CN101851612B - A kind of acid glucanase CELA and its gene and application - Google Patents
A kind of acid glucanase CELA and its gene and application Download PDFInfo
- Publication number
- CN101851612B CN101851612B CN2010101549287A CN201010154928A CN101851612B CN 101851612 B CN101851612 B CN 101851612B CN 2010101549287 A CN2010101549287 A CN 2010101549287A CN 201010154928 A CN201010154928 A CN 201010154928A CN 101851612 B CN101851612 B CN 101851612B
- Authority
- CN
- China
- Prior art keywords
- cela
- glucanase
- gene
- recombinant
- dextranase
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000002253 acid Substances 0.000 title claims abstract description 20
- 108090000623 proteins and genes Proteins 0.000 title abstract description 32
- 125000003275 alpha amino acid group Chemical group 0.000 claims abstract 2
- 108010001682 Dextranase Proteins 0.000 claims description 30
- 238000000034 method Methods 0.000 claims description 14
- 230000002378 acidificating effect Effects 0.000 claims description 8
- 239000013598 vector Substances 0.000 claims description 8
- 230000001580 bacterial effect Effects 0.000 claims description 6
- 241000235648 Pichia Species 0.000 claims description 2
- 230000008521 reorganization Effects 0.000 claims 1
- 108090000790 Enzymes Proteins 0.000 abstract description 33
- 102000004190 Enzymes Human genes 0.000 abstract description 32
- 241001147780 Alicyclobacillus Species 0.000 abstract description 8
- 241001465754 Metazoa Species 0.000 abstract description 3
- 235000013305 food Nutrition 0.000 abstract description 3
- 238000010353 genetic engineering Methods 0.000 abstract description 3
- 238000002360 preparation method Methods 0.000 abstract description 3
- 230000000694 effects Effects 0.000 description 30
- 229940088598 enzyme Drugs 0.000 description 30
- 241000209219 Hordeum Species 0.000 description 12
- 235000007340 Hordeum vulgare Nutrition 0.000 description 12
- FYGDTMLNYKFZSV-URKRLVJHSA-N (2s,3r,4s,5s,6r)-2-[(2r,4r,5r,6s)-4,5-dihydroxy-2-(hydroxymethyl)-6-[(2r,4r,5r,6s)-4,5,6-trihydroxy-2-(hydroxymethyl)oxan-3-yl]oxyoxan-3-yl]oxy-6-(hydroxymethyl)oxane-3,4,5-triol Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@H]1OC1[C@@H](CO)O[C@@H](OC2[C@H](O[C@H](O)[C@H](O)[C@H]2O)CO)[C@H](O)[C@H]1O FYGDTMLNYKFZSV-URKRLVJHSA-N 0.000 description 8
- 229920002498 Beta-glucan Polymers 0.000 description 8
- 239000003153 chemical reaction reagent Substances 0.000 description 8
- 241000032588 Alicyclobacillus hesperidum Species 0.000 description 7
- 229920002307 Dextran Polymers 0.000 description 7
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 6
- 241000235058 Komagataella pastoris Species 0.000 description 6
- 108091005804 Peptidases Proteins 0.000 description 6
- 239000004365 Protease Substances 0.000 description 6
- 150000001413 amino acids Chemical group 0.000 description 6
- 210000004027 cell Anatomy 0.000 description 6
- 239000002609 medium Substances 0.000 description 6
- 235000007319 Avena orientalis Nutrition 0.000 description 5
- 244000075850 Avena orientalis Species 0.000 description 5
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 5
- 235000019764 Soybean Meal Nutrition 0.000 description 5
- 235000013405 beer Nutrition 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 5
- 238000004925 denaturation Methods 0.000 description 5
- 230000036425 denaturation Effects 0.000 description 5
- 239000004455 soybean meal Substances 0.000 description 5
- 239000006228 supernatant Substances 0.000 description 5
- 108020004414 DNA Proteins 0.000 description 4
- 229940041514 candida albicans extract Drugs 0.000 description 4
- 238000006911 enzymatic reaction Methods 0.000 description 4
- 239000013604 expression vector Substances 0.000 description 4
- 239000008103 glucose Substances 0.000 description 4
- 239000012138 yeast extract Substances 0.000 description 4
- 229920001503 Glucan Polymers 0.000 description 3
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 102000057297 Pepsin A Human genes 0.000 description 3
- 108090000284 Pepsin A Proteins 0.000 description 3
- 102000035195 Peptidases Human genes 0.000 description 3
- 102100037486 Reverse transcriptase/ribonuclease H Human genes 0.000 description 3
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 3
- 235000014680 Saccharomyces cerevisiae Nutrition 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 229920002472 Starch Polymers 0.000 description 3
- 210000004051 gastric juice Anatomy 0.000 description 3
- 150000004676 glycans Chemical class 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 239000002773 nucleotide Substances 0.000 description 3
- 125000003729 nucleotide group Chemical group 0.000 description 3
- 229940111202 pepsin Drugs 0.000 description 3
- 239000013612 plasmid Substances 0.000 description 3
- 229920001282 polysaccharide Polymers 0.000 description 3
- 239000005017 polysaccharide Substances 0.000 description 3
- 238000004321 preservation Methods 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 235000019698 starch Nutrition 0.000 description 3
- 239000008107 starch Substances 0.000 description 3
- YBJHBAHKTGYVGT-ZKWXMUAHSA-N (+)-Biotin Chemical compound N1C(=O)N[C@@H]2[C@H](CCCCC(=O)O)SC[C@@H]21 YBJHBAHKTGYVGT-ZKWXMUAHSA-N 0.000 description 2
- 241000894006 Bacteria Species 0.000 description 2
- 101710130006 Beta-glucanase Proteins 0.000 description 2
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 2
- GXCLVBGFBYZDAG-UHFFFAOYSA-N N-[2-(1H-indol-3-yl)ethyl]-N-methylprop-2-en-1-amine Chemical compound CN(CCC1=CNC2=C1C=CC=C2)CC=C GXCLVBGFBYZDAG-UHFFFAOYSA-N 0.000 description 2
- 238000012408 PCR amplification Methods 0.000 description 2
- 239000001888 Peptone Substances 0.000 description 2
- 108010080698 Peptones Proteins 0.000 description 2
- 241000209056 Secale Species 0.000 description 2
- 235000007238 Secale cereale Nutrition 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 241000209140 Triticum Species 0.000 description 2
- 235000021307 Triticum Nutrition 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 238000000137 annealing Methods 0.000 description 2
- 230000000433 anti-nutritional effect Effects 0.000 description 2
- 239000007853 buffer solution Substances 0.000 description 2
- 210000002421 cell wall Anatomy 0.000 description 2
- 238000005119 centrifugation Methods 0.000 description 2
- 238000010367 cloning Methods 0.000 description 2
- IQFVPQOLBLOTPF-HKXUKFGYSA-L congo red Chemical compound [Na+].[Na+].C1=CC=CC2=C(N)C(/N=N/C3=CC=C(C=C3)C3=CC=C(C=C3)/N=N/C3=C(C4=CC=CC=C4C(=C3)S([O-])(=O)=O)N)=CC(S([O-])(=O)=O)=C21 IQFVPQOLBLOTPF-HKXUKFGYSA-L 0.000 description 2
- 230000001186 cumulative effect Effects 0.000 description 2
- 235000005911 diet Nutrition 0.000 description 2
- 230000037213 diet Effects 0.000 description 2
- 230000029087 digestion Effects 0.000 description 2
- CBMPTFJVXNIWHP-UHFFFAOYSA-L disodium;hydrogen phosphate;2-hydroxypropane-1,2,3-tricarboxylic acid Chemical compound [Na+].[Na+].OP([O-])([O-])=O.OC(=O)CC(O)(C(O)=O)CC(O)=O CBMPTFJVXNIWHP-UHFFFAOYSA-L 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 239000013613 expression plasmid Substances 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 239000012634 fragment Substances 0.000 description 2
- 210000001035 gastrointestinal tract Anatomy 0.000 description 2
- 239000001963 growth medium Substances 0.000 description 2
- 239000004615 ingredient Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 229910021645 metal ion Inorganic materials 0.000 description 2
- 244000005700 microbiome Species 0.000 description 2
- 235000019319 peptone Nutrition 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 102000004169 proteins and genes Human genes 0.000 description 2
- 108091008146 restriction endonucleases Proteins 0.000 description 2
- 238000012163 sequencing technique Methods 0.000 description 2
- 238000002415 sodium dodecyl sulfate polyacrylamide gel electrophoresis Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 239000012137 tryptone Substances 0.000 description 2
- 238000011144 upstream manufacturing Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- QKNYBSVHEMOAJP-UHFFFAOYSA-N 2-amino-2-(hydroxymethyl)propane-1,3-diol;hydron;chloride Chemical compound Cl.OCC(N)(CO)CO QKNYBSVHEMOAJP-UHFFFAOYSA-N 0.000 description 1
- IVLXQGJVBGMLRR-UHFFFAOYSA-N 2-aminoacetic acid;hydron;chloride Chemical compound Cl.NCC(O)=O IVLXQGJVBGMLRR-UHFFFAOYSA-N 0.000 description 1
- 229920001817 Agar Polymers 0.000 description 1
- 102100036826 Aldehyde oxidase Human genes 0.000 description 1
- 241000640374 Alicyclobacillus acidocaldarius Species 0.000 description 1
- 108010059892 Cellulase Proteins 0.000 description 1
- 108020004705 Codon Proteins 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- 108010042407 Endonucleases Proteins 0.000 description 1
- 102000004533 Endonucleases Human genes 0.000 description 1
- 101000928314 Homo sapiens Aldehyde oxidase Proteins 0.000 description 1
- 241001506991 Komagataella phaffii GS115 Species 0.000 description 1
- 102000003960 Ligases Human genes 0.000 description 1
- 108090000364 Ligases Proteins 0.000 description 1
- 108010014251 Muramidase Proteins 0.000 description 1
- 102000016943 Muramidase Human genes 0.000 description 1
- 108010062010 N-Acetylmuramoyl-L-alanine Amidase Proteins 0.000 description 1
- 108091028043 Nucleic acid sequence Proteins 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- 108010076504 Protein Sorting Signals Proteins 0.000 description 1
- 102000018120 Recombinases Human genes 0.000 description 1
- 108010091086 Recombinases Proteins 0.000 description 1
- 238000012300 Sequence Analysis Methods 0.000 description 1
- 241000282887 Suidae Species 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 239000008272 agar Substances 0.000 description 1
- 239000002154 agricultural waste Substances 0.000 description 1
- 108010050181 aleurone Proteins 0.000 description 1
- 125000000539 amino acid group Chemical group 0.000 description 1
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 229960002685 biotin Drugs 0.000 description 1
- 235000020958 biotin Nutrition 0.000 description 1
- 239000011616 biotin Substances 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 229940106157 cellulase Drugs 0.000 description 1
- 235000013339 cereals Nutrition 0.000 description 1
- 210000004913 chyme Anatomy 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000012258 culturing Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000001079 digestive effect Effects 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 230000002255 enzymatic effect Effects 0.000 description 1
- 239000000706 filtrate Substances 0.000 description 1
- 239000000796 flavoring agent Substances 0.000 description 1
- 235000019634 flavors Nutrition 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 235000011389 fruit/vegetable juice Nutrition 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 239000000499 gel Substances 0.000 description 1
- 230000035784 germination Effects 0.000 description 1
- 108010026195 glycanase Proteins 0.000 description 1
- 235000013402 health food Nutrition 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000011534 incubation Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 239000002440 industrial waste Substances 0.000 description 1
- 230000000968 intestinal effect Effects 0.000 description 1
- 210000000936 intestine Anatomy 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 244000144972 livestock Species 0.000 description 1
- 239000006166 lysate Substances 0.000 description 1
- 229960000274 lysozyme Drugs 0.000 description 1
- 239000004325 lysozyme Substances 0.000 description 1
- 235000010335 lysozyme Nutrition 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000000813 microbial effect Effects 0.000 description 1
- 238000009629 microbiological culture Methods 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 238000010369 molecular cloning Methods 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 235000015097 nutrients Nutrition 0.000 description 1
- 229920001542 oligosaccharide Polymers 0.000 description 1
- 150000002482 oligosaccharides Chemical class 0.000 description 1
- 239000008363 phosphate buffer Substances 0.000 description 1
- 244000144977 poultry Species 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 239000012474 protein marker Substances 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- FYKDNWHPKQOZOT-UHFFFAOYSA-M sodium;dihydrogen phosphate;2-hydroxypropane-1,2,3-tricarboxylic acid Chemical compound [Na+].OP(O)([O-])=O.OC(=O)CC(O)(C(O)=O)CC(O)=O FYKDNWHPKQOZOT-UHFFFAOYSA-M 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 230000001131 transforming effect Effects 0.000 description 1
- DGVVWUTYPXICAM-UHFFFAOYSA-N β‐Mercaptoethanol Chemical compound OCCS DGVVWUTYPXICAM-UHFFFAOYSA-N 0.000 description 1
Images
Landscapes
- Enzymes And Modification Thereof (AREA)
Abstract
Description
技术领域technical field
本发明涉及基因工程领域,具体地,本发明涉及一种酸性葡聚糖酶CELA及其基因和应用。The invention relates to the field of genetic engineering, in particular, the invention relates to an acid glucanase CELA and its gene and application.
背景技术Background technique
β-葡聚糖广泛存在于禾谷类(大麦、燕麦、黑麦和小麦)的糊粉层和胚乳细胞壁中,属植物细胞壁中的结构性非淀粉多糖,具有线型的空间结构,依物种不同,β-葡聚糖的含量及所占比例也不同。其中在大麦和燕麦当中所含比例最高。葡聚糖酶是可将葡聚糖降解成低聚糖和葡萄糖的一类酶的总称。目前葡聚糖酶在食品,饲料,啤酒、医药等领域得到了日益广泛的应用。目前大麦主要被应用于啤酒的酿造和饲料中,因此相关的葡聚糖酶在啤酒酿造和饲料工业中得到了最为广泛的应用,尤其在欧洲,以大麦,豆粕为主要原料的饲料配方中,葡聚糖酶的添加更为广泛。大麦发芽过程中,大麦当中的葡聚糖不能够被自身内源性葡聚糖酶完全分解,通常仅能分解30%-70%,残留的葡聚糖使糖化醪粘度增加,过滤速率降低,成品啤酒容易形成雾浊或早期凝胶沉淀。在麦芽制造中,加入耐高温β-葡聚糖酶可显著降低成品麦芽中β-葡聚糖含量,降低麦汁粘度,提高麦汁滤速及得率,有利于改善啤酒风味,保持成品酒的非生物稳定性。在以大麦、小麦、黑麦、燕麦为基础的畜禽饲料中含有大量的β-葡聚糖,由于单胃动物体内没有消化β-葡聚糖的酶,因此不能够水解饲料当中的β-葡聚糖。β-葡聚糖作为一种非淀粉粘性多糖,在肠道内吸收较多的水分后,具有较高的粘度,阻止肠道消化液与食糜充分接触,从而影响营养物质的吸收,成为一种抗营养因子。添加β-葡聚糖酶,可以有效消除β-葡聚糖的抗营养作用,大大提高了饲料的利用效率。β-glucan is widely found in the aleurone layer and endosperm cell wall of cereals (barley, oats, rye and wheat). It belongs to the structural non-starch polysaccharide in the plant cell wall. , the content and proportion of β-glucan are also different. Among them, barley and oats contain the highest proportion. Glucanase is a general term for a class of enzymes that can degrade dextran into oligosaccharides and glucose. At present, dextranase has been widely used in food, feed, beer, medicine and other fields. At present, barley is mainly used in beer brewing and feed, so the related glucanase has been most widely used in beer brewing and feed industry, especially in Europe, in the feed formula with barley and soybean meal as the main raw materials, The addition of dextranase is more extensive. During the barley germination process, the glucan in the barley cannot be completely decomposed by its own endogenous glucanase, usually only 30%-70% can be decomposed, and the residual glucan will increase the viscosity of the mash and reduce the filtration rate. Finished beer is prone to haze or early gel precipitation. In malt production, adding high-temperature-resistant β-glucanase can significantly reduce the content of β-glucan in finished malt, reduce the viscosity of wort, increase the filtration rate and yield of wort, and help improve the flavor of beer and maintain the quality of finished wine. abiotic stability. Livestock and poultry feeds based on barley, wheat, rye, and oats contain a large amount of β-glucan. Since monogastric animals do not have enzymes to digest β-glucan, they cannot hydrolyze β-glucan in the feed. Dextran. As a non-starch viscous polysaccharide, β-glucan has a high viscosity after absorbing more water in the intestine, which prevents the full contact between the intestinal digestive juice and chyme, thereby affecting the absorption of nutrients, and becomes a kind of Antinutritional Factors. The addition of β-glucanase can effectively eliminate the anti-nutritional effect of β-glucan and greatly improve the utilization efficiency of feed.
在饲料工业中,动物胃肠道是酸性环境(如猪的胃肠道),并且含有大量的内源性蛋白酶,同时在饲料的加工过程中,有一个短时的高温过程。因此,获得新型具有优良温度稳定性和适用性的,具有对各种蛋白酶(特别是胃蛋白酶)具有抗性的酸性葡聚糖酶的研究具有重大意义。克隆和分离具有温度稳定性和蛋白酶抗性的酸性葡聚糖酶可以更好的应用于饲料,而且可以降低生产成本,都是葡聚糖酶应用于工业化生产所必需的。In the feed industry, the gastrointestinal tract of animals is an acidic environment (such as the gastrointestinal tract of pigs) and contains a large amount of endogenous proteases. At the same time, there is a short-term high temperature process in the process of feed processing. Therefore, it is of great significance to obtain a new type of acid glucanase with excellent temperature stability and applicability, and resistance to various proteases (especially pepsin). Cloning and isolating acid glucanase with temperature stability and protease resistance can be better applied to feed, and can reduce production costs, all of which are necessary for the application of dextranase in industrial production.
发明内容Contents of the invention
本发明的目的是提供一种能高效应用的酸性葡聚糖酶。The purpose of the present invention is to provide an acid glucanase that can be used efficiently.
本发明的再一目的是提供编码上述酸性葡聚糖酶的基因。Another object of the present invention is to provide a gene encoding the above-mentioned acid glucanase.
本发明的另一目的是提供包含上述基因的重组载体。Another object of the present invention is to provide a recombinant vector comprising the above gene.
本发明的另一目的是提供包含上述基因的重组菌株。Another object of the present invention is to provide recombinant strains containing the above genes.
本发明的另一目的是提供一种制备上述酸性葡聚糖酶的基因工程方法。Another object of the present invention is to provide a genetic engineering method for preparing the above acid glucanase.
本发明的另一目的提供上述酸性葡聚糖酶的应用。Another object of the present invention is to provide the application of the above acid glucanase.
本发明从脂环酸芽孢杆菌Alicyclobacillus hesperidum A4,(保存于中国微生物菌种保藏管理委员会普通微生物中心(北京市朝阳区大屯路,中国科学院微生物研究所,100101),其保藏号为:CGMCC No.3147,保藏日期:2009年6月29号)中分离得到一种新的酸性葡聚糖酶CELA。The present invention is obtained from Alicyclobacillus hesperidum A4, (preserved in the General Microbiology Center of China Microbial Strain Preservation Management Committee (Datun Road, Chaoyang District, Beijing, Institute of Microbiology, Chinese Academy of Sciences, 100101), and its preservation number is: CGMCC No .3147, date of deposit: June 29, 2009), a new acid glucanase CELA was isolated.
本发明提供了一种酸性葡聚糖酶CELA,其氨基酸序列如SEQ ID NO.1所示。The invention provides an acid glucanase CELA, the amino acid sequence of which is shown in SEQ ID NO.1.
SEQ ID NO.1:SEQ ID NO.1:
MSPSGGVCVNRKQRTLKLGTLAATIVALSAVATPAVASADTTTAIASSTVHVTVMSPSGGVCVNRKQRTLKLGTLAATIVALSAVATPAVASADTTTAIASSTVHVTV
NAAAELGIVPNTALGVNTAVWDGHLLDAAIPSLLRGIGVTMLRYPGGSTSDENAAAELGIVPNTALGVNTAVWDGHLLDAAIPSLLRGIGVTMLRYPGGSTSDE
YNWQTNTVTGGYADPNNTFDNFMGVVQKAGAQPIITVNAGTGTPSEAAAWYNWQTNTVTGGYADPNNTFDNFMGVVQKAGAQPIITVNAGTGTPSEAAAW
VQDANVTHHYGVKYWEIGNEMYGSWEAGNFANNPSGYAKEAVSFIQAMKAVQDANVTHHYGVKYWEIGNEMYGSWEAGNFANNPSGYAKEAVSFIQAMKA
VDPSIKIGVDLIAPGTGEDDWNATVLSTMHSLGVLPDFAIVHWYAQNPGGETVDPSIKIGVDLIAPGTGEDDWNATVLSTMHSLGVLPDFFAIVHWYAQNPGGET
DAGLLSSTNQISTMMDTLKQQLSSYGTIPVFVTETNSVSYNPGRQSTSLVNALDAGLLSSTNQISTMMDTLKQQLSSYGTIPVFVTETNSVSYNPGRQSTSLVNAL
FLDDDMADWLESGAQNVDWWDLHNGIVTQQAGANVDPNLYGQYNYGDYFLDDDMADWLESGAQNVDWWDLHNGIVTQQAGANVDPNLYGQYNYGDY
GLLSNGSSDNGISEPAANTPFPTYYGYQMLAAVMVPGATMIGAGSNNDLVAVGLLSNGSSDNGISEPAANTFPPTYYGYQMLAAVMVPGATMIGAGSNNNDLVAV
HATKLPNGAVDVMLINKDPKQAYTVDLQAEGFAAKGPAFTLFYGQGSNAVTPHATKLPNGAVDVMLINKDPKQAYTVDLQAEGFAAKGPAFTLFYGQGSNAVTP
GKLDNLQNVTLPPYSVTDIIIPAVPGHQPQGPQFTDKTTLSTPQVKPSANETLTGKLDNLQNVTLPPYSVTDIIIPAVPGHQPQGPQFTDKTTLSTPQVKPSANETLT
TTFTDTRGAVKDGTLDVEIYNPAGQLVGQQVQSGVTFTPGQSSQPITWNWTATTFTDTRGAVKDGTLDVEIYNPAGQLVGQQVQSGVTFTPGQSSQPITWNWTA
PDSPGTYTVKAFVFSQDGTSVYAADPSAATFTVTQPDPPTISATVQLSATTVKPDSPGTYTVKAFVFSQDGTSVYAADPSAATFTVTQPDPPTISATVQLSATTVK
VGTPVTITTTYTETAPTGYLNNGLLVQYAVYNNWTSSQQSNPTATLTPGQSVTVGTPVTITTTYTETAPTGYLNNGLLVQYAVYNNWTSSQQSNPTATLTPGQSVT
ETWTFTPEQAGTYTFPEGIFTSGWTQLQWINQNVTLTVTNETWTFTPEQAGTYTFPEGIFTSGWTQLQWINQNVTLTVTN
该酶基因编码715个氨基酸,因此葡聚糖酶CELA的理论分子量为75.4kDa。The enzyme gene encodes 715 amino acids, so the theoretical molecular weight of glucanase CELA is 75.4kDa.
本发明的葡聚糖酶CELA在酸性范围内均具有较高活性。本发明筛选到一种脂环酸芽孢杆菌Alicyclobacillus hesperidum A4(CGMCCNo.3147)所产生的葡聚糖酶,其在毕赤酵母的重组酶最适pH值为3.4,在pH2.8~4.2的范围内维持80%以上的酶活性;在pH1.2~7.8的范围内37℃保温60分钟,能够保持80%以上的酶活性。最适温度为65℃,在45℃-75℃间均具有50%以上的酶活力;在70℃保温60分钟,剩余酶活达到80%以上。这种性质的葡聚糖酶还未曾有过报道。The glucanase CELA of the present invention has relatively high activity in the acid range. The present invention screens out a glucanase produced by Alicyclobacillus hesperidum A4 (CGMCCNo.3147), the optimal pH value of which is 3.4 for the recombinant enzyme of Pichia pastoris, which is in the range of pH2.8-4.2 Maintain more than 80% of the enzyme activity within the range of pH 1.2 to 7.8 and keep at 37°C for 60 minutes to maintain more than 80% of the enzyme activity. The optimum temperature is 65°C, and there is more than 50% of the enzyme activity between 45°C and 75°C; when incubated at 70°C for 60 minutes, the remaining enzyme activity reaches more than 80%. Glucanases of this nature have not been reported.
本发明提供了编码上述酸性葡聚糖酶CELA的基因。具体地,该基因的基因序列如SEQ ID NO.2所示:The present invention provides a gene encoding the above-mentioned acid glucanase CELA. Specifically, the gene sequence of the gene is shown in SEQ ID NO.2:
SEQ ID NO.2:SEQ ID NO.2:
ATGTCACCTTCAGGGGGAGTCTGTGTGAACCGAAAACAGCGTACGTTAAAGTTATGTCACCTTCAGGGGGAGTCTGTGTGAACCGAAAACAGCGTACGTTAAAGTT
GGGAACGCTCGCAGCAACGATTGTGGCACTCTCAGCCGTGGCCACGCCTGCGGGGGAACGCTCGCAGCAACGATTGTGGCACTCTCAGCCGTGGCCACGCCTGCGG
TCGCCAGTGCGGATACGACGACGGCCATTGCGTCATCGACAGTTCATGTCACAGTCGCCAGTGCGGATACGACGACGGCCATTGCGTCATCGACAGTTCATGTCACAG
TCAATGCCGCTGCTGAACTTGGAATCGTGCCCAATACTGCACTTGGTGTGAATATCAATGCCGCTGCTGAACTTGGAATCGTGCCCAATACTGCACTTGGTGTGAATA
CGGCCGTCTGGGACGGGCATTTACTCGATGCAGCCATTCCATCTCTGCTTCGTGCGGCCGTCTGGGACGGGCATTTACTCGATGCAGCCATTCCATCCTCTGCTTCGTG
GCATTGGGGTAACCATGTTGCGATATCCCGGAGGATCGACTTCAGATGAGTACAGCATTGGGGTAACCATGTTGCGATATCCCGGAGGATCGACTTCAGATGAGTACA
ATTGGCAAACGAATACCGTAACTGGGGGTTATGCAGATCCCAACAACACCTTTGATTGGCAAACGAATACCGTAACTGGGGGTTATGCAGATCCCAACAACACCTTTG
ACAACTTCATGGGAGTGGTCCAAAAGGCTGGTGCGCAACCCATTATTACGGTCACAACTTCATGGGAGTGGTCCAAAAGGCTGGTGCGCAACCCATTATTACGGTC
AACGCCGGCACGGGCACACCGAGTGAAGCTGCCGCATGGGTTCAAGATGCAAAACGCCGGCACGGGCACACCGAGTGAAGCTGCCGCATGGGTTCAAGATGCAA
ATGTCACGCACCACTACGGTGTCAAGTATTGGGAAATCGGAAATGAGATGTATGATGTCACGCACCACTACGGTGTCAAGTATTGGGAAATCGGAAATGAGATGTATG
GCAGCTGGGAAGCAGGGAATTTTGCAAATAACCCATCTGGTTATGCGAAAGAAGCAGCTGGGAAGCAGGGAATTTTGCAAATAACCCATCTGGTTATGCGAAAGAA
GCTGTATCCTTCATTCAGGCCATGAAAGCGGTTGATCCTTCTATTAAAATCGGCGGCTGTATCCTTCATTCAGGCCATGAAAGCGGTTGATCCTTCTATTAAAATCGGCG
TGGACCTCATCGCACCTGGTACTGGAGAAGATGACTGGAATGCAACCGTGCTTTGGACCTCATCGCACCTGGTACTGGAGAAGATGACTGGAATGCAACCGTGCTT
AGCACCATGCACAGCCTTGGGGTGCTTCCGGACTTCGCCATTGTGCACTGGTATAGCACCATGCACAGCCTTGGGGTGCTTCCGGACTTCGCCATTGTGCACTGGTAT
GCGCAAAATCCGGGAGGCGAGACGGACGCTGGGCTGCTCAGTTCGACGAATCGCGCAAAATCCGGGAGGCGAGACGGACGCTGGGCTGCTCAGTTCGACGAATC
AAATTTCGACGATGATGGATACCTTGAAGCAGCAATTGAGCTCCTATGGAACCAAAATTTCGACGATGATGGATACCTTGAAGCAGCAATTGAGCTCCTATGGAACCA
TCCCGGTTTTCGTCACCGAAACGAATTCGGTTTCGTATAACCCTGGGCGCCAGATCCCGGTTTTCGTCACCGAAACGAATTCGGTTTCGTATAACCCTGGGCGCCAGA
GTACAAGTCTGGTTAATGCACTGTTCCTCGATGATGACATGGCAGACTGGCTTGGTACAAGTCTGGTTAATGCACTGTTCCTCGATGATGACATGGCAGACTGGCTTG
AGTCCGGAGCGCAAAACGTCGACTGGTGGGACTTGCATAACGGCATTGTTACAAGTCCGGAGCGCAAAACGTCGACTGGTGGGACTTGCATAACGGCATTGTTACA
CAACAGGCCGGTGCAAATGTCGATCCGAATCTGTATGGGCAGTATAACTACGGACAACAGGCCGGTGCAAATGTCGATCCGAATCTGTATGGGCAGTATAACTACGGA
GACTATGGACTTTTGTCCAATGGCTCGAGTGACAATGGCATTTCAGAACCGGCTGACTATGGACTTTTGTCCAATGGCTCGAGTGACAATGGCATTTCAGAACCGGCT
GCCAATACACCATTCCCAACGTATTATGGATACCAAATGCTCGCAGCCGTCATGGGCCAATACCACCATTCCCAACGTATTATGGATACCAAATGCTCGCAGCCGTCATGG
TGCCAGGAGCGACGATGATCGGTGCCGGATCGAACAATGATCTGGTGGCCGTGTGCCAGGAGCGACGATGATCGGTGCCGGATCGAACAATGATCTGGTGGCCGTG
CATGCGACCAAGTTGCCCAATGGTGCTGTCGACGTCATGTTGATCAACAAGGATCATGCGACCAAGTTGCCCAATGGTGCTGTCGACGTCATGTTGATCAACAAGGAT
CCGAAACAAGCGTATACCGTCGATTTGCAAGCTGAAGGATTTGCTGCTAAGGGTCCGAAACAAGCGTATACCGTCGATTTGCAAGCTGAAGGATTTGCTGCTAAGGGT
CCTGCATTCACGTTATTCTACGGGCAAGGCAGTAACGCGGTGACGCCGGGCAACCTGCATTCACGTTATTCTACGGGCAAGGCAGTAACGCGGTGACGCCGGGCAA
ATTGGATAATCTGCAGAATGTGACACTACCGCCCTATTCTGTGACGGACATCATCATTGGATAATCTGCAGAATGTGACACTACCGCCCTATTCTGTGACGGACATCATC
ATACCGGCGGTGCCCGGGCATCAGCCACAAGGGCCACAGTTTACGGACAAGACATACCGGCGGTGCCCGGGCATCAGCCACAAGGGCCACAGTTTACGGACAAGAC
GACGTTATCCACTCCTCAGGTAAAGCCTAGTGCCAACGAGACTTTGACCACGAGACGTTATCCACTCCTCAGGTAAAGCCTAGTGCCAACGAGACTTTGACCACGA
CGTTTACCGACACGCGTGGTGCGGTCAAGGATGGTACACTCGACGTGGAAATCCGTTTACCGACACGCGTGGTGCGGTCAAGGATGGTACACTCGACGTGGAAATC
TACAATCCAGCAGGGCAATTGGTTGGGCAACAAGTGCAGTCTGGCGTGACGTTTACAATCCAGCAGGGCAATTGGTTGGGCAACAAGTGCAGTCTGGCGTGACGTT
TACGCCTGGGCAATCATCTCAACCGATTACCTGGAACTGGACGGCGCCCGATTCTACGCCTGGGCAATCATCTCAACCGATTACCTGGAACTGGACGGCGCCCGATTC
TCCTGGGACGTATACCGTGAAGGCGTTCGTCTTCAGCCAAGACGGAACAAGCGTCCTGGGACGTATACCGTGAAGGCGTTCGTCTTCAGCCAAGACGGAACAAGCG
TGTATGCGGCAGACCCGAGTGCAGCTACGTTCACGGTCACACAGCCGGATCCGTGTATGCGGCAGACCCGAGTGCAGCTACGTTCACGGTCACACAGCCGGATCCG
CCCACCATTTCGGCCACCGTTCAGCTGTCCGCAACTACGGTCAAAGTGGGTACCCCACCATTTCGGCCACCGTTCAGCTGTCCGCAACTACGGTCAAAGTGGGTAC
ACCTGTGACCATCACGACGACTTACACCGAAACCGCGCCTACGGGGTACCTGAACCTGTGACCATCACGACGACTTACACCGAAACCGCGCCTACGGGGTACCTGA
ACAACGGGTTGCTTGTACAGTACGCCGTGTACAATAACTGGACATCATCGCAACACAACGGGTTGCTTGTACAGTACGCCGTGTACAATAACTGGACATCATCGCAAC
AGTCCAATCCAACTGCGACATTGACTCCTGGGCAATCGGTGACTGAGACTTGGAGTCCAATCCAACTGCGACATTGACTCCTGGGCAATCGGTGACTGAGACTTGG
ACATTTACGCCAGAGCAGGCCGGAACCTACACATTCCCTGAAGGCATCTTTACCACATTTACGCCAGAGCAGGCCGGAACCTACACATTCCCTGAAGGCATCTTTACC
AGTGGATGGACACAATTGCAGTGGATTAATCAGAACGTGACCTTGACTGTGACAGTGGATGGACACAATTGCAGTGGATTAATCAGAACGTGACCTTGACTGTGAC
AAACTAAAAACTAA
本发明通过PCR的方法分离克隆了葡聚糖酶基因CELA,DNA全序列分析结果表明,葡聚糖酶CELA结构基因CELA全长2148bp,含有一个终止子TAA。葡聚糖酶CELA的成熟蛋白理论分子量为75.4kDa。将葡聚糖酶基因CELA序列及推导出的氨基酸序列在GenBank中进行BLAST比对。该基因与来源于Alicyclobacillusacidocaldarius的纤维素酶(CAD86595)氨基酸序列最高一致性为44%,说明CELA是一种新的葡聚糖酶。The present invention isolates and clones the glucanase gene CELA through the PCR method, and the DNA sequence analysis result shows that the full length of the glucanase CELA structural gene CELA is 2148bp, and contains a terminator TAA. The theoretical molecular weight of the mature protein of glucanase CELA is 75.4kDa. The glucanase gene CELA sequence and the deduced amino acid sequence were compared by BLAST in GenBank. The gene has the highest amino acid sequence identity of 44% with the cellulase (CAD86595) derived from Alicyclobacillus acidocaldarius, indicating that CELA is a new glucanase.
本发明还提供了包含上述葡聚糖酶基因的重组载体,优选为pPIC9-CelA。将本发明的葡聚糖酶基因插入到表达载体合适的限制性酶切位点之间,使其核苷酸序列可操作的与表达调控序列相连接。作为本发明的一个最优选的实施方案,优选为将葡聚糖酶基因插入到质粒pPIC9上的SnaBI和NotI限制性酶切位点之间,使该核苷酸序列位于AOX1启动子的下游并受其调控,得到重组酵母表达质粒pPIC9-CelA。The present invention also provides a recombinant vector comprising the above-mentioned glucanase gene, preferably pPIC9-CelA. The dextranase gene of the present invention is inserted between suitable restriction enzyme cutting sites of the expression vector, so that its nucleotide sequence is operably linked with the expression control sequence. As a most preferred embodiment of the present invention, it is preferred that the glucanase gene is inserted between SnaBI and the NotI restriction enzyme site on the plasmid pPIC9, so that the nucleotide sequence is positioned at the downstream of the AOX1 promoter and Under its regulation, the recombinant yeast expression plasmid pPIC9-CelA was obtained.
本发明还提供了包含上述葡聚糖酶基因的重组菌株,优选为重组菌株GS115/CelA。The present invention also provides a recombinant strain comprising the above glucanase gene, preferably the recombinant strain GS115/CelA.
本发明还提供了一种制备酸性葡聚糖酶CELA的方法,包括以下步骤:The present invention also provides a method for preparing acid glucanase CELA, comprising the following steps:
1)用上述重组载体转化宿主细胞,得重组菌株;1) Transforming host cells with the above-mentioned recombinant vectors to obtain recombinant strains;
2)培养重组菌株,诱导重组葡聚糖酶CELA表达;以及2) cultivating the recombinant strain to induce the expression of recombinant glucanase CELA; and
3)回收并纯化所表达的葡聚糖酶CELA。3) Recover and purify the expressed glucanase CELA.
其中,优选所述宿主细胞为毕赤酵母细胞、啤酒酵母细胞或多型逊酵母细胞,优选将重组酵母表达质粒转化毕赤酵母细胞(Pichic pastoris)GS115,得到重组菌株GS115/CelA。Wherein, the host cell is preferably Pichia cells, Saccharomyces cerevisiae cells or Sinusia polymorpha cells, and the recombinant yeast expression plasmid is preferably transformed into Pichia pastoris cell (Pichic pastoris) GS115 to obtain the recombinant strain GS115/CelA.
本发明还提供了上述酸性葡聚糖酶CELA的应用。The present invention also provides the application of the above acid glucanase CELA.
本发明首先所要解决的技术问题是克服现有技术的不足,提供一种性质优良的、适合于在食品,特别是饲料工业中应用新的葡聚糖酶。本发明的葡聚糖酶最适pH为3.4,在pH2.8~4.2的范围内都有较高的酶活性(80%以上);酸性条件下pH稳定性好;具有较好的耐热的能力和抗各种蛋白酶(特别是胃蛋白酶)。其较高耐热性能,可以有效降低在饲料加工过程中酶活力的损失,降低葡聚糖酶的应用成本。最适pH为酸性范围和较好的蛋白酶抗性(特别是胃蛋白酶)可以提高饲料中非淀粉性多糖的转化率,降低配方成本,减少环境污染;还可以用于生物能源中,如将造纸工业废料及农业废弃物中的葡聚糖转化为D-葡萄糖单体,进而被大多数微生物代谢,转化成有价值的燃料。水解产物(葡萄糖和低聚葡糖)可应用在保健食品行业;在制药工业中葡聚糖与其它物质结合使用,可以延缓药物成分的释放。The first technical problem to be solved by the present invention is to overcome the deficiencies of the prior art and provide a new dextranase with excellent properties and suitable for application in the food industry, especially the feed industry. The optimum pH of the glucanase of the present invention is 3.4, and all have higher enzymatic activity (more than 80%) in the scope of pH 2.8~4.2; pH stability is good under acidic conditions; Ability and resistance to various proteases (especially pepsin). Its high heat resistance can effectively reduce the loss of enzyme activity during feed processing and reduce the application cost of dextranase. The optimum pH is in the acidic range and good protease resistance (especially pepsin) can improve the conversion rate of non-starch polysaccharides in feed, reduce formulation costs, and reduce environmental pollution; it can also be used in bioenergy, such as making paper Glucan in industrial waste and agricultural waste is converted into D-glucose monomer, which is then metabolized by most microorganisms and converted into valuable fuel. Hydrolyzed products (glucose and oligoglucose) can be used in the health food industry; in the pharmaceutical industry, dextran is used in combination with other substances to delay the release of pharmaceutical ingredients.
附图说明Description of drawings
图1在毕赤酵母表达的重组葡聚糖酶的SDS-PAGE分析,其中,1:低分子量蛋白质Marker;2:纯化的重组葡聚糖酶。Fig. 1 SDS-PAGE analysis of recombinant glucanase expressed in Pichia pastoris, wherein, 1: low molecular weight protein Marker; 2: purified recombinant glucanase.
图2重组葡聚糖酶的最适pH。Figure 2 Optimum pH of recombinant dextranase.
图3重组葡聚糖酶的pH稳定性。Figure 3 pH stability of recombinant dextranase.
图4重组葡聚糖酶的最适温度。Figure 4 Optimum temperature of recombinant dextranase.
图5重组葡聚糖酶的热稳定性。Figure 5 Thermostability of recombinant dextranase.
图6重组葡聚糖酶的各种蛋白酶抗性Figure 6 Various protease resistance of recombinant dextranase
脂环酸芽孢杆菌Alicyclobacillus hesperidum A4 CGMCC3147,保存于中国微生物菌种保藏管理委员会普通微生物中心(北京市朝阳区大屯路,中国科学院微生物研究所,100101),其保藏号为:CGMCCNo.3147,保藏日期:2009年06月29号。Alicyclobacillus hesperidum A4 CGMCC3147, preserved in the General Microbiology Center of China Committee for Culture Collection of Microorganisms (Datun Road, Chaoyang District, Beijing, Institute of Microbiology, Chinese Academy of Sciences, 100101), its preservation number is: CGMCCNo.3147, preserved Date: June 29, 2009.
具体实施方式Detailed ways
试验材料和试剂Test materials and reagents
1、菌株及载体:脂环酸芽孢杆菌Alicyclobacillus hesperidum A4由本发明人分离获得,保存于中国微生物菌种保藏管理委员会普通微生物中心(北京市朝阳区大屯路,中国科学院微生物研究所,100101),其保藏号为:CGMCCNo.3147。毕赤酵母表达载体pPIC9及菌株GS115购自于Invitrogen公司。1. Bacterial strains and carriers: Alicyclobacillus hesperidum A4 was isolated and obtained by the inventor, and was preserved in the General Microbiology Center of China Microbiological Culture Collection Management Committee (Datun Road, Chaoyang District, Beijing, Institute of Microbiology, Chinese Academy of Sciences, 100101), Its deposit number is: CGMCCNo.3147. Pichia pastoris expression vector pPIC9 and strain GS115 were purchased from Invitrogen.
2、酶类及其它生化试剂:内切酶购自TaKaRa公司,连接酶购自Invitrogen公司。大麦葡聚糖购自Sigma公司,其它都为国产试剂(均可从普通生化试剂公司购买得到)。2. Enzymes and other biochemical reagents: endonucleases were purchased from TaKaRa Company, and ligases were purchased from Invitrogen Company. Barley dextran was purchased from Sigma Company, and the others were domestic reagents (all of which can be purchased from common biochemical reagent companies).
3、培养基:3. Medium:
(1)脂环酸芽孢杆菌AlicyclobacillushesperidumA4CGMCC3147培养基组成为:0.2%蛋白胨、0.1%酵母提取物、0.2%葡萄糖,pH3.0.(1) The culture medium of Alicyclobacillus peridum A4CGMCC3147 consists of: 0.2% peptone, 0.1% yeast extract, 0.2% glucose, pH3.0.
(2)BMGY培养基:1%酵母提取物,2%蛋白胨,1.34%YNB,0.00004%Biotin,1%甘油(V/V)。(2) BMGY medium: 1% yeast extract, 2% peptone, 1.34% YNB, 0.00004% Biotin, 1% glycerol (V/V).
(3)BMMY培养基:除以0.5%甲醇代替甘油,其余成份均与BMGY相同。(3) BMMY medium: replace glycerol with 0.5% methanol, and the rest of the ingredients are the same as BMGY.
说明:以下实施例中未作具体说明的分子生物学实验方法,均参照《分子克隆实验指南》(第三版)J.萨姆布鲁克一书中所列的具体方法进行,或者按照试剂盒和产品说明书进行。Explanation: For the molecular biology experimental methods not specifically described in the following examples, all refer to the specific methods listed in the book "Molecular Cloning Experiment Guide" (Third Edition) J. Sambrook, or follow the kit and product manual.
实施例1脂环酸芽孢杆菌AlicyclobacillushesperidumA4(CGMCCNo.3147)的分离纯化及其产酶特性Example 1 Isolation and purification of Alicyclobacillus peridum A4 (CGMCC No.3147) and its enzyme-producing properties
将脂环酸芽孢杆菌AlicyclobacillushesperidumA4接种至产酶培养基平板(酵母提取物1.0g、胰蛋白胨2.0g、燕麦葡聚糖5.0g,琼脂30,刚果红0.5g,用盐酸调pH3.0)60℃培养72小时后,用0.5%的刚果红染色,根据透明圈的有无和大小初步验证其具有葡聚糖酶活性。将脂环酸芽孢杆菌AlicyclobacillushesperidumA4经产酶培养基(酵母提取物1.0g、胰蛋白胨2.0g燕麦葡聚糖5.0g,用硫酸调pH3.0)60℃培养48小时后,测定上清液的葡聚糖酶活性。证明其具有葡聚糖酶活性。Inoculate Alicyclobacillus speridum A4 on the enzyme-producing medium plate (yeast extract 1.0g, tryptone 2.0g, oat dextran 5.0g,
实施例2脂环酸芽孢杆菌AlicyclobacillushesperidumA4(CGMCCNo.3147)葡聚糖酶编码基因CELA的克隆Example 2 Cloning of Alicyclobacillus peridum A4 (CGMCC No.3147) Glucanase Encoding Gene CELA
基因序列的获得Acquisition of gene sequence
根据第51家族葡聚糖酶基因的保守(YWEIGNE和AMKAVD)序列设计合成了简并引物Cel51F,Cel51R如表1According to the conserved (YWEIGNE and AMKAVD) sequence of the 51st family glucanase gene, degenerate primers Cel51F and Cel51R were designed and synthesized as shown in Table 1
以脂环酸芽孢杆菌Alicyclobacillus hesperidum A4(CGMCC No.3147)总DNA为模板进行PCR扩增。PCR反应参数为:94℃变性5min;前10个循环,94℃变性30sec,50℃-55℃touchdown(0.5℃/循环)退火30sec,72℃延伸0.5min,然后25个循环条件为后94℃变性30sec,55℃退火30sec,72℃延伸1.5min。最后72℃保温10min。得到一约180bp片段,将该片段回收后与pEASY-T3载体相连送三博生物技术有限公司测序。PCR amplification was performed using the total DNA of Alicyclobacillus hesperidum A4 (CGMCC No.3147) as a template. The PCR reaction parameters are: denaturation at 94°C for 5 min; the first 10 cycles, denaturation at 94°C for 30 sec, touchdown (0.5°C/cycle) at 50°C-55°C for 30 sec, extension at 72°C for 0.5 min, and the last 25 cycles at 94°C Denaturation for 30 sec, annealing at 55°C for 30 sec, extension at 72°C for 1.5 min. Finally, keep warm at 72°C for 10 minutes. A fragment of about 180bp was obtained, which was recovered and connected with the pEASY-T3 vector and sent to Sanbo Biotechnology Co., Ltd. for sequencing.
根据测序得到的核甘酸序列,设计上游和下游各三条TAIL-PCR特异性嵌套引物:设计方向为需要扩增的未知区域方向,并将它们分别命名为usp1,usp2,usp3(上游特异性引物),dsp1,dsp2,dsp3(下游特异性引物)见表1。According to the nucleotide sequence obtained by sequencing, three TAIL-PCR specific nested primers were designed upstream and downstream respectively: the design direction was the direction of the unknown region to be amplified, and they were respectively named usp1, usp2, usp3 (upstream specific primers ), dsp1, dsp2, dsp3 (downstream specific primers) are shown in Table 1.
表1.葡聚糖酶CelA TAIL-PCR特异性引物Table 1. Dextranase CelA TAIL-PCR specific primers
N代表A,G,C或T;H代表T,A或C;R代表A或G;Y代表C或TN stands for A, G, C or T; H stands for T, A or C; R stands for A or G; Y stands for C or T
通过TAIL-PCR得到已知基因序列的侧翼序列,扩增得到产物回收后测序。The flanking sequence of the known gene sequence was obtained by TAIL-PCR, and the amplified product was recovered and then sequenced.
通过比较葡聚糖酶的基因组序列后发现该基因全长2148bp,编码715个氨基酸和一个终止密码子,N端1-39氨基酸残基为信号肽序列。所推测出的基因CELA的氨基酸序列与GeneBank上的葡聚糖酶基因序列进行同源比较,最高一致性为44%,说明CELA是一种新的葡聚糖酶,表明从AlicyclobacillushesperidumA4(CGMCCNo.3147)中分离克隆得到的编码葡聚糖酶的基因为新基因。After comparing the genome sequence of glucanase, it was found that the gene was 2148bp in full length, encoded 715 amino acids and a stop codon, and the N-terminal 1-39 amino acid residues were signal peptide sequences. The amino acid sequence of the deduced gene CELA is homologously compared with the glucanase gene sequence on the GeneBank, and the highest identity is 44%, indicating that CELA is a new glucanase, which shows that it is derived from AlicyclobacillussperidumA4 (CGMCCNo.3147 The gene encoding dextranase isolated and cloned in ) is a new gene.
提取脂环酸芽孢杆菌AlicyclobacillushesperidumA4(CGMCCNo.3147)基因组DNA:Alicyclobacillus peridum A4 (CGMCCNo.3147) genomic DNA was extracted:
将液体培养2天的菌液离心取菌体,加入1mL溶菌酶,37℃处理60min,再加入裂解液,65℃水浴锅裂解30min,每隔10min混匀一次,在4℃下10000rpm离心5min。取上清于酚/氯仿中抽提除去杂蛋白,再取上清加入等体积异丙醇,于室温静置5min后,4℃下10000rpm离心10min。弃上清,沉淀用70%的乙醇洗涤两次,真空干燥,加入适量TE溶解,置于-20℃备用。Centrifuge the cultured bacteria for 2 days, add 1mL lysozyme, treat at 37°C for 60min, then add lysate, lyse in a water bath at 65°C for 30min, mix every 10min, and centrifuge at 10,000rpm at 4°C for 5min. The supernatant was extracted in phenol/chloroform to remove impurity proteins, and then an equal volume of isopropanol was added to the supernatant. After standing at room temperature for 5 minutes, centrifuge at 10,000 rpm for 10 minutes at 4°C. The supernatant was discarded, the precipitate was washed twice with 70% ethanol, dried in vacuum, dissolved by adding an appropriate amount of TE, and stored at -20°C for later use.
根据CelA序列信息设计合成了引物CelAF和CelAR如表1。According to the sequence information of CelA, the primers CelAF and CelAR were designed and synthesized as shown in Table 1.
以脂环酸芽孢杆菌AlicyclobacillushesperidumA4(CGMCCNo.3147)总DNA为模板进行PCR扩增。PCR反应参数为:95℃变性5min,94℃变性30sec,60℃退火30sec,72℃延伸120s,30个循环。最后72℃保温10min。The total DNA of Alicyclobacillus peridum A4 (CGMCC No.3147) was used as template for PCR amplification. The PCR reaction parameters were: denaturation at 95°C for 5 min, denaturation at 94°C for 30 sec, annealing at 60°C for 30 sec, extension at 72°C for 120 s, and 30 cycles. Finally, keep warm at 72°C for 10 minutes.
实施例3重组葡聚糖酶的制备。Example 3 Preparation of recombinant dextranase.
将表达载体pPIC9进行双酶切(SnaBI和NotI),同时将编码葡聚糖酶的基因CelA双酶切(SnaBI和NotI),切出编码葡聚糖酶的基因片段与表达载体pPIC9连接,获得含有葡聚糖酶基因CelA的重组质粒pPIC9-CelA并转化毕赤酵母GS115,获得重组毕赤酵母菌株GS115/CelA。The expression vector pPIC9 is subjected to double digestion (SnaBI and NotI), and the gene CelA encoding glucanase is double-digested (SnaBI and NotI) at the same time, and the gene fragment encoding glucanase is cut out and connected to the expression vector pPIC9 to obtain The recombinant plasmid pPIC9-CelA containing the glucanase gene CelA was transformed into Pichia pastoris GS115 to obtain the recombinant Pichia pastoris strain GS115/CelA.
取含有重组质粒的GS115菌株,接种于400mL BMGY培养液中,30℃250rpm振荡培养48h后,离心收集菌体。然后于200mLBMMY培养基重悬,30℃250rpm振荡培养。诱导48h后,离心收集上清。测定葡聚糖酶的活力。重组葡聚糖酶的表达量为20.41U/mL。SDS-PAGE结果(图1)表明,重组葡聚糖酶在毕赤酵母中得到了表达。Take the GS115 strain containing the recombinant plasmid, inoculate it in 400mL BMGY culture medium, shake it at 250rpm at 30°C for 48h, and collect the bacteria by centrifugation. Then resuspend in 200mL BMMY medium, shake culture at 250rpm at 30°C. After 48 hours of induction, the supernatant was collected by centrifugation. Determination of dextranase activity. The expression level of recombinant glucanase was 20.41U/mL. SDS-PAGE results (Figure 1) showed that the recombinant glucanase was expressed in Pichia pastoris.
实施例4重组葡聚糖酶的活性分析Activity Analysis of Embodiment 4 Recombinant Glucanase
DNS法:具体方法如下:在pH3.4(0.1M磷酸二氢钠-柠檬酸),65℃条件下,1mL的反应体系包括100μL适当的稀释酶液和900μL(1%,w/v)底物,反应10min,加入1.5mLDNS终止反应,沸水煮5min。冷却后540nm测定OD值。1个酶活单位(U)定义为在给定的条件下每分钟释放出1μmol还原糖的酶量。DNS method: the specific method is as follows: at pH 3.4 (0.1M sodium dihydrogen phosphate-citric acid), at 65°C, 1 mL of reaction system includes 100 μL of appropriate diluted enzyme solution and 900 μL (1%, w/v) bottom The mixture was reacted for 10 minutes, and 1.5mL DNS was added to terminate the reaction, and boiled for 5 minutes. After cooling, the OD value was measured at 540 nm. One enzyme activity unit (U) is defined as the amount of enzyme that releases 1 μmol of reducing sugar per minute under given conditions.
实施例5重组葡聚糖酶CELA的性质测定The property determination of embodiment 5 recombinant glucanase CELA
1、重组葡聚糖酶CELA的最适pH和pH稳定性的测定方法如下:1. The optimum pH and pH stability determination methods of recombinant glucanase CELA are as follows:
将实施例3纯化的重组葡聚糖酶在不同的pH下进行酶促反应以测定其最适pH。底物葡聚糖用不同pH的缓冲液(0.1M甘氨酸-盐酸pH 1.2-2.6;0.1mol/L柠檬酸-磷酸氢二钠pH 3.0-7.4;0.1MTris-HCl pH 7.8-8.6)、在65℃下进行葡聚糖酶活力测定。结果(图2)表明,CELA的最适pH为3.4,在pH2.8~4.2的范围内维持80%以上的酶活性。葡聚糖酶于上述各种不同pH的缓冲液中37℃处理60min,再在pH3.4缓冲液体系中65℃下测定酶活性,以研究酶的pH耐性。结果(图3)表明葡聚糖酶在pH1.2-7.8之间均很稳定,在此pH范围内处理60min后剩余酶活性在80%以上,这说明此酶具有较好的pH稳定性。The recombinant glucanase purified in Example 3 was subjected to enzymatic reactions at different pHs to determine its optimum pH. The substrate dextran was buffered with different pH (0.1M glycine-hydrochloric acid pH 1.2-2.6; 0.1mol/L citric acid-disodium hydrogen phosphate pH 3.0-7.4; 0.1M Tris-HCl pH 7.8-8.6), at 65 Determination of glucanase activity was carried out at ℃. The results ( FIG. 2 ) showed that the optimum pH of CELA was 3.4, and more than 80% of the enzyme activity was maintained in the range of pH 2.8-4.2. Dextranase was treated at 37°C for 60min in the above-mentioned buffers with different pH, and then the enzyme activity was measured at 65°C in the pH3.4 buffer system to study the pH tolerance of the enzyme. The result (Fig. 3) shows that the dextranase is very stable between pH 1.2-7.8, and the remaining enzyme activity is above 80% after 60 minutes of treatment in this pH range, which shows that the enzyme has good pH stability.
2、葡聚糖酶的最适温度及热稳定性测定方法如下:2. The optimal temperature and thermostability determination method of dextranase is as follows:
葡聚糖酶的最适温度的测定为在柠檬酸-磷酸氢二钠缓冲液(pH3.4)缓冲液体系及不同温度下进行酶促反应。耐温性测定为葡聚糖酶在不同温度下处理不同时间,再在65℃下进行酶活性测定。酶反应最适温度测定结果(图4)表明其最适温度为65℃。酶的热稳定性性试验表明(图5),重组酶在70℃时稳定性非常好。70℃下保温60min,剩余酶活性为84%,所述酶在45℃-75℃间均具有50%以上的酶活力。Determination of optimum temperature of dextranase is carried out enzymatic reaction in citric acid-disodium hydrogen phosphate buffer (pH3.4) buffer solution system and different temperatures. The temperature resistance was measured by treating the dextranase at different temperatures for different times, and then measuring the enzyme activity at 65°C. The measurement results of the optimum temperature of the enzyme reaction (Fig. 4) showed that the optimum temperature was 65°C. The thermostability test of the enzyme showed (Fig. 5) that the recombinant enzyme had very good stability at 70°C. After incubation at 70°C for 60 minutes, the remaining enzyme activity is 84%, and the enzymes all have more than 50% enzyme activity at 45°C-75°C.
3、不同金属离子化学试剂对XYLA4酶活的影响测定如下:3. The influence of different metal ion chemical reagents on XYLA4 enzyme activity was determined as follows:
在酶促反应体系中加入不同浓度的不同的金属离子及化学试剂,研究其对酶活性的影响,各种物质终浓度为1和10mmol/L。在65℃、pH3.4条件下测定酶活性。结果(表1)表明,除了SDS,大多数离子和化学试剂在浓度为1mmol时重组葡聚糖酶的活力没有明显变化。当浓度为10mmo时Co2+,Cr3+,Fe2+,Pb2+,Cu2+,Ag+,Hg2+’和SDS均强烈抑制其活力。β-巯基乙醇在1mmol和10mmol时能分别使重组酶活力增加到原来的1.16和1.39倍。Add different concentrations of different metal ions and chemical reagents to the enzymatic reaction system to study their effects on enzyme activity. The final concentrations of various substances are 1 and 10mmol/L. Enzyme activity was measured at 65°C and pH 3.4. The results (Table 1) showed that, except for SDS, most ions and chemical reagents had no significant change in the activity of recombinant dextranase at a concentration of 1 mmol. Co 2+ , Cr 3+ , Fe 2+ , Pb 2+ , Cu 2+ , Ag + , Hg 2+ ' and SDS strongly inhibited its activity when the concentration was 10mmo. β-mercaptoethanol can increase the activity of recombinase to 1.16 and 1.39 times at 1mmol and 10mmol respectively.
表1各种化学试剂对葡聚糖酶CELA活力的影响Table 1 Effects of various chemical reagents on the activity of dextranase CELA
实施例6重组葡聚糖酶在人工胃液中对大麦豆粕型日粮粘度的影响Example 6 Effect of Recombinant Glucanase on the Viscosity of Barley Soybean Meal Type Diet in Artificial Gastric Juice
具体方法如下1g大麦豆粕型溶解在9mL的含有1U CelA的人工胃液中,混合溶液放置在37℃摇床180rpm振荡1h。为了确定在消化过程中,随着pH条件的变化导致水解产物的累积效果(Haraldsson et al.,2005),根据Minekus et al.(1995)描述的pH梯度模型,对CelA在人工胃液中从大麦豆粕型日粮中水解的累积效果进行了实验模拟研究。整个pH梯度按照以下策略进行pH 2.0,20min;pH 2.3,20min;pH 2.8,20min;pH 3.8,10min;pH 4.6,10min;pH 5.5,10min。在这个过程中溶液的pH放置在冰上通过HCl或NaOH进行调节。作用的最终累计效果通过测定粘度来表示。粘度的测定用毛细管粘度计来测定。具体地,将经过上述处理的料液通过新华一号滤纸好,取5ml的滤过液,通过毛细管粘度计测定。The specific method is as follows: 1g of barley soybean meal was dissolved in 9mL of artificial gastric juice containing 1U CelA, and the mixed solution was placed on a shaker at 37°C at 180rpm for 1h. In order to determine the effect of hydrolyzate accumulation as a function of pH conditions during digestion (Haraldsson et al., 2005), CelA from barley in artificial gastric juice was tested according to the pH gradient model described by Minekus et al. (1995). The cumulative effect of hydrolysis in soybean meal-based diets was studied in experimental simulations. The entire pH gradient was carried out according to the following strategy: pH 2.0, 20min; pH 2.3, 20min; pH 2.8, 20min; pH 3.8, 10min; pH 4.6, 10min; pH 5.5, 10min. During this process the pH of the solution was adjusted by HCl or NaOH on ice. The final cumulative effect of action is expressed by measuring the viscosity. Viscosity was measured with a capillary viscometer. Specifically, pass the feed liquid through the above-mentioned treatment through Xinhua No. 1 filter paper, take 5ml of the filtrate, and measure it by a capillary viscometer.
结果表明:经过酶液处理的大麦豆粕饲料粘度比对照下降了36.72%。表明CelA可以很好应用在饲料工业中。The results showed that the viscosity of barley and soybean meal treated with enzyme solution was 36.72% lower than that of the control. It shows that CelA can be well applied in the feed industry.
序列表sequence listing
<110>中国农业科学院饲料研究所<110> Feed Research Institute, Chinese Academy of Agricultural Sciences
the
<120>一种酸性葡聚糖酶CELA及其基因和应用<120> A kind of acid glucanase CELA and its gene and application
the
<160>2<160>2
the
<210>1<210>1
the
<211>715<211>715
the
<212>PRT<212>PRT
the
<213>脂环酸芽孢杆菌(Alicyclobacillus hesperidum A4)<213> Alicyclobacillus hesperidum A4
the
<400>1<400>1
MSPSGGVCVN RKQRTLKLGT LAATIVALSA VATPAVASAD TTTAIASSTVMSPSGGVCVN RKQRTLKLGT LAATIVALSA VATPAVASAD TTTAIASSTV
HVTVNAAAEL 60
GIVPNTALGV NTAVWDGHLL DAAIPSLLRG IGVTMLRYPG GSTSDEYNWQGIVNTALGV NTAVWDGHLL DAAIPSLLRG IGVTMLRYPG GSTSDEYNWQ
TNTVTGGYAD 120TNTVTGGYAD 120
PNNTFDNFMG VVQKAGAQPI ITVNAGTGTP SEAAAWVQDA NVTHHYGVKYPNNTFDNFMG VVQKAGAQPI ITVNAGTGTP SEAAAWVQDA NVTHHYGVKY
WEIGNEMYGS 180WEIGNEMYGS 180
WEAGNFANNP SGYAKEAVSF IQAMKAVDPS IKIGVDLIAP GTGEDDWNATWEAGNFANNP SGYAKEAVSF IQAMKAVDPS IKIGVDLIAP GTGEDDWNAT
VLSTMHSLGV 240VLSTMHSLGV 240
LPDFAIVHWY AQNPGGETDA GLLSSTNQIS TMMDTLKQQL SSYGTIPVFVLPDFAIVHWY AQNPGGETDA GLLSSTNQIS TMMDTLKQQL SSYGTIPVFV
TETNSVSYNP 300TETNSVSYNP 300
GRQSTSLVNA LFLDDDMADW LESGAQNVDW WDLHNGIVTQ QAGANVDPNLGRQSTSLVNA LFLDDDMADW LESGAQNVDW WDLHNGIVTQ QAGANVDPNL
YGQYNYGDYG 360YGQYNYGDYG 360
LLSNGSSDNG ISEPAANTPF PTYYGYQMLA AVMVPGATMI GAGSNNDLVALLSNGSSNG ISEPAANTPF PTYYGYQMLA AVMVPGATMI GAGSNNDLVA
VHATKLPNGA 420VHATKLPNGA 420
VDVMLINKDP KQAYTVDLQA EGFAAKGPAF TLFYGQGSNA VTPGKLDNLQVDVMLINKDP KQAYTVDLQA EGFAAKGPAF TLFYGQGSNA VTPGKLDNLQ
NVTLPPYSVT 480NVTLPPYSVT 480
DIIIPAVPGH QPQGPQFTDK TTLSTPQVKP SANETLTTTF TDTRGAVKDGDIIIPAVPGH QPQGPQFTDK TTLSTPQVKP SANETLTTTF TDTRGAVKDG
TLDVEIYNPA 540TLDVEIYNPA 540
GQLVGQQVQS GVTFTPGQSS QPITWNWTAP DSPGTYTVKA FVFSQDGTSVGQLVGQQVQS GVTFTPGQSS QPITWNWTAP DSPGTYTVKA FVFSQDGTSV
YAADPSAATF 600YAADPSAATF 600
TVTQPDPPTI SATVQLSATT VKVGTPVTIT TTYTETAPTG YLNNGLLVQYTVTQPDPPTI SATVQLSATT VKVGTPVTIT TTYTETAPTG YLNNGLLVQY
AVYNNWTSSQ 660AVYNNWTSSQ 660
QSNPTATLTP GQSVTETWTF TPEQAGTYTF PEGIFTSGWT QLQWINQNVTQSNPTATLTP GQSVTETWTF TPEQAGTYTF PEGIFTSGWT QLQWINQNVT
LTVTN 715LTVTN 715
the
<210>2<210>2
<211>2148<211>2148
<212>DNA<212> DNA
<213>脂环酸芽孢杆菌(Alicyclobacillus hesperidum A4)<213> Alicyclobacillus hesperidum A4
the
<400>2<400>2
atgtcacctt cagggggagt ctgtgtgaac cgaaaacagc gtacgttaaa gttgggaacg 60atgtcacctt caggggggagt ctgtgtgaac cgaaaacagc gtacgttaaa gttgggaacg 60
ctcgcagcaa cgattgtggc actctcagcc gtggccacgc ctgcggtcgc cagtgcggat 120ctcgcagcaa cgattgtggc actctcagcc gtggccacgc ctgcggtcgc cagtgcggat 120
acgacgacgg ccattgcgtc atcgacagtt catgtcacag tcaatgccgc tgctgaactt 180acgacgacgg ccattgcgtc atcgacagtt catgtcacag tcaatgccgc tgctgaactt 180
ggaatcgtgc ccaatactgc acttggtgtg aatacggccg tctgggacgg gcatttactc 240ggaatcgtgc ccaatactgc acttggtgtg aatacggccg tctgggacgg gcatttactc 240
gatgcagcca ttccatctct gcttcgtggc attggggtaa ccatgttgcg atatcccgga 300gatgcagcca ttccatctct gcttcgtggc attggggtaa ccatgttgcg atatcccgga 300
ggatcgactt cagatgagta caattggcaa acgaataccg taactggggg ttatgcagat 360ggatcgactt cagatgagta caattggcaa acgaataccg taactggggg ttatgcagat 360
cccaacaaca cctttgacaa cttcatggga gtggtccaaa aggctggtgc gcaacccatt 420cccaacaaca cctttgacaa cttcatggga gtggtccaaa aggctggtgc gcaacccatt 420
attacggtca acgccggcac gggcacaccg agtgaagctg ccgcatgggt tcaagatgca 480attacggtca acgccggcac gggcacaccg agtgaagctg ccgcatgggt tcaagatgca 480
aatgtcacgc accactacgg tgtcaagtat tgggaaatcg gaaatgagat gtatggcagc 540aatgtcacgc accactacgg tgtcaagtat tgggaaatcg gaaatgagat gtatggcagc 540
tgggaagcag ggaattttgc aaataaccca tctggttatg cgaaagaagc tgtatccttc 600tgggaagcag ggaattttgc aaataaccca tctggttatg cgaaagaagc tgtatccttc 600
attcaggcca tgaaagcggt tgatccttct attaaaatcg gcgtggacct catcgcacct 660attcaggcca tgaaagcggt tgatccttct attaaaatcg gcgtggacct catcgcacct 660
ggtactggag aagatgactg gaatgcaacc gtgcttagca ccatgcacag ccttggggtg 720ggtactggag aagatgactg gaatgcaacc gtgcttagca ccatgcacag ccttggggtg 720
cttccggact tcgccattgt gcactggtat gcgcaaaatc cgggaggcga gacggacgct 780cttccggact tcgccattgt gcactggtat gcgcaaaatc cgggaggcga gacggacgct 780
gggctgctca gttcgacgaa tcaaatttcg acgatgatgg ataccttgaa gcagcaattg 840gggctgctca gttcgacgaa tcaaatttcg acgatgatgg ataccttgaa gcagcaattg 840
agctcctatg gaaccatccc ggttttcgtc accgaaacga attcggtttc gtataaccct 900agctcctatg gaaccatccc ggttttcgtc accgaaacga attcggtttc gtataaccct 900
gggcgccaga gtacaagtct ggttaatgca ctgttcctcg atgatgacat ggcagactgg 960gggcgccaga gtacaagtct ggttaatgca ctgttcctcg atgatgacat ggcagactgg 960
cttgagtccg gagcgcaaaa cgtcgactgg tgggacttgc ataacggcat tgttacacaa 1020cttgagtccg gagcgcaaaa cgtcgactgg tgggacttgc ataacggcat tgttacacaa 1020
caggccggtg caaatgtcga tccgaatctg tatgggcagt ataactacgg agactatgga 1080caggccggtg caaatgtcga tccgaatctg tatgggcagt ataactacgg agactatgga 1080
cttttgtcca atggctcgag tgacaatggc atttcagaac cggctgccaa tacaccattc 1140cttttgtcca atggctcgag tgacaatggc atttcagaac cggctgccaa tacaccattc 1140
ccaacgtatt atggatacca aatgctcgca gccgtcatgg tgccaggagc gacgatgatc 1200ccaacgtatt atggatacca aatgctcgca gccgtcatgg tgccaggagc gacgatgatc 1200
ggtgccggat cgaacaatga tctggtggcc gtgcatgcga ccaagttgcc caatggtgct 1260ggtgccggat cgaacaatga tctggtggcc gtgcatgcga ccaagttgcc caatggtgct 1260
gtcgacgtca tgttgatcaa caaggatccg aaacaagcgt ataccgtcga tttgcaagct 1320gtcgacgtca tgttgatcaa caaggatccg aaacaagcgt ataccgtcga tttgcaagct 1320
gaaggatttg ctgctaaggg tcctgcattc acgttattct acgggcaagg cagtaacgcg 1380gaaggatttg ctgctaaggg tcctgcattc acgttattct acgggcaagg cagtaacgcg 1380
gtgacgccgg gcaaattgga taatctgcag aatgtgacac taccgcccta ttctgtgacg 1440gtgacgccgg gcaaattgga taatctgcag aatgtgacac taccgcccta ttctgtgacg 1440
gacatcatca taccggcggt gcccgggcat cagccacaag ggccacagtt tacggacaag 1500gacatcatca taccggcggt gcccgggcat cagccacaag ggccacagtt tacggacaag 1500
acgacgttat ccactcctca ggtaaagcct agtgccaacg agactttgac cacgacgttt 1560acgacgttat ccactcctca ggtaaagcct agtgccaacg agactttgac cacgacgttt 1560
accgacacgc gtggtgcggt caaggatggt acactcgacg tggaaatcta caatccagca 1620accgacacgc gtggtgcggt caaggatggt acactcgacg tggaaatcta caatccagca 1620
gggcaattgg ttgggcaaca agtgcagtct ggcgtgacgt ttacgcctgg gcaatcatct 1680gggcaattgg ttgggcaaca agtgcagtct ggcgtgacgt ttacgcctgg gcaatcatct 1680
caaccgatta cctggaactg gacggcgccc gattctcctg ggacgtatac cgtgaaggcg 1740caaccgatta cctggaactg gacggcgccc gattctcctg ggacgtatac cgtgaaggcg 1740
ttcgtcttca gccaagacgg aacaagcgtg tatgcggcag acccgagtgc agctacgttc 1800ttcgtcttca gccaagacgg aacaagcgtg tatgcggcag acccgagtgc agctacgttc 1800
acggtcacac agccggatcc gcccaccatt tcggccaccg ttcagctgtc cgcaactacg 1860acggtcacac agccggatcc gcccaccatt tcggccaccg ttcagctgtc cgcaactacg 1860
gtcaaagtgg gtacacctgt gaccatcacg acgacttaca ccgaaaccgc gcctacgggg 1920gtcaaagtgg gtacacctgt gaccatcacg acgacttaca ccgaaaccgc gcctacgggg 1920
tacctgaaca acgggttgct tgtacagtac gccgtgtaca ataactggac atcatcgcaa 1980tacctgaaca acgggttgct tgtacagtac gccgtgtaca ataactggac atcatcgcaa 1980
cagtccaatc caactgcgac attgactcct gggcaatcgg tgactgagac ttggacattt 2040cagtccaatc caactgcgac attgactcct gggcaatcgg tgactgagac ttggacattt 2040
acgccagagc aggccggaac ctacacattc cctgaaggca tctttaccag tggatggaca 2100acgccagagc aggccggaac ctacacattc cctgaaggca tctttaccag tggatggaca 2100
caattgcagt ggattaatca gaacgtgacc ttgactgtga caaactaa 2148caattgcagt ggattaatca gaacgtgacc ttgactgtga caaactaa 2148
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2010101549287A CN101851612B (en) | 2010-04-20 | 2010-04-20 | A kind of acid glucanase CELA and its gene and application |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2010101549287A CN101851612B (en) | 2010-04-20 | 2010-04-20 | A kind of acid glucanase CELA and its gene and application |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101851612A CN101851612A (en) | 2010-10-06 |
CN101851612B true CN101851612B (en) | 2011-09-21 |
Family
ID=42803292
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2010101549287A Active CN101851612B (en) | 2010-04-20 | 2010-04-20 | A kind of acid glucanase CELA and its gene and application |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101851612B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108823188A (en) * | 2018-06-15 | 2018-11-16 | 华中科技大学 | A kind of endoglucanase and its encoding gene and application |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102154246B (en) * | 2011-01-28 | 2012-11-28 | 武汉新华扬生物股份有限公司 | Acid glucanase CEL7G5 and gene and application thereof |
CN103667131B (en) * | 2013-12-05 | 2015-09-16 | 中国科学院微生物研究所 | A kind of method and special strain therefore thereof improving metallic ore leaching rate |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050147983A1 (en) * | 2004-01-06 | 2005-07-07 | Novozymes A/S | Polypeptides of Alicyclobacillus sp. |
CN101538548A (en) * | 2009-04-22 | 2009-09-23 | 无锡瑞宝科技有限公司 | Beta-1,3-1,4-dextranase gene engineering bacterium for feeds and construction thereof |
CN101619309B (en) * | 2009-06-24 | 2011-10-05 | 郑荣 | Enzyme composition for high-efficiency decomposition of cellulose |
-
2010
- 2010-04-20 CN CN2010101549287A patent/CN101851612B/en active Active
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108823188A (en) * | 2018-06-15 | 2018-11-16 | 华中科技大学 | A kind of endoglucanase and its encoding gene and application |
Also Published As
Publication number | Publication date |
---|---|
CN101851612A (en) | 2010-10-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101457207B (en) | Eosinophil beta-mannanase MAN5A and gene and application thereof | |
JP5340138B2 (en) | Cloning and expression of a novel phytase | |
CN101457206B (en) | Acidic xylanase XYL10A and gene and application thereof | |
CN101748108B (en) | Acidophil Beta-glucanase GLU7A and gene and application thereof | |
CN101851612B (en) | A kind of acid glucanase CELA and its gene and application | |
CN104388408B (en) | Acid glucanase GLU16-3 with high specific activity, gene for same and application of acid glucanase GLU16-3 | |
CN101457208B (en) | A protease-resistant acid α-galactosidase Aga-F75 and its gene and application | |
CN102220304B (en) | A low-temperature xylanase XynAHJ2 and its gene | |
CN101838637B (en) | A wide temperature applicability acid glucanase AGL9A and its gene and application | |
CN101701214B (en) | A wide pH applicability xylanase XYNA4 and its gene and application | |
CN102533698B (en) | High temperature acidic mannase Man5C1, and gene and application thereof | |
CN101818135B (en) | Acidophilic alpha-galactosidase AgalB with galactomannan degradation capability and gene and application thereof | |
CN101701213B (en) | Dual-function xylanase XYNBE18 and gene and application thereof | |
CN101368175B (en) | Novel phytase, encoding gene, cell and feedstuff additive including the enzyme | |
CN114621987B (en) | A method for preparing arabinoxylan with different molecular weight distribution characteristics | |
CN105779420A (en) | High temperature-resistant acid arabinfuranosidease AbfaHLB and gene and application thereof | |
CN101838636A (en) | High-specific-activity xylanase XYN11F63 and genes and application thereof | |
CN107488221B (en) | Swollenin protein from fungi and gene and application thereof | |
CN102363773B (en) | Novel beta-glucanase GLU, novel high temperature resistant beta-glucanase VGLU, and genes and applications of novel beta-glucanase GLU and novel high temperature resistant beta-glucanase VGLU | |
CN102399768B (en) | Low temperature xylanase BA-XYL11a as well as gene and application | |
CN103695397B (en) | Mesophilic acidic xylanase XYN10L1 and gene and application thereof | |
CN103074317B (en) | High temperature neutral xylanase XYNA used for brewing beer and gene and application thereof | |
RU2388820C2 (en) | Gene abfb-2 penicillium funiculosum | |
CN101892208B (en) | High-temperature acidic xylanase XYN10J88, gene and application thereof | |
CN106566818A (en) | Acidic thermophilic polygalacturonase TePG28A, and coding gene and application thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20200901 Address after: 100193 Beijing Old Summer Palace West Road, Haidian District, No. 2 Patentee after: Beijing Institute of Animal Science and Veterinary Medicine, Chinese Academy of Agricultural Sciences Address before: 100086 No. 12 South Main Street, Haidian District, Beijing, Zhongguancun Patentee before: FEED Research Institute CHINESE ACADEMY OF AGRICULTURAL SCIENCES |