CN101862503B - Method for preparing off-plane hollow microneedle array for use in transdermal medicament administration - Google Patents
Method for preparing off-plane hollow microneedle array for use in transdermal medicament administration Download PDFInfo
- Publication number
- CN101862503B CN101862503B CN 201010204631 CN201010204631A CN101862503B CN 101862503 B CN101862503 B CN 101862503B CN 201010204631 CN201010204631 CN 201010204631 CN 201010204631 A CN201010204631 A CN 201010204631A CN 101862503 B CN101862503 B CN 101862503B
- Authority
- CN
- China
- Prior art keywords
- microneedle array
- pattern
- mask
- titanium substrate
- etching
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000000034 method Methods 0.000 title claims abstract description 37
- 239000003814 drug Substances 0.000 title description 7
- 239000000758 substrate Substances 0.000 claims abstract description 44
- 238000004080 punching Methods 0.000 claims abstract description 23
- 238000002360 preparation method Methods 0.000 claims abstract description 8
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 29
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 25
- 239000010936 titanium Substances 0.000 claims description 25
- 229910052719 titanium Inorganic materials 0.000 claims description 25
- 238000005530 etching Methods 0.000 claims description 21
- 229910052759 nickel Inorganic materials 0.000 claims description 14
- 238000001039 wet etching Methods 0.000 claims description 12
- 238000005553 drilling Methods 0.000 claims description 11
- 239000003292 glue Substances 0.000 claims description 8
- 238000000206 photolithography Methods 0.000 claims description 6
- 230000001681 protective effect Effects 0.000 claims description 6
- 238000001312 dry etching Methods 0.000 claims description 5
- 238000005459 micromachining Methods 0.000 claims description 5
- TWFZGCMQGLPBSX-UHFFFAOYSA-N carbendazim Chemical compound C1=CC=C2NC(NC(=O)OC)=NC2=C1 TWFZGCMQGLPBSX-UHFFFAOYSA-N 0.000 claims description 4
- 238000010330 laser marking Methods 0.000 claims description 4
- 238000007650 screen-printing Methods 0.000 claims description 4
- 238000004140 cleaning Methods 0.000 claims 1
- 239000002184 metal Substances 0.000 abstract description 24
- 229910052751 metal Inorganic materials 0.000 abstract description 23
- 238000005516 engineering process Methods 0.000 abstract description 16
- 238000003491 array Methods 0.000 abstract description 11
- 238000003780 insertion Methods 0.000 abstract description 5
- 230000037431 insertion Effects 0.000 abstract description 5
- 238000013271 transdermal drug delivery Methods 0.000 abstract description 5
- 229920002120 photoresistant polymer Polymers 0.000 description 10
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 8
- 229910052710 silicon Inorganic materials 0.000 description 8
- 239000010703 silicon Substances 0.000 description 8
- 239000000243 solution Substances 0.000 description 7
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 6
- 229940079593 drug Drugs 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 238000000708 deep reactive-ion etching Methods 0.000 description 5
- 238000002347 injection Methods 0.000 description 5
- 239000007924 injection Substances 0.000 description 5
- 210000003491 skin Anatomy 0.000 description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- 230000007797 corrosion Effects 0.000 description 4
- 238000005260 corrosion Methods 0.000 description 4
- 238000000605 extraction Methods 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 3
- 229920000620 organic polymer Polymers 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 102000004169 proteins and genes Human genes 0.000 description 3
- 108090000623 proteins and genes Proteins 0.000 description 3
- 239000007921 spray Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 235000012431 wafers Nutrition 0.000 description 3
- 241001465754 Metazoa Species 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000012377 drug delivery Methods 0.000 description 2
- 238000005323 electroforming Methods 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 238000010249 in-situ analysis Methods 0.000 description 2
- 238000009616 inductively coupled plasma Methods 0.000 description 2
- 238000001746 injection moulding Methods 0.000 description 2
- NOESYZHRGYRDHS-UHFFFAOYSA-N insulin Chemical compound N1C(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(NC(=O)CN)C(C)CC)CSSCC(C(NC(CO)C(=O)NC(CC(C)C)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CCC(N)=O)C(=O)NC(CC(C)C)C(=O)NC(CCC(O)=O)C(=O)NC(CC(N)=O)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CSSCC(NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2C=CC(O)=CC=2)NC(=O)C(CC(C)C)NC(=O)C(C)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2NC=NC=2)NC(=O)C(CO)NC(=O)CNC2=O)C(=O)NCC(=O)NC(CCC(O)=O)C(=O)NC(CCCNC(N)=N)C(=O)NCC(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC(O)=CC=3)C(=O)NC(C(C)O)C(=O)N3C(CCC3)C(=O)NC(CCCCN)C(=O)NC(C)C(O)=O)C(=O)NC(CC(N)=O)C(O)=O)=O)NC(=O)C(C(C)CC)NC(=O)C(CO)NC(=O)C(C(C)O)NC(=O)C1CSSCC2NC(=O)C(CC(C)C)NC(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CC(N)=O)NC(=O)C(NC(=O)C(N)CC=1C=CC=CC=1)C(C)C)CC1=CN=CN1 NOESYZHRGYRDHS-UHFFFAOYSA-N 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 238000001459 lithography Methods 0.000 description 2
- 229920002521 macromolecule Polymers 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 2
- 229920000052 poly(p-xylylene) Polymers 0.000 description 2
- 239000002861 polymer material Substances 0.000 description 2
- 239000004926 polymethyl methacrylate Substances 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 239000004065 semiconductor Chemical class 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 239000002210 silicon-based material Substances 0.000 description 2
- 210000000434 stratum corneum Anatomy 0.000 description 2
- 230000037317 transdermal delivery Effects 0.000 description 2
- 241001391944 Commicarpus scandens Species 0.000 description 1
- 241000252095 Congridae Species 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- 206010061218 Inflammation Diseases 0.000 description 1
- 102000004877 Insulin Human genes 0.000 description 1
- 108090001061 Insulin Proteins 0.000 description 1
- 241000700159 Rattus Species 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- 229910001069 Ti alloy Inorganic materials 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 239000013060 biological fluid Substances 0.000 description 1
- 238000009534 blood test Methods 0.000 description 1
- 210000004204 blood vessel Anatomy 0.000 description 1
- 210000001124 body fluid Anatomy 0.000 description 1
- 239000010839 body fluid Substances 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 206010012601 diabetes mellitus Diseases 0.000 description 1
- 238000010892 electric spark Methods 0.000 description 1
- 238000009713 electroplating Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 238000010579 first pass effect Methods 0.000 description 1
- 230000002496 gastric effect Effects 0.000 description 1
- 239000007943 implant Substances 0.000 description 1
- 230000004054 inflammatory process Effects 0.000 description 1
- 229940125396 insulin Drugs 0.000 description 1
- 210000000265 leukocyte Anatomy 0.000 description 1
- 210000004185 liver Anatomy 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000011089 mechanical engineering Methods 0.000 description 1
- 229910001092 metal group alloy Inorganic materials 0.000 description 1
- 238000000520 microinjection Methods 0.000 description 1
- 239000002105 nanoparticle Substances 0.000 description 1
- 210000005036 nerve Anatomy 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 238000005240 physical vapour deposition Methods 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 238000002791 soaking Methods 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 238000010254 subcutaneous injection Methods 0.000 description 1
- 239000007929 subcutaneous injection Substances 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 238000013269 sustained drug release Methods 0.000 description 1
- 230000008961 swelling Effects 0.000 description 1
- 238000012549 training Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M37/00—Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin
- A61M37/0015—Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin by using microneedles
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M37/00—Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin
- A61M37/0015—Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin by using microneedles
- A61M2037/0053—Methods for producing microneedles
Landscapes
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Dermatology (AREA)
- Medical Informatics (AREA)
- Anesthesiology (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Hematology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Micromachines (AREA)
Abstract
本发明公开了一种用于透皮给药的离面空心微针阵列的制备方法,在金属基片的一面生长掩膜,定义微针阵列图形,形成掩膜图形,另一面则形成与掩膜图形相对准的打孔标记;然后保护打孔标记面,刻蚀金属基片至掩膜脱落,形成离面微针阵列;最后对打孔标记面去保护,对准打孔标记打穿孔,形成离面空心微针阵列。本发明基于微机械工艺以及定位打孔技术实现了离面空心微针阵列的制备,不仅工艺简单,而且使得离面空心微针的金属衬底体加工工艺成为可能,并大大增加离面空心微针的制作高度,从而提高了微针阵列的可靠性和插入特性。
The invention discloses a method for preparing an off-surface hollow microneedle array for transdermal drug delivery. A mask is grown on one side of a metal substrate to define a microneedle array pattern to form a mask pattern, and the other side is formed with a mask The perforated mark is aligned with the film pattern; then the perforated mark surface is protected, and the metal substrate is etched until the mask falls off to form an off-surface microneedle array; finally, the perforated mark surface is deprotected, and the perforated hole is aligned with the perforated mark. An out-of-plane hollow microneedle array is formed. The present invention realizes the preparation of out-of-plane hollow microneedle arrays based on micro-mechanical technology and positioning and punching technology. The needles can be fabricated at a higher height, thereby improving the reliability and insertion characteristics of the microneedle array.
Description
技术领域 technical field
本发明涉及微机械加工技术,特别涉及用于透皮给药的空心微针阵列的制备方法。The invention relates to micromachining technology, in particular to a method for preparing a hollow microneedle array for transdermal administration.
背景技术 Background technique
目前主要的给药方式是口服和注射。由于肠胃的吸收和肝脏的首过效应以及注射带来明显痛感的同时还需要专业人员操作,介于皮下注射和透皮贴剂之间的微针透皮给药成为一个比较好的解决方法。At present, the main modes of administration are oral and injection. Due to the gastrointestinal absorption and the first-pass effect of the liver, as well as the obvious pain caused by the injection and the need for professional operation, the microneedle transdermal drug delivery between subcutaneous injection and transdermal patch has become a better solution.
微针尺寸在微米量级,通过对皮肤进行无痛致孔处理,在没有血管和神经的角质层产生微小孔道来提高药物的渗透性。由于针尖尺寸极小,对皮肤几乎没有损害,且不需要专业培训,使用方便。The size of the microneedles is on the order of microns, and through painless pore-forming treatment of the skin, tiny pores are created in the stratum corneum without blood vessels and nerves to improve the permeability of drugs. Due to the extremely small size of the needle tip, there is almost no damage to the skin, and it does not require professional training, so it is easy to use.
从制作工艺上来看,微针分为平面微针和离面微针两种,前者的针轴平行于基底表面,后者的轴则垂直于基底表面。很明显,离面微针更易形成阵列,便于集成化。从内部结构上来看,微针分为实心微针和空心微针两种,前者可产生皮肤物理通孔,将药物以渗透的方式传输到体内,后者则可将药物储存在空腔内,待针尖刺入皮肤后释放至体内。可见,空心微针更近似于传统注射器,透皮给药更高效。因此,离面空心微针阵列是一个比较理想的微针结构。From the perspective of manufacturing process, microneedles are divided into two types: planar microneedles and off-surface microneedles. The needle axis of the former is parallel to the surface of the substrate, while the axis of the latter is perpendicular to the surface of the substrate. Obviously, off-surface microneedles are easier to form arrays and facilitate integration. From the perspective of internal structure, microneedles are divided into two types: solid microneedles and hollow microneedles. The former can create physical pores in the skin and transport drugs into the body in a permeable manner, while the latter can store drugs in the cavity. After the needle tip penetrates the skin, it is released into the body. It can be seen that hollow microneedles are more similar to traditional syringes, and transdermal drug delivery is more efficient. Therefore, the out-of-plane hollow microneedle array is an ideal microneedle structure.
1999年,McAllister等利用深反应离子刻蚀(DRIE)沿每根实心硅微针中心刻穿了一个孔,得到离面空心硅微针阵列(McMlister,D.V.,et al.Microneedles for transdermal deliveryof macromolecules.BMES/EMBS Conf,1999,2:836.)。同年Chun等人利用深反应离子刻蚀、各向异性腐蚀和硅-玻璃键合技术制成了二氧化硅离面空心微针(CHUN K,et al.Anarray of hollow microcapillaries for the controlled injection of genetic materials into animal/plantcells[A].Tech Dig 12th IEEE Int Conf Micro Electro Mechanical Systems[C].Orlando,Florida,USA,1999.406-411;CHUN K,et al.Fabrication of array of hollow micrecapillaries usedfor injection of genetic materials into animal/plant cels[J].Jpn J Appl Phys 2,Lett,1999,38(3A):L279-L281.)。2000年Steber等人利用深反应离子刻蚀和各项同性腐蚀技术制成了硅离面空心微针阵列(STOEBER B,LIEPMANN D.Two-dimensional arrays of out-of-planeneedles[A].Proc.ASME Int.Mechanical Engineering Congr.and Exposition[C].Orlando,Florida,USA:ASME,2000.355-359;STOEBER B,LIEPMANN D.Fluid injection throughout-of-plane microneedles[A].Proc 1st Annu Int IEEE.EMBS Spe.cial Topic ConfMicrotechnologies Medicine and Biology[C].Lyon,France,2000.224-228.)。2002年Griss等人利用三次感应耦合等离子体(ICP)刻蚀,结合各向异性和各项同性刻蚀制成了侧面开孔的微针(GRISS P,STEMME G.Side-opened out-of-plane microneedles for microfluidictransdermal liquid transfer[J].Journal of Micrelectromechanical Systems,2003,12(3):296-288.)。2003年Achim Trautmann以及Mukejee等人均利用各向异性刻蚀和各向同性腐蚀技术制成了含有微管道的空心离面硅微针阵列(TRAUTMANN A,TUTHER P,PAULO.Microneedle arrays fabricated using suspended etch mask technology combined withfluidic through wafer vias[A].Proc IEEE the 16th Annu Int Conf MEMS[C].Kyoto,Japan,2003.682-685;MUKERJEE E V,et al.Microneedle array with integrated microchannels fortransdermal sample extraction and IN SITU analysis[A].The 12th International Conference onSolid State Sensors,Actuators and Micronsystems[C].Boston,2003.1439-1441;MUKERJEEE V,et al.Microneedle array for trausdermal biological fluid extraction and in situanalysis[J].Sensors andActuators A:Physical,20o4,114(2-3):267-275.)。上述工艺需要大量的DRIE和ICP深刻蚀过程,成本高昂,工艺复杂。由于硅基材料的使用,使其无法避免硅材料本身如质脆易断裂等问题。同时,硅表面还会吸附蛋白质,粘附白血球可能产生红肿发炎等应激反应,所以硅基微针不适宜直接用于人体治疗。即使在后续工艺中加入生物兼容性薄膜等,由于结合可靠性较弱,很难从本质上改变此问题。In 1999, McAllister et al. used deep reactive ion etching (DRIE) to carve a hole along the center of each solid silicon microneedle to obtain an off-plane hollow silicon microneedle array (McMlister, DV, et al. Microneedles for transdermal delivery of macromolecules. BMES/EMBS Conf, 1999, 2: 836.). In the same year, Chun et al. used deep reactive ion etching, anisotropic etching, and silicon-glass bonding techniques to make hollow microneedles from the surface of silica (CHUN K, et al. An array of hollow microcapillaries for the controlled injection of genetic materials into animal/plantcells[A].Tech Dig 12 th IEEE Int Conf Micro Electro Mechanical Systems[C].Orlando, Florida, USA, 1999.406-411; CHUN K, et al.Fabrication of array of hollow micrecapillaries used for injection of genetic materials into animal/plant cels [J]. Jpn J Appl Phys 2, Lett, 1999, 38(3A): L279-L281.). In 2000, Steber et al. used deep reactive ion etching and isotropic etching technology to make silicon out-of-plane hollow microneedle arrays (STOEBER B, LIEPMANN D.Two-dimensional arrays of out-of-planeneedles[A].Proc. ASME Int.Mechanical Engineering Congr.and Exposition[C].Orlando, Florida, USA: ASME, 2000.355-359; STOEBER B, LIEPMANN D.Fluid injection throughout-of-plane microneedles[A].Proc 1st Annu Int IEEE.EMBS Spe.cial Topic Conf Microtechnologies Medicine and Biology [C]. Lyon, France, 2000.224-228.). In 2002, Griss et al. used three inductively coupled plasma (ICP) etching, combined with anisotropic and isotropic etching, to make microneedles with side openings (GRISS P, STEMME G.Side-opened out-of- plane microneedles for microfluidic transdermal liquid transfer [J]. Journal of Microelectromechanical Systems, 2003, 12(3): 296-288.). In 2003, Achim Trautmann and Mukejee et al. used anisotropic etching and isotropic etching techniques to fabricate hollow out-of-plane silicon microneedle arrays containing micropipes (TRAUTMANN A, TUTHER P, PAULO. Microneedle arrays fabricated using suspended etch mask technology combined with fluidic through wafer vias[A].Proc IEEE the 16th Annu Int Conf MEMS[C].Kyoto, Japan, 2003.682-685; MUKERJEE E V, et al.Microneedle array with integrated microchannels for transdermal sample extraction and IN SITU analysis is[A ].The 12th International Conference on Solid State Sensors, Actuators and Micronsystems[C].Boston, 2003.1439-1441; MUKERJEEE V, et al.Microneedle array for traudermal biological fluid extraction and in situanalysis[J]. , 114(2-3):267-275.). The above process requires a large number of deep etching processes of DRIE and ICP, which is costly and complicated. Due to the use of silicon-based materials, it is unavoidable that the silicon material itself is brittle and easy to break. At the same time, the silicon surface will also adsorb proteins, and the adhesion of white blood cells may cause stress reactions such as redness, swelling and inflammation. Therefore, silicon-based microneedles are not suitable for direct use in human treatment. Even if a biocompatible film is added in the subsequent process, it is difficult to fundamentally change this problem due to weak bonding reliability.
2003年Moon等人利用倾斜式LIGA(德文Lithographie,Galanoformung和Abformung三个词,即光刻、电铸和注塑的缩写)技术制得离面空心聚甲基丙烯酸甲酯(PMMA)微针(OKA K,et al.Fabrication of a microneedle for a trace blood test[J].Sensors and ActuatorsA.2002,97-98:478-485.)。清华大学Ran Liu等人利用UV-LIGA技术在玻璃基底上制作了离面空心SU-8微针(LIU R,et al.Microneedles array for fluid extraction and drugdelivery[A].2003International Symposium on Micromechatronics and Human Science[C].NewYork,USA,2003.239-244.)。聚合物材料其硬度不如硅和金属微针,很难有效的保证插入及其有效深度。而且,聚合物新材料层出不穷,材料特性及加工工艺也尚待成熟,需要进行进一步的研究和标准化工作。In 2003, Moon et al. used the inclined LIGA (German Lithographie, Galanoformung and Abformung three words, the abbreviation of lithography, electroforming and injection molding) technology to make off-plane hollow polymethyl methacrylate (PMMA) microneedles ( OKA K, et al. Fabrication of a microneedle for a trace blood test [J]. Sensors and Actuators A. 2002, 97-98: 478-485.). Ran Liu of Tsinghua University and others used UV-LIGA technology to make hollow SU-8 microneedles on a glass substrate (LIU R, et al. Microneedles array for fluid extraction and drug delivery [A]. 2003 International Symposium on Micromechatronics and Human Science [C]. New York, USA, 2003.239-244.). The hardness of polymer materials is not as good as silicon and metal microneedles, so it is difficult to effectively ensure insertion and effective depth. Moreover, new polymer materials are emerging one after another, and the material properties and processing technology are still to be matured, which requires further research and standardization work.
目前主要的金属空心离面微针主要是采用LIGA、UV-LIGA电铸工艺制作。McAllister等利用LIGA技术以实心硅微针为胎模制作微模,然后部分电镀成空心金属微针(McAllisterDV,et al.Three-dimensional hollow micmneedle and microtubearrays.Int,Conf,S-S-Sens.Actuators,10th,Tokyo:1EEE,I999,1098-1010;D.V.McAllister,et al,Microfabricated needles for transdermal delivery of macromolecules and nanoparticles:Fabrication methods and transport studies.Proc,Nat.Acad.Sci.,2003,(100):.13755-13760.)。Davis等采用改进的LIGA技术(激光打孔、电镀、腐蚀)加工出同样结构的空心镍微针阵列(Davis,S.P,et al.Fabrication and characterization of lasermicromachined hollowmicroneedles.Trans,Sens,Actu & Micros,12thInt,Conf,2003,2:1435-1438;S.Davis,et al.Insertion of micronecdles into skin:measurement and prediction of insertion force andneedle fracture force.J Biomechanics.2004,1155-1163;Davis,et al.Hollow metalmicroneedles for insulin delivery to diabetic rats.Biomedical Engineering,IEEE Trans,2005,52:909-915.)。Kiyoshi Sawada等利用塑料喷射模塑法制得空心微针阵列,该方法要求超精密的机械加工能力,成本高昂(Kiyoshi Sawada,et al.Micro structuring of high aspect ratio andarray by means of mechanical machine.Int.Conf.Pre Engineering(ICPE),July 18-20,2001.)。LIGA及改进的LIGA技术工艺难度较大,耗费较多,成本相对较高。同时电镀上去的针体与衬底的结合强度不如整体加工工艺可靠性高。At present, the main metal hollow out-of-plane microneedles are mainly produced by LIGA and UV-LIGA electroforming processes. McAllister et al. used LIGA technology to make micromodels with solid silicon microneedles as tire molds, and then partially electroplated into hollow metal microneedles (McAllisterDV, et al.Three-dimensional hollow micmneedle and microtubearrays.Int, Conf, SS-Sens.Actuators, 10 th , Tokyo: 1EEE, I999, 1098-1010; DVMcAllister, et al, Microfabricated needles for transdermal delivery of macromolecules and nanoparticles: Fabrication methods and transport studies.Proc, Nat.Acad.Sci., 2003, (100): .13755 -13760.). Davis et al. used improved LIGA technology (laser drilling, electroplating, corrosion) to process hollow nickel microneedle arrays of the same structure (Davis, SP, et al.Fabrication and characterization of lasermicromachined hollowmicroneedles.Trans, Sens, Actu & Micros, 12thInt , Conf, 2003, 2: 1435-1438; S.Davis, et al.Insertion of micronecdles into skin: measurement and prediction of insertion force and needle fracture force.J Biomechanics.2004, 1155-1163; Davis, et al.Hollow metalmicroneedles for insulin delivery to diabetic rats. Biomedical Engineering, IEEE Trans, 2005, 52: 909-915.). Kiyoshi Sawada et al. have made hollow microneedle arrays by plastic injection molding, which requires ultra-precision machining capabilities and high costs (Kiyoshi Sawada, et al.Micro structuring of high aspect ratio and array by means of mechanical machine.Int.Conf . Pre Engineering (ICPE), July 18-20, 2001.). LIGA and improved LIGA technology are more difficult to process, more expensive and relatively higher cost. At the same time, the bonding strength of the electroplated needle body and the substrate is not as reliable as the overall processing technology.
发明内容 Contents of the invention
本发明的目的是提供一种工艺简单、成本较低的离面空心微针阵列的制备方法,基于微机械(MEMS)工艺以及定位打孔技术实现离面空心微针阵列的制备。The purpose of the present invention is to provide a method for preparing an out-of-plane hollow microneedle array with simple process and low cost, and realize the preparation of the out-of-plane hollow microneedle array based on a micromechanical (MEMS) process and a positioning punching technology.
本发明的技术方案如下:Technical scheme of the present invention is as follows:
一种离面空心微针阵列的制备方法,包括如下步骤:A method for preparing an off-plane hollow microneedle array, comprising the steps of:
1)在金属基片的一面生长掩膜,定义微针阵列图形,形成掩膜图形,然后在金属基片的另一面对准掩膜图形定义打孔图案,形成打孔标记;或者,先在金属基片的一面定义打孔图案,形成打开标记,然后在金属基片的另一面生长掩膜,对准打孔标记定义微针阵列图形,形成掩膜图形;1) Growing a mask on one side of the metal substrate, defining the microneedle array pattern to form a mask pattern, and then aligning the mask pattern on the other side of the metal substrate to define a punching pattern to form a punching mark; or, first Define a punching pattern on one side of the metal substrate to form an opening mark, then grow a mask on the other side of the metal substrate, align the punching mark to define a microneedle array pattern, and form a mask pattern;
2)对金属基片的打孔标记面进行保护,刻蚀金属基片至掩膜脱落,形成离面微针阵列;2) Protect the perforated marking surface of the metal substrate, etch the metal substrate until the mask falls off, forming an off-surface microneedle array;
3)对打孔标记面去保护,对准打孔标记打穿孔,形成离面空心微针阵列。3) Deprotect the surface of the punching mark, and punch holes in alignment with the punching mark to form an array of hollow microneedles away from the surface.
上述步骤1)中,打孔标记和掩膜图形的形成顺序是可以调整的,只要使二者相互对准即可。所述金属基片的厚度优选为50~2000μm,金属基片材料优选为钛金属或钛合金;掩膜材料可以是有机聚合物或无机物,所述有机聚合物例如聚对二甲苯(Parylene),所述无机物包括金属(如Ni)和半导体化合物(如二氧化硅、氮化硅等)。定义微针阵列图形的方式可以为光刻、激光打标、丝网印刷等;通常采用刻蚀的方式形成掩膜图形,刻蚀包括湿法腐蚀和干法刻蚀,而喷淋腐蚀属于湿法腐蚀中的一种。定义打孔图案的方式也可以为光刻、激光打标、丝网印刷等;形成打孔标记的方式可以是对金属基片进行湿法腐蚀或干法刻蚀。In the above step 1), the formation order of the punch marks and mask patterns can be adjusted, as long as the two are aligned with each other. The thickness of the metal substrate is preferably 50-2000 μm, and the material of the metal substrate is preferably titanium metal or titanium alloy; the mask material can be an organic polymer or an inorganic substance, and the organic polymer is such as parylene (Parylene) , the inorganic substances include metals (such as Ni) and semiconductor compounds (such as silicon dioxide, silicon nitride, etc.). The way to define microneedle array graphics can be photolithography, laser marking, screen printing, etc.; usually, etching is used to form mask graphics, and etching includes wet etching and dry etching, while spray etching belongs to wet etching. A type of corrosion. The method of defining the perforation pattern can also be photolithography, laser marking, silk screen printing, etc.; the method of forming the perforation mark can be wet etching or dry etching of the metal substrate.
对于步骤1)中掩膜图形的形成优选使用下述方法:在金属基片的一面采用诸如溅射、蒸发等物理气相淀积法或者化学气相淀积法生成一层掩膜,掩膜上涂光刻胶,然后光刻定义出微针阵列图形,进一步刻蚀掉暴露的掩膜形成掩膜图形,再去除光刻胶。采用湿法腐蚀掩膜时,腐蚀液视基片材料和掩膜材料选择使用,例如对于钛基片和镍掩膜,可以使用镍专用腐蚀液TFT进行湿法腐蚀。为增加镍掩膜与钛基片之间的粘附性,可以先在基片表面溅射一薄层钛作为粘附层,再在其上生成镍掩膜。For the formation of the mask pattern in step 1), the following method is preferably used: on one side of the metal substrate, physical vapor deposition methods such as sputtering and evaporation or chemical vapor deposition methods are used to generate a layer of mask, and the mask is coated with photoresist, and then photolithography defines the pattern of the microneedle array, and further etches away the exposed mask to form a mask pattern, and then removes the photoresist. When using a wet etching mask, the etching solution depends on the material of the substrate and the mask material. For example, for a titanium substrate and a nickel mask, a nickel-specific etching solution TFT can be used for wet etching. In order to increase the adhesion between the nickel mask and the titanium substrate, a thin layer of titanium can be sputtered on the surface of the substrate as an adhesion layer, and then a nickel mask can be formed on it.
对于步骤1)中打孔标记的形成优选下述方法:在金属基片的一面涂光刻胶,光刻定义出打孔图案,然后刻蚀暴露的金属基片形成打孔标记,再去除光刻胶。For the formation of perforated marks in step 1), the following method is preferred: one side of the metal substrate is coated with photoresist, the photolithography defines the perforated pattern, then the exposed metal substrate is etched to form perforated marks, and then the photoresist is removed. Engraving.
上述步骤2)中,对金属基片的打孔标记面进行保护的方式可以是匀涂保护胶(例如特种保护胶或光刻胶),或者生长一层有机聚合物或无机物(包括金属和无机半导体化合物)掩膜,还可以采用机械保护的方法(如装上机械保护装置)。刻蚀金属基片的方式可以为湿法腐蚀(包括喷淋腐蚀)或干法刻蚀。所述保护胶可选用如瑞红304等普通正型光刻胶均可,也可以使用ProTEK胶,厚度1~2μm即可,当然再厚也可以。In the above-mentioned step 2), the way to protect the perforated marking surface of the metal substrate can be to evenly coat protective glue (such as special protective glue or photoresist), or to grow a layer of organic polymers or inorganic substances (including metal and Inorganic semiconductor compound) mask, mechanical protection method (such as installing mechanical protection device) can also be used. The way of etching the metal substrate can be wet etching (including spray etching) or dry etching. The protective adhesive can be selected from ordinary positive photoresist such as Ruihong 304, or ProTEK adhesive, with a thickness of 1-2 μm, and of course it can be thicker.
上述步骤3)中,对打孔标记面去保护的方式依保护方法而定,例如采用专用去胶液、用丙酮浸泡、湿法腐蚀、干法刻蚀、卸掉机械保护装置等;打孔方式可以为激光打孔、超声打孔、电火花打孔等。打孔标记面为定位打孔入口面,根据孔洞与微针的相对位置可分为中孔和侧孔两种,打孔完毕根据孔洞边缘残渣和形貌状况决定是否进行清洗等表面处理。In the above step 3), the way to protect the punching mark surface depends on the protection method, such as using a special glue remover, soaking with acetone, wet etching, dry etching, removing the mechanical protection device, etc.; The method can be laser drilling, ultrasonic drilling, electric spark drilling, etc. The punching marking surface is the entry surface for positioning the punching. According to the relative position of the hole and the microneedle, it can be divided into two types: the middle hole and the side hole.
本发明制备的微针阵列由片状基底(即支撑体)和分布于其上的针体阵列一体构成,微针阵列密度决定于步骤1)定义的微针阵列图形,微针高度决定于基片厚度以及对基片的腐蚀程度,微针形貌多为圆锥形、多角锥形。The microneedle array prepared by the present invention is composed of a sheet-like substrate (i.e. a support) and a needle body array distributed thereon. The density of the microneedle array is determined by the microneedle array pattern defined in step 1), and the height of the microneedle is determined by the Depending on the thickness of the sheet and the degree of corrosion to the substrate, the morphology of the microneedles is mostly conical or polygonal.
本发明的空心微针阵列可广泛应用于透皮给药器件中,微针通过刺穿皮肤角质层产生物理孔洞增强给药效率,特别是针对大分子药物,是一种安全无痛的透皮给药方式。由于带有微流道,本发明的微针阵列可与注射器部分集成应用于精确控制的无痛微注射和体液提取。同时,支承体背面穿通易于集成储液槽,还可以与贴剂或者埋植结合达到药物缓释的目的,从而实现药物更高效、精确、长期的输送。The hollow microneedle array of the present invention can be widely used in transdermal drug delivery devices. The microneedles can pierce the skin stratum corneum to create physical holes to enhance drug delivery efficiency, especially for macromolecular drugs, which is a safe and painless transdermal drug delivery device. Method of administration. Because of the micro flow channel, the microneedle array of the present invention can be partially integrated with the injector and applied to painless micro injection and body fluid extraction with precise control. At the same time, the back of the support body is perforated to facilitate the integration of a liquid storage tank, and it can also be combined with a patch or implant to achieve the purpose of sustained drug release, thereby achieving more efficient, accurate, and long-term delivery of drugs.
本发明基于微机械工艺以及定位打孔技术实现了离面空心微针阵列的制备,采用激光打孔等定位打孔技术打通孔,相对于干法深刻蚀可以大大增加离面空心微针的制作高度,尤其是使得离面空心微针的金属衬底体加工工艺成为可能,从而提高其可靠性和插入特性;而且,干法深刻蚀对于金属实现难度较大,难以刻蚀较大深度,同时需要一系列的光刻配套工艺,工艺复杂,定位打孔对于不同的阵列只需要替换相关CAD图形文件,不需要制作更新掩膜版,简化了工艺流程。The present invention realizes the preparation of out-of-plane hollow microneedle arrays based on micro-mechanical technology and positioning and punching technology, and adopts laser drilling and other positioning and punching technologies to drill holes, which can greatly increase the production of off-plane hollow microneedles compared with dry deep etching In particular, it makes it possible to process the metal substrate body of the hollow microneedle from the surface, thereby improving its reliability and insertion characteristics; moreover, the dry deep etching is difficult to realize for metals, and it is difficult to etch a large depth, and at the same time A series of lithography supporting processes are required, and the process is complicated. For different arrays, only the relevant CAD graphics files need to be replaced for positioning and punching, and there is no need to make and update masks, which simplifies the process flow.
附图说明 Description of drawings
图1a~图1k为本发明实施例制备钛基离面空心微针的工艺流程图。Figures 1a to 1k are process flow charts for preparing titanium-based out-of-plane hollow microneedles according to an embodiment of the present invention.
图2为图1i所示步骤湿法腐蚀制备出的微针形貌。Fig. 2 is the microneedle morphology prepared by the wet etching step shown in Fig. 1i.
图3为激光对钛材基底打孔形貌。Fig. 3 is the morphology of the holes drilled by the laser on the titanium substrate.
具体实施方式: Detailed ways:
下边结合附图,通过实施例进一步对本发明进行详细说明,但不以任何方式限制本发明的范围。Below in conjunction with the accompanying drawings, the present invention is further described in detail through the embodiments, but the scope of the present invention is not limited in any way.
通过对化学纯钛材料的机械加工,利用线切割的方式制备出四寸钛基圆片。进行低温真空退火以及化学机械抛光,得到500μm厚四寸双面抛光钛基圆片。取一片该钛基片根据下述步骤制备离面空心微针阵列:Through mechanical processing of chemically pure titanium materials, four-inch titanium-based wafers are prepared by wire cutting. Low-temperature vacuum annealing and chemical-mechanical polishing were performed to obtain a 500 μm thick four-inch double-sided polished titanium-based wafer. Take a piece of the titanium substrate to prepare an off-plane hollow microneedle array according to the following steps:
1、生长掩膜1. Growth mask
使用丙酮/酒精对钛基片1进行10分钟的超声清洗。之后,在衬底一侧抛光面上先后溅射一层500nm厚的镍掩膜2(也可以先在基片表面溅射一层20nm厚的钛作为粘附层,以增加掩膜与衬底的粘附性),如图1a所示。The
2、形成掩膜图形2. Form a mask pattern
在镍掩膜2上匀涂正型光刻胶3,厚度1-2μm,并进行前烘、曝光、显影、后烘等一系列图形化过程,定义出微针阵列图案(如图1b所示),其中曝光4s,在热板上120℃进行坚膜60s,显影至图形完全出现。然后使用镍专用腐蚀液TFT进行5-10分钟湿法腐蚀,直至暴露出的镍层全部去掉,形成微针掩膜图形,如图1c所示。随后去掉光刻胶3,如图1d所示。On the
3、形成打孔标记3. Form a punch mark
在钛基片1另一面同样匀涂正型光刻胶4(1-2μm厚),与已有工艺面(即镍掩膜2图形面)对准曝光10s,在热板上130℃坚膜30-60s,显影至图形完全出现,如图1e所示。浸入HF∶HNO3∶H2O=1∶1∶30(体积比)的溶液中1~2分钟,腐蚀出打孔标记5,如图1f所示。之后浸入丙酮溶液中去掉光刻胶(见图1g),在打孔标记面匀涂ProTEK胶(保护胶6)防止打孔标记5被后续HF腐蚀(见图1h)。On the other side of the
4、激光对准打孔4. Laser alignment and drilling
使用HF∶HNO3∶H2O=1∶1∶30(体积比)的溶液进行湿法腐蚀,至镍掩膜2脱落,形成微针为止,如图1i所示。平均腐蚀速率在1μm/min,具体时间依待腐蚀微针高度决定。也可使用喷淋腐蚀机,腐蚀时间因机器参数不同而异。该步骤湿法腐蚀制备出的微针形貌如图2所示,其中A和B是不同放大倍数下观察到的微针形貌图像。A solution of HF:HNO 3 :H 2 O=1:1:30 (volume ratio) is used for wet etching until the
使用ProTEK Remover去掉保护胶6(见图1j),利用紫外纳秒激光精细微加工设备或者皮秒绿光激光精细微加工设备,从打孔标记面对准进行打孔,形成钛基离面空心微针阵列,如图1k所示。激光对钛材基底打孔形貌如图3所示,A和B中打孔孔径分别为20.45μm、24.31μm具体激光功率依打孔深度、精度要求以及设备差异从3-50w不等。将形成微针浸入HF∶HNO3∶H2O=1∶1∶30(体积比)溶液进行表面处理,去除激光打孔残渣,最终形成形貌较好的钛基离面空心微针阵列。Use ProTEK Remover to remove the protective glue 6 (see Figure 1j), and use ultraviolet nanosecond laser fine micromachining equipment or picosecond green light laser fine micromachining equipment to punch holes from the punching mark surface to form a titanium-based out-of-plane hollow Microneedle array, as shown in Figure 1k. The morphology of laser drilling on titanium substrates is shown in Figure 3. The drilling diameters in A and B are 20.45 μm and 24.31 μm, respectively. The specific laser power varies from 3 to 50 W depending on the drilling depth, precision requirements, and equipment differences. The formed microneedles were immersed in a solution of HF:HNO 3 :H 2 O=1:1:30 (volume ratio) for surface treatment to remove laser drilling residues, and finally formed titanium-based out-of-plane hollow microneedle arrays with better morphology.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 201010204631 CN101862503B (en) | 2010-06-11 | 2010-06-11 | Method for preparing off-plane hollow microneedle array for use in transdermal medicament administration |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 201010204631 CN101862503B (en) | 2010-06-11 | 2010-06-11 | Method for preparing off-plane hollow microneedle array for use in transdermal medicament administration |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101862503A CN101862503A (en) | 2010-10-20 |
CN101862503B true CN101862503B (en) | 2012-12-19 |
Family
ID=42954550
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN 201010204631 Expired - Fee Related CN101862503B (en) | 2010-06-11 | 2010-06-11 | Method for preparing off-plane hollow microneedle array for use in transdermal medicament administration |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101862503B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3115078A4 (en) * | 2014-03-26 | 2017-03-15 | Nissha Printing Co., Ltd. | Method for manufacturing packaging for conical protrusion sheet |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10303851B2 (en) * | 2013-03-15 | 2019-05-28 | Md24 Patent Technology, Llc | Physician-centric health care delivery platform |
JP6236905B2 (en) * | 2013-06-20 | 2017-11-29 | 凸版印刷株式会社 | Method for manufacturing hollow needle body device |
CN104587567B (en) * | 2015-01-05 | 2018-01-05 | 华南师范大学 | A kind of preparation method of micro hollow silicon needle |
CN105665713B (en) * | 2016-01-28 | 2017-11-17 | 中山大学 | One kind is based on porous microneedle array of metal sintering and preparation method thereof |
CN110559553A (en) * | 2019-09-20 | 2019-12-13 | 灏曦(天津)生物技术有限公司 | preparation method of painless microneedle array chip with holes capable of being manufactured in batch |
CN114849051B (en) * | 2022-04-02 | 2024-05-28 | 相邦(苏州)生物材料科技有限公司 | Preparation method of silicon-based microneedle |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1562402A (en) * | 2004-03-31 | 2005-01-12 | 中国科学院理化技术研究所 | Metal micro-needle array chip and preparation method and application thereof |
CN1621102A (en) * | 2004-12-13 | 2005-06-01 | 纳生微电子(苏州)有限公司 | Preparing method for epidermis needle and its application |
CN100998901A (en) * | 2007-01-12 | 2007-07-18 | 中国科学院上海微系统与信息技术研究所 | Porous silicon painless injection mironeedle array and its preparation method |
CN101332327A (en) * | 2008-08-06 | 2008-12-31 | 清华大学 | A kind of micro hollow silicon needle and preparation method thereof |
CN101507857A (en) * | 2009-03-27 | 2009-08-19 | 清华大学 | Micro-needle array chip, percutaneous administration device, percutaneous administration patch and preparation method thereof |
CN101613861A (en) * | 2009-07-22 | 2009-12-30 | 中国科学院金属研究所 | Rapid manufacturing method of Ni-base superalloy blade without air film hole in recast layer |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7627938B2 (en) * | 2004-10-15 | 2009-12-08 | Board Of Regents, The Univeristy Of Texas System | Tapered hollow metallic microneedle array assembly and method of making and using the same |
-
2010
- 2010-06-11 CN CN 201010204631 patent/CN101862503B/en not_active Expired - Fee Related
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1562402A (en) * | 2004-03-31 | 2005-01-12 | 中国科学院理化技术研究所 | Metal micro-needle array chip and preparation method and application thereof |
CN1621102A (en) * | 2004-12-13 | 2005-06-01 | 纳生微电子(苏州)有限公司 | Preparing method for epidermis needle and its application |
CN100998901A (en) * | 2007-01-12 | 2007-07-18 | 中国科学院上海微系统与信息技术研究所 | Porous silicon painless injection mironeedle array and its preparation method |
CN101332327A (en) * | 2008-08-06 | 2008-12-31 | 清华大学 | A kind of micro hollow silicon needle and preparation method thereof |
CN101507857A (en) * | 2009-03-27 | 2009-08-19 | 清华大学 | Micro-needle array chip, percutaneous administration device, percutaneous administration patch and preparation method thereof |
CN101613861A (en) * | 2009-07-22 | 2009-12-30 | 中国科学院金属研究所 | Rapid manufacturing method of Ni-base superalloy blade without air film hole in recast layer |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3115078A4 (en) * | 2014-03-26 | 2017-03-15 | Nissha Printing Co., Ltd. | Method for manufacturing packaging for conical protrusion sheet |
Also Published As
Publication number | Publication date |
---|---|
CN101862503A (en) | 2010-10-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101862503B (en) | Method for preparing off-plane hollow microneedle array for use in transdermal medicament administration | |
JP4778669B2 (en) | Method for manufacturing microneedles structures using soft lithography and photolithography | |
US7344499B1 (en) | Microneedle device for extraction and sensing of bodily fluids | |
AU767122B2 (en) | Microneedle devices and methods of manufacture and use thereof | |
CN101905856B (en) | Method for preparing plane hollow microneedle for transdermal administration | |
US6334856B1 (en) | Microneedle devices and methods of manufacture and use thereof | |
US8250729B2 (en) | 3D fabrication of needle tip geometry and knife blade | |
CN100460028C (en) | A microneedle array for drug delivery and its manufacturing method | |
Vinayakumar et al. | Fabrication and characterization of gold coated hollow silicon microneedle array for drug delivery | |
US20090093776A1 (en) | 3d solid or hollow silicon microneedle and microknife with "-" shape structure | |
JP2004529726A (en) | Minimal surgical instruments | |
US20080245764A1 (en) | Method for producing a device including an array of microneedles on a support, and device producible according to this method | |
CN101623535B (en) | Preparation method of hollow medical metal micro-needle | |
CN101391744B (en) | Method for preparing micro needle array by means of lithography based on tilting rotary substrate and template | |
KR20040065848A (en) | Method for manufacturing of polymer micro needle array with liga process | |
Li et al. | In-plane silicon microneedles with open capillary microfluidic networks by deep reactive ion etching and sacrificial layer based sharpening | |
CN105217565B (en) | Manufacturing method of single crystal silicon hollow micro-needle structure | |
Singh et al. | Microneedles for drug delivery and monitoring | |
CN100998901A (en) | Porous silicon painless injection mironeedle array and its preparation method | |
Ji et al. | Microfabricated silicon microneedle array for transdermal drug delivery | |
CN101829394A (en) | Method for preparing step micro-needle array | |
Yan et al. | Hollow metallic microneedles fabricated by combining bulk silicon micromachining and UV–LIGA technology | |
CA2510389A1 (en) | Microneedle devices and methods of manufacture and use thereof | |
Zhang | Fabrication of Hollow Silicon Microneedle Arrays for Transdermal Biological Fluid Extraction | |
US20080197106A1 (en) | Method for manufacturing semiconical microneedles and semiconical microneedles manufacturable by this method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20121219 Termination date: 20200611 |