CN101856650A - Solution preparation method of localized surface plasmon resonance metal nano-island structure film - Google Patents
Solution preparation method of localized surface plasmon resonance metal nano-island structure film Download PDFInfo
- Publication number
- CN101856650A CN101856650A CN200910081749A CN200910081749A CN101856650A CN 101856650 A CN101856650 A CN 101856650A CN 200910081749 A CN200910081749 A CN 200910081749A CN 200910081749 A CN200910081749 A CN 200910081749A CN 101856650 A CN101856650 A CN 101856650A
- Authority
- CN
- China
- Prior art keywords
- plasmon resonance
- surface plasmon
- gold
- island structure
- nano
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000002198 surface plasmon resonance spectroscopy Methods 0.000 title claims abstract description 27
- 229910052751 metal Inorganic materials 0.000 title claims abstract description 24
- 239000002184 metal Substances 0.000 title claims abstract description 24
- 238000002360 preparation method Methods 0.000 title abstract description 9
- 238000000034 method Methods 0.000 claims abstract description 39
- 239000000758 substrate Substances 0.000 claims abstract description 25
- 239000002082 metal nanoparticle Substances 0.000 claims abstract description 16
- 238000004528 spin coating Methods 0.000 claims abstract description 11
- 238000010438 heat treatment Methods 0.000 claims abstract description 7
- 239000000084 colloidal system Substances 0.000 claims abstract description 5
- 239000003960 organic solvent Substances 0.000 claims abstract description 5
- 238000001816 cooling Methods 0.000 claims abstract 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 66
- 239000010931 gold Substances 0.000 claims description 59
- 229910052737 gold Inorganic materials 0.000 claims description 58
- 239000011521 glass Substances 0.000 claims description 14
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 claims description 9
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 claims description 9
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 claims description 6
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 claims description 6
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 claims description 6
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims description 5
- 229910052709 silver Inorganic materials 0.000 claims description 5
- 239000004332 silver Substances 0.000 claims description 5
- OFBQJSOFQDEBGM-UHFFFAOYSA-N Pentane Chemical compound CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 claims description 4
- MVPPADPHJFYWMZ-UHFFFAOYSA-N chlorobenzene Chemical compound ClC1=CC=CC=C1 MVPPADPHJFYWMZ-UHFFFAOYSA-N 0.000 claims description 4
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 4
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 claims description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 2
- 238000004519 manufacturing process Methods 0.000 claims description 2
- TVMXDCGIABBOFY-UHFFFAOYSA-N octane Chemical compound CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 claims description 2
- 229910052697 platinum Inorganic materials 0.000 claims description 2
- 239000010453 quartz Substances 0.000 claims description 2
- 229910052710 silicon Inorganic materials 0.000 claims description 2
- 239000010703 silicon Substances 0.000 claims description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 2
- 239000002120 nanofilm Substances 0.000 claims 2
- 150000004816 dichlorobenzenes Chemical class 0.000 claims 1
- 239000013528 metallic particle Substances 0.000 claims 1
- 239000010408 film Substances 0.000 abstract description 49
- 239000010409 thin film Substances 0.000 abstract description 7
- 239000000463 material Substances 0.000 abstract description 3
- 239000002105 nanoparticle Substances 0.000 description 27
- 230000008033 biological extinction Effects 0.000 description 22
- 238000001228 spectrum Methods 0.000 description 22
- ZBKIUFWVEIBQRT-UHFFFAOYSA-N gold(1+) Chemical compound [Au+] ZBKIUFWVEIBQRT-UHFFFAOYSA-N 0.000 description 8
- 239000008096 xylene Substances 0.000 description 7
- 238000009826 distribution Methods 0.000 description 6
- 239000002086 nanomaterial Substances 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- 238000004416 surface enhanced Raman spectroscopy Methods 0.000 description 3
- 230000005672 electromagnetic field Effects 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 238000010884 ion-beam technique Methods 0.000 description 2
- 238000000287 localised surface plasmon resonance spectrum Methods 0.000 description 2
- 239000007769 metal material Substances 0.000 description 2
- 230000010355 oscillation Effects 0.000 description 2
- 238000004611 spectroscopical analysis Methods 0.000 description 2
- OCJBOOLMMGQPQU-UHFFFAOYSA-N 1,4-dichlorobenzene Chemical compound ClC1=CC=C(Cl)C=C1 OCJBOOLMMGQPQU-UHFFFAOYSA-N 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 229940117389 dichlorobenzene Drugs 0.000 description 1
- 238000004070 electrodeposition Methods 0.000 description 1
- 230000005693 optoelectronics Effects 0.000 description 1
- 238000001105 surface plasmon resonance spectrum Methods 0.000 description 1
- 238000007738 vacuum evaporation Methods 0.000 description 1
Images
Landscapes
- Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
- Application Of Or Painting With Fluid Materials (AREA)
Abstract
局域表面等离子共振金属纳米岛状结构薄膜的溶液制备方法属于纳米光电子材料领域。现有制备局域表面等离子共振金属纳米岛状结构的方法存在制备面积小、成本高、效率较低等问题。本发明通过将直径为1-10nm的金属纳米颗粒溶于有机溶剂中,制备成40-100mg/ml的溶胶后,采用旋转涂膜的方法涂在基底上,而后将涂有金属胶体薄膜的基底于350-550℃,加热5-10min后,冷却,制备局域表面等离子共振金属纳米岛状结构薄膜。本发明方法成本低、重复性好、效率高。
The invention relates to a solution preparation method of a local surface plasmon resonance metal nano-island structure thin film, which belongs to the field of nano-optoelectronic materials. The existing methods for preparing localized surface plasmon resonance metal nano-island structures have problems such as small preparation area, high cost, and low efficiency. In the present invention, metal nanoparticles with a diameter of 1-10 nm are dissolved in an organic solvent to prepare a sol of 40-100 mg/ml, and then coated on the substrate by a spin coating method, and then the substrate coated with the metal colloid film After heating at 350-550° C. for 5-10 minutes, cooling to prepare a localized surface plasmon resonance metal nano-island structure film. The method of the invention has low cost, good repeatability and high efficiency.
Description
技术领域technical field
本发明属于纳米光电子材料领域,具体涉及一种局域表面等离子共振的低维金属纳米岛状结构薄膜的制备方法,特别涉及一种溶液法辅以热处理工艺制备直径分布和局域表面等离子共振光谱响应范围可控的金属纳米岛状结构薄膜的方法。The invention belongs to the field of nano-optoelectronic materials, in particular to a method for preparing a low-dimensional metal nano-island structure thin film with localized surface plasmon resonance, in particular to a solution method supplemented by a heat treatment process to prepare diameter distribution and localized surface plasmon resonance spectrum A method for metal nano-island structure film with controllable response range.
背景技术Background technique
每种金属材料都有它固有的等离子振荡频率,当入射光以临界角入射到两种不同折射率的介质界面(比如玻璃表面的金或银镀层)时,在金属界面上产生倏逝波(evanescent wave),当倏逝波的频率与金属中电子的振荡频率相等时,就会在金属的界面上产生表面等离子共振。如果金属为不连续的金属纳米粒子,则入射光直接照射金属纳米粒子时,就会直接激发金属纳米粒子的表面等离子共振,这种等离子共振只局限在金属纳米粒子的表面,叫做局域表面等离子共振(Localized Surface PlasmonResonance,LSPR)。Each metal material has its inherent plasmon oscillation frequency. When the incident light enters the interface of two media with different refractive indices (such as gold or silver coating on the glass surface) at a critical angle, an evanescent wave ( evanescent wave), when the frequency of the evanescent wave is equal to the oscillation frequency of electrons in the metal, surface plasmon resonance will be generated on the interface of the metal. If the metal is a discontinuous metal nanoparticle, when the incident light directly irradiates the metal nanoparticle, the surface plasmon resonance of the metal nanoparticle will be directly excited. This plasmon resonance is only limited to the surface of the metal nanoparticle, which is called localized surface plasmon. Resonance (Localized Surface Plasmon Resonance, LSPR).
近年来,局域表面等离子共振效应在光谱学领域和光电子学领域获得了广泛的研究。局域表面等离子共振与金属纳米结构的材料、形状、尺寸、粒子之间的距离、以及微环境的介电常数密切相关。具有局域表面等离子体共振特性的金属纳米结构包括:不连续的金属纳米岛状薄膜,金属纳米颗粒,图案化的金属纳米阵列等。其中,金属材料以银(Ag)和金(Au)为主,但也不仅限于金、银。当表面等离子体达到共振时,距纳米粒子表面20nm的范围内将产生很强的电磁场,该电磁场将产生104-105的表面增强效应。在光谱研究方面已有“表面等离子体增强光谱学”这样的概念。已经观测到的表面增强效应主要包括:表面增强拉曼散射(Surface enhancedRaman Scattering,SERS)、表面等离子体增强荧光(Surface plasmonenhanced fluorescence,SPEF)、表面等离子体共振瑞利散射(Surfaceplasmon resonance rayleigh scattering,SPRRS)、表面增强红外(SEIR),表面增强透射效应,表面增强受激辐射(SPESE),表面增强发光(SPEE)等等。近来,在表面等离子体研究和应用方面不断有新发现和新方法出现,这一研究领域正在成为未来几年纳米光学发展的热点之一。In recent years, the localized surface plasmon resonance effect has been extensively studied in the fields of spectroscopy and optoelectronics. Localized surface plasmon resonance is closely related to the material, shape, size, distance between particles, and the dielectric constant of the microenvironment of metallic nanostructures. Metal nanostructures with localized surface plasmon resonance properties include: discontinuous metal nano-island films, metal nanoparticles, patterned metal nano-arrays, etc. Among them, the metal materials are mainly silver (Ag) and gold (Au), but are not limited to gold and silver. When the surface plasmon reaches resonance, a strong electromagnetic field will be generated within 20 nm from the surface of the nanoparticle, and the electromagnetic field will produce a surface enhancement effect of 10 4 -10 5 . The concept of "surface plasmon-enhanced spectroscopy" has already existed in spectroscopic research. The observed surface enhancement effects mainly include: surface enhanced Raman scattering (Surface enhanced Raman Scattering, SERS), surface plasmon enhanced fluorescence (Surface plasmonenhanced fluorescence, SPEF), surface plasmon resonance Rayleigh scattering (Surface plasmon resonance rayleigh scattering, SPRRS) ), Surface Enhanced Infrared (SEIR), Surface Enhanced Transmission Effect, Surface Enhanced Stimulated Emission (SPESE), Surface Enhanced Emission (SPEE) and so on. Recently, new discoveries and new methods have emerged in the research and application of surface plasmons, and this research field is becoming one of the hot spots in the development of nano-optics in the next few years.
目前,制备具有局域表面等离子共振特性的金属纳米结构,主要采用离子束刻蚀、聚焦离子束刻蚀、电化学沉积、真空蒸镀等手段。但是,这些制备方法不同程度的存在制备面积小、制备成本高、制备效率较低等问题。At present, methods such as ion beam etching, focused ion beam etching, electrochemical deposition, and vacuum evaporation are mainly used to prepare metal nanostructures with localized surface plasmon resonance properties. However, these preparation methods have problems such as small preparation area, high preparation cost, and low preparation efficiency to varying degrees.
发明内容Contents of the invention
本发明目的在于提供一种溶液法结合热处理工艺制备直径分布和局域表面等离子共振光谱响应范围可控的金属纳米岛状结构薄膜的制备方法。本发明方法操作简单、成本低廉,并可实现大面积生产。The purpose of the present invention is to provide a method for preparing a metal nano-island structure thin film with controllable diameter distribution and localized surface plasmon resonance spectrum response range by a solution method combined with a heat treatment process. The method of the invention is simple in operation, low in cost, and can realize large-area production.
本发明所提供的局域表面等离子共振金属纳米岛状结构薄膜的制备法方,包括以下步骤:The preparation method of the local surface plasmon resonance metal nano-island structure film provided by the present invention comprises the following steps:
1)将直径为1-10nm的金属纳米颗粒溶于有机溶剂中,制备成40-100mg/ml的金属纳米颗粒溶胶;1) dissolving metal nanoparticles with a diameter of 1-10 nm in an organic solvent to prepare a 40-100 mg/ml metal nanoparticle sol;
参照文献[Langmuir 1998年14卷第17页或J.AM.CHEM.SOC.2005年127卷第3266页]中所提供的方法制备直径为1-10nm的金属纳米颗粒。Metal nanoparticles with a diameter of 1-10 nm were prepared by referring to the method provided in the literature [Langmuir 1998, Volume 14, Page 17 or J.AM.CHEM.SOC. 2005, Volume 127, Page 3266].
2)采用旋转涂膜的方法将金属纳米颗粒溶胶涂在基底上,转速设定为1500-4000rpm,时间30-60s,制备成金属胶体薄膜;2) The metal nanoparticle sol is coated on the substrate by the method of spin coating, the rotation speed is set at 1500-4000rpm, and the time is 30-60s, and a metal colloid film is prepared;
3)将涂有金属胶体薄膜的基底于350-550℃的马弗炉或管式炉内,加热5-10min后,冷却至室温,得到局域表面等离子共振金属纳米岛状结构薄膜。3) Heat the substrate coated with the metal colloid film in a muffle furnace or tube furnace at 350-550° C. for 5-10 minutes, and then cool to room temperature to obtain a localized surface plasmon resonance metal nano-island structure film.
其中,步骤1)中所述的金属纳米颗粒优选金、银或铂纳米颗粒。Wherein, the metal nanoparticles described in step 1) are preferably gold, silver or platinum nanoparticles.
步骤1)中所述的有机溶剂为二甲苯、甲苯、氯苯、二氯苯、苯、三氯甲烷、环己烷、戊烷、己烷或辛烷中的一种。The organic solvent described in step 1) is one of xylene, toluene, chlorobenzene, dichlorobenzene, benzene, chloroform, cyclohexane, pentane, hexane or octane.
步骤2)中所述的基底为玻璃、石英、硅片、ITO玻璃或FTO玻璃。The substrate described in step 2) is glass, quartz, silicon wafer, ITO glass or FTO glass.
本发明具有以下优点:The present invention has the following advantages:
1)本发明采用溶液法结合热处理工艺,制备成本低廉,不需要昂贵的仪器设备。1) The present invention adopts a solution method combined with a heat treatment process, the preparation cost is low, and expensive instruments and equipment are not required.
2)采用本发明方法可大规模制备具有局域等离子共振特性的金属纳米岛状结构薄膜,且重复性好,效率高。2) By adopting the method of the present invention, the metal nano-island structure film with localized plasmon resonance characteristics can be prepared on a large scale, and the repeatability is good and the efficiency is high.
3)本发明通过调整金属纳米颗粒溶胶的浓度可方便的实现对金属纳米岛状结构直径分布的控制,从而实现对局域表面等离子共振光谱响应范围的调控。3) The present invention can conveniently realize the control of the diameter distribution of the metal nano-island structure by adjusting the concentration of the metal nano-particle sol, thereby realizing the control of the response range of the local surface plasmon resonance spectrum.
4)本发明将金属纳米颗粒的溶胶旋涂在不同形状的导电或不导电基底上,可制备出有序排列或直径分布可控的金属纳米岛状结构的薄膜。4) In the present invention, the sol of metal nanoparticles is spin-coated on conductive or non-conductive substrates of different shapes, and a thin film of metal nano-island structure with ordered arrangement or controllable diameter distribution can be prepared.
附图说明Description of drawings
图1、实施例1制备的金纳米岛状结构薄膜的SEM照片。Fig. 1, the SEM photo of the gold nano-island structure thin film prepared in
图2、实施例2制备的金纳米岛状结构薄膜的SEM照片。Fig. 2, the SEM photo of the gold nano-island structure film prepared in Example 2.
图3、实施例3制备的金纳米岛状结构薄膜的SEM照片。Fig. 3, the SEM photo of the gold nano-island structure thin film prepared in
图4、实施例1、2、3制备的金纳米岛状结构薄膜的消光光谱,其中,1为实施例1中金纳米岛状结构薄膜的消光光谱,2为实施例2中金纳米岛状结构薄膜的消光光谱,3为实施例3中金纳米岛状结构薄膜的消光光谱。Fig. 4, the extinction spectrum of the gold nano-island structure thin film prepared in
图5、实施例5制备的金纳米岛状结构薄膜的SEM照片。Fig. 5, the SEM photo of the gold nano-island structure film prepared in Example 5.
图6、实施例6制备的金纳米岛状结构薄膜的SEM照片。Fig. 6, the SEM photo of the gold nano-island structure film prepared in Example 6.
图7、实施例7制备的金纳米岛状结构薄膜的SEM照片。Fig. 7, the SEM photo of the gold nano-island structure film prepared in Example 7.
图8、实施例4、5、6、7制备的金纳米岛状结构薄膜的消光光谱,其中,4为实施例4中金纳米岛状结构薄膜的消光光谱,5为实施例5中金纳米岛状结构薄膜的消光光谱,6为实施例6中金纳米岛状结构薄膜的消光光谱,7为实施例7中金纳米岛状结构薄膜的消光光谱。Fig. 8, the extinction spectrum of the gold nano-island structure film prepared in
图9、实施例8制备的金纳米岛状结构薄膜的SEM照片。Fig. 9, the SEM photo of the gold nano-island structure film prepared in Example 8.
图10、实施例8制备的金纳米岛状结构薄膜的消光光谱。Fig. 10, the extinction spectrum of the gold nano-island structure film prepared in Example 8.
以下结合附图和具体实施方式对本发明的技术方案做进一步的说明。The technical solutions of the present invention will be further described below in conjunction with the drawings and specific embodiments.
具体实施方式Detailed ways
实施例1Example 1
1)参照文献[Langmuir 1998年14卷第17页所提供的方法制备直径为1-10nm的金纳米颗粒后,溶于甲苯中,制备成100mg/ml的金纳米颗粒溶胶;1) After preparing gold nanoparticles with a diameter of 1-10nm with reference to the method provided by the document [Langmuir, volume 14, page 17, 1998, dissolve in toluene to prepare a gold nanoparticle sol of 100 mg/ml;
2)采用旋转涂膜的方法将金纳米颗粒溶胶涂在玻璃基底上,转速设定为2000rpm,时间1min,制备成厚度为150-200nm的金胶体薄膜;2) The gold nanoparticle sol is coated on the glass substrate by the method of spin coating, the rotation speed is set to 2000rpm, and the time is 1min, and a gold colloid film with a thickness of 150-200nm is prepared;
3)将涂有金胶体薄膜的基底于550℃的马弗炉内,加热10min后,冷却至室温,得到具有局域表面等离子共振特性的金纳米岛状结构薄膜,其SEM照片如图1所示,消光光谱如图4中1所示。3) Heat the substrate coated with gold colloidal film in a muffle furnace at 550°C for 10 minutes, and then cool it to room temperature to obtain a gold nano-island structure film with localized surface plasmon resonance properties. The SEM photo is shown in Figure 1 The extinction spectrum is shown in 1 in Figure 4.
实施例2Example 2
1)参照文献[Langmuir 1998年14卷第17页所提供的方法制备直径为1-10nm的金纳米颗粒后,溶于二甲苯中,制备成80mg/ml的金纳米颗粒溶胶;1) After preparing gold nanoparticles with a diameter of 1-10nm with reference to the method provided by the document [Langmuir, volume 14, page 17, 1998, dissolve in xylene to prepare a gold nanoparticle sol of 80 mg/ml;
2)采用旋转涂膜的方法将金纳米颗粒溶胶涂在玻璃基底上,转速设定为1500rpm,时间1min,制备成厚度为150-200nm的金胶体薄膜;2) The gold nanoparticle sol is coated on the glass substrate by the method of spin coating, the rotating speed is set to 1500rpm, and the time is 1min, and a gold colloid film with a thickness of 150-200nm is prepared;
3)将涂有金胶体薄膜的基底于450℃的马弗炉内,加热10min后,冷却至室温,得到具有局域表面等离子共振特性的金纳米岛状结构薄膜,其SEM照片如图2所示,消光光谱如图4中2所示。3) Heat the substrate coated with gold colloidal film in a muffle furnace at 450°C for 10 minutes, and then cool it to room temperature to obtain a gold nano-island structure film with localized surface plasmon resonance properties. The SEM photo of it is shown in Figure 2 The extinction spectrum is shown in 2 in Figure 4.
实施例3Example 3
1)参照文献[Langmuir 1998年14卷第17页所提供的方法制备直径为1-10nm的金纳米颗粒后,溶于二甲苯中,制备成80mg/ml的金纳米颗粒溶胶;1) After preparing gold nanoparticles with a diameter of 1-10nm with reference to the method provided by the document [Langmuir, volume 14, page 17, 1998, dissolve in xylene to prepare a gold nanoparticle sol of 80 mg/ml;
2)采用旋转涂膜的方法将金纳米颗粒溶胶涂在玻璃基底上,转速设定为1500rpm,时间1min,制备成厚度为150-200nm的金胶体薄膜;2) The gold nanoparticle sol is coated on the glass substrate by the method of spin coating, the rotating speed is set to 1500rpm, and the time is 1min, and a gold colloid film with a thickness of 150-200nm is prepared;
3)将涂有金胶体薄膜的基底于350℃的马弗炉内,加热10min后,冷却至室温,得到具有局域表面等离子共振特性的金纳米岛状结构薄膜,其SEM照片如图3所示,消光光谱如图4中3所示。3) Heat the substrate coated with gold colloidal film in a muffle furnace at 350°C for 10 minutes, and then cool it to room temperature to obtain a gold nano-island structure film with localized surface plasmon resonance properties. The SEM photo of it is shown in Figure 3 The extinction spectrum is shown in 3 in Fig. 4.
实施例4Example 4
1)参照文献[Langmuir 1998年14卷第17页所提供的方法制备直径为1-10nm的金纳米颗粒后,溶于二甲苯中,制备成40mg/ml的金纳米颗粒溶胶;1) After preparing gold nanoparticles with a diameter of 1-10nm with reference to the method provided by the document [Langmuir, volume 14, page 17, 1998, dissolve in xylene to prepare a gold nanoparticle sol of 40 mg/ml;
2)采用旋转涂膜的方法将金纳米颗粒溶胶涂在玻璃基底上,转速设定为2000rpm,时间1min,制备成厚度为50-70nm的金胶体薄膜;2) The gold nanoparticle sol is coated on the glass substrate by the method of spin coating, the rotation speed is set to 2000rpm, and the time is 1min, and a gold colloid film with a thickness of 50-70nm is prepared;
3)将涂有金胶体薄膜的基底于450℃的马弗炉内,加热8min后,冷却至室温,得到具有局域表面等离子共振特性的金纳米岛状结构薄膜,消光光谱如图8中4所示。3) Heat the substrate coated with gold colloidal film in a muffle furnace at 450°C for 8 minutes, and then cool it to room temperature to obtain a gold nano-island structure film with localized surface plasmon resonance characteristics. The extinction spectrum is shown in Figure 8 4 shown.
实施例5Example 5
1)参照文献[Langmuir 1998年14卷第17页所提供的方法制备直径为1-10nm的金纳米颗粒后,溶于二甲苯中,制备成60mg/ml的金纳米颗粒溶胶;1) After preparing gold nanoparticles with a diameter of 1-10nm with reference to the method provided by the document [Langmuir, volume 14, page 17, 1998, dissolve in xylene to prepare a gold nanoparticle sol of 60 mg/ml;
2)采用旋转涂膜的方法将金纳米颗粒溶胶涂在玻璃基底上,转速设定为2000rpm,时间1min,制备成厚度为80-100nm的金胶体薄膜;2) The gold nanoparticle sol is coated on the glass substrate by the method of spin coating, the rotation speed is set to 2000rpm, and the time is 1min, and a gold colloid film with a thickness of 80-100nm is prepared;
3)将涂有金胶体薄膜的基底于450℃的马弗炉内,加热8min后,冷却至室温,得到具有局域表面等离子共振特性的金纳米岛状结构薄膜,其SEM照片如图5所示,消光光谱如图8中5所示。3) Heat the substrate coated with gold colloidal film in a muffle furnace at 450°C for 8 minutes, and then cool it to room temperature to obtain a gold nano-island structure film with local surface plasmon resonance characteristics. The SEM photo is shown in Figure 5 Shown, the extinction spectrum is shown in Fig. 8 5.
实施例6Example 6
1)参照文献[Langmuir 1998年14卷第17页所提供的方法制备直径为1-10nm的金纳米颗粒后,溶于二甲苯中,制备成80mg/ml的金纳米颗粒溶胶;1) After preparing gold nanoparticles with a diameter of 1-10nm with reference to the method provided by the document [Langmuir, volume 14, page 17, 1998, dissolve in xylene to prepare a gold nanoparticle sol of 80 mg/ml;
2)采用旋转涂膜的方法将金纳米颗粒溶胶涂在玻璃基底上,转速设定为2000rpm,时间1min,制备成厚度为120-150nm的金胶体薄膜;2) The gold nanoparticle sol is coated on the glass substrate by the method of spin coating, the rotation speed is set to 2000rpm, and the time is 1min, and a gold colloid film with a thickness of 120-150nm is prepared;
3)将涂有金胶体薄膜的基底于450℃的马弗炉内,加热8min后,冷却至室温,得到具有局域表面等离子共振特性的金纳米岛状结构薄膜,其SEM照片如图6所示,消光光谱如图8中1所示。3) Heat the substrate coated with gold colloidal film in a muffle furnace at 450°C for 8 minutes, and then cool it to room temperature to obtain a gold nano-island structure film with localized surface plasmon resonance characteristics. The SEM photo of it is shown in Figure 6 The extinction spectrum is shown in 1 in Figure 8.
实施例7Example 7
1)参照文献[Langmuir 1998年14卷第17页所提供的方法制备直径为1-10nm的金纳米颗粒后,溶于二甲苯中,制备成100mg/ml的金纳米颗粒溶胶;1) After preparing gold nanoparticles with a diameter of 1-10nm with reference to the method provided by the document [Langmuir, volume 14, page 17, 1998, dissolve in xylene to prepare a gold nanoparticle sol of 100 mg/ml;
2)采用旋转涂膜的方法将金纳米颗粒溶胶涂在玻璃基底上,转速设定为2000rpm,时间1min,制备成厚度为150-200nm的金胶体薄膜;2) The gold nanoparticle sol is coated on the glass substrate by the method of spin coating, the rotation speed is set to 2000rpm, and the time is 1min, and a gold colloid film with a thickness of 150-200nm is prepared;
3)将涂有金胶体薄膜的基底于450℃的马弗炉内,加热10min后,冷却至室温,得到具有局域表面等离子共振特性的金纳米岛状结构薄膜,其SEM照片如图6所示,消光光谱如图8中1所示。3) Heat the substrate coated with gold colloidal film in a muffle furnace at 450°C for 10 minutes, and then cool it to room temperature to obtain a gold nano-island structure film with localized surface plasmon resonance properties. The SEM photo of it is shown in Figure 6 The extinction spectrum is shown in 1 in Figure 8.
实施例8Example 8
1)参照文献[Langmuir 1998年14卷第17页所提供的方法制备直径为1-10nm的金纳米颗粒后,溶于三氯甲烷中,制备成90mg/ml的金纳米颗粒溶胶;1) After preparing gold nanoparticles with a diameter of 1-10nm with reference to the method provided by the document [Langmuir, volume 14, page 17, 1998, dissolve in chloroform to prepare a gold nanoparticle sol of 90mg/ml;
2)采用旋转涂膜的方法将金纳米颗粒溶胶涂在ITO基底上,转速设定为4000rpm,时间1min,制备成厚度为150-200nm的金胶体薄膜;2) The gold nanoparticle sol is coated on the ITO substrate by the method of spin coating, the rotation speed is set to 4000rpm, and the time is 1min, and a gold colloid film with a thickness of 150-200nm is prepared;
3)将涂有金胶体薄膜的基底于500℃的马弗炉内,加热5min后,冷却至室温,得到具有局域表面等离子共振特性的金纳米岛状结构薄膜,其SEM照片如图9所示,其消光光谱如图10所示。3) Heat the substrate coated with gold colloidal film in a muffle furnace at 500°C for 5 minutes, and then cool it to room temperature to obtain a gold nano-island structure film with localized surface plasmon resonance characteristics. The SEM photo of it is shown in Figure 9 Its extinction spectrum is shown in Figure 10.
从附图1-3中可看出通过控制热处理温度,可实现对金纳米岛状结构形貌的控制,随热处理温度的提高,纳米岛状结构的平均粒径增大,其等离子共振消光光谱强度也随之增强,如附图4所示。通过控制金纳米颗粒溶胶的浓度,可实现对金纳米岛直径分布的控制(如附图5-9所示),不同粒径分布的金纳米岛薄膜的消光光谱如附图10所示,其局域表面等离子共振消光光谱随粒径的增大而发生红移,从530nm红移至560nm,同时其等离子共振消光光谱的强度也随之增强。It can be seen from accompanying drawings 1-3 that by controlling the heat treatment temperature, the control of the morphology of the gold nano-island structure can be realized. With the increase of the heat treatment temperature, the average particle size of the nano-island structure increases, and its plasmon resonance extinction spectrum The strength also increases thereupon, as shown in Figure 4. By controlling the concentration of gold nanoparticle sol, the control (as shown in accompanying drawing 5-9) to gold nano-island diameter distribution can be realized, the extinction spectrum of the gold nano-island film of different particle size distribution is as shown in accompanying drawing 10, and its The localized surface plasmon resonance extinction spectrum red-shifts with the increase of particle size, from 530nm to 560nm, and the intensity of the plasmon resonance extinction spectrum increases accordingly.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2009100817492A CN101856650B (en) | 2009-04-10 | 2009-04-10 | Solution preparation method of localized surface plasmon resonance metal nano-island structure film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2009100817492A CN101856650B (en) | 2009-04-10 | 2009-04-10 | Solution preparation method of localized surface plasmon resonance metal nano-island structure film |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101856650A true CN101856650A (en) | 2010-10-13 |
CN101856650B CN101856650B (en) | 2012-05-23 |
Family
ID=42942943
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2009100817492A Expired - Fee Related CN101856650B (en) | 2009-04-10 | 2009-04-10 | Solution preparation method of localized surface plasmon resonance metal nano-island structure film |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101856650B (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102480051A (en) * | 2011-08-31 | 2012-05-30 | 深圳光启高等理工研究院 | Preparation method of metamaterial dielectric substrate |
CN103344624A (en) * | 2013-07-03 | 2013-10-09 | 北京工业大学 | Method for preparing surface-enhanced Raman scattering substrate by solution method and application |
CN105470341A (en) * | 2014-09-05 | 2016-04-06 | 中国科学院苏州纳米技术与纳米仿生研究所 | Cheap disorder broad-spectrum wide-angle antireflection structure and manufacturing method thereof |
CN106463268A (en) * | 2014-04-16 | 2017-02-22 | 艾尼股份公司 | Electrode for photovoltaic cells and associated preparation process |
CN109709077A (en) * | 2018-11-14 | 2019-05-03 | 江苏科技大学 | Preparation method of gold nanoparticles for ITO-based LSPR sensor |
CN109811314A (en) * | 2019-03-13 | 2019-05-28 | 电子科技大学 | A kind of visible light high absorption far infrared high reflection film and preparation method thereof |
CN111384255A (en) * | 2018-12-27 | 2020-07-07 | Tcl集团股份有限公司 | Quantum dot light-emitting diode and preparation method thereof |
CN111403611A (en) * | 2020-03-20 | 2020-07-10 | 北京工业大学 | Modulation of Phase Separation and Charge Generation in Organic Photovoltaic Thin Films by Plasmonic Gold Nanostructures |
CN112692277A (en) * | 2020-12-24 | 2021-04-23 | 武汉工程大学 | Preparation method of plasma microcavity based on silver nanoparticle-J-polymer dye |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101093210A (en) * | 2007-05-11 | 2007-12-26 | 温州医学院 | Method for preparing electrochemical sensor of Nano silver particle, and application |
-
2009
- 2009-04-10 CN CN2009100817492A patent/CN101856650B/en not_active Expired - Fee Related
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102480051A (en) * | 2011-08-31 | 2012-05-30 | 深圳光启高等理工研究院 | Preparation method of metamaterial dielectric substrate |
CN103344624A (en) * | 2013-07-03 | 2013-10-09 | 北京工业大学 | Method for preparing surface-enhanced Raman scattering substrate by solution method and application |
CN103344624B (en) * | 2013-07-03 | 2016-05-18 | 北京工业大学 | A kind of solwution method is prepared method and the application of surface enhanced Raman scattering substrate |
CN106463268A (en) * | 2014-04-16 | 2017-02-22 | 艾尼股份公司 | Electrode for photovoltaic cells and associated preparation process |
CN105470341A (en) * | 2014-09-05 | 2016-04-06 | 中国科学院苏州纳米技术与纳米仿生研究所 | Cheap disorder broad-spectrum wide-angle antireflection structure and manufacturing method thereof |
CN109709077A (en) * | 2018-11-14 | 2019-05-03 | 江苏科技大学 | Preparation method of gold nanoparticles for ITO-based LSPR sensor |
CN111384255A (en) * | 2018-12-27 | 2020-07-07 | Tcl集团股份有限公司 | Quantum dot light-emitting diode and preparation method thereof |
CN109811314A (en) * | 2019-03-13 | 2019-05-28 | 电子科技大学 | A kind of visible light high absorption far infrared high reflection film and preparation method thereof |
CN111403611A (en) * | 2020-03-20 | 2020-07-10 | 北京工业大学 | Modulation of Phase Separation and Charge Generation in Organic Photovoltaic Thin Films by Plasmonic Gold Nanostructures |
CN111403611B (en) * | 2020-03-20 | 2023-09-12 | 北京工业大学 | Method for modulating phase separation and charge generation of plasmonic gold nanostructure on organic photovoltaic film |
CN112692277A (en) * | 2020-12-24 | 2021-04-23 | 武汉工程大学 | Preparation method of plasma microcavity based on silver nanoparticle-J-polymer dye |
Also Published As
Publication number | Publication date |
---|---|
CN101856650B (en) | 2012-05-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101856650A (en) | Solution preparation method of localized surface plasmon resonance metal nano-island structure film | |
Stelling et al. | Plasmonic nanomeshes: their ambivalent role as transparent electrodes in organic solar cells | |
Kvítek et al. | Noble metal nanostructures influence of structure and environment on their optical properties | |
Yin et al. | Plasmon-enhanced upconversion luminescence on vertically aligned gold nanorod monolayer supercrystals | |
CN104656170B (en) | Broadband light full absorber and preparation method thereof | |
Shen et al. | Hierarchical optical antenna: Gold nanoparticle-modified photonic crystal for highly-sensitive label-free DNA detection | |
CN101487976B (en) | Preparation method of metal photonic crystal by solution method | |
CN100515614C (en) | A kind of core-shell structure composite nanomaterial and preparation method thereof | |
CN101973512B (en) | Method for directly writing metal micro-nano structure by ultraviolet laser interferometry etching | |
CN101672786B (en) | Active substrate with surface having enhanced Raman scattering effect and preparation method and application thereof | |
CN103011068B (en) | Solution method preparation method of metal nanoring | |
CN107688015B (en) | Preparation method of transparent dielectric microsphere flexible film with enhanced Raman scattering light intensity | |
CN108982474B (en) | Surface enhanced Raman active substrate based on metal-medium composite plasmon resonance structure and preparation method thereof | |
CN103286312A (en) | Surface-common-enhanced fluorescence surface-enhanced Raman multi-layer core-shell structure composite particles and preparation method of particles | |
Wang et al. | Few-layer NbTe2 nanosheets as substrates for surface-enhanced Raman scattering analysis | |
CN103344624B (en) | A kind of solwution method is prepared method and the application of surface enhanced Raman scattering substrate | |
CN102628808A (en) | Preparation method and application method of high-sensitivity and high-stability surface-enhanced Raman chip | |
CN105911044A (en) | Surface enhanced Raman spectrum substrate with nanogap and preparation method thereof | |
CN105973867B (en) | One type of metal and metal composite hollow cavity array structure and preparation method thereof | |
Hao et al. | Plasmon-induced broadband fluorescence enhancement on Al-Ag bimetallic substrates | |
CN113649584B (en) | Growth method of laser-induced morphology-controllable gold or gold composite nanostructure and application thereof | |
CN111007056B (en) | Broadband plasmon composite structure and preparation method thereof | |
Soliveri et al. | Microwave-assisted silver nanoparticle film formation for SERS applications | |
CN205691505U (en) | Nanometer annular chamber SERS substrate based on surface phasmon effect | |
Dong et al. | Nanoscale flexible Ag grating/AuNPs self-assembly hybrid for ultra-sensitive sensors |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20120523 Termination date: 20180410 |
|
CF01 | Termination of patent right due to non-payment of annual fee |