CN101858811A - Signal Compensation Method of High Accuracy Pressure Sensor - Google Patents
Signal Compensation Method of High Accuracy Pressure Sensor Download PDFInfo
- Publication number
- CN101858811A CN101858811A CN 201010202078 CN201010202078A CN101858811A CN 101858811 A CN101858811 A CN 101858811A CN 201010202078 CN201010202078 CN 201010202078 CN 201010202078 A CN201010202078 A CN 201010202078A CN 101858811 A CN101858811 A CN 101858811A
- Authority
- CN
- China
- Prior art keywords
- pressure
- signal
- temperature
- vpm
- compensation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 103
- 238000009530 blood pressure measurement Methods 0.000 claims abstract description 24
- 238000009529 body temperature measurement Methods 0.000 claims abstract description 9
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 40
- 229910052710 silicon Inorganic materials 0.000 claims description 40
- 239000010703 silicon Substances 0.000 claims description 40
- 239000013598 vector Substances 0.000 claims description 28
- 238000012706 support-vector machine Methods 0.000 claims description 22
- 238000012549 training Methods 0.000 claims description 21
- 238000012545 processing Methods 0.000 claims description 11
- 230000003321 amplification Effects 0.000 claims description 7
- 238000012937 correction Methods 0.000 claims description 7
- 238000003199 nucleic acid amplification method Methods 0.000 claims description 7
- 230000011664 signaling Effects 0.000 claims 1
- 238000005259 measurement Methods 0.000 abstract description 12
- 238000003672 processing method Methods 0.000 abstract description 4
- 230000006870 function Effects 0.000 description 39
- 238000002474 experimental method Methods 0.000 description 14
- 238000000611 regression analysis Methods 0.000 description 10
- 238000012360 testing method Methods 0.000 description 10
- 238000006243 chemical reaction Methods 0.000 description 8
- 238000010586 diagram Methods 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 2
- 238000013528 artificial neural network Methods 0.000 description 2
- 238000004422 calculation algorithm Methods 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000010801 machine learning Methods 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000013178 mathematical model Methods 0.000 description 1
- 238000005459 micromachining Methods 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000007619 statistical method Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Images
Landscapes
- Measuring Fluid Pressure (AREA)
Abstract
本发明公开了一种高精度压力传感器信号补偿方法,将压力传感器测量得到的压力测量信号和温度测量信号输入到数字信号处理器中;在数字信号处理器中,通过迟滞误差补偿方法将原始压力信号转化为:未经温度补偿、但消除迟滞误差的压力信号;通过信号接口处理方法,对上述压力信号进行温度校正,得到经过温度校正后的压力信号;通过温度补偿方法,由经过温度校正的压力信号和温度信号处理得到经过温度补偿和非线性误差补偿的压力信号和温度信号。本发明能够补偿压力传感器的迟滞误差、非线性误差和环境温度变化产生的误差,提高压力传感器的测量精度。
The invention discloses a high-precision pressure sensor signal compensation method. The pressure measurement signal and temperature measurement signal obtained by the pressure sensor are input into a digital signal processor; in the digital signal processor, the original pressure The signal is transformed into: a pressure signal without temperature compensation but eliminating the hysteresis error; through the signal interface processing method, the above pressure signal is temperature corrected to obtain a temperature corrected pressure signal; through the temperature compensation method, the temperature corrected The pressure signal and temperature signal are processed to obtain the pressure signal and temperature signal after temperature compensation and nonlinear error compensation. The invention can compensate hysteresis error, non-linear error and error caused by ambient temperature change of the pressure sensor, and improve the measurement accuracy of the pressure sensor.
Description
技术领域:Technical field:
本发明属于信号处理领域,涉及一种传感器的信号补偿方法,尤其是一种对于硅压力传感器的非线性误差、迟滞误差和温度变化引起的误差的补偿方法。The invention belongs to the field of signal processing, and relates to a sensor signal compensation method, in particular to a compensation method for nonlinear errors, hysteresis errors and errors caused by temperature changes of silicon pressure sensors.
背景技术:Background technique:
硅压力传感器是微机械工艺最成功的传感器产品,主要有硅压阻式、电容式和谐振式三种,其中硅压阻式应用最广泛。硅压阻式压力传感器利用半导体材料硅的压阻效应、惠斯顿电桥原理、集成电路工艺和微机械加工技术制成。硅压阻式压力传感器因其微型化、高灵敏度、响应快、可集成化和高稳定性等优点,现在已经广泛应用作微型真空计、绝对压力计、流速计、流量计、声传感器、气动过程控制器等,其应用遍及石油、化工、生物、医疗、航天、海洋工程、原子能等尖端科技和工业领域。Silicon pressure sensors are the most successful sensor products in micromechanical technology. There are mainly three types: silicon piezoresistive, capacitive and resonant, among which silicon piezoresistive is the most widely used. Silicon piezoresistive pressure sensors are made using the piezoresistive effect of semiconductor material silicon, the principle of Wheatstone bridge, integrated circuit technology and micromachining technology. Silicon piezoresistive pressure sensors have been widely used as miniature vacuum gauges, absolute pressure gauges, flow meters, flow meters, acoustic sensors, pneumatic sensors, etc. Process controllers, etc., are used in cutting-edge technology and industrial fields such as petroleum, chemical industry, biology, medical treatment, aerospace, ocean engineering, and atomic energy.
衡量传感器性能的静态指标主要有非线性误差、迟滞误差和重复性误差。为了提高传感器的测量精度,需要对这些误差进行补偿。目前,非线性误差的补偿方法已经非常成熟,常用的非线性误差的补偿方法有查表法、曲线拟合法和神经网络法。重复性误差属于随机误差,需要通过统计方法进行分析,目前还不能对其进行补偿。迟滞是一种多值对应、非常规、非平滑的特殊现象,它是由传感器内部元件存在的能量吸收和传递延迟造成的。迟滞与传感器受到的外界载荷的加载过程相关。因为迟滞误差的规律十分复杂,所以目前还没有关于硅压力传感器的迟滞误差补偿应用的报道。迟滞误差占基本误差的比重通常在30%左右,是影响硅压力传感器测量精度的重要因素。The static indicators to measure sensor performance mainly include nonlinear error, hysteresis error and repeatability error. In order to improve the measurement accuracy of the sensor, these errors need to be compensated. At present, the compensation method of nonlinear error has been very mature, and the commonly used compensation methods of nonlinear error include look-up table method, curve fitting method and neural network method. Repeatability error is a random error, which needs to be analyzed by statistical methods, and it cannot be compensated at present. Hysteresis is a multi-value corresponding, irregular, and non-smooth special phenomenon, which is caused by energy absorption and transfer delays in the internal components of the sensor. Hysteresis is related to the loading process of the external load to which the sensor is subjected. Because the law of hysteresis error is very complex, there is no report on the application of hysteresis error compensation for silicon pressure sensors. The proportion of hysteresis error to the basic error is usually about 30%, which is an important factor affecting the measurement accuracy of silicon pressure sensors.
硅压阻式压力传感器的缺点是对温度变化十分敏感,其零点输出和灵敏度都会随着温度变化而产生微小的变化,这种现象称为温度漂移。为了降低温度变化对传感器测量精度的影响,需要对温度变化引起的误差进行补偿。目前工业中常用的温度补偿方法有:硬件补偿方法和软件补偿方法(计算机补偿、微处理器补偿)。硬件补偿方法有二极管、三极管、热敏电阻等补偿电路方法。软件补偿方法是利用计算机或微处理器采集压力信号、温度信号,采用数字信号处理技术对温度漂移产生的误差进行补偿,得到高精度的压力信号。The disadvantage of silicon piezoresistive pressure sensors is that they are very sensitive to temperature changes, and their zero point output and sensitivity will change slightly with temperature changes. This phenomenon is called temperature drift. In order to reduce the impact of temperature changes on the measurement accuracy of sensors, it is necessary to compensate the errors caused by temperature changes. At present, the commonly used temperature compensation methods in the industry are: hardware compensation method and software compensation method (computer compensation, microprocessor compensation). Hardware compensation methods include compensation circuit methods such as diodes, triodes, and thermistors. The software compensation method is to use a computer or microprocessor to collect pressure signals and temperature signals, and use digital signal processing technology to compensate the error caused by temperature drift to obtain high-precision pressure signals.
发明内容:Invention content:
本发明要解决的技术问题是为了克服现有的硅压力传感器测量中迟滞误差无法补偿的不足和提高硅压力传感器的测量精度,提供一种可以补偿迟滞误差,同时补偿硅压力传感器的非线性误差和温度变化产生的误差的高精度信号处理方法。The technical problem to be solved by the present invention is to overcome the deficiency that the hysteresis error cannot be compensated in the measurement of the existing silicon pressure sensor and improve the measurement accuracy of the silicon pressure sensor, to provide a method that can compensate the hysteresis error and at the same time compensate the nonlinear error of the silicon pressure sensor A high-precision signal processing method for errors caused by temperature and temperature changes.
本发明采用的技术方案是一种高精度压力传感器信号补偿方法,所述方法应用在作者研制的智能压力传感器系统中,该系统包括硅压力传感器、信号放大电路、模数转换电路(A/D)、DSP数据采集补偿电路、接口电路和工业控制计算机;所述硅压力传感器上分别连接有信号放大电路和模数转换电路(A/D),信号放大电路同时又与模数转换电路(A/D)连接;所述模数转换电路(A/D)上连接有DSP数据采集补偿电路;所述DSP数据采集补偿电路通过接口电路与工业控制计算机;所述的接口电路包括CAN现场总线和USB接口;所述系统的工作流程:传感器环境的温度信号,与经过信号放大的电压信号一起经过模数转换电路(A/D),由模拟信号转换为数字信号,再经过数字信号处理器(DSP)进行数字信号处理,得到迟滞误差补偿、温度补偿和非线性误差补偿的高精度的压力信号和温度信号。最后,通过CAN现场总线或USB接口将数据传输到工业控制计算机。The technical scheme adopted in the present invention is a high-precision pressure sensor signal compensation method, and the method is applied in the intelligent pressure sensor system developed by the author. The system includes a silicon pressure sensor, a signal amplification circuit, and an analog-to-digital conversion circuit (A/D ), DSP data acquisition compensation circuit, interface circuit and industrial control computer; On the described silicon pressure sensor, be respectively connected with signal amplification circuit and analog-to-digital conversion circuit (A/D), signal amplification circuit is connected with analog-to-digital conversion circuit (A/D) simultaneously /D) is connected; the analog-to-digital conversion circuit (A/D) is connected with a DSP data acquisition compensation circuit; the DSP data acquisition compensation circuit is through an interface circuit and an industrial control computer; the interface circuit includes CAN field bus and USB interface; the working process of the system: the temperature signal of the sensor environment, together with the voltage signal through the signal amplification, passes through the analog-to-digital conversion circuit (A/D), converts the analog signal into a digital signal, and then passes through the digital signal processor ( DSP) for digital signal processing to obtain high-precision pressure signals and temperature signals for hysteresis error compensation, temperature compensation and nonlinear error compensation. Finally, the data is transmitted to the industrial control computer through CAN field bus or USB interface.
高精度压力传感器信号补偿方法,按照如下步骤:The signal compensation method of the high-precision pressure sensor follows the steps below:
(1)硅压力传感器测量得到压力测量信号Vp和温度测量信号Vt;压力测量信号Vp依次经信号放大电路和A/D转换电路后进入DSP数据采集补偿电路;温度测量信号Vt经A/D转换电路后进入DSP数据采集补偿电路;(1) The silicon pressure sensor measures the pressure measurement signal Vp and the temperature measurement signal Vt; the pressure measurement signal Vp enters the DSP data acquisition compensation circuit after passing through the signal amplification circuit and the A/D conversion circuit; the temperature measurement signal Vt is converted by A/D After the circuit enters the DSP data acquisition compensation circuit;
(2)在DSP数据采集补偿电路中,采用迟滞误差补偿方法将压力测量信号Vp转化为消除迟滞误差的压力值P’;(2) In the DSP data acquisition compensation circuit, the hysteresis error compensation method is used to convert the pressure measurement signal Vp into the pressure value P' that eliminates the hysteresis error;
(3)在DSP数据采集补偿电路中,采用信号接口处理方法对压力值P’进行温度校正,得到经过温度校正后的压力信号Vpm;(3) In the DSP data acquisition compensation circuit, adopt signal interface processing method to carry out temperature correction to pressure value P ', obtain the pressure signal Vpm after temperature correction;
(4)在DSP数据采集补偿电路中,采用温度补偿方法,由经过温度校正的压力信号Vpm和温度信号Vt得到经过温度补偿和非线性误差补偿的压力信号P和温度信号T。(4) In the DSP data acquisition compensation circuit, the temperature compensation method is used to obtain the pressure signal P and temperature signal T after temperature compensation and nonlinear error compensation from the temperature corrected pressure signal Vpm and temperature signal Vt.
所述迟滞误差补偿方法是指:The hysteresis error compensation method refers to:
首先,用压力测量信号Vp的极值序列Vp1、Vp2、…、Vpn表示压力;其次,判断压力处在加载过程(即压力载荷递增过程)还是卸载过程(即压力载荷递减过程);然后分别利用迟滞逆模型或对压力测量信号Vp的极值序列Vp1、Vp2、…、Vpn进行处理,得到经过迟滞误差补偿的压力信号P’的序列(P′1,P′2,...,P′n);First, use the extreme value sequence Vp1, Vp2, ..., Vpn of the pressure measurement signal Vp to represent the pressure; secondly, judge whether the pressure is in the loading process (that is, the pressure load increasing process) or the unloading process (that is, the pressure load decreasing process); then use hysteretic inverse model or Process the extreme value sequences Vp1, Vp2, ..., Vpn of the pressure measurement signal Vp to obtain a sequence of pressure signals P'(P' 1 , P' 2 , ..., P' n ) after hysteresis error compensation;
当压力在加载过程中,用于迟滞误差补偿的迟滞逆模型为Hysteretic inverse model for hysteretic error compensation when pressure is applied during loading for
其中,αn为经过迟滞误差补偿的当前的压力值P′n,当前压力处于加载过程;Among them, α n is the current pressure value P′ n after hysteresis error compensation, and the current pressure is in the loading process;
Y为输入向量,由当前的极值压力增量所对应的电压ΔVn和前一个极值压力Pn-1组成,即Y=(ΔVn,Pn-1),其中ΔVn=Vpn-Vpn-1;Y is the input vector, which is composed of the voltage ΔV n corresponding to the current extreme pressure increment and the previous extreme pressure P n-1 , that is, Y=(ΔV n , P n-1 ), where ΔV n =Vp n -Vp n-1 ;
Yi为支持向量,即由训练样本构成的向量,即Yi=(xi(ai,bi),bi),(i=1,2,...,45);αi为经过训练得到的支持向量机的权值系数(i=1,2,...,45);Y i is a support vector, that is, a vector composed of training samples, that is, Y i = ( xi (a i , bi ) , bi ), (i=1, 2, ..., 45); α i is The weight coefficient (i=1,2,...,45) of the support vector machine obtained through training;
当压力在卸载过程中用于迟滞误差补偿的迟滞逆模型为Hysteretic inverse model for hysteretic error compensation when pressure is unloaded for
其中,bn为经过迟滞误差补偿的当前的压力值P′n,当前压力处于卸载过程;Among them, b n is the current pressure value P′ n after hysteresis error compensation, and the current pressure is in the process of unloading;
Y为输入向量,由当前的极值压力增量所对应的电压ΔVn和前一个极值压力Pn-1组成,即Y=(ΔVn,Pn-1),其中ΔVn=Vpn-Vpn-1;Y is the input vector, which is composed of the voltage ΔV n corresponding to the current extreme pressure increment and the previous extreme pressure P n-1 , that is, Y=(ΔV n , P n-1 ), where ΔV n =Vp n -Vp n-1 ;
Yi为支持向量,即由训练样本构成的向量,即Yi=(xi(ai,bi),ai),(i=1,2,...,45);Y i is a support vector, that is, a vector composed of training samples, that is, Y i = ( xi (a i , bi ) , a i ), (i=1, 2, ..., 45);
αi为经过训练得到的支持向量机的权值系数(i=1,2,...,45)。α i is the weight coefficient (i=1, 2, . . . , 45) of the support vector machine obtained through training.
所述信号处理接口方法是指:利用压力信号Vpm关于压力P和温度T的函数模型Vpm=f(P’,Vt),由未经温度补偿的压力信号P’和温度测量信号Vt处理得到经过温度校正的压力信号Vpm;函数模型Vpm=f(P’,Vt)如下式所示:The signal processing interface method refers to: using the function model Vpm=f(P', Vt) of the pressure signal Vpm on the pressure P and temperature T, the pressure signal P' and the temperature measurement signal Vt without temperature compensation are processed to obtain the process The temperature-corrected pressure signal Vpm; the function model Vpm=f(P', Vt) is shown in the following formula:
Vpm=-5.4969×10-6+0.7526×P+0.8192·Vt+4.8869×10-4·P2-0.02361·P·Vt-0.03881·Vt2。Vpm=-5.4969×10 -6 +0.7526×P+0.8192·Vt+4.8869×10 -4 ·P 2 −0.02361·P·Vt−0.03881·Vt 2 .
所述温度补偿方法是指:利用压力P关于压力信号Vpm-温度信号Vt的函数模型P=g(Vpm,Vt)和温度T关于压力信号Vpm-温度信号Vt的函数模型T=q(Vpm,Vt),将压力信号Vpm和温度测量信号Vt处理为:经过温度补偿和非线性误差补偿的高精度的压力信号P和温度信号T;The temperature compensation method refers to: using the function model P=g(Vpm, Vt) of the pressure P about the pressure signal Vpm-temperature signal Vt and the function model T=q(Vpm, Vt) of the temperature T about the pressure signal Vpm-temperature signal Vt Vt), process the pressure signal Vpm and temperature measurement signal Vt into: high-precision pressure signal P and temperature signal T after temperature compensation and nonlinear error compensation;
压力P关于压力信号Vpm-温度信号Vt的函数模型P=g(Vpm,Vt):The function model P=g(Vpm, Vt) of the pressure P with respect to the pressure signal Vpm-temperature signal Vt:
P=-117.758+1.335×Vpm+45.134×Vt-0.00129×Vpm2+0.0477×Vpm·Vt-4.5113×Vt2 P=-117.758+1.335×Vpm+45.134×Vt-0.00129×Vpm 2 +0.0477×Vpm·Vt-4.5113×Vt 2
温度T关于压力信号Vpm-温度信号Vt的函数模型T=q(Vpm,Vt):The function model T=q(Vpm, Vt) of temperature T with respect to the pressure signal Vpm-temperature signal Vt:
T=2693.282-1.3888×Vpm-1182.152×Vt+0.00103×Vpm2+0.2441×Vpm·Vt+130.1434×Vt2。T=2693.282-1.3888×Vpm-1182.152×Vt+0.00103×Vpm 2 +0.2441×Vpm·Vt+130.1434×Vt 2 .
本发明的有益效果是:有效的补偿了硅压力传感器的迟滞误差,同时补偿了硅压力传感器的非线性误差和温度变化产生的误差,提高了硅压力传感器的测量精度;这是一种全新的硅压力传感器误差补偿的数字信号处理方法;经过本发明方法补偿的总精度为0.2%FS(量程)的压力传感器的误差可以减小一半。The beneficial effects of the present invention are: the hysteresis error of the silicon pressure sensor is effectively compensated, and the non-linear error of the silicon pressure sensor and the error caused by temperature change are compensated at the same time, and the measurement accuracy of the silicon pressure sensor is improved; this is a brand new A digital signal processing method for error compensation of a silicon pressure sensor; the error of a pressure sensor with a total accuracy of 0.2% FS (range) compensated by the method of the invention can be reduced by half.
附图说明:Description of drawings:
图1是硅压力传感器的惠斯顿电桥示意图;Fig. 1 is a schematic diagram of a Wheatstone bridge of a silicon pressure sensor;
图2是实施例中使用的智能压力传感器系统结构图;Fig. 2 is the structural diagram of the intelligent pressure sensor system used in the embodiment;
图3是本发明的高精度压力传感器信号补偿方法的结构图;Fig. 3 is a structural diagram of the high-precision pressure sensor signal compensation method of the present invention;
图4是本发明使用的迟滞模型x(a,b)的实验数据绘制图;Fig. 4 is the experimental data drawing figure of hysteresis model x (a, b) that the present invention uses;
图5是本发明使用的支持向量机的结构;Fig. 5 is the structure of the support vector machine that the present invention uses;
图6是硅压力传感器关于压力P和温度T的实验数据绘制图;Fig. 6 is a plotting diagram of experimental data of a silicon pressure sensor about pressure P and temperature T;
图7是实施例1迟滞误差补偿实验中温度为30℃时的输入压力图;Fig. 7 is the input pressure figure when the temperature is 30 ℃ in the hysteresis error compensation experiment of
图8是实施例1实验结果:经过迟滞补偿和未补偿的误差值比较图;Fig. 8 is the experimental result of embodiment 1: the comparison diagram of the error value after hysteresis compensation and uncompensated;
图9是实施例2迟滞误差补偿和温度补偿实验中的温度为65℃时的输入压力图;Fig. 9 is the input pressure diagram when the temperature is 65°C in the experiment of hysteresis error compensation and temperature compensation in
图10是实施例2实验结果:经过本发明补偿和仅非线性误差补偿的误差值比较图。Fig. 10 is the experimental result of embodiment 2: a comparison chart of error values after the compensation of the present invention and only nonlinear error compensation.
具体实施方式:Detailed ways:
下面结合附图对本发明做进一步详细描述:The present invention is described in further detail below in conjunction with accompanying drawing:
在图1中,硅压力传感器的四个力敏电阻构成惠斯顿电桥。为了提高传感器的测量精度,硅压力传感器采用恒流源供电。由于采用恒流源供电,电桥A、C两端的恒流源电压的变化则反映传感器所在环境温度的变化,而电桥B、D两端的输出电压反映了输入压力,这种用一个压力传感器可以同时测压力、温度的系统通常被称为“一桥二测”系统。本实施例中使用“一桥二测”系统,这样可以减少使用温度传感器,方便现场测试,节约实验成本。当然,对于本发明高精度压力传感器信号补偿方法,也可以不采用“一桥二测”方案,温度模拟信号也可以从设置在与硅压力传感器同一环境中的温度传感器中获得。In Figure 1, four force-sensitive resistors of a silicon pressure sensor form a Wheatstone bridge. In order to improve the measurement accuracy of the sensor, the silicon pressure sensor is powered by a constant current source. Since the constant current source is used for power supply, the change of the constant current source voltage at both ends of the bridge A and C reflects the change of the ambient temperature of the sensor, while the output voltage at both ends of the bridge B and D reflects the input pressure. This method uses a pressure sensor A system that can measure pressure and temperature at the same time is usually called a "one bridge, two measurements" system. In this embodiment, the "one bridge and two measurements" system is used, which can reduce the use of temperature sensors, facilitate on-site testing, and save experimental costs. Of course, for the high-precision pressure sensor signal compensation method of the present invention, the "one bridge, two measurements" scheme may not be used, and the temperature analog signal may also be obtained from a temperature sensor installed in the same environment as the silicon pressure sensor.
图2是实施例中使用的作者研制的智能压力传感器系统的结构。智能压力传感器系统由硅压阻式压力传感器、信号放大电路、模数转换电路、数字采集处理电路和工业控制计算机组成。硅压力传感器的恒流源电压作为温度信号,与经过信号放大的电压信号一起经过模数转换电路(A/D),由模拟信号转换为数字信号,再经过数字信号处理器(DSP)进行数字信号处理,得到迟滞误差补偿、温度补偿和非线性误差补偿的高精度的压力信号和温度信号。最后,通过CAN现场总线或USB接口将数据传输到工业控制计算机。其中,DSP作为整个系统的核心,负责各个芯片运行、数据采集、数字信号处理和通讯的功能。Fig. 2 is the structure of the intelligent pressure sensor system developed by the author used in the embodiment. The intelligent pressure sensor system is composed of silicon piezoresistive pressure sensor, signal amplification circuit, analog-to-digital conversion circuit, digital acquisition and processing circuit and industrial control computer. The constant current source voltage of the silicon pressure sensor is used as a temperature signal, and passes through the analog-to-digital conversion circuit (A/D) together with the voltage signal amplified by the signal, and the analog signal is converted into a digital signal, and then digitalized by a digital signal processor (DSP). Signal processing to obtain high-precision pressure signals and temperature signals for hysteresis error compensation, temperature compensation and nonlinear error compensation. Finally, the data is transmitted to the industrial control computer through CAN field bus or USB interface. Among them, DSP, as the core of the whole system, is responsible for the functions of each chip operation, data acquisition, digital signal processing and communication.
系统的工作流程为:上电后,首先,系统的程序初始化;其次,DSP查询由工控机发出通过USB或CAN接口的采集命令;若接到采集命令,则开启一个CPU定时器,在定时器中断中采集压力信号和温度信号,然后进行数字滤波,软件补偿;最后,将补偿后的压力、温度数据通过USB或CAN接口上传到工控机;数据上传后,DSP查询采集结束命令,若没有接到采集结束命令,系统继续采集、处理信号;若接到采集结束命令,系统结束任务。The working process of the system is: after power on, firstly, the program of the system is initialized; secondly, the DSP query is issued by the industrial computer through the USB or CAN interface acquisition command; if the acquisition command is received, a CPU timer is started, and the timer Collect the pressure signal and temperature signal during the interruption, then perform digital filtering and software compensation; finally, upload the compensated pressure and temperature data to the industrial computer through the USB or CAN interface; after the data is uploaded, the DSP queries the acquisition end command. When the collection end command is reached, the system continues to collect and process signals; if the collection end command is received, the system ends the task.
图3是高精度压力传感器信号补偿方法的结构,包括迟滞误差补偿方法,信号处理接口方法和温度补偿方法。Fig. 3 is the structure of the signal compensation method of the high-precision pressure sensor, including the hysteresis error compensation method, the signal processing interface method and the temperature compensation method.
迟滞误差补偿方法的目的是消除压力P加载、卸载的过程中压力测量信号Vp产生的迟滞误差。迟滞误差补偿方法包含二部分:第一部分是记录压力加载过程中的压力测量信号Vp的极值序列,这是因为迟滞与加载过程相关,压力测量信号Vp的极值序列记录了压力加载过程。第二部分是首先判断压力处在加载还是卸载过程,然后分别利用迟滞逆模型或对压力测量信号Vp的极值序列进行处理,得到经过迟滞误差补偿的压力信号P’。The purpose of the hysteresis error compensation method is to eliminate the hysteresis error generated by the pressure measurement signal Vp during the loading and unloading of the pressure P. The hysteresis error compensation method consists of two parts: the first part is to record the extreme value sequence of the pressure measurement signal Vp during the pressure loading process, because hysteresis is related to the loading process, and the extreme value sequence of the pressure measurement signal Vp records the pressure loading process. The second part is to first judge whether the pressure is in the loading or unloading process, and then use the hysteresis inverse model respectively or The extreme value sequence of the pressure measurement signal Vp is processed to obtain the pressure signal P' after hysteresis error compensation.
图4是迟滞模型x(a,b)的实验数据的绘制图。建立正确的、高精度的迟滞模型和逆模型是迟滞误差补偿程序的关键。硅压力传感器的迟滞模型是建立在关于迟滞误差的压力P-压力测量信号Vp标定实验数据基础上。具体的实验过程如下:在室温30℃,湿度56%RH条件下,参照JB/T 10524-2005机械行业标准进行实验,实验仪器主要有:压力传感器标定工作台、恒流源、温控箱和高精度数字万用表。实施例中用的硅压力传感器的量程为40Mpa,综合考虑训练样本对拟合精度的影响以及测试试验的复杂性,将0~40Mpa分成8等分进行测试,载荷从0Mpa加载到5Mpa,记下输出电压,然后减载到0Mpa,记下输出电压,算出x(5,0)。再加载到10Mpa,记下输出电压,减载到5Mpa,记下输出电压,再减载到0Mpa,记下输出电压,分别算得x(10,5)和x(10,0),依此类推,直到40Mpa,得到极值间输出电压x(a,b)实验数据。迟滞模型x(a,b)的实验数据经过数据处理可以得到分别关于a,b的迟滞逆模型和的建模数据。Figure 4 is a plot of experimental data for the hysteresis model x(a,b). Establishing correct and high-precision hysteresis model and inverse model is the key to the hysteresis error compensation program. The hysteresis model of the silicon pressure sensor is based on the calibration experiment data of the pressure P-pressure measurement signal Vp about the hysteresis error. The specific experimental process is as follows: Under the conditions of
通过对迟滞模型x(a,b)的实验数据和迟滞逆模型的建模数据进行回归分析,可以得到硅压力传感器的迟滞模型和用于迟滞误差补偿的逆模型。常用的回归分析方法有二次曲面回归分析方法、神经网络等方法。为了提高回归分析建立的模型精度,兼顾建模效率,本发明采用支持向量机的方法对建模数据进行回归分析。支持向量机(Support VectorMachine,简称SVM)是一种基于统计学习理论的机器学习算法。它是建立在统计学习理论和结构风险最小原理基础上,根据有限的样本信息在模型的复杂性和学习能力之间寻求最佳折衷,以期获得最好的推广能力的机器学习算法,能够保证所得到解是全局最有解。支持向量机在解决小样本、非线性问题中表现出特有的优势。By performing regression analysis on the experimental data of the hysteresis model x(a, b) and the modeling data of the hysteresis inverse model, the hysteresis model of the silicon pressure sensor and the inverse model for hysteresis error compensation can be obtained. Commonly used regression analysis methods include quadratic surface regression analysis method, neural network and other methods. In order to improve the precision of the model established by the regression analysis and take into account the modeling efficiency, the present invention adopts the method of the support vector machine to perform the regression analysis on the modeling data. Support Vector Machine (SVM for short) is a machine learning algorithm based on statistical learning theory. It is based on the statistical learning theory and the principle of minimum structural risk, and seeks the best compromise between the complexity of the model and the learning ability according to the limited sample information, in order to obtain the best promotion ability of the machine learning algorithm, which can guarantee all The solution obtained is the most global solution. Support vector machines show unique advantages in solving small sample and nonlinear problems.
图5是本发明使用的支持向量机的结构,支持向量机的数学模型对训练样本进行数据拟合时,用下式表示。Fig. 5 is the structure of the support vector machine that the present invention uses, and when the mathematical model of support vector machine carries out data fitting to training sample, express with following formula.
其中,Y为被测试的输入向量;Among them, Y is the input vector to be tested;
n为支持向量的数量,即样本数量;n is the number of support vectors, that is, the number of samples;
Yi为支持向量,即由训练样本构成的向量。(i=1,2,...,n);Y i is a support vector, that is, a vector composed of training samples. (i=1,2,...,n);
x(Y)为与Y对应的输出量;x(Y) is the output corresponding to Y;
αi为与权值系数相对应的拉格朗日乘子。(i=1,2,...,n);α i is the Lagrangian multiplier corresponding to the weight coefficient. (i=1,2,...,n);
β为阈值;β is the threshold;
K(xi,x)为支持向量机的核函数。K( xi , x) is the kernel function of the support vector machine.
支持向量机有多种形式的核函数,例如:线性核函数、多项式核函数和径向基核函数等核函数。本发明的支持向量机回归模型使用径向基核函数,因为径向基核函数是产生的偏差较小。径向基核函数如下式所示Support vector machines have various forms of kernel functions, such as linear kernel functions, polynomial kernel functions, and radial basis kernel functions. The support vector machine regression model of the present invention uses the radial basis kernel function, because the radial basis kernel function produces less deviation. The radial basis kernel function is shown in the following formula
其中,||Y-Yi||表示输入向量与支持向量取差后求模;Among them, ||YY i || represents the modulus after taking the difference between the input vector and the support vector;
p为核函数参数,调整p可改善支持向量机的测量精度。p is the kernel function parameter, and adjusting p can improve the measurement accuracy of the support vector machine.
学习参数:核函数参数p、不敏感损失函数ε和惩罚因子C的选择对于支持向量机的训练效率和数据拟合精度有很大的影响。实际应用中,参数的确定方法主要有经验确定和网格搜索。作者通过对样本进行多次训练和比较,最终选择参数为:Learning parameters: The selection of the kernel function parameter p, the insensitive loss function ε, and the penalty factor C has a great influence on the training efficiency and data fitting accuracy of the support vector machine. In practical application, the parameter determination methods mainly include empirical determination and grid search. The author conducts multiple training and comparisons on the samples, and finally selects the parameters as:
核函数参数p=5;Kernel function parameter p=5;
不敏感损失函数参数ε=0.0001;Insensitive loss function parameter ε=0.0001;
惩罚因子C=1000;Penalty factor C=1000;
将建模数据构成的学习样本作为支持向量,一次全部输入构成支持向量机,然后将训练样本中的每一个输入向量依次输入支持向量机进行训练;基于训练样本及结构风险最小原则,求解出SVM结构参数,使输出向量与训练样本中的期望输出向量的偏差最小,此时,支持向量机的训练结束。最后得到满足误差要求的基于训练样本的支持向量机的结构参数:权值系数α1,α2,...,αn和阈值β。The learning samples composed of modeling data are used as support vectors, and all inputs are made at one time to form a support vector machine, and then each input vector in the training samples is input into the support vector machine in turn for training; based on the training samples and the principle of minimum structural risk, the SVM is solved Structural parameters to minimize the deviation between the output vector and the expected output vector in the training sample, at this point, the training of the support vector machine ends. Finally, the structural parameters of the support vector machine based on the training samples that meet the error requirements are obtained: weight coefficients α 1 , α 2 , . . . , α n and threshold β.
采用上述结构和参数的支持向量机建立用于迟滞误差补偿的模型如下:The support vector machine with the above structure and parameters is used to establish a model for hysteresis error compensation as follows:
当压力在加载过程中,用于迟滞误差补偿的迟滞逆模型为Hysteretic inverse model for hysteretic error compensation when pressure is applied during loading for
其中,αn为经过迟滞误差补偿的当前的压力值P′n,当前压力处于加载过程;Among them, α n is the current pressure value P′ n after hysteresis error compensation, and the current pressure is in the loading process;
Y为输入向量,由当前的极值压力增量所对应的电压ΔVn和前一个极值压力Pn-1组成,即Y=(ΔVn,Pn-1),其中ΔVn=Vpn-Vpn-1;Y is the input vector, which is composed of the voltage ΔV n corresponding to the current extreme pressure increment and the previous extreme pressure P n-1 , that is, Y=(ΔV n , P n-1 ), where ΔV n =Vp n -Vp n-1 ;
Yi为支持向量,即由训练样本构成的向量,即Yi=(xi(ai,bi),bi),(i=1,2,...,45);Y i is a support vector, that is, a vector composed of training samples, that is, Y i = ( xi (a i , bi ) , bi ), (i=1, 2, ..., 45);
αi为经过训练得到的支持向量机的权值系数(i=1,2,...,45),权值系数(α1,α2,...,α45)=α i is the weight coefficient (i=1, 2, ..., 45) of the support vector machine obtained through training, and the weight coefficient (α 1 , α 2 , ..., α 45 ) =
(-2.6512 -16.9909 -3.8090 62.4542 28.7184 8.5403 -121.7887-70.8702 -26.0235 -12.2707(-2.6512 -16.9909 -3.8090 62.4542 28.7184 8.5403 -121.7887-70.8702 -26.0235 -12.2707
182.5700 122.7173 64.4205 44.4448 33.8128 -193.8146 -147.9245-90.5564 -68.5294 -60.2854182.5700 122.7173 64.4205 44.4448 33.8128 -193.8146 -147.9245-90.5564 -68.5294 -60.2854
-27.1669 189.9419 146.2461 112.2237 83.7839 86.4418 64.3222 48.3573-124.0973 -106.7623-27.1669 189.9419 146.2461 112.2237 83.7839 86.4418 64.3222 48.3573-124.0973 -106.7623
-84.5529 -67.1388 -63.9511 -65.9918 -55.2276 -21.8993 72.0294 50.453152.5182 43.0396-84.5529 -67.1388 -63.9511 -65.9918 -55.2276 -21.8993 72.0294 50.453152.5182 43.0396
40.8106 44.0773 48.0054 27.7502 38.5530)40.8106 44.0773 48.0054 27.7502 38.5530)
阈值β=0Threshold β = 0
当压力在卸载过程中用于迟滞误差补偿的迟滞逆模型为Hysteretic inverse model for hysteretic error compensation when pressure is unloaded for
其中,bn为经过迟滞误差补偿的当前的压力值P′n,当前压力处于卸载过程;Among them, b n is the current pressure value P′ n after hysteresis error compensation, and the current pressure is in the process of unloading;
Y为输入向量,由当前的极值压力增量所对应的电压ΔVn和前一个极值压力Pn-1组成,即Y=(ΔVn,Pn-1),其中ΔVn=Vpn-Vpn-1;Y is the input vector, which is composed of the voltage ΔV n corresponding to the current extreme pressure increment and the previous extreme pressure P n-1 , that is, Y=(ΔV n , P n-1 ), where ΔV n =Vp n -Vp n-1 ;
Yi为支持向量,即由训练样本构成的向量,即Yi=(xi(ai,bi),ai),(i=1,2,...,45);Y i is a support vector, that is, a vector composed of training samples, that is, Y i = ( xi (a i , bi ) , a i ), (i=1, 2, ..., 45);
αi为经过训练得到的支持向量机的权值系数(i=1,2,...,45),权值系数(α1,α2,...,α45)=α i is the weight coefficient (i=1, 2, ..., 45) of the support vector machine obtained through training, and the weight coefficient (α 1 , α 2 , ..., α 45 ) =
(-2.7459 -11.0461 12.1109 -6.2765 11.6702 -2.7377 -18.6998 35.3271-37.7082 22.8823(-2.7459 -11.0461 12.1109 -6.2765 11.6702 -2.7377 -18.6998 35.3271-37.7082 22.8823
-5.8964 15.5362 -11.6501 7.9822 8.0876 -28.7951 59.5846-82.8821 81.8036 -53.0894-5.8964 15.5362 -11.6501 7.9822 8.0876 -28.7951 59.5846-82.8821 81.8036 -53.0894
21.1136 -30.2184 88.5497 -124.8046 143.7415 -94.2631 36.5565 13.2669-74.1277 216.734421.1136 -30.2184 88.5497 -124.8046 143.7415 -94.2631 36.5565 13.2669-74.1277 216.7344
-415.9337 528.2465 -564.6080 425.8700 -171.0906 43.4731 -18.934981.7430 -173.8384 239.6889-415.9337 528.2465 -564.6080 425.8700 -171.0906 43.4731 -18.934981.7430 -173.8384 239.6889
-208.0146 157.9626 -57.5958 8.9726 37.1454)-208.0146 157.9626 -57.5958 8.9726 37.1454)
阈值β=0Threshold β = 0
信号处理接口方法的目的是联接迟滞误差补偿方法和温度补偿方法,同时对经过迟滞误差补偿、但未经过温度补偿的压力信号进行温度校正。信号处理接口方法中的压力信号Vpm关于压力P和温度T的函数模型Vpm=f(P’,Vt)是建立在硅压力传感器关于压力P和温度T的压力测量信号Vp-温度信号Vt标定实验数据基础上,通过回归分析方法得到的。The purpose of the signal processing interface method is to connect the hysteresis error compensation method and the temperature compensation method, and simultaneously perform temperature correction on the pressure signal that has undergone hysteresis error compensation but has not undergone temperature compensation. The function model Vpm=f(P', Vt) of the pressure signal Vpm on the pressure P and temperature T in the signal processing interface method is based on the pressure measurement signal Vp-temperature signal Vt calibration experiment of the silicon pressure sensor on the pressure P and temperature T Based on the data, obtained by regression analysis method.
图6是硅压力传感器关于压力P和温度T的实验数据绘制图。实验的具体过程如下:实验仪器主要有:压力传感器标定工作台、恒流源、温控箱和高精度数字万用表,参照JB/T 10524-2005机械行业标准进行实验。实施例中用的硅压阻式压力传感器的量程为40Mpa,将硅压阻式压力传感器装入温控箱中,在温度分别为20℃、30℃、40℃、50℃、60℃、65℃的条件下进行压力传感器的压力-BD端电压-AC端电压的测量、记录。压力量程为0~40Mpa,在0Mpa、5Mpa、10Mpa、15Mpa、20Mpa、25Mpa、30Mpa、35Mpa、40Mpa这九点处记录电压输出值。压力传感器的加载过程为从0Mpa逐渐加载到满量程40Mpa,然后再从满量程逐渐递减到0Mpa。最后,得到实验数据:压力P-温度T-压力测量信号Vp-温度信号Vt。因为迟滞的存在,所以在相同温度、相同压力时正、反行程的压力测量信号Vp不同。因此,将在相同温度、相同压力时正、反行程的的压力信号Vp取平均值,得到压力信号Vpm,压力信号Vpm与压力P是一种一一映射关系。FIG. 6 is a plot of experimental data of a silicon pressure sensor with respect to pressure P and temperature T. FIG. The specific process of the experiment is as follows: The experimental instruments mainly include: pressure sensor calibration workbench, constant current source, temperature control box and high-precision digital multimeter, and the experiment is carried out with reference to the JB/T 10524-2005 machinery industry standard. The measuring range of the silicon piezoresistive pressure sensor used in the embodiment is 40Mpa, the silicon piezoresistive pressure sensor is put into the temperature control box, and the temperature is respectively 20 ℃, 30 ℃, 40 ℃, 50 ℃, 60 ℃, 65 Under the condition of ℃, the pressure of the pressure sensor-BD terminal voltage-AC terminal voltage is measured and recorded. The pressure range is 0-40Mpa, and the voltage output value is recorded at nine points of 0Mpa, 5Mpa, 10Mpa, 15Mpa, 20Mpa, 25Mpa, 30Mpa, 35Mpa and 40Mpa. The loading process of the pressure sensor is gradually loaded from 0Mpa to the full scale of 40Mpa, and then gradually decreased from the full scale to 0Mpa. Finally, the experimental data are obtained: pressure P-temperature T-pressure measurement signal Vp-temperature signal Vt. Due to the existence of hysteresis, the pressure measurement signals Vp of the forward and reverse strokes are different at the same temperature and pressure. Therefore, at the same temperature and the same pressure, the pressure signal Vp of the forward and reverse strokes is averaged to obtain the pressure signal Vpm, and the pressure signal Vpm and the pressure P are in a one-to-one mapping relationship.
从硅压力传感器关于压力P和温度T的实验数据中得到建模数据:压力信号Vpm-压力信号P-温度信号Vt,通过对这些数据进行回归分析,得到压力信号Vpm关于压力信号P和温度信号Vt的函数模型Vpm=f(P’,Vt)。本发明中使用二次曲面回归分析建立压力信号Vpm关于压力信号P和温度信号Vt的函数模型Vpm=f(P’,Vt),函数模型如下式所示:The modeling data is obtained from the experimental data of the silicon pressure sensor on the pressure P and temperature T: pressure signal Vpm-pressure signal P-temperature signal Vt, by performing regression analysis on these data, the pressure signal Vpm is obtained on the pressure signal P and temperature signal The function model of Vt Vpm=f(P', Vt). In the present invention, use quadratic surface regression analysis to set up the function model Vpm=f(P', Vt) of pressure signal Vpm about pressure signal P and temperature signal Vt, function model is as shown in the following formula:
Vpm=-5.4969×10-6+0.7526×P+0.8192·Vt+4.8869×10-4·P2-0.02361·P·Vt-0.03881·Vt2 Vpm=-5.4969×10 -6 +0.7526×P+0.8192 Vt+4.8869×10 -4 P 2 -0.02361 P Vt−0.03881 Vt 2
利用压力信号Vpm关于压力信号P和温度信号Vt的函数模型,由未经温度补偿的压力值P’和温度信号Vt处理得到经过温度校正的压力信号Vpm。Using the function model of the pressure signal Vpm with respect to the pressure signal P and the temperature signal Vt, the temperature-corrected pressure signal Vpm is obtained from the non-temperature-compensated pressure value P' and the temperature signal Vt.
所述的温度补偿方法是:在硅压力传感器关于压力P和温度T的压力测量信号Vp-温度信号Vt标定实验数据基础上,通过二次曲面回归分析方法建立压力P关于压力信号Vpm-温度信号Vt的函数模型P=g(Vpm,Vt)和温度T关于压力信号Vpm-温度信号Vt的函数模型T=q(Vpm,Vt);利用压力P函数模型P=g(Vpm,Vt)和温度T函数模型T=q(Vpm,Vt),将压力信号Vpm和温度信号Vt处理为:经过温度补偿和非线性误差补偿的压力信号P和温度信号T。The temperature compensation method is as follows: on the basis of the calibration experimental data of the pressure measurement signal Vp-temperature signal Vt of the pressure P and temperature T of the silicon pressure sensor, the pressure P is established by the quadratic surface regression analysis method about the pressure signal Vpm-temperature signal The function model P=g(Vpm, Vt) of Vt and temperature T are about the function model T=q(Vpm, Vt) of pressure signal Vpm-temperature signal Vt; Utilize pressure P function model P=g(Vpm, Vt) and temperature The T function model T=q(Vpm, Vt), processes the pressure signal Vpm and the temperature signal Vt into: the pressure signal P and the temperature signal T after temperature compensation and nonlinear error compensation.
温度补偿方法需要使用压力P函数模型P=g(Vpm,Vt)和温度T函数模型T=q(Vpm,Vt)。这些函数模型都是建立在硅压力传感器关于压力P和温度T的压力测量信号Vp-温度信号Vt标定实验数据基础上,这个实验与信号处理接口方法中的硅压力传感器关于压力P和温度T的压力测量信号Vp-温度信号Vt标定实验完全相同。从实验数据:压力P-温度T-压力测量信号Vp-温度信号Vt中,可以分别得到建模数据:(压力P-压力信号Vpm-温度信号Vt)和(温度T-压力测量信号Vp-温度信号Vt)。对这些实验数据进行二次曲面回归分析方法,分别建立压力P关于压力信号Vpm-温度信号Vt的函数模型P=g(Vpm,Vt)和温度T关于压力信号Vpm-温度信号Vt的函数模型T=q(Vpm,Vt),函数模型如下式所示。The temperature compensation method requires the use of a pressure P function model P=g(Vpm, Vt) and a temperature T function model T=q(Vpm, Vt). These function models are all based on the calibration experimental data of the pressure measurement signal Vp-temperature signal Vt of the silicon pressure sensor on the pressure P and temperature T. The pressure measurement signal Vp-temperature signal Vt calibration experiment is exactly the same. From the experimental data: pressure P-temperature T-pressure measurement signal Vp-temperature signal Vt, the modeling data can be obtained respectively: (pressure P-pressure signal Vpm-temperature signal Vt) and (temperature T-pressure measurement signal Vp-temperature signal Vt). Carry out quadratic surface regression analysis method to these experimental data, set up the function model P=g(Vpm, Vt) of pressure P about pressure signal Vpm-temperature signal Vt and temperature T respectively about the function model T of pressure signal Vpm-temperature signal Vt =q(Vpm, Vt), the function model is shown in the following formula.
压力P关于压力信号Vpm-温度信号Vt的函数模型P=g(Vpm,Vt):The function model P=g(Vpm, Vt) of the pressure P with respect to the pressure signal Vpm-temperature signal Vt:
P=-117.758+1.335×Vpm+45.134×Vt-0.00128×Vpm2+0.0477×Vpm·Vt-4.5113×Vt2 P=-117.758+1.335×Vpm+45.134×Vt-0.00128×Vpm 2 +0.0477×Vpm·Vt-4.5113×Vt 2
温度T关于压力信号Vpm-温度信号Vt的函数模型T=q(Vpm,Vt):The function model T=q(Vpm, Vt) of temperature T with respect to the pressure signal Vpm-temperature signal Vt:
T=2693.282-1.3888×Vpm-1182.152×Vt+0.00103×Vpm2+0.2441×Vpm·Vt+130.1434×Vt2 T=2693.282-1.3888×Vpm-1182.152×Vt+0.00103×Vpm 2 +0.2441×Vpm·Vt+130.1434×Vt 2
利用压力P函数模型P=g(Vpm,Vt)和温度T函数模型T=q(Vpm,Vt),将压力信号Vpm和温度信号Vt处理为:经过温度补偿和非线性误差补偿的压力信号P和温度信号T。Using the pressure P function model P=g(Vpm, Vt) and the temperature T function model T=q(Vpm, Vt), the pressure signal Vpm and the temperature signal Vt are processed into: the pressure signal P after temperature compensation and nonlinear error compensation and temperature signal T.
下面是为了检验本发明高精度压力传感器信号补偿方法而做的两个实施例。实施例1:迟滞误差补偿实验是在温度不变的条件下检验迟滞误差补偿效果而做的实验。实施例2:迟滞误差补偿和温度补偿实验是在温度改变的条件下做的实验。实验仪器主要有:活塞式压力计、恒流电源、温度控制箱和高精度数字万用表。实施例中使用的硅压力传感器的量程为0~40Mpa。在室温26℃,湿度56%RH条件下,参照JB/T 10524-2005机械行业标准进行试验。The following are two examples for testing the high-precision pressure sensor signal compensation method of the present invention. Embodiment 1: The hysteresis error compensation experiment is an experiment conducted to test the effect of hysteresis error compensation under the condition of constant temperature. Embodiment 2: Hysteresis Error Compensation and Temperature Compensation Experiments are conducted under conditions of temperature changes. The experimental instruments mainly include: piston pressure gauge, constant current power supply, temperature control box and high-precision digital multimeter. The measuring range of the silicon pressure sensor used in the embodiment is 0-40Mpa. Under the conditions of room temperature 26°C and humidity 56%RH, the test is carried out with reference to the JB/T 10524-2005 machinery industry standard.
实施例1:迟滞误差补偿实验Example 1: Hysteresis Error Compensation Experiment
为了检验本发明高精度压力传感器信号补偿方法的迟滞补偿效果,采用如图7所示的压力极值序列作为输入压力,传感器所在温控箱的温度为30℃。将输出电压作为输入信号,分别用本发明高精度压力传感器信号补偿方法和未经迟滞补偿方法进行计算和比较,误差比较如图8所示。其中,实线为本发明方法的误差,虚线为非迟滞补偿方法的误差。误差值分析比较如表1所示。In order to test the hysteresis compensation effect of the high-precision pressure sensor signal compensation method of the present invention, the pressure extreme value sequence shown in Figure 7 is used as the input pressure, and the temperature of the temperature control box where the sensor is located is 30°C. The output voltage is used as the input signal to calculate and compare with the signal compensation method of the high-precision pressure sensor of the present invention and the method without hysteresis compensation respectively, and the error comparison is shown in Fig. 8 . Wherein, the solid line is the error of the method of the present invention, and the dotted line is the error of the non-hysteresis compensation method. The error value analysis and comparison are shown in Table 1.
表1Table 1
由试验结果对比可知,经迟滞补偿后的压力值的误差明显小于未经迟滞补偿的压力值误差。因此,对于硅压力传感器的迟滞误差,使用本发明高精度压力传感器信号补偿方法是有效的。From the comparison of the test results, it can be seen that the error of the pressure value after hysteresis compensation is obviously smaller than the error of the pressure value without hysteresis compensation. Therefore, for the hysteresis error of the silicon pressure sensor, it is effective to use the high-precision pressure sensor signal compensation method of the present invention.
实施例2:迟滞误差补偿和温度补偿实验Example 2: Hysteresis Error Compensation and Temperature Compensation Experiments
为了检验本发明高精度压力传感器信号补偿方法整体的补偿效果,采用如图9所示的压力作为输入压力,传感器所在温控箱的温度为65℃。将输出电压作为输入信号,分别用本发明高精度压力传感器信号补偿方法和非线性误差补偿方法进行计算和比较,误差比较如图10所示。其中,实线为本发明方法的误差,虚线为非线性误差补偿方法的误差。误差值分析比较如表2所示。In order to test the overall compensation effect of the high-precision pressure sensor signal compensation method of the present invention, the pressure shown in Figure 9 is used as the input pressure, and the temperature of the temperature control box where the sensor is located is 65°C. The output voltage is used as the input signal, and the signal compensation method of the high-precision pressure sensor and the nonlinear error compensation method of the present invention are respectively used for calculation and comparison. The error comparison is shown in FIG. 10 . Wherein, the solid line is the error of the method of the present invention, and the dotted line is the error of the nonlinear error compensation method. The error value analysis and comparison are shown in Table 2.
表2Table 2
由试验结果可知,经迟滞、非线性误差补偿和温度补偿后的压力值的误差得到明显的减小,本发明高精度压力传感器信号补偿方法是有效的。It can be seen from the test results that the error of the pressure value after hysteresis, nonlinear error compensation and temperature compensation is significantly reduced, and the signal compensation method of the high-precision pressure sensor of the present invention is effective.
以上内容是结合具体的优选实施方式对本发明所作的进一步详细说明,不能认定本发明的具体实施方式仅限于此,对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干简单的推演或替换,都应当视为属于本发明由所提交的权利要求书确定专利保护范围。The above content is a further detailed description of the present invention in conjunction with specific preferred embodiments. It cannot be determined that the specific embodiments of the present invention are limited thereto. Under the circumstances, some simple deduction or replacement can also be made, all of which should be regarded as belonging to the scope of patent protection determined by the submitted claims of the present invention.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2010102020783A CN101858811B (en) | 2010-06-18 | 2010-06-18 | Signal Compensation Method of High Accuracy Pressure Sensor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2010102020783A CN101858811B (en) | 2010-06-18 | 2010-06-18 | Signal Compensation Method of High Accuracy Pressure Sensor |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101858811A true CN101858811A (en) | 2010-10-13 |
CN101858811B CN101858811B (en) | 2012-02-01 |
Family
ID=42944843
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2010102020783A Expired - Fee Related CN101858811B (en) | 2010-06-18 | 2010-06-18 | Signal Compensation Method of High Accuracy Pressure Sensor |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101858811B (en) |
Cited By (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102393274A (en) * | 2011-10-24 | 2012-03-28 | 山东佰测仪表有限公司 | Temperature compensation method of intelligent pressure transmitter based on quadric surface |
CN103076117A (en) * | 2012-12-26 | 2013-05-01 | 南京高华科技有限公司 | Sensor and measuring method thereof |
CN103199801A (en) * | 2013-04-03 | 2013-07-10 | 上海理工大学 | Turbine flow sensor preamplifier with nonlinearity compensation and compensation method |
CN103278269A (en) * | 2013-04-24 | 2013-09-04 | 武汉航空仪表有限责任公司 | Temperature compensation method for high accuracy pressure transmitter |
CN103968998A (en) * | 2014-04-12 | 2014-08-06 | 沈阳仪表科学研究院有限公司 | Method for conducting pressure calibration on diffused silicon sensors through upper computer |
CN104122031A (en) * | 2014-07-31 | 2014-10-29 | 西安交通大学 | Silicon pressure sensor temperature compensation method based on extreme learning machine |
CN104204759A (en) * | 2012-02-21 | 2014-12-10 | 德莱赛公司 | Temperature compensated pressure transducer |
CN105277216A (en) * | 2014-06-30 | 2016-01-27 | 罗斯蒙特公司 | Hysteretic process variable sensor compensation |
CN105301154A (en) * | 2015-10-10 | 2016-02-03 | 上海炫一电气有限公司 | Universal air path control system and method based on temperature compensation |
CN105300412A (en) * | 2015-07-27 | 2016-02-03 | 桂林电子科技大学 | Temperature self compensation method for LAPS (Light Addressable Potentiometric Sensor) |
CN105588681A (en) * | 2014-10-20 | 2016-05-18 | 华记科技有限公司 | The Temperature Compensation Method and Structure of Electronic Pressure Gauge |
CN105971976A (en) * | 2016-05-25 | 2016-09-28 | 广西柳工机械股份有限公司 | Method for measuring hydraulic pressure of engineering machine by means of voltage type pressure sensor |
CN106092178A (en) * | 2016-08-26 | 2016-11-09 | 中煤科工集团重庆研究院有限公司 | Data correction method for improving measurement precision |
CN106895929A (en) * | 2017-01-06 | 2017-06-27 | 慧石(上海)测控科技有限公司 | Improve the temperature pressure compensation method of embedded pressure sensor output accuracy |
CN108181028A (en) * | 2018-01-29 | 2018-06-19 | 西南交通大学 | A kind of humble pressure sensor mushing error modification method of pressure resistance type |
CN109238219A (en) * | 2018-07-26 | 2019-01-18 | 天津大学 | Based on flexible conduction high molecular composite material strain transducer hysteresis compensation method |
CN109633205A (en) * | 2019-01-16 | 2019-04-16 | 南京理工大学 | A method for temperature compensation of quartz resonant accelerometer |
CN111813260A (en) * | 2020-06-19 | 2020-10-23 | 东南大学 | Solutions to Capacitive Tactile Sensor Hysteresis Errors and High-Frequency Noise Errors |
CN114007664A (en) * | 2019-05-21 | 2022-02-01 | B·布莱恩·阿维图姆股份公司 | Pressure measurement in an extracorporeal blood circuit |
CN114323134A (en) * | 2021-12-27 | 2022-04-12 | 武汉航空仪表有限责任公司 | Temperature and pressure composite sensor and correction resolving method |
CN114791334A (en) * | 2022-04-20 | 2022-07-26 | 浙江大学 | A Simplified Method for Calibration of Pressure Sensors |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1479192A (en) * | 1975-09-19 | 1977-07-06 | Avery Ltd W | Hysteresis correction |
JPH10148566A (en) * | 1996-11-15 | 1998-06-02 | Yamato Scale Co Ltd | Method for compensating hysteresis error, and measuring instrument with the function |
WO2002035191A1 (en) * | 2000-10-28 | 2002-05-02 | Schenck Process Gmbh | Method and device for the hysteresis correction of measured values for sensors with extensometers |
CN101089574A (en) * | 2006-06-14 | 2007-12-19 | 昆山双桥传感器测控技术有限公司 | Error correcting method for pressure sensor |
CN101201284A (en) * | 2006-12-14 | 2008-06-18 | 昆山双桥传感器测控技术有限公司 | Error compensation model and algorithm implementation of high-precision pressure sensor |
CN101275878A (en) * | 2007-03-27 | 2008-10-01 | 捷顶微电子(上海)有限公司 | Compensation method of temperature drift of pressure sensor |
-
2010
- 2010-06-18 CN CN2010102020783A patent/CN101858811B/en not_active Expired - Fee Related
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1479192A (en) * | 1975-09-19 | 1977-07-06 | Avery Ltd W | Hysteresis correction |
JPH10148566A (en) * | 1996-11-15 | 1998-06-02 | Yamato Scale Co Ltd | Method for compensating hysteresis error, and measuring instrument with the function |
WO2002035191A1 (en) * | 2000-10-28 | 2002-05-02 | Schenck Process Gmbh | Method and device for the hysteresis correction of measured values for sensors with extensometers |
CN101089574A (en) * | 2006-06-14 | 2007-12-19 | 昆山双桥传感器测控技术有限公司 | Error correcting method for pressure sensor |
CN101201284A (en) * | 2006-12-14 | 2008-06-18 | 昆山双桥传感器测控技术有限公司 | Error compensation model and algorithm implementation of high-precision pressure sensor |
CN101275878A (en) * | 2007-03-27 | 2008-10-01 | 捷顶微电子(上海)有限公司 | Compensation method of temperature drift of pressure sensor |
Non-Patent Citations (3)
Title |
---|
《上海交通道学学报》 20070131 赵新龙,等 基于神经网络的迟滞非线性逆模型 第41卷, 第1期 2 * |
《仪表技术与传感器》 20071231 谢煜,等 电容称重传感器的迟滞性补偿 , 第12期 2 * |
《微计算机信息》 20080131 杨俊,等 扩散硅压力传感器的迟滞建模与智能补偿 第24卷, 第1期 2 * |
Cited By (32)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102393274A (en) * | 2011-10-24 | 2012-03-28 | 山东佰测仪表有限公司 | Temperature compensation method of intelligent pressure transmitter based on quadric surface |
CN104204759A (en) * | 2012-02-21 | 2014-12-10 | 德莱赛公司 | Temperature compensated pressure transducer |
CN103076117A (en) * | 2012-12-26 | 2013-05-01 | 南京高华科技有限公司 | Sensor and measuring method thereof |
CN103199801A (en) * | 2013-04-03 | 2013-07-10 | 上海理工大学 | Turbine flow sensor preamplifier with nonlinearity compensation and compensation method |
CN103199801B (en) * | 2013-04-03 | 2016-03-23 | 上海理工大学 | Turbine flow sensor preamplifier with nonlinear compensation and compensation method |
CN103278269A (en) * | 2013-04-24 | 2013-09-04 | 武汉航空仪表有限责任公司 | Temperature compensation method for high accuracy pressure transmitter |
CN103968998A (en) * | 2014-04-12 | 2014-08-06 | 沈阳仪表科学研究院有限公司 | Method for conducting pressure calibration on diffused silicon sensors through upper computer |
CN105277216A (en) * | 2014-06-30 | 2016-01-27 | 罗斯蒙特公司 | Hysteretic process variable sensor compensation |
US10635064B2 (en) | 2014-06-30 | 2020-04-28 | Rosemount Inc. | Hysteretic process variable sensor compensation |
CN105277216B (en) * | 2014-06-30 | 2018-05-29 | 罗斯蒙特公司 | Sluggish process variable sensor compensation |
CN104122031A (en) * | 2014-07-31 | 2014-10-29 | 西安交通大学 | Silicon pressure sensor temperature compensation method based on extreme learning machine |
CN105588681A (en) * | 2014-10-20 | 2016-05-18 | 华记科技有限公司 | The Temperature Compensation Method and Structure of Electronic Pressure Gauge |
CN105300412A (en) * | 2015-07-27 | 2016-02-03 | 桂林电子科技大学 | Temperature self compensation method for LAPS (Light Addressable Potentiometric Sensor) |
CN105300412B (en) * | 2015-07-27 | 2017-09-15 | 桂林电子科技大学 | A kind of temperature self-compensation method for LAPS |
CN105301154A (en) * | 2015-10-10 | 2016-02-03 | 上海炫一电气有限公司 | Universal air path control system and method based on temperature compensation |
CN105971976A (en) * | 2016-05-25 | 2016-09-28 | 广西柳工机械股份有限公司 | Method for measuring hydraulic pressure of engineering machine by means of voltage type pressure sensor |
CN106092178A (en) * | 2016-08-26 | 2016-11-09 | 中煤科工集团重庆研究院有限公司 | Data correction method for improving measurement precision |
CN106092178B (en) * | 2016-08-26 | 2018-09-04 | 中煤科工集团重庆研究院有限公司 | Data correction method for improving measurement precision |
CN106895929B (en) * | 2017-01-06 | 2019-04-05 | 慧石(上海)测控科技有限公司 | Improve the temperature pressure compensation method of embedded pressure sensor output accuracy |
CN106895929A (en) * | 2017-01-06 | 2017-06-27 | 慧石(上海)测控科技有限公司 | Improve the temperature pressure compensation method of embedded pressure sensor output accuracy |
CN108181028A (en) * | 2018-01-29 | 2018-06-19 | 西南交通大学 | A kind of humble pressure sensor mushing error modification method of pressure resistance type |
CN109238219A (en) * | 2018-07-26 | 2019-01-18 | 天津大学 | Based on flexible conduction high molecular composite material strain transducer hysteresis compensation method |
CN109633205A (en) * | 2019-01-16 | 2019-04-16 | 南京理工大学 | A method for temperature compensation of quartz resonant accelerometer |
US12337095B2 (en) | 2019-05-21 | 2025-06-24 | B. Braun Avitum Ag | Pressure measurement in the extracorporeal blood circuit |
CN114007664B (en) * | 2019-05-21 | 2025-07-01 | B·布莱恩·阿维图姆股份公司 | Pressure measurement in extracorporeal blood circuits |
CN114007664A (en) * | 2019-05-21 | 2022-02-01 | B·布莱恩·阿维图姆股份公司 | Pressure measurement in an extracorporeal blood circuit |
CN111813260A (en) * | 2020-06-19 | 2020-10-23 | 东南大学 | Solutions to Capacitive Tactile Sensor Hysteresis Errors and High-Frequency Noise Errors |
CN111813260B (en) * | 2020-06-19 | 2021-07-20 | 东南大学 | Solutions to Capacitive Tactile Sensor Hysteresis Errors and High-Frequency Noise Errors |
CN114323134B (en) * | 2021-12-27 | 2025-02-11 | 武汉航空仪表有限责任公司 | A temperature and pressure composite sensor and correction solution method |
CN114323134A (en) * | 2021-12-27 | 2022-04-12 | 武汉航空仪表有限责任公司 | Temperature and pressure composite sensor and correction resolving method |
CN114791334A (en) * | 2022-04-20 | 2022-07-26 | 浙江大学 | A Simplified Method for Calibration of Pressure Sensors |
CN114791334B (en) * | 2022-04-20 | 2023-09-05 | 浙江大学 | Calibration simplifying method of pressure sensor |
Also Published As
Publication number | Publication date |
---|---|
CN101858811B (en) | 2012-02-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101858811A (en) | Signal Compensation Method of High Accuracy Pressure Sensor | |
CN101936791B (en) | Digital pressure gauge | |
CN105973444B (en) | A kind of improved truck scale weighing method | |
CN105466629B (en) | A kind of force snesor automatic calibration device and method | |
CN102506983A (en) | Weighing error automatic compensation method of vehicle scale | |
CN201754115U (en) | Digital pressure meter | |
CN101644646B (en) | An optical-based method for measuring fracture toughness | |
CN111964619A (en) | A temperature difference compensation method for measuring shaft parts by displacement sensor | |
CN103217335B (en) | Method for rapidly detecting main curve of tensile strength for unidirectional stretching of solid propellant | |
CN116296047A (en) | Temperature compensation improvement method of monocrystalline silicon pressure transmitter | |
CN108759652B (en) | A kind of curvature measurement method based on favour stone full-bridge principle | |
CN105387913A (en) | Granary weight detection method and granary weight detection device based on index relationship and support vector regression | |
CN204202717U (en) | Multichannel digital uneven loading error intelligence revises porous many beam types LOAD CELLS | |
CN103358180A (en) | Method of quickly identifying thermal state characteristics of machine tool main shaft | |
CN106017625A (en) | Method for detecting quantity of grain in grain bin, and pressure sensor | |
CN104655496B (en) | The method of testing conducted oneself with dignity on the influence of off axis reflector mirror surface-shaped | |
CN203376085U (en) | High precision double-end fixing resonant tuning fork type pressure sensor | |
CN102297745B (en) | Static decoupling method of multi-dimensional force sensor based on GM(0,2) model | |
CN104990668A (en) | Fiber bragg grating tension sensor calibration method | |
CN105352571A (en) | Granary weight detection method and device based on index relation estimation | |
Wan et al. | A digital compensation method for piezoresistive pressure sensor | |
Huang et al. | Nonintrusive pressure measurement with capacitance method based on FLANN | |
Chen et al. | Embedded electronic scale measuring system based on STM32 single chip microcomputer | |
CN103076035B (en) | A kind of sensor measurement based on two support vector machine | |
CN116718301A (en) | A temperature compensation method and system for an integrated temperature and pressure sensor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20120201 Termination date: 20140618 |
|
EXPY | Termination of patent right or utility model |