CN101890370B - Nano-titanium dioxide and polyphosphazene based composite optical catalyst and preparation method thereof - Google Patents
Nano-titanium dioxide and polyphosphazene based composite optical catalyst and preparation method thereof Download PDFInfo
- Publication number
- CN101890370B CN101890370B CN2010102450442A CN201010245044A CN101890370B CN 101890370 B CN101890370 B CN 101890370B CN 2010102450442 A CN2010102450442 A CN 2010102450442A CN 201010245044 A CN201010245044 A CN 201010245044A CN 101890370 B CN101890370 B CN 101890370B
- Authority
- CN
- China
- Prior art keywords
- nano
- titanium dioxide
- titanium oxide
- polyphosphazene
- nano titanium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 229920002627 poly(phosphazenes) Polymers 0.000 title claims abstract description 60
- 239000002131 composite material Substances 0.000 title claims abstract description 44
- 238000002360 preparation method Methods 0.000 title claims abstract description 12
- SOQBVABWOPYFQZ-UHFFFAOYSA-N oxygen(2-);titanium(4+) Chemical compound [O-2].[O-2].[Ti+4] SOQBVABWOPYFQZ-UHFFFAOYSA-N 0.000 title abstract description 57
- 239000003054 catalyst Substances 0.000 title abstract description 6
- 230000003287 optical effect Effects 0.000 title 1
- 239000011941 photocatalyst Substances 0.000 claims abstract description 43
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical class [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 16
- 239000006185 dispersion Substances 0.000 claims abstract description 12
- 239000007788 liquid Substances 0.000 claims abstract description 8
- 239000002253 acid Substances 0.000 claims abstract description 6
- 239000011230 binding agent Substances 0.000 claims abstract description 6
- 239000003960 organic solvent Substances 0.000 claims abstract description 5
- 238000001035 drying Methods 0.000 claims abstract description 3
- 238000001914 filtration Methods 0.000 claims abstract description 3
- 238000001132 ultrasonic dispersion Methods 0.000 claims abstract description 3
- 238000005406 washing Methods 0.000 claims abstract description 3
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 27
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical group CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 claims description 21
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 claims description 12
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 claims description 9
- 238000000034 method Methods 0.000 claims description 9
- UBIJTWDKTYCPMQ-UHFFFAOYSA-N hexachlorophosphazene Chemical compound ClP1(Cl)=NP(Cl)(Cl)=NP(Cl)(Cl)=N1 UBIJTWDKTYCPMQ-UHFFFAOYSA-N 0.000 claims description 6
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 5
- 239000012046 mixed solvent Substances 0.000 claims description 5
- 238000006243 chemical reaction Methods 0.000 claims description 4
- 229930185605 Bisphenol Natural products 0.000 claims 1
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 claims 1
- 238000002604 ultrasonography Methods 0.000 claims 1
- 238000001179 sorption measurement Methods 0.000 abstract description 10
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 abstract description 10
- 239000011248 coating agent Substances 0.000 abstract description 8
- 238000000576 coating method Methods 0.000 abstract description 8
- 230000001699 photocatalysis Effects 0.000 abstract description 8
- 239000011258 core-shell material Substances 0.000 abstract description 5
- 239000002957 persistent organic pollutant Substances 0.000 abstract description 5
- 150000001875 compounds Chemical class 0.000 abstract description 2
- 238000010438 heat treatment Methods 0.000 abstract description 2
- 239000002245 particle Substances 0.000 description 8
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 6
- 238000003917 TEM image Methods 0.000 description 6
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 6
- 238000001878 scanning electron micrograph Methods 0.000 description 6
- VPWNQTHUCYMVMZ-UHFFFAOYSA-N 4,4'-sulfonyldiphenol Chemical compound C1=CC(O)=CC=C1S(=O)(=O)C1=CC=C(O)C=C1 VPWNQTHUCYMVMZ-UHFFFAOYSA-N 0.000 description 5
- 239000011247 coating layer Substances 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 4
- 229920000049 Carbon (fiber) Polymers 0.000 description 3
- 239000008367 deionised water Substances 0.000 description 3
- 229910021641 deionized water Inorganic materials 0.000 description 3
- 238000011065 in-situ storage Methods 0.000 description 3
- 238000006068 polycondensation reaction Methods 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 238000000926 separation method Methods 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- 238000009210 therapy by ultrasound Methods 0.000 description 3
- 239000004408 titanium dioxide Substances 0.000 description 3
- 238000005033 Fourier transform infrared spectroscopy Methods 0.000 description 2
- 229910010413 TiO 2 Inorganic materials 0.000 description 2
- 229910003077 Ti−O Inorganic materials 0.000 description 2
- 238000002441 X-ray diffraction Methods 0.000 description 2
- 238000005452 bending Methods 0.000 description 2
- 230000003197 catalytic effect Effects 0.000 description 2
- 238000006555 catalytic reaction Methods 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 239000002105 nanoparticle Substances 0.000 description 2
- 150000002894 organic compounds Chemical class 0.000 description 2
- 238000013033 photocatalytic degradation reaction Methods 0.000 description 2
- RBTBFTRPCNLSDE-UHFFFAOYSA-N 3,7-bis(dimethylamino)phenothiazin-5-ium Chemical compound C1=CC(N(C)C)=CC2=[S+]C3=CC(N(C)C)=CC=C3N=C21 RBTBFTRPCNLSDE-UHFFFAOYSA-N 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000006065 biodegradation reaction Methods 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000003575 carbonaceous material Substances 0.000 description 1
- 238000003763 carbonization Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000005253 cladding Methods 0.000 description 1
- 230000009849 deactivation Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000003344 environmental pollutant Substances 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- IXCSERBJSXMMFS-UHFFFAOYSA-N hydrogen chloride Substances Cl.Cl IXCSERBJSXMMFS-UHFFFAOYSA-N 0.000 description 1
- 229910000041 hydrogen chloride Inorganic materials 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 239000002440 industrial waste Substances 0.000 description 1
- 239000000543 intermediate Substances 0.000 description 1
- 239000010410 layer Substances 0.000 description 1
- 238000013332 literature search Methods 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 229960000907 methylthioninium chloride Drugs 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 150000002825 nitriles Chemical class 0.000 description 1
- 231100000956 nontoxicity Toxicity 0.000 description 1
- 238000011017 operating method Methods 0.000 description 1
- 239000005416 organic matter Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000005022 packaging material Substances 0.000 description 1
- 230000037361 pathway Effects 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 238000013032 photocatalytic reaction Methods 0.000 description 1
- 231100000719 pollutant Toxicity 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 239000011241 protective layer Substances 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- ILWRPSCZWQJDMK-UHFFFAOYSA-N triethylazanium;chloride Chemical compound Cl.CCN(CC)CC ILWRPSCZWQJDMK-UHFFFAOYSA-N 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
Images
Landscapes
- Catalysts (AREA)
Abstract
一种催化剂制备技术领域的基于纳米二氧化钛和聚膦腈的复合光催化剂及其制备方法,通过将1重量份六氯环三膦腈、2.16重量份双酚S和1~5重量份纳米二氧化钛置于2500重量份有机溶剂中,经过超声分散得到分散液;进一步加入73重量份缚酸剂,经加温水浴得到目标产物的分散液,经过滤洗涤干燥后得基于纳米二氧化钛和聚膦腈的复合光催化剂。本发明用聚膦腈包覆改性德固赛P25纳米二氧化钛所得到的具有核壳结构的基于纳米二氧化钛和聚膦腈的复合光催化剂。该光催化剂与P25相比,对目标有机污染物具有优异的吸附性能,并且在紫外光照射下显示出更高的光催化活性。
A composite photocatalyst based on nano-titanium dioxide and polyphosphazene in the technical field of catalyst preparation and a preparation method thereof. In 2500 parts by weight of an organic solvent, the dispersion liquid was obtained by ultrasonic dispersion; further adding 73 parts by weight of an acid-binding agent, the dispersion liquid of the target product was obtained by heating a water bath, and after filtration, washing and drying, a composite compound based on nano-titanium dioxide and polyphosphazene was obtained. catalyst of light. The present invention is a composite photocatalyst based on nano-titanium dioxide and polyphosphazene with a core-shell structure obtained by coating modified Degussa P25 nano-titanium dioxide with polyphosphazene. Compared with P25, the photocatalyst has excellent adsorption performance for target organic pollutants and shows higher photocatalytic activity under ultraviolet light irradiation.
Description
技术领域 technical field
本发明涉及的是一种催化剂技术领域的方法,具体是一种基于纳米二氧化钛和聚膦腈的复合光催化剂及其制备方法。The invention relates to a method in the technical field of catalysts, in particular to a composite photocatalyst based on nano titanium dioxide and polyphosphazene and a preparation method thereof.
背景技术 Background technique
随着工业化进程的加快,大量包含各类有机化合物的工业废弃物排向自然界,对生态造成了严重污染。为了解决这个迫在眉睫的问题,光催化降解技术在过去的二十年引起了人们的广泛关注,因为与传统的生物降解途径相比较,光催化降解具有更高的效率。锐钛矿型纳米二氧化钛具有高催化活性、无毒和良好的化学稳定性等特点,是一种最常用的光催化剂。但二氧化钛对目标有机污染物的吸附性较差,在污染物浓度较低的环境下催化活性不高,且使用后回收困难,大大限制了其实际应用。因此,通过表面改性增强纳米二氧化钛对有机物的吸附能力是一种进一步提高其光催化活性和效率的有效途径。With the acceleration of industrialization, a large amount of industrial waste containing various organic compounds is discharged into nature, causing serious pollution to the ecology. To solve this pressing problem, photocatalytic degradation technology has attracted much attention in the past two decades due to its higher efficiency compared with traditional biodegradation pathways. Anatase nano-titanium dioxide has the characteristics of high catalytic activity, non-toxicity and good chemical stability, and is one of the most commonly used photocatalysts. However, the adsorption of titanium dioxide to target organic pollutants is poor, the catalytic activity is not high in the environment of low pollutant concentration, and it is difficult to recover after use, which greatly limits its practical application. Therefore, enhancing the adsorption capacity of nano-TiO to organic matter by surface modification is an effective way to further improve its photocatalytic activity and efficiency.
经对现有技术的文献检索发现,荷兰《应用催化,B辑:环境》期刊于2008年第79卷第2期第171~178页(T.Guo,Z.P.Bai,C.Wu,T.Zhu,Influence of relative humidity on thephotocatalytic oxidation(PCO)of toluene by TiO2 loaded on activated carbon fibers:PCO rateand intermediates accumulation,Applied Catalysis B:Environmental,2008,79(2):171~178)报道了一种将纳米二氧化钛颗粒负载于多孔活性碳纤维表面所形成的表面负载型复合光催化剂,该光催化剂对甲苯具有优异的吸附能力和光催化活性,但是该方法负载的牢固性相对较弱,纳米二氧化钛颗粒容易从多孔活性碳纤维表面脱落,限制了催化剂的循环使用。英国《材料化学杂志》期刊于2002年第12卷第5期第1391~1396页(T.Tsumura,N.Kojitani,I.Izumi,N.Iwashita,M.Toyoda,M.Inagaki,Carbon coating of anatase-type TiO2 and photoactivity,Journal of Material Chemistry,2002,12(5):1391-1396)报道了一种用多孔碳材料包覆纳米二氧化钛颗粒得到核壳型复合光催化剂的方法,该方法虽然能有效地增强二氧化钛的吸附能力,但通常需要对前驱体进行高温碳化处理,步骤繁琐条件苛刻。Found through literature search to prior art, Holland " applied catalysis, B series: environment " periodical in 2008 the
发明内容 Contents of the invention
本发明针对现有技术存在的上述不足,提供一种基于纳米二氧化钛和聚膦腈的复合光催化剂及其制备方法,用聚膦腈包覆改性德固赛P25纳米二氧化钛所得到的具有核壳结构的基于纳米二氧化钛和聚膦腈的复合光催化剂。该光催化剂与P25相比,对目标有机污染物具有优异的吸附性能,并且在紫外光照射下显示出更高的光催化活性。Aiming at the above-mentioned deficiencies in the prior art, the present invention provides a composite photocatalyst based on nano-titanium dioxide and polyphosphazene and a preparation method thereof, which is obtained by coating and modifying Degussa P25 nano-titanium dioxide with polyphosphazene. Structure of Nanosized TiO2 and Polyphosphazene Based Composite Photocatalysts. Compared with P25, the photocatalyst has excellent adsorption performance for target organic pollutants and shows higher photocatalytic activity under ultraviolet light irradiation.
本发明是通过以下技术方案实现的,本发明具体包括以下步骤:The present invention is realized through the following technical solutions, and the present invention specifically comprises the following steps:
步骤一,将1重量份六氯环三膦腈、2.16重量份双酚S和1~5重量份纳米二氧化钛置于2500重量份有机溶剂中,经过超声分散得到分散液;
所述纳米二氧化钛为德固赛P25纳米二氧化钛。The nano titanium dioxide is Degussa P25 nano titanium dioxide.
所述有机溶剂为四氢呋喃和无水乙醇的混合溶剂,且体积比为1∶1。The organic solvent is a mixed solvent of tetrahydrofuran and absolute ethanol, and the volume ratio is 1:1.
步骤二,进一步加入73重量份缚酸剂,经加温水浴得到目标产物的分散液,经过滤洗涤干燥后得基于纳米二氧化钛和聚膦腈的复合光催化剂。In
所述缚酸剂为三乙胺。The acid-binding agent is triethylamine.
所述的加温水浴是指:在40℃超声波水浴中反应5小时,The warming water bath refers to: reacting in a 40°C ultrasonic water bath for 5 hours,
所述超声波的功率为100瓦。The power of the ultrasonic wave is 100 watts.
本发明涉及上述方法制备得到的催化剂具有核壳结构,以德固赛P25纳米二氧化钛为核,聚膦腈为壳,其中:聚膦腈的结构式如下:The present invention relates to the catalyst prepared by the above method having a core-shell structure, with Degussa P25 nano-titanium dioxide as the core and polyphosphazene as the shell, wherein the structural formula of polyphosphazene is as follows:
与现有技术相比,本发明具有如下有益效果:(1)本发明的制备方法简单有效,且条件温和;(2)本发明所述的聚膦腈具有独特的孔结构和吸附性能,为基于纳米二氧化钛和聚膦腈的复合光催化剂提供了较高的比表面和吸附能力,使得目标有机污染物能够有效地富集在二氧化钛颗粒表面,在光催化中心形成局部较高的反应物浓度,同时聚膦腈包覆层对紫外光有良好的透过性,从而大大提升了光催化活性和效率;(3)本发明所述的聚膦腈是一种具有高度交联结构的有机无机杂化聚合物,具有良好的化学和热稳定性,且反应单体可以很容易地在目标基底表面原位聚合和交联形成厚度均匀可控的聚膦腈包覆层,因此聚膦腈是一种理想的封装材料。用其包覆纳米二氧化钛,可以在纳米二氧化钛颗粒表面形成一层牢固的“保护层”,有效地防止光催化剂中心在使用过程中的失活和损失。另外,高度交联的有机无机杂化结构也可以使聚膦腈包覆层自身能够有效地抵挡光催化反应,使基于纳米二氧化钛和聚膦腈的复合光催化剂可以高效和稳定地循环使用。Compared with the prior art, the present invention has the following beneficial effects: (1) the preparation method of the present invention is simple and effective, and the conditions are mild; (2) the polyphosphazene of the present invention has a unique pore structure and adsorption performance, which is The composite photocatalyst based on nano-titanium dioxide and polyphosphazene provides high specific surface area and adsorption capacity, so that the target organic pollutants can be effectively enriched on the surface of titanium dioxide particles, forming a local high reactant concentration in the photocatalytic center, At the same time, the polyphosphazene coating layer has good permeability to ultraviolet light, thereby greatly improving the photocatalytic activity and efficiency; (3) the polyphosphazene of the present invention is an organic-inorganic heterogeneous compound with a highly cross-linked structure. It is a polymer with good chemical and thermal stability, and the reactive monomer can be easily polymerized and cross-linked in situ on the surface of the target substrate to form a polyphosphazene coating with uniform thickness and controllable thickness. Therefore, polyphosphazene is a kind of An ideal packaging material. Coating nano-titanium dioxide with it can form a firm "protective layer" on the surface of nano-titanium dioxide particles, effectively preventing the deactivation and loss of the photocatalyst center during use. In addition, the highly cross-linked organic-inorganic hybrid structure can also make the polyphosphazene coating itself effectively resist the photocatalytic reaction, so that the composite photocatalyst based on nano-titanium dioxide and polyphosphazene can be recycled efficiently and stably.
附图说明 Description of drawings
图1是制备聚膦腈包覆层的合成路线和化学结构示意图;Fig. 1 is the synthetic route and chemical structure schematic diagram of preparing polyphosphazene cladding layer;
图2是制备基于纳米二氧化钛和聚膦腈的复合光催化剂的机理;Fig. 2 is the mechanism of preparing the composite photocatalyst based on nano titanium dioxide and polyphosphazene;
图3是实施例1制得的基于纳米二氧化钛和聚膦腈的复合光催化剂的傅立叶变换红外光谱图;Fig. 3 is the Fourier transform infrared spectrogram of the composite photocatalyst based on nano titanium dioxide and polyphosphazene that
图4是实施例1制得的基于纳米二氧化钛和聚膦腈的复合光催化剂的X射线衍射谱图;Fig. 4 is the X-ray diffraction spectrogram of the composite photocatalyst based on nano titanium dioxide and polyphosphazene that
图5是实施例1制得的基于纳米二氧化钛和聚膦腈的复合光催化剂的扫描电镜照片和透射电镜照片;Fig. 5 is the scanning electron micrograph and the transmission electron micrograph of the composite photocatalyst based on nano titanium dioxide and polyphosphazene that
图6是实施例2制得的基于纳米二氧化钛和聚膦腈的复合光催化剂的扫描电镜照片和透射电镜照片;Fig. 6 is the scanning electron micrograph and the transmission electron micrograph of the composite photocatalyst based on nano titanium dioxide and polyphosphazene that
图7是实施例3制得的基于纳米二氧化钛和聚膦腈的复合光催化剂的扫描电镜照片和透射电镜照片。7 is a scanning electron micrograph and a transmission electron micrograph of the composite photocatalyst based on nano-titanium dioxide and polyphosphazene prepared in Example 3.
具体实施方式 Detailed ways
下面对本发明的实施例作详细说明,本实施例在以本发明技术方案为前提下进行实施,给出了详细的实施方式和具体的操作过程,但本发明的保护范围不限于下述的实施例。The embodiments of the present invention are described in detail below. This embodiment is implemented on the premise of the technical solution of the present invention, and detailed implementation methods and specific operating procedures are provided, but the protection scope of the present invention is not limited to the following implementation example.
如图1所示,为以下实施例制备得到的聚膦腈包覆层的合成路线和化学结构,图中:六氯环三膦腈和双酚S在三乙胺作缚酸剂的条件下,在纳米二氧化钛颗粒表面原位发生缩聚反应,产生的氯化氢被三乙胺吸收形成三乙胺盐酸盐。As shown in Figure 1, it is the synthetic route and the chemical structure of the polyphosphazene coating layer prepared by the following examples, in the figure: hexachlorocyclotriphosphazene and bisphenol S are under the condition that triethylamine is used as an acid-binding agent , polycondensation reaction occurs in situ on the surface of nano-titanium dioxide particles, and the generated hydrogen chloride is absorbed by triethylamine to form triethylamine hydrochloride.
如图2所示,为以下实施例制备得到的基于纳米二氧化钛和聚膦腈的复合光催化剂的机理说明,其中:缩聚反应的起始阶段,在超声波作用下聚膦腈以初级纳米粒子的形式存在。因为初级纳米粒子具有高的表面能,它们很容易地粘附在纳米二氧化钛颗粒的表面。然后随着缩聚反应的进行,粘附在纳米二氧化钛颗粒表面的聚膦腈发生交联,从而形成具有高度交联结构的包覆层。换句话说,在形成纳米二氧化钛/聚膦腈核壳结构的过程中,纳米二氧化钛起到了“原位模板”的作用。As shown in Figure 2, it is the mechanism illustration based on the composite photocatalyst of nano-titanium dioxide and polyphosphazene prepared by the following examples, wherein: in the initial stage of polycondensation reaction, polyphosphazene is in the form of primary nanoparticles under the action of ultrasonic waves exist. Because primary nanoparticles have high surface energy, they easily adhere to the surface of nano-TiO2 particles. Then, as the polycondensation reaction proceeds, the polyphosphazene adhered to the surface of the nano-titanium dioxide particles is cross-linked, thereby forming a coating layer with a highly cross-linked structure. In other words, in the process of forming nano-TiO2/polyphosphazene core-shell structure, nano-TiO2 played the role of "in situ template".
实施例1Example 1
在100mL圆底烧瓶中,将0.02g六氯环三膦腈、0.0432g双酚S和0.05g德固赛P25纳米二氧化钛分散在60mL四氢呋喃和无水乙醇的混合溶剂中(体积比为1∶1),超声处理30分钟使其分散均匀。然后向上述分散液中加入2mL三乙胺,在40℃、100W的超声波水浴中反应5小时。反应结束后,对目标产物进行离心分离,离心机转速3500转/分钟,分离15分钟后去除溶剂。分别用丙酮和去离子水洗涤产物3次,然后在80℃的烘箱中干燥10小时后得到白色粉末状的基于纳米二氧化钛和聚膦腈的复合光催化剂。In a 100mL round bottom flask, disperse 0.02g of hexachlorocyclotriphosphazene, 0.0432g of bisphenol S and 0.05g of Degussa P25 nano-titanium dioxide in a mixed solvent of 60mL of tetrahydrofuran and absolute ethanol (volume ratio of 1:1 ), ultrasonic treatment for 30 minutes to make the dispersion uniform. Then, 2 mL of triethylamine was added to the above dispersion liquid, and reacted in a 40° C., 100 W ultrasonic water bath for 5 hours. After the reaction, the target product was centrifuged at a speed of 3500 rpm, and the solvent was removed after 15 minutes of separation. The product was washed three times with acetone and deionized water respectively, and then dried in an oven at 80°C for 10 hours to obtain a white powder composite photocatalyst based on nano-titanium dioxide and polyphosphazene.
本实施例的实施效果:图3为制备的基于纳米二氧化钛和聚膦腈的复合光催化剂的傅立叶变换红外光谱图。由图可知,位于3200~3600cm-1(a)和1630cm-1(b)的吸收峰分别归属于纳米二氧化钛表面羟基的伸缩振动和弯曲振动。400~800cm-1(c)的宽峰归属于Ti-O键的弯曲振动。很显然,所制备的基于纳米二氧化钛和聚膦腈的复合光催化剂的谱图不仅包含聚膦腈的所有特征峰(C=C(Ph):1591cm-1(e)和1490cm-1(f);O=S=O:1294cm-1(g)和1154cm-1(i);P=N:1187cm-1(h);P-N:880cm-1(k);P-O-(Ph):941cm-1(j)),而且还包含纳米二氧化钛的特征峰(Ti-O:400~800cm-1(l)),说明产物是纳米二氧化钛和聚膦腈的复合物。Implementation effect of this embodiment: FIG. 3 is a Fourier transform infrared spectrogram of the prepared composite photocatalyst based on nano-titanium dioxide and polyphosphazene. It can be seen from the figure that the absorption peaks at 3200~3600cm -1 (a) and 1630cm -1 (b) are respectively attributed to the stretching vibration and bending vibration of the hydroxyl groups on the surface of nano-TiO2. The broad peak at 400 to 800 cm -1 (c) is attributed to the bending vibration of the Ti-O bond. Obviously, the spectrogram of the composite photocatalyst based on nano-titanium dioxide and polyphosphazene not only contains all the characteristic peaks of polyphosphazene (C=C(Ph): 1591cm -1 (e) and 1490cm -1 (f) ; O=S=O: 1294cm -1 (g) and 1154cm -1 (i); P=N: 1187cm -1 (h); PN: 880cm -1 (k); PO-(Ph): 941cm -1 (j)), and also contains the characteristic peak of nano-titanium dioxide (Ti-O: 400-800cm -1 (l)), indicating that the product is a composite of nano-titanium dioxide and polyphosphazene.
如图4所示,为制备的基于纳米二氧化钛和聚膦腈的复合光催化剂的X射线衍射谱图,其中:P25纳米二氧化钛包含两种晶形:锐钛矿和金红石。所制备的基于纳米二氧化钛和聚膦腈的复合光催化剂的谱图不仅包含纳米二氧化钛的所有衍射峰,同样也包含聚膦腈的特征峰(14.5°,宽的无定形峰,如星号所指示),说明产物是纳米二氧化钛和聚膦腈的复合物,且复合后纳米二氧化钛的晶形没有任何变化。As shown in Figure 4, it is the X-ray diffraction spectrum of the prepared composite photocatalyst based on nano-titanium dioxide and polyphosphazene, wherein: P25 nano-titanium dioxide contains two crystal forms: anatase and rutile. The spectrogram of the prepared composite photocatalyst based on nano-titanium dioxide and polyphosphazene not only contains all the diffraction peaks of nano-titanium dioxide, but also contains the characteristic peaks of polyphosphazene (14.5 °, broad amorphous peak, as indicated by the asterisk ), indicating that the product is a composite of nano-titanium dioxide and polyphosphazene, and there is no change in the crystal form of nano-titanium dioxide after the composite.
如图5所示,为制备的基于纳米二氧化钛和聚膦腈的复合光催化剂的扫描电镜照片和透射电镜照片,产物具有核壳结构,以纳米二氧化钛为核,聚膦腈为壳,且聚膦腈包覆层厚度均一,为3~5nm左右。表明本实施例成功制备了基于纳米二氧化钛和聚膦腈的复合光催化剂。As shown in Figure 5, it is a scanning electron micrograph and a transmission electron micrograph of the composite photocatalyst based on nano-titanium dioxide and polyphosphazene prepared. The product has a core-shell structure, with nano-titanium dioxide as the core, polyphosphazene as the shell, and polyphosphine The thickness of the nitrile coating layer is uniform, about 3-5 nm. It shows that this example successfully prepared the composite photocatalyst based on nano titanium dioxide and polyphosphazene.
本实施例所制备的基于纳米二氧化钛和聚膦腈的复合光催化剂的BET比表面积达65.6m2g-1,高于包覆改性前的P25纳米二氧化钛(46.5m2g-1),说明其具有多孔结构。以亚甲基蓝为模板有机污染物,在紫外光条件下进行光催化降解实验,结果表明:所制备的基于纳米二氧化钛和聚膦腈的复合光催化剂对目标有机物有优异的吸附能力,吸附量是未改性的P25纳米二氧化钛的19倍,且光催化活性相比未改性的P25纳米二氧化钛提高了20.1%。同时,所制备的基于纳米二氧化钛和聚膦腈的复合光催化剂还具有良好的稳定性,可以循环使用。The BET specific surface area of the composite photocatalyst based on nano-titanium dioxide and polyphosphazene prepared in this example is 65.6m 2 g -1 , which is higher than that of P25 nano-titanium dioxide (46.5m 2 g -1 ) before coating modification, indicating that It has a porous structure. Using methylene blue as a template organic pollutant, the photocatalytic degradation experiment was carried out under ultraviolet light conditions. The results showed that the prepared composite photocatalyst based on nano-titanium dioxide and polyphosphazene had excellent adsorption capacity for target organic compounds, and the adsorption capacity was unchanged. 19 times that of P25 nano-titanium dioxide, and the photocatalytic activity is 20.1% higher than that of unmodified P25 nano-titanium dioxide. At the same time, the prepared composite photocatalyst based on nano titanium dioxide and polyphosphazene also has good stability and can be recycled.
实施例2Example 2
在100mL圆底烧瓶中,将0.02g六氯环三膦腈、0.0432g双酚S和0.03g德固赛P25纳米二氧化钛分散在60mL四氢呋喃和无水乙醇的混合溶剂中(体积比为1∶1),超声处理30分钟使其分散均匀。然后向上述分散液中加入2mL三乙胺,在40℃、100W的超声波水浴中反应5小时。反应结束后,对目标产物进行离心分离,离心机转速3500转/分钟,分离15分钟后去除溶剂。分别用丙酮和去离子水洗涤产物3次,然后在80℃的烘箱中干燥10小时后得到白色粉末状的基于纳米二氧化钛和聚膦腈的复合光催化剂。In a 100mL round bottom flask, disperse 0.02g of hexachlorocyclotriphosphazene, 0.0432g of bisphenol S and 0.03g of Degussa P25 nano-titanium dioxide in a mixed solvent of 60mL of tetrahydrofuran and absolute ethanol (volume ratio of 1:1 ), ultrasonic treatment for 30 minutes to make the dispersion uniform. Then, 2 mL of triethylamine was added to the above dispersion liquid, and reacted in a 40° C., 100 W ultrasonic water bath for 5 hours. After the reaction, the target product was centrifuged at a speed of 3500 rpm, and the solvent was removed after 15 minutes of separation. The product was washed three times with acetone and deionized water respectively, and then dried in an oven at 80°C for 10 hours to obtain a white powder composite photocatalyst based on nano-titanium dioxide and polyphosphazene.
如图6所示,为制备的基于纳米二氧化钛和聚膦腈的复合光催化剂的扫描电镜照片和透射电镜照片。As shown in FIG. 6 , it is a scanning electron micrograph and a transmission electron micrograph of the prepared composite photocatalyst based on nano-titanium dioxide and polyphosphazene.
实施例3Example 3
在100mL圆底烧瓶中,将0.02g六氯环三膦腈、0.0432g双酚S和0.09g德固赛P25纳米二氧化钛分散在60mL四氢呋喃和无水乙醇的混合溶剂中(体积比为1∶1),超声处理30分钟使其分散均匀。然后向上述分散液中加入2mL三乙胺,在40℃、100W的超声波水浴中反应5小时。反应结束后,对目标产物进行离心分离,离心机转速3500转/分钟,分离15分钟后去除溶剂。分别用丙酮和去离子水洗涤产物3次,然后在80℃的烘箱中干燥10小时后得到白色粉末状的基于纳米二氧化钛和聚膦腈的复合光催化剂。In a 100mL round bottom flask, disperse 0.02g of hexachlorocyclotriphosphazene, 0.0432g of bisphenol S and 0.09g of Degussa P25 nano-titanium dioxide in a mixed solvent of 60mL of tetrahydrofuran and absolute ethanol (volume ratio of 1:1 ), ultrasonic treatment for 30 minutes to make the dispersion uniform. Then, 2 mL of triethylamine was added to the above dispersion, and reacted in a 40°C, 100W ultrasonic water bath for 5 hours. After the reaction, the target product was centrifuged at a speed of 3500 rpm, and the solvent was removed after separation for 15 minutes. The product was washed three times with acetone and deionized water respectively, and then dried in an oven at 80°C for 10 hours to obtain a white powder composite photocatalyst based on nano-titanium dioxide and polyphosphazene.
如图7所示,为制备的基于纳米二氧化钛和聚膦腈的复合光催化剂的扫描电镜照片和透射电镜照片。As shown in FIG. 7 , it is a scanning electron micrograph and a transmission electron micrograph of the prepared composite photocatalyst based on nano-titanium dioxide and polyphosphazene.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2010102450442A CN101890370B (en) | 2010-08-05 | 2010-08-05 | Nano-titanium dioxide and polyphosphazene based composite optical catalyst and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2010102450442A CN101890370B (en) | 2010-08-05 | 2010-08-05 | Nano-titanium dioxide and polyphosphazene based composite optical catalyst and preparation method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101890370A CN101890370A (en) | 2010-11-24 |
CN101890370B true CN101890370B (en) | 2012-05-30 |
Family
ID=43099810
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2010102450442A Expired - Fee Related CN101890370B (en) | 2010-08-05 | 2010-08-05 | Nano-titanium dioxide and polyphosphazene based composite optical catalyst and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101890370B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105772104B (en) * | 2016-04-21 | 2018-11-13 | 江苏朗逸环保科技有限公司 | A kind of composite photo-catalyst and preparation method thereof based on nano-titanium dioxide and cyclization polyacrylonitrile |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1075810C (en) * | 1995-05-18 | 2001-12-05 | 巴斯福股份公司 | Titanium dioxide-catalysed cyclisation in the liquid phase of 6 -amino caproic acid nitrile to caprolactam |
CN1401696A (en) * | 2002-09-24 | 2003-03-12 | 吉林大学 | Flexible, flame-retardant, waterproof and corrosion-resistant polymer shape memory material |
CN1646602A (en) * | 2002-04-18 | 2005-07-27 | 巴斯福股份公司 | Method for producing polyamides |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2164624A4 (en) * | 2007-05-31 | 2011-11-30 | Carrier Corp | Deactivation resistant photocatalyst and method of preparation |
-
2010
- 2010-08-05 CN CN2010102450442A patent/CN101890370B/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1075810C (en) * | 1995-05-18 | 2001-12-05 | 巴斯福股份公司 | Titanium dioxide-catalysed cyclisation in the liquid phase of 6 -amino caproic acid nitrile to caprolactam |
CN1646602A (en) * | 2002-04-18 | 2005-07-27 | 巴斯福股份公司 | Method for producing polyamides |
CN1401696A (en) * | 2002-09-24 | 2003-03-12 | 吉林大学 | Flexible, flame-retardant, waterproof and corrosion-resistant polymer shape memory material |
Also Published As
Publication number | Publication date |
---|---|
CN101890370A (en) | 2010-11-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Shi et al. | TiO2/activated carbon fibers photocatalyst: Effects of coating procedures on the microstructure, adhesion property, and photocatalytic ability | |
CN103785371B (en) | A kind of porous carbon microsphere@TiO2 composite material and its preparation method and application | |
CN104226290A (en) | A kind of TiO2/RGO airgel and its preparation method and application | |
CN103977780B (en) | Two one-step hydrothermals prepare mesoporous carbon-loaded TiO 2the method of catalysis material | |
CN108514887B (en) | Hollow nanoparticle titanium dioxide/black phosphorus alkene photo-thermal catalyst and preparation method and application thereof | |
CN103611531A (en) | Preparation method and application of silver oxide/titanium dioxide composite nanofiber photocatalyst | |
CN104277219B (en) | Photocatalytic material polyimide, as well as preparation method and applications thereof | |
CN113058659A (en) | A kind of preparation method and application of nano-TiO2/UiO-66 composite material | |
CN104801328A (en) | A method for preparing TiO2/g-C3N4 composite photocatalyst at low temperature | |
CN103041796A (en) | TiO2 photocatalyst and preparation method thereof | |
CN110327988A (en) | A kind of preparation and application of PCN-222 (Cu)/titanic oxide nano compound material | |
CN106238027A (en) | Preparation method of nanometer TiO2 capillary column | |
Wang et al. | Enhanced optical absorption and pollutant adsorption for photocatalytic performance of three-dimensional porous cellulose aerogel with BiVO4 and PANI | |
CN101745430B (en) | Cellulose composite material with photocatalysis activity and preparation method and application thereof | |
CN102962043A (en) | Preparation method of TiO2 loaded on viscose-based activated carbon fiber cloth photocatalytic material modified by nitric acid | |
CN107051570A (en) | One kind prepares large-area ultrathin g C3N4Method prepared by catalysis material | |
CN106475083A (en) | The preparation method of graphene oxide/optically catalytic TiO 2 composite material precursor | |
CN102962103A (en) | Preparation and Application of Conductive Polymer Polypyrrole Modified TiO2 | |
CN101890370B (en) | Nano-titanium dioxide and polyphosphazene based composite optical catalyst and preparation method thereof | |
CN106964330B (en) | Activated carbon fiber film loads TiO2The preparation method of/ZnO photocatalyst | |
CN103521205A (en) | A method for preparing high photocatalytic activity core-shell structure TiO2 material | |
CN103285844B (en) | A method for synthesizing mesoporous TiO2 photocatalyst with lignin as template | |
CN114272917A (en) | Piezoelectric photocatalyst and preparation method and application thereof | |
CN106824160B (en) | The preparation method of activated carbon fiber film loading ZnO photochemical catalyst | |
CN103157498B (en) | Synthesis Method of Phosphoric Acid Bridging Composite TiO2-BiVO4 Nano Photocatalyst |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20120530 Termination date: 20140805 |
|
EXPY | Termination of patent right or utility model |