设置于所述阳极区内的所述第一n型掺杂区之上;以及一阴极电极,设置于所述阴极区内的所述第三n型掺杂区之上。A p-type semiconductor structure; an n-type drift region, disposed on the surface of the p-type semiconductor structure, wherein the n-type drift region includes a first n-type doped region and a second n-type doped region with different doping concentrations a doped region, and the second n-type doped region surrounds the sidewall of the first n-type doped region and has a higher doping concentration than the first n-type doped region; a plurality of isolation structure, arranged in the second n-type doped region of the n-type drift region to define an anode region and a cathode region, wherein the anode region exposes the surface of the first n-type doped region The cathode region partially exposes the surface of the second n-type doped region; a third n-type doped region is arranged on the surface of the second n-type doped region partially exposed by the cathode region, wherein the The third n-type doped region has a higher doping concentration than the second n-type doped region; an anode electrode is disposed on the first n-type doped region in the anode region; and A cathode electrode is arranged on the third n-type doped region in the cathode region.
依据另一实施例,本发明提供了一种肖特基二极管装置的制造方法,包括:According to another embodiment, the present invention provides a method for manufacturing a Schottky diode device, comprising:
提供一p型半导体层;形成一n型漂移区于所述p型半导体层表面内,其中所述n型漂移区包括一第一n型掺杂区以及环绕所述第一n型掺杂区的一第二n型掺杂区,而所述第二n型掺杂区具有高于所述第一n型掺杂区的掺杂浓度;形成数个隔离结构于邻近所述第一n型掺杂区的所述第二n型掺杂区之内,进而于所述p型半导体层上定义出一阳极区与一阴极区,其中所述阳极区露出了所述第一n型掺杂区及邻近所述第一n型掺杂区的所述第二n型掺杂区的一部分,而所述阴极区仅露出了所述第二n型掺杂区的另一部分;形成一第三n型掺杂区于所述阴极区所露出的所述第二n型掺杂区之内;以及于所述阳极区与阴极区内分别形成一阳极电极与一阴极电极,以分别实体接触所述第一n型掺杂区与所述第三n型掺杂区。A p-type semiconductor layer is provided; an n-type drift region is formed in the surface of the p-type semiconductor layer, wherein the n-type drift region includes a first n-type doped region and surrounds the first n-type doped region a second n-type doped region, and the second n-type doped region has a doping concentration higher than that of the first n-type doped region; several isolation structures are formed adjacent to the first n-type doped region In the second n-type doped region of the doped region, an anode region and a cathode region are defined on the p-type semiconductor layer, wherein the anode region exposes the first n-type doped region. region and a part of the second n-type doped region adjacent to the first n-type doped region, and the cathode region only exposes another part of the second n-type doped region; forming a third The n-type doped region is within the second n-type doped region exposed by the cathode region; and an anode electrode and a cathode electrode are respectively formed in the anode region and the cathode region, so as to physically contact the two respectively. The first n-type doped region and the third n-type doped region.
附图说明 Description of drawings
图1显示了一已知肖特基二极管装置的剖面情形;以及Figure 1 shows a cross-section of a known Schottky diode device; and
图2-图6为一系列剖面图,显示了依据本发明一实施例的肖特基二极管装置的制造方法。2-6 are a series of cross-sectional views showing a method for fabricating a Schottky diode device according to an embodiment of the present invention.
附图标号:Figure number:
100~肖特基二极管装置;100 ~ Schottky diode device;
102~p型硅基底;102~p-type silicon substrate;
104~n型漂移区;104~n-type drift region;
106~p型掺杂区;106~p-type doped region;
108~场氧化物;108~field oxide;
110~层间介电层;110~interlayer dielectric layer;
112~阳极电极;112~anode electrode;
114~阴极电极;114~cathode electrode;
116~n+掺杂区;116~n+doped region;
120~金属-半导体接面;120~metal-semiconductor interface;
150~阳极区;150~anode area;
160~阴极区;160~cathode area;
202~p型半导体层;202~p-type semiconductor layer;
204~掩膜层;204~mask layer;
206~离子注入程序;206~Ion implantation procedure;
208~n型掺杂区;208~n-type doped region;
210~p型条状区;210~p-type strip region;
212~第二n型掺杂区;212~the second n-type doped region;
214~第一n型掺杂区;214~the first n-type doped region;
216~掩膜层;216~mask layer;
218~离子注入程序;218~Ion implantation procedure;
220~p型掺杂区;220~p-type doped region;
222~隔离结构;222~isolation structure;
224~掩膜层;224~mask layer;
226~离子注入程序;226~Ion implantation procedure;
228~n+掺杂区;228~n+doped region;
230~层间介电层;230~interlayer dielectric layer;
232、234~电极;232, 234 ~ electrodes;
235、237~开口;235, 237~opening;
250~n型漂移区;250 ~ n-type drift region;
260~阳极区;260~anode area;
270~阴极区;270~cathode area;
280~金属-半导体接面;280~metal-semiconductor junction;
W~掩膜层/p型条状区的宽度;W~the width of the mask layer/p-type strip region;
P~掩膜层/p型条状区的间距。P~mask layer/p-type strip region spacing.
具体实施方式 Detailed ways
为了让本发明的上述和其他目的、特征和优点能更明显易懂,下文特举一较佳实施例,并配合所附附图,作详细说明如下:In order to make the above and other objects, features and advantages of the present invention more comprehensible, a preferred embodiment is specifically cited below, together with the accompanying drawings, and is described in detail as follows:
图2-图6为一系列剖面图,显示了依据本发明一实施例的肖特基二极管装置的制造方法。2-6 are a series of cross-sectional views showing a method for fabricating a Schottky diode device according to an embodiment of the present invention.
请参照图2,首先提供一p型半导体结构,例如为一p型半导体层202。p型半导体层202例如为含硅、硅锗的半导体材料的外延层或基板的一部。接着于半导体基板202的表面形成数个图案化的掩膜层204并露出部分的p型半导体层202。接着,针对p型半导体层202施行一离子注入程序206并采用此些掩膜层204做为离子注入掩膜,因此于p型半导体层202内形成了数个相分隔的n型掺杂区208。离子注入程序206是采用磷与砷等n型掺质,其所采用的离子注入能量约介于500KeV~800KeV,而所注入n型掺质剂量则约介于2×1012~8×1012atoms/cm2。Referring to FIG. 2 , firstly, a p-type semiconductor structure, such as a p-
如图2所示,由于p型半导体层202之上形成有数个分隔的掩膜层204,故于离子注入程序206施行后于所形成的相分隔的数个n型掺杂区208之间分别存在有一未经n型掺杂的p型条状区210,其仍具有相同于p型半导体层202的掺杂特性与掺杂浓度。在此,此些掩膜层204分别具有介于0.4μm~0.8μm的宽度W且相邻掩膜层204之间存在有介于0.4μm~0.8μm之间距P。如此,可通过调整形成于p型半导体层202上的掩膜层204数量、其宽度W以及相邻掩膜层204之间距P而达到控制所形成的p型条状区210的数量、范围与轮廓。As shown in FIG. 2, since several separated
请参照图3,于移除形成于p型半导体层202上的掩膜层204(请参见第2图)之后,接着施行一退火程序(未显示),以于1000~1100℃的温度下进行退火处理。因此,于退火程序施行过后,于p型半导体层202表面便形成了一第一n型掺杂区214以及环绕此第一n型掺杂区214侧壁的一第二n型掺杂区212,而第一n型掺杂区214与第二n型掺杂区212的底面分别接触了p型半导体层202。在此,第二n型掺杂区212内的掺杂浓度约介于2×1016~8×1016atoms/cm3,第一n型掺杂区214内掺杂浓度约介于4×1015~2×1016atoms/cm3,而第二n型掺杂区212内的掺杂浓度高于第一n型掺杂区214内掺杂浓度,且先前的p型条状区210于退火程序施行过后便不复存在。第一n型掺杂区214与第二n型掺杂区212组成了肖特基二极管装置的n型漂移区250。Please refer to FIG. 3 , after removing the
请继续参照图3,接着于n型漂移区250表面形成图案化的一掩膜层216并分别露出位于第一n型掺杂区214两侧的第二n型掺杂区212的一部分。接着采用掩膜层216作为离子注入掩膜而施行一离子注入程序218,以于位于第一n型掺杂区214两侧的第二n型掺杂区212之内分别形成了一p型掺杂区220。离子注入程序218是采用如硼的p型掺质,其所采用的离子注入能量约介于40KeV~80KeV,而所注入p型掺质剂量则约介于8×1013~5×1014atoms/cm2。Please continue to refer to FIG. 3 , and then a
请参照图4,接着于除去掩膜层216(请参见图3)之后,于n型漂移区250内的第二n型掺杂区212表面及其内形成两分隔的隔离结构222,以于n型漂移区250表面定义出此肖特基二极管装置的阳极区260与阴极区270。在此,隔离结构222是绘示为已知的场氧化物(filed oxide)且可为已知场氧化物工艺所形成,但并非加以限定本发明,隔离结构222亦可采用其他型态的隔离结构。于形成隔离结构222时可同时对于先前形成的p型掺杂区220(请参见图3)进行退火动作,并于隔离结构222形成后同时将的转化成为邻近并包覆各隔离结构222的一边角的p型掺杂区220。此p型掺杂区220亦部分延伸进入了第一n型掺杂区214之内。接着形成一图案化的掩膜层224,以大体覆盖了隔离结构222与阳极区260并露出了阴极区270内的第二n型掺杂区212的表面。接着进行一离子注入程序226以于第二n型掺杂区212表面形成了n+掺杂区228以作为阴极接点之用。离子注入程序226是采用磷与砷等n型掺质,其所采用的离子注入能量约介于40KeV~60KeV,而所注入n型掺质剂量则约介于1×1015~5×1015atoms/cm2。Referring to FIG. 4 , after removing the mask layer 216 (see FIG. 3 ), two
请参照图5,于移除掩膜层224(见于图4)之后,接着形成图案化的层间介电层230,其分别大体覆盖了隔离结构222及邻近隔离结构222的部分p型掺杂区220与n+掺杂区228。于层间介电层230内形成有一开口235与237,分别大体露出第一n型掺杂区214的整个表面以及部分的n+掺杂区228表面。Referring to FIG. 5 , after removing the mask layer 224 (see FIG. 4 ), a patterned
请参照图6,接着形成图案化的电极层232与234,其中电极层232是设置于p型掺杂区220与第一n型掺杂区214之上且部分覆盖邻近的层间介电层230,而电极层234则设置于n+掺杂区228之上且部分覆盖邻近的层间介电层234。电极232与234分别作为阳极电极与阴极电极之用,其可采用如钛、氮化钛、钨、铝等金属材料且可采用如沉积、研磨与蚀刻等已知工艺所形成。Referring to FIG. 6, patterned electrode layers 232 and 234 are then formed, wherein the
如图6所示,显示了依据本发明的一实施例的肖特基二极管装置,其主要包括:As shown in Figure 6, a Schottky diode device according to an embodiment of the present invention is shown, which mainly includes:
一p型半导体结构(例如p型半导体层202);一n型漂移区,设置于p型半导体结构表面,其中n型漂移区包括掺杂浓度相异的一第一n型掺杂区(例如第一n型掺杂区214)以及一第二n型掺杂区(例如第二n型掺杂区212),而第二n型掺杂区是环绕所述第一n型掺杂区的侧壁且具有较第一n型掺杂区为高的掺杂浓度;多个隔离结构(例如隔离结构222),设置于n型漂移区的第二n型掺杂区内,以定义出一阳极区(例如阳极区260)以及一阴极区(例如阴极区270),其中所述阳极区露出第一n型掺杂区的表面而阴极区部分露出第二n型掺杂区的表面;一第三n型掺杂区(例如n+掺杂区228),设置于为所述阴极区所部分露出的第二n型掺杂区表面,其中第三n型掺杂区具有高于第二n型掺杂区的掺杂浓度;一阳极电极(例如阳极电极232),设置于阳极区内的所述第一n型掺杂区之上;以及一阴极电极(例如阴极电极234),设置于阴极区内的所述第三n型掺杂区之上。A p-type semiconductor structure (such as p-type semiconductor layer 202); an n-type drift region, disposed on the surface of the p-type semiconductor structure, wherein the n-type drift region includes a first n-type doped region with different doping concentrations (such as first n-type doped region 214) and a second n-type doped region (such as the second n-type doped region 212), and the second n-type doped region surrounds the first n-type doped region The sidewall has a higher doping concentration than the first n-type doped region; a plurality of isolation structures (such as isolation structure 222) are arranged in the second n-type doped region of the n-type drift region to define a An anode region (such as the anode region 260) and a cathode region (such as the cathode region 270), wherein the anode region exposes the surface of the first n-type doped region and the cathode region partially exposes the surface of the second n-type doped region; The third n-type doped region (such as n+ doped region 228) is arranged on the surface of the second n-type doped region partially exposed by the cathode region, wherein the third n-type doped region has a The doping concentration of the n-type doped region; an anode electrode (such as the anode electrode 232), which is arranged on the first n-type doped region in the anode region; and a cathode electrode (such as the cathode electrode 234), which is arranged on the above the third n-type doped region in the cathode region.
于本实施例中,肖特基二极管装置是包括了由掺杂浓度相对较低的第一n型掺杂区214与掺杂浓度相对较高的第二n型掺杂区212所组成的一n型漂移区250,其中第一n型掺杂区214是实体接触了阳极电极232,基于其相对为低的n型掺杂浓度,因而有助于提升于阳极电极232与第一n型掺杂区214间的金属-半导体接面280处的逆向偏压时的崩溃电压表现。另外,由于介于阳极区260与阴极区270间的第二n型掺杂区212具有相对高的n型掺杂浓度,因而可改善肖特基二极管装置的单位面积电流量。In this embodiment, the Schottky diode device includes a first n-type doped
另外,参照图2~图6的制造流程,本发明的肖特基二极管装置的制造方法是针对如图1所示的已知肖特基二极管装置内用于形成n型漂移区104的光掩膜进行图样修正,即可形成如第6图所示的由两种不同n型掺杂浓度的n型掺杂区所组成的n型漂移区250,且不会造成制造流程所需光掩膜数的增加,并可通过适度调整p型条状区210的数量、宽度及p型条状区210间的间距而达成控制肖特基接面280下的n型掺杂浓度的目的。In addition, referring to the manufacturing process of FIGS. 2 to 6, the manufacturing method of the Schottky diode device of the present invention is aimed at the photomask used to form the n-
虽然本发明已以较佳实施例揭露如上,然其并非用以限定本发明,任何熟习本领域的一般技术人员,在不脱离本发明的精神和范围内,当可作各种的更动与润饰,因此本发明的保护范围当视权利要求范围所界定为准。Although the present invention has been disclosed above with preferred embodiments, it is not intended to limit the present invention. Any person skilled in the art may make various modifications and changes without departing from the spirit and scope of the present invention. Modification, therefore, the scope of protection of the present invention should be defined by the scope of claims.
Claims (13)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2009102031272A CN101901840B (en) | 2009-05-27 | 2009-05-27 | Schottky diode device and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2009102031272A CN101901840B (en) | 2009-05-27 | 2009-05-27 | Schottky diode device and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101901840A CN101901840A (en) | 2010-12-01 |
CN101901840B true CN101901840B (en) | 2012-04-25 |
Family
ID=43227228
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2009102031272A Active CN101901840B (en) | 2009-05-27 | 2009-05-27 | Schottky diode device and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101901840B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114242827A (en) * | 2021-12-17 | 2022-03-25 | 中国电子科技集团公司第十三研究所 | Transverse photodetector |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101013727A (en) * | 2006-02-03 | 2007-08-08 | 半导体元件工业有限责任公司 | Schottky diode structure with enhanced breakdown voltage and method of manufacture |
CN101051655A (en) * | 2006-11-17 | 2007-10-10 | 崇贸科技股份有限公司 | Schottky element and semiconductor manufacturing process for manufacturing the Schottky element |
CN101262015A (en) * | 2007-03-08 | 2008-09-10 | 半导体元件工业有限责任公司 | Schottky diode structure and preparation method with multi-divided guard ring |
-
2009
- 2009-05-27 CN CN2009102031272A patent/CN101901840B/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101013727A (en) * | 2006-02-03 | 2007-08-08 | 半导体元件工业有限责任公司 | Schottky diode structure with enhanced breakdown voltage and method of manufacture |
CN101051655A (en) * | 2006-11-17 | 2007-10-10 | 崇贸科技股份有限公司 | Schottky element and semiconductor manufacturing process for manufacturing the Schottky element |
CN101262015A (en) * | 2007-03-08 | 2008-09-10 | 半导体元件工业有限责任公司 | Schottky diode structure and preparation method with multi-divided guard ring |
Non-Patent Citations (1)
Title |
---|
JP平4-71273A 1992.03.05 |
Also Published As
Publication number | Publication date |
---|---|
CN101901840A (en) | 2010-12-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10727330B2 (en) | Semiconductor device with diode region | |
US11973114B2 (en) | MOS-based power semiconductor device having increased current carrying area and method of fabricating same | |
US7863682B2 (en) | SIC semiconductor having junction barrier Schottky diode | |
US10361266B2 (en) | Semiconductor device | |
KR101955055B1 (en) | Power semiconductor device and method of fabricating the same | |
CN1367528A (en) | Improvement method for changing working parameters to making power rectifier device and obtained device | |
US8835935B2 (en) | Trench MOS transistor having a trench doped region formed deeper than the trench gate | |
CN107833921B (en) | Switching device and method of manufacturing switching device | |
JP2013105798A (en) | Semiconductor device and method for manufacturing the same | |
CN104900718A (en) | Schottky diode and manufacture method thereof | |
CN101901840B (en) | Schottky diode device and manufacturing method thereof | |
US20130069065A1 (en) | Silicon carbide mosfet with high mobility channel | |
JP2007235064A (en) | Schottky barrier semiconductor device, and method of manufacturing same | |
CN104733526A (en) | Trench-type metal-oxide-semiconductor P-N junction diode structure and manufacturing method thereof | |
CN115458585A (en) | Semiconductor device and method for manufacturing the same | |
JP6029330B2 (en) | Semiconductor device and manufacturing method thereof | |
TWI383506B (en) | Schottky diode device and method for fabricating the same | |
CN103378170A (en) | Schottky semiconductor device with super junction and preparation method thereof | |
CN103383968A (en) | Interface charge compensation Schottky semiconductor device and manufacturing method for same | |
WO2006082618A1 (en) | Semiconductor device and method for manufacturing the same | |
JP7113386B2 (en) | semiconductor equipment | |
CN103390635B (en) | One kind has passive metal PN junction semiconductor device and preparation method thereof | |
CN103378172B (en) | Schottky semiconductor device and method for preparing same | |
TWI614811B (en) | Semiconductor devices and methods for manufacturing the same | |
CN116646400A (en) | A silicon carbide MOSFET device and manufacturing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |