[go: up one dir, main page]

CN101889350B - 对能够收集光的元件的改进 - Google Patents

对能够收集光的元件的改进 Download PDF

Info

Publication number
CN101889350B
CN101889350B CN2008801197005A CN200880119700A CN101889350B CN 101889350 B CN101889350 B CN 101889350B CN 2008801197005 A CN2008801197005 A CN 2008801197005A CN 200880119700 A CN200880119700 A CN 200880119700A CN 101889350 B CN101889350 B CN 101889350B
Authority
CN
China
Prior art keywords
electrode
substrate
layer
layers
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN2008801197005A
Other languages
English (en)
Other versions
CN101889350A (zh
Inventor
S·奥夫雷
D·杜普伊
N·詹克
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saint Gobain Glass France SAS
Compagnie de Saint Gobain SA
Original Assignee
Saint Gobain Glass France SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=39560924&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=CN101889350(B) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Saint Gobain Glass France SAS filed Critical Saint Gobain Glass France SAS
Publication of CN101889350A publication Critical patent/CN101889350A/zh
Application granted granted Critical
Publication of CN101889350B publication Critical patent/CN101889350B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F77/00Constructional details of devices covered by this subclass
    • H10F77/20Electrodes
    • H10F77/206Electrodes for devices having potential barriers
    • H10F77/211Electrodes for devices having potential barriers for photovoltaic cells
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F10/00Individual photovoltaic cells, e.g. solar cells
    • H10F10/10Individual photovoltaic cells, e.g. solar cells having potential barriers
    • H10F10/16Photovoltaic cells having only PN heterojunction potential barriers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Photovoltaic Devices (AREA)
  • Luminescent Compositions (AREA)
  • Surface Treatment Of Glass (AREA)
  • Laminated Bodies (AREA)
  • Hybrid Cells (AREA)

Abstract

具有玻璃功能的衬底,包括一个用来与基于吸收材料的层相连接的主面,其特征在于,其在主面表面的至少一部分上包括至少一个在从紫外到近红外线波长区内反射的电极,所述电极由n(n≥2)个层堆叠形成,这些层在它们之间界定了界面区域。

Description

对能够收集光的元件的改进
本发明涉及对能够收集光的元件,或者更一般地说,对诸如基于半导体材料的太阳能电池的所有电子装置的改进。
已知的是,具有薄层的光伏打太阳能电池类型的能够收集光的元件包括吸收剂层、至少一个安排在光的入射侧的基于导电材料的电极;和基于也是导电材料的后电极,这个后电极可以相对较厚而且不透明。其特征基本上应该是表面电阻尽可能低,而且对吸收层以及必要时对衬底的良好的粘合力。
该黄铜矿三元化合物可以起吸收剂作用,一般包含铜、铟和硒。这里它指的是人们称为吸收剂CISe2层。同样可以向吸收剂层添加镓(例如:Cu(In,Ga)Se2或CuGaSe2)、铝(例如:Cu(In,Al)Se2)或硫(例如:CuIn(Se,S)。它们在下文中一般地用术语黄铜矿吸收剂层(couches d’agent absorbant àchalcophrite)表示。
在这种黄铜矿吸收剂系统(filière)的范围内,后电极多基于导电材料,例如,钼等制造。
不过,这种系统的高性能只能通过严格控制吸收剂层的晶体生长及其化学组成才能达到。
另外,人们知道,在对其有帮助的所有因素中间,钠(Na)在Mo层上的存在是一个有利于黄铜矿吸收剂结晶的关键参数。它以控制数量的存在能降低吸收剂缺陷的密度并增大其电导性。
含碱金属的具有玻璃功能的衬底,一般基于硅纳钙玻璃,自然地构成钠的储存器。在一般在高温下实施的吸收剂层制造方法的作用下,碱金属将从基于钼的后电极朝向该吸收剂层(特别是黄铜矿类型吸收剂层)迁移通过衬底。在热退火的作用下钼层可以钠从衬底自由地向活性上层扩散。该Mo层仍然有只可以进行部分和不太精确地控制Na向Mo/CIGSe2界面迁移的数量的缺点。
按照一个实施方案,吸收剂层在高温下沉积在基于钼的层上,该钼层借助于基于硅的氮化物、氧化物或氧氮化物,或铝的氧化物或氧氮化物,或钛或锆的氮化物的阻挡层与衬底隔离。这个阻挡层可以阻止在衬底内部的扩散产生的钠向沉积在Mo上的活性上层扩散。
尽管在制造方法上增加了附加步骤,但这个后面的解决方案提供了通过求助于外源(例如:NaF、Na2O2、Na2Se)非常准确地对沉积在Mo层上的Na的数量进行定量的可能性。
薄层形式的其他种类的吸收剂,可以用于能够收集光的元件中。人们尤其知道基于硅的那些,后者可以是无定形的或者微晶的,甚至是结晶的,或者是基于镉化碲(CdTe)的那些。
还存在另一种类的具有50μm至250μm厚度的厚层形式的基于单晶硅或多晶硅片的吸收剂。
不论是哪一类吸收剂,总是发现,当覆盖最大部分太阳光谱,就是说,从紫外通过可见波长区直至近红外的光能量被吸收剂吸收以转变为电能时,能量转化效率就越高。从这个发现出发,光伏打电池的制造商力求在电池中捕集最大量的光辐射,包括最少使没有被吸收辐射反射,就是说使其反射向吸收剂。
在这个寻求最优化能量转化中,本发明人令人惊讶和出乎意料地发现与该吸收剂层接触的电极结构起至关重要的作用。
因而,本发明的目标在于通过提供一种使朝向吸收剂的入射光达到最大化的改进的电极以克服这些缺点。
为此,包括用来与基于吸收材料的层相连接的主面的具有玻璃功能的衬底,其特征在于,其在主面表面的至少一部分上包括至少一个导电的并在从紫外延伸至近红外的波长区内反射的电极,所述电极由n(n≥2)个层的堆叠形成,这些层在它们之间界定了界面区域。
由于在形成电极的所述层之间存在界面区域,这在每个界面上形成折射率的突变,这改善入射光向吸收剂的反射。
在本发明一些优选的实施方式中,任选地还可以求助于下列布置的一种和/或另一种:
●电极基于选自银、钼、铜、铝、镍、铬、镍-铬、钽的导电材料,或者基于选自钼、钛、铌、锆、钽的导电材料的氮化物。
●该电极基于钼,厚度最多500nm,特别是最多400nm或者最多300nm或最多200nm。
●电极包括1-16个层,优选4至12个层,更优选约8个层,
●形成电极的每层包括相同的材料,
●形成电极的每层都具有基本上相同的厚度,
●形成电极的层由不同的材料形成,
●它在主面表面的至少一部分上包括至少一个对碱金属的阻挡层,其中电极被沉积在所述阻挡层上,
●该阻挡层基于介电材料,
●介电材料基于硅的氮化物、氧化物或氧氮化物,或者铝的氮化物、氧化物或氧氮化物,或者钛或锆的氮化物,它们单独或混合使用,
●阻挡层的厚度在3-200nm之间,最好在20-150nm之间,基本上约为130nm,
●该阻挡层基于硅的氮化物。
●基于硅的氮化物的层是低于化学计量的,
●基于硅氮化物的层是高于化学计量的。
按照本发明的另一方面,其目标还在于一种使用至少一个诸如先前描述的衬底的能够收集光的元件。
在本发明一些优选的实施方式中,任选地还可以求助于下列布置中的一种或另一种:
●能够收集光的元件,包括支撑体功能的第一衬底和具有玻璃功能的第二衬底,所述衬底在两个形成这些电极的导电层之间夹入至少一个基于吸收剂材料的可以使光能量转化为电能的功能层,其特征在于,至少一个电极在从紫外延伸至近红外的波长区内是反射的,所述电极由n(其中n≥2)个层的堆叠形成,所述层之间界定了界面区域。
阅读以下作为举例说明性而绝非限制性的描述,参照附图所作的描述,将会更好地看出本发明的其他特征、细节、优点。附图中:
●图1是按照本发明的能够收集光的元件的示意图;
●图2是显示对于恒定的层厚,反射率随组成电极的层数而变化的曲线图,说明
●图3是显示在恒定的层数下反射率随组成电极的层数而变化的曲线图。
图1表示能够收集光的元件(太阳能电池或光伏打电池)。
透明的具有玻璃功能的衬底1,例如可以整个用含碱金属的玻璃,诸如硅钠钙玻璃制成。它同样可以是一种热塑性聚合物,诸如聚氨基甲酸酯或聚碳酸酯或聚甲基丙烯酸甲酯。
具有玻璃功能的衬底的绝大部分质量(就是说至少98%的质量),甚至全部是由呈现尽可能高的透明度的并优选地在对应用(太阳能模块)有用的光谱部分(一般从紫外(约280nm)到近红外(基本上约1200nm)的光谱)中具有小于0.01mm-1单位长度吸收的材料构成。
按照本发明的衬底1用作各种黄铜矿工艺(CIS,CIGS,CIGSe2等)的光伏打电池保护板时,或作为用来接纳整个功能堆叠的支撑体衬底1’时,它可以具有0.5至10mm的总厚度。当衬底1用作保护板时,它是玻璃制成时,有利地使这个板经过热处理(例如,淬火类型热处理)。
传统上,人们把朝向光线的衬底前面(它是外面)定义为A面,朝向太阳能模块的其余层的衬底后面(它是内面)定义为B面。
衬底1′的B面以应该用作电极的第一导电层2覆盖。在这个电极2上沉积基于黄铜矿吸收剂的功能层3。当它是,例如,基于CIS,CIGS或CIGSe2的功能层3时,功能层3和电极2之间的界面优选基于钼。符合这些要求的导电层在欧洲专利申请EP1356528中有所描述。
按照本发明一个有利的特征,钼电极事实上是由n(n≥2)个层的堆叠构成,这些层或者由相同的材料构成,或者由不同的材料构成。
正如人们在图2的曲线图上可以看到的,它显示在整个光谱上反射率随着组成基于钼的电极的层数的变化。对于相同厚度的钼,人们观察到,堆叠中层数越多,反射率越高。
人们还观察到,反射率的提高(所追求的效果)与组成电极的层数成正比,但会导致电阻的增大(不希望的效果)。
同样,由图3(其显示在整个光谱上反射率随着下层厚度的变化)可以看到,优选具有优选薄的下层厚度的电极以使反射率最大,但稀释了电阻。
把图2和3的2个曲线图结合起来,人们观察到,对于n等于8(对于为400nm的钼层总厚度)层的堆叠可以找到一个折衷。
基于钼的电极变得更反射,与层数较少的传统电极相比多余的反射光子有助于提高电池的效率。同样可能减少吸收层的厚度,同时仍保留类似的效率。
黄铜矿吸收剂层3被硫化镉(CdS)薄层4覆盖,该薄层4可以与该黄铜矿3层建立一个pn结。事实上,黄铜矿剂一般进行p掺杂,该CdS层4进行n掺杂,这可以建立电流形成所需要的pn结。
该CdS薄层4是本身被一个粘合剂层5覆盖,后者一般由所谓本征(intrinsèque)氧化锌(ZnO:i)形成。
为了形成该第二电极,ZnO:i层5被TCO(“透明导电氧化物”)层6覆盖。它可以在下列材料中间选定:掺杂氧化锡,特别是用氟或锑掺杂(在通过CVD沉积的情况下可用的前体可以是与氢氟酸或三氟醋酸类型氟前体结合的锡的有机金属或卤化物),掺杂的氧化锌,特别是用铝或硼掺杂的氧化锌(用CVD沉积的情况下,可用的前体可以是锌和铝的有机金属或卤化物);或者还有掺杂氧化铟,特别是用锡掺杂的氧化铟(在CVD沉积的情况下可用的前体可以是锡和铟的有机金属或卤化物)。该导电层同样应该是尽可能透明的,并在对应于构成该功能层的材料的吸收光谱的整个波长上具有高光透射率,以便不白白地降低太阳能模块的效率。
人们已经发现,在功能层3和n掺杂的导电层(例如,CdS导电层)之间的相对较薄的介电ZnO(ZnO:i)层5(例如,100nm),正面地影响该功能层沉积过程的稳定性。
该导电层6具有最多30欧姆/平方(ohms/carré)的方电阻(résistance par carré),特别是最多20欧姆/平方,优选最多10或15欧姆/平方。它一般在5至12欧姆/平方之间。
薄层堆叠7通过薄层中间层8(例如,PU,PVB或EVA制成)被夹入在两个衬底1和1′之间。衬底1′与衬底1的区别在于它是由基于碱金属的玻璃,诸如硅钠钙玻璃或低钠含量的玻璃制成,以便符合太阳能电池或光伏打电池,接着周边用密封圈或密封性树脂进行包封。这种树脂的组成及其实施形态的实施例在申请书EP739042中得到描述。
按照本发明的一个特征,考虑在衬底1′面的全部或部分上,并在沉积电极2,特别是基于钼的电极之前,沉积碱金属阻挡层9。该碱金属阻挡层9基于介电材料,该介电材料基于硅的氮化物、氧化物或氧氮化物,或铝的氮化物、氧化物或氧氮化物,或钛或锆的氮化物,它们单独或混合使用。该阻挡层的厚度是在3至200nm之间,优选在20至150m之间和基本上约为130nm,
在这种情况下,玻璃的Na含量由于该阻挡的存在只具有非常小的影响。由于经济原因优选使用纳钙类型的玻璃,但是同样可以使用低Na含量的玻璃或硼硅酸盐类型的玻璃。
该碱金属阻挡层,例如,基于硅的氮化物,可以不是化学计量的。它可以是低于化学计量的,甚至优选高于化学计量的。例如,该层是SixNy,其中x/y之比至少为0.76,优选0.80至0.90,因为已经显示,当SixNy是富Si时,对碱的阻挡作用是更有效的。
化学计量的调整,例如,可以在通过金属靶的反应性磁控管阴极溅射来沉积所述层时,通过改变溅射室中氮的压力来获得。
该阻挡层9在沉积基于钼的堆叠之前,通过向下溅射或向上溅射类型的磁控管溅射进行沉积。该实现方法的一个示例,例如,在专利EP 1 179 516中给出。该阻挡层同样可以通过CVD方法,诸如PE-CVD(等离子体增强化学蒸气沉积)方法沉积。
在所有这些可能的组合中间,最简单的解决方案是一步法,全部层在同一涂布器(“coater”)(磁控管溅射装置)中沉积。
如先前所描述的太阳能模块应该能够运行并向配电网提供电压,一方面,配备电连接装置,而另一方面配备保证其相对于光辐射的取向的支持装置和固定装置。

Claims (21)

1.具有玻璃功能的衬底(1′),其主面以用作电极的电极(2)覆盖,在所述电极(2)上沉积基于黄铜矿吸收剂的功能层(3),其特征在于,所述电极(2)在从紫外延伸至近红外的波长区内反射,所述电极(2)由n个层的堆叠形成,其中n≥2,这些层在它们之间界定了界面区域,电极(2)包括2至16个层,其中电极(2)基于钼的导电材料,或者基于钼的导电材料的氮化物,和电极(2)厚度为最多500nm。
2.按照上列权利要求1的衬底(1′),其特征在于,形成电极(2)的每一层都包含相同的材料。
3.按照权利要求1至2中任何一项的衬底(1′),其特征在于,形成电极(2)的层中的每一层都具有基本上相同的厚度。
4.按照权利要求1至2中任何一项的衬底(1′),其特征在于,形成电极(2)的这些层是由不同的材料形成的。
5.按照上列权利要求1至2中任何一项的衬底(1′),其特征在于,它在主面表面的至少一部分上包括至少一个碱金属阻挡层,电极(2)沉积在所述阻挡层上。
6.按照前一权利要求的衬底(1′),其特征在于,该阻挡层基于介电材料。
7.按照前一权利要求的衬底(1′),其特征在于,介电材料基于硅的氮化物、氧化物或氧氮化物,或者铝的氮化物、氧化物或氧氮化物,或钛或锆的氮化物,它们单独或混合使用。
8.按照权利要求5的衬底(1′),其特征在于,该阻挡层的厚度在3至200nm之间。
9.按照权利要求5的衬底(1′),其特征在于,该阻挡层基于硅的氮化物。
10.按照权利要求9的衬底(1′),其特征在于,该基于硅的氮化物的层是SixNy时,其中x/y之比至少为0.76。
11.按照权利要求9的衬底(1′),其特征在于,该基于硅的氮化物的层是SixNy时,x/y之比为0.80至0.90。
12.按照权利要求1的衬底(1′),其中所述电极(2)包括4至12个层。
13.按照权利要求1的衬底(1′),其中电极(2)包括约8个层。
14.按照权利要求1的衬底(1′),其中电极(2)基于钼,其厚度为最多400nm。
15.按照权利要求1的衬底(1′),其中电极(2)基于钼,其厚度为最多300nm。
16.按照权利要求1的衬底(1′),其中电极(2)基于钼,其厚度为最多200nm。
17.按照权利要求8的衬底(1′),其中该阻挡层的厚度在20至150nm之间。
18.按照权利要求8的衬底(1′),其中该阻挡层的厚度约为130nm。
19.利用至少一种按照上列权利要求中任何一项的衬底(1′)的能够收集光的元件。
20.能够收集光的元件,其包括具有支撑体功能的第一衬底(1′)和具有玻璃功能的第二衬底(1),具有支撑体功能的第一衬底(1′)的主面以用作电极的电极(2)覆盖,在所述电极(2)上沉积基于黄铜矿吸收剂的功能层(3),电极(2)在从紫外延伸至近红外的波长区内是反射性的,所述电极由n个层的堆叠形成,其中n≥2,在这些层在它们之间界定了界面区域,电极(2)包括2至16个层,其中电极(2)基于钼的导电材料,或者基于钼的导电材料的氮化物,和电极(2)厚度为最多500nm。
21.按照权利要求5至18中任何一项的衬底的制造方法,其特征在于,阻挡层和电极(2)是借助于磁控管溅射方法进行沉积的。
CN2008801197005A 2007-12-07 2008-12-02 对能够收集光的元件的改进 Active CN101889350B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR0759632 2007-12-07
FR0759632A FR2924863B1 (fr) 2007-12-07 2007-12-07 Perfectionnements apportes a des elements capables de collecter de la lumiere.
PCT/FR2008/052187 WO2009080931A1 (fr) 2007-12-07 2008-12-02 Perfectionnements apportes a des elements capables de collecter de la lumiere

Publications (2)

Publication Number Publication Date
CN101889350A CN101889350A (zh) 2010-11-17
CN101889350B true CN101889350B (zh) 2013-10-23

Family

ID=39560924

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2008801197005A Active CN101889350B (zh) 2007-12-07 2008-12-02 对能够收集光的元件的改进

Country Status (11)

Country Link
US (1) US20100300512A1 (zh)
EP (1) EP2227829B2 (zh)
JP (2) JP2011507224A (zh)
KR (1) KR101560640B1 (zh)
CN (1) CN101889350B (zh)
AT (1) ATE522933T1 (zh)
ES (1) ES2372131T3 (zh)
FR (1) FR2924863B1 (zh)
PL (1) PL2227829T3 (zh)
PT (1) PT2227829E (zh)
WO (1) WO2009080931A1 (zh)

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009028393A1 (de) * 2009-08-10 2011-02-17 Robert Bosch Gmbh Solarzelle
FR2949494B1 (fr) * 2009-08-25 2015-02-13 Avancis Gmbh & Co Kg Dispositif de fixation et procede de montage de modules solaires
US20110132450A1 (en) * 2009-11-08 2011-06-09 First Solar, Inc. Back Contact Deposition Using Water-Doped Gas Mixtures
US20110247687A1 (en) * 2010-04-08 2011-10-13 Minglong Zhang Thin film solar cell and method for making the same
FR2969389A1 (fr) 2010-12-21 2012-06-22 Saint Gobain Substrat conducteur a base de molybdène
KR20120085577A (ko) * 2011-01-24 2012-08-01 엘지이노텍 주식회사 태양전지 및 그의 제조방법
KR101219948B1 (ko) * 2011-01-27 2013-01-21 엘지이노텍 주식회사 태양광 발전장치 및 제조방법
EP2668034A4 (en) 2011-01-27 2016-07-06 Vitriflex Inc INORGANIC LAYER CONNECTION AND METHOD AND COMPOSITIONS ASSOCIATED THEREWITH
FR2977078B1 (fr) 2011-06-27 2013-06-28 Saint Gobain Substrat conducteur pour cellule photovoltaique
CN103022157A (zh) * 2011-09-20 2013-04-03 吉富新能源科技(上海)有限公司 一种具有透明薄膜太阳能电池的除尘装置
CN103022158A (zh) * 2011-09-28 2013-04-03 吉富新能源科技(上海)有限公司 一种具有薄膜太阳能电池的伸缩门
FR2982422B1 (fr) 2011-11-09 2013-11-15 Saint Gobain Substrat conducteur pour cellule photovoltaique
US9935211B2 (en) 2012-04-25 2018-04-03 Guardian Glass, LLC Back contact structure for photovoltaic devices such as copper-indium-diselenide solar cells
US9159850B2 (en) 2012-04-25 2015-10-13 Guardian Industries Corp. Back contact having selenium blocking layer for photovoltaic devices such as copper—indium-diselenide solar cells
US8809674B2 (en) 2012-04-25 2014-08-19 Guardian Industries Corp. Back electrode configuration for electroplated CIGS photovoltaic devices and methods of making same
US9419151B2 (en) 2012-04-25 2016-08-16 Guardian Industries Corp. High-reflectivity back contact for photovoltaic devices such as copper—indium-diselenide solar cells
US9246025B2 (en) * 2012-04-25 2016-01-26 Guardian Industries Corp. Back contact for photovoltaic devices such as copper-indium-diselenide solar cells
US10546964B2 (en) * 2012-11-15 2020-01-28 Taiwan Semiconductor Manufacturing Co., Ltd. Molybdenum selenide sublayers with controlled thickness in solar cells and methods for forming the same
EP2800144A1 (en) 2013-05-03 2014-11-05 Saint-Gobain Glass France Back contact substrate for a photovoltaic cell or module
EP2800145B1 (en) 2013-05-03 2018-11-21 Saint-Gobain Glass France Back contact substrate for a photovoltaic cell or module
EP2800146A1 (en) 2013-05-03 2014-11-05 Saint-Gobain Glass France Back contact substrate for a photovoltaic cell or module
EP2871681A1 (en) * 2013-11-07 2015-05-13 Saint-Gobain Glass France Back contact substrate for a photovoltaic cell or module
FR3013507B1 (fr) * 2013-11-15 2015-11-20 Saint Gobain Substrat de contact arriere pour cellule photovoltaique
US9739913B2 (en) * 2014-07-11 2017-08-22 Applied Materials, Inc. Extreme ultraviolet capping layer and method of manufacturing and lithography thereof
KR101997661B1 (ko) * 2015-10-27 2019-07-08 주식회사 엘지화학 전도성 구조체, 이를 포함하는 전극 및 디스플레이 장치
DE202015106923U1 (de) 2015-12-18 2016-01-22 Saint-Gobain Glass France Elektronisch leitfähiges Substrat für Photovoltaikzellen
JP7076971B2 (ja) * 2017-09-28 2022-05-30 キヤノン株式会社 撮像装置およびその製造方法ならびに機器
CN111933649B (zh) * 2020-07-22 2024-01-30 中国电子科技集团公司第十三研究所 一种光电探测器及其制作方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0360403A2 (en) * 1988-09-22 1990-03-28 Siemens Solar Industries L.P. Thin film solar cell and method of making
US5981934A (en) * 1996-09-12 1999-11-09 Canon Kabushiki Kaisha Photovoltaic element having a transparent conductive layer with specified fractal dimension and fractal property
US6331672B1 (en) * 1996-03-01 2001-12-18 Canon Kabushiki Kaisha Photovoltaic cell and method for manufacturing the same
US6951689B1 (en) * 1998-01-21 2005-10-04 Canon Kabushiki Kaisha Substrate with transparent conductive layer, and photovoltaic element

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4442824C1 (de) 1994-12-01 1996-01-25 Siemens Ag Solarzelle mit Chalkopyrit-Absorberschicht
JP3527815B2 (ja) * 1996-11-08 2004-05-17 昭和シェル石油株式会社 薄膜太陽電池の透明導電膜の製造方法
JP2001147424A (ja) * 1999-11-19 2001-05-29 Hitachi Ltd 導電性薄膜形成用の絶縁基板およびこの絶縁基板を用いた液晶表示素子
FR2820241B1 (fr) * 2001-01-31 2003-09-19 Saint Gobain Substrat transparent muni d'une electrode
JP2003008039A (ja) * 2001-06-26 2003-01-10 Sharp Corp 化合物太陽電池の製造方法
FR2832706B1 (fr) * 2001-11-28 2004-07-23 Saint Gobain Substrat transparent muni d'une electrode
US6626688B1 (en) * 2002-08-22 2003-09-30 International Business Machines Corporation Mechanism for seating and unseating a module having an electrical connector
US6974976B2 (en) * 2002-09-30 2005-12-13 Miasole Thin-film solar cells
JP4055064B2 (ja) 2002-10-16 2008-03-05 本田技研工業株式会社 薄膜太陽電池の製造方法
JP2006165386A (ja) * 2004-12-09 2006-06-22 Showa Shell Sekiyu Kk Cis系薄膜太陽電池及びその作製方法
US8389852B2 (en) * 2006-02-22 2013-03-05 Guardian Industries Corp. Electrode structure for use in electronic device and method of making same
US7846750B2 (en) * 2007-06-12 2010-12-07 Guardian Industries Corp. Textured rear electrode structure for use in photovoltaic device such as CIGS/CIS solar cell
US8071872B2 (en) * 2007-06-15 2011-12-06 Translucent Inc. Thin film semi-conductor-on-glass solar cell devices
US7888594B2 (en) * 2007-11-20 2011-02-15 Guardian Industries Corp. Photovoltaic device including front electrode having titanium oxide inclusive layer with high refractive index

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0360403A2 (en) * 1988-09-22 1990-03-28 Siemens Solar Industries L.P. Thin film solar cell and method of making
US6331672B1 (en) * 1996-03-01 2001-12-18 Canon Kabushiki Kaisha Photovoltaic cell and method for manufacturing the same
US5981934A (en) * 1996-09-12 1999-11-09 Canon Kabushiki Kaisha Photovoltaic element having a transparent conductive layer with specified fractal dimension and fractal property
US6951689B1 (en) * 1998-01-21 2005-10-04 Canon Kabushiki Kaisha Substrate with transparent conductive layer, and photovoltaic element

Also Published As

Publication number Publication date
ES2372131T3 (es) 2012-01-16
US20100300512A1 (en) 2010-12-02
WO2009080931A1 (fr) 2009-07-02
FR2924863B1 (fr) 2017-06-16
PT2227829E (pt) 2011-12-20
JP2011507224A (ja) 2011-03-03
EP2227829B2 (fr) 2015-12-16
EP2227829B1 (fr) 2011-08-31
CN101889350A (zh) 2010-11-17
KR101560640B1 (ko) 2015-10-16
FR2924863A1 (fr) 2009-06-12
PL2227829T3 (pl) 2012-01-31
KR20100094988A (ko) 2010-08-27
JP2015039020A (ja) 2015-02-26
WO2009080931A8 (fr) 2010-06-03
EP2227829A1 (fr) 2010-09-15
ATE522933T1 (de) 2011-09-15

Similar Documents

Publication Publication Date Title
CN101889350B (zh) 对能够收集光的元件的改进
US8203073B2 (en) Front electrode for use in photovoltaic device and method of making same
US7964788B2 (en) Front electrode for use in photovoltaic device and method of making same
US8076571B2 (en) Front electrode for use in photovoltaic device and method of making same
CN101904013B (zh) 用于获得沉积于高度纹理化基板上的高性能薄膜装置的方法
US20080105298A1 (en) Front electrode for use in photovoltaic device and method of making same
US20080105293A1 (en) Front electrode for use in photovoltaic device and method of making same
US20170263792A1 (en) Solar cells provided with color modulation and method for fabricating the same
US20080308147A1 (en) Rear electrode structure for use in photovoltaic device such as CIGS/CIS photovoltaic device and method of making same
EP2372777A2 (en) Front electrode including transparent conductive coating on patterned glass substrate for use in photovoltaic device and method of making same
US20080178932A1 (en) Front electrode including transparent conductive coating on patterned glass substrate for use in photovoltaic device and method of making same
US20080302414A1 (en) Front electrode for use in photovoltaic device and method of making same
KR20100046040A (ko) 태양전지 전면 기재 및 태양전지 전면용 기재의 용도
JPH09135037A (ja) 光起電力素子
CN102057496B (zh) 对于能收集光元件的改进
WO2008063305A2 (en) Front electrode for use in photovoltaic device and method of making same

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant