[go: up one dir, main page]

CN101851612B - A kind of acid glucanase CELA and its gene and application - Google Patents

A kind of acid glucanase CELA and its gene and application Download PDF

Info

Publication number
CN101851612B
CN101851612B CN2010101549287A CN201010154928A CN101851612B CN 101851612 B CN101851612 B CN 101851612B CN 2010101549287 A CN2010101549287 A CN 2010101549287A CN 201010154928 A CN201010154928 A CN 201010154928A CN 101851612 B CN101851612 B CN 101851612B
Authority
CN
China
Prior art keywords
cela
glucanase
gene
recombinant
dextranase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN2010101549287A
Other languages
Chinese (zh)
Other versions
CN101851612A (en
Inventor
姚斌
柏映国
孟昆
罗会颖
石鹏君
黄火清
王亚茹
袁铁铮
杨培龙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Animal Science of CAAS
Original Assignee
Feed Research Institute of Chinese Academy of Agricultural Sciences
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Feed Research Institute of Chinese Academy of Agricultural Sciences filed Critical Feed Research Institute of Chinese Academy of Agricultural Sciences
Priority to CN2010101549287A priority Critical patent/CN101851612B/en
Publication of CN101851612A publication Critical patent/CN101851612A/en
Application granted granted Critical
Publication of CN101851612B publication Critical patent/CN101851612B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Enzymes And Modification Thereof (AREA)

Abstract

The invention relates to the field of genetic engineering, in particular to acid glucanase CELA and a gene and application thereof. The invention provides glucanase CELA derived from Alicyclobacillus heperidumA 4(CGMCC No.3147), the amino acid sequence of which is shown in SEQ ID No.1, and the invention provides a gene CelA for coding the glucanase. The glucanase of the invention has the following properties: the optimum pH value is 3.4, and the optimum temperature is 65 ℃; better thermal stability. As a novel enzyme preparation, the enzyme preparation can be widely used in industries of animal feed, food, energy and the like.

Description

一种酸性葡聚糖酶CELA及其基因和应用A kind of acid glucanase CELA and its gene and application

技术领域technical field

本发明涉及基因工程领域,具体地,本发明涉及一种酸性葡聚糖酶CELA及其基因和应用。The invention relates to the field of genetic engineering, in particular, the invention relates to an acid glucanase CELA and its gene and application.

背景技术Background technique

β-葡聚糖广泛存在于禾谷类(大麦、燕麦、黑麦和小麦)的糊粉层和胚乳细胞壁中,属植物细胞壁中的结构性非淀粉多糖,具有线型的空间结构,依物种不同,β-葡聚糖的含量及所占比例也不同。其中在大麦和燕麦当中所含比例最高。葡聚糖酶是可将葡聚糖降解成低聚糖和葡萄糖的一类酶的总称。目前葡聚糖酶在食品,饲料,啤酒、医药等领域得到了日益广泛的应用。目前大麦主要被应用于啤酒的酿造和饲料中,因此相关的葡聚糖酶在啤酒酿造和饲料工业中得到了最为广泛的应用,尤其在欧洲,以大麦,豆粕为主要原料的饲料配方中,葡聚糖酶的添加更为广泛。大麦发芽过程中,大麦当中的葡聚糖不能够被自身内源性葡聚糖酶完全分解,通常仅能分解30%-70%,残留的葡聚糖使糖化醪粘度增加,过滤速率降低,成品啤酒容易形成雾浊或早期凝胶沉淀。在麦芽制造中,加入耐高温β-葡聚糖酶可显著降低成品麦芽中β-葡聚糖含量,降低麦汁粘度,提高麦汁滤速及得率,有利于改善啤酒风味,保持成品酒的非生物稳定性。在以大麦、小麦、黑麦、燕麦为基础的畜禽饲料中含有大量的β-葡聚糖,由于单胃动物体内没有消化β-葡聚糖的酶,因此不能够水解饲料当中的β-葡聚糖。β-葡聚糖作为一种非淀粉粘性多糖,在肠道内吸收较多的水分后,具有较高的粘度,阻止肠道消化液与食糜充分接触,从而影响营养物质的吸收,成为一种抗营养因子。添加β-葡聚糖酶,可以有效消除β-葡聚糖的抗营养作用,大大提高了饲料的利用效率。β-glucan is widely found in the aleurone layer and endosperm cell wall of cereals (barley, oats, rye and wheat). It belongs to the structural non-starch polysaccharide in the plant cell wall. , the content and proportion of β-glucan are also different. Among them, barley and oats contain the highest proportion. Glucanase is a general term for a class of enzymes that can degrade dextran into oligosaccharides and glucose. At present, dextranase has been widely used in food, feed, beer, medicine and other fields. At present, barley is mainly used in beer brewing and feed, so the related glucanase has been most widely used in beer brewing and feed industry, especially in Europe, in the feed formula with barley and soybean meal as the main raw materials, The addition of dextranase is more extensive. During the barley germination process, the glucan in the barley cannot be completely decomposed by its own endogenous glucanase, usually only 30%-70% can be decomposed, and the residual glucan will increase the viscosity of the mash and reduce the filtration rate. Finished beer is prone to haze or early gel precipitation. In malt production, adding high-temperature-resistant β-glucanase can significantly reduce the content of β-glucan in finished malt, reduce the viscosity of wort, increase the filtration rate and yield of wort, and help improve the flavor of beer and maintain the quality of finished wine. abiotic stability. Livestock and poultry feeds based on barley, wheat, rye, and oats contain a large amount of β-glucan. Since monogastric animals do not have enzymes to digest β-glucan, they cannot hydrolyze β-glucan in the feed. Dextran. As a non-starch viscous polysaccharide, β-glucan has a high viscosity after absorbing more water in the intestine, which prevents the full contact between the intestinal digestive juice and chyme, thereby affecting the absorption of nutrients, and becomes a kind of Antinutritional Factors. The addition of β-glucanase can effectively eliminate the anti-nutritional effect of β-glucan and greatly improve the utilization efficiency of feed.

在饲料工业中,动物胃肠道是酸性环境(如猪的胃肠道),并且含有大量的内源性蛋白酶,同时在饲料的加工过程中,有一个短时的高温过程。因此,获得新型具有优良温度稳定性和适用性的,具有对各种蛋白酶(特别是胃蛋白酶)具有抗性的酸性葡聚糖酶的研究具有重大意义。克隆和分离具有温度稳定性和蛋白酶抗性的酸性葡聚糖酶可以更好的应用于饲料,而且可以降低生产成本,都是葡聚糖酶应用于工业化生产所必需的。In the feed industry, the gastrointestinal tract of animals is an acidic environment (such as the gastrointestinal tract of pigs) and contains a large amount of endogenous proteases. At the same time, there is a short-term high temperature process in the process of feed processing. Therefore, it is of great significance to obtain a new type of acid glucanase with excellent temperature stability and applicability, and resistance to various proteases (especially pepsin). Cloning and isolating acid glucanase with temperature stability and protease resistance can be better applied to feed, and can reduce production costs, all of which are necessary for the application of dextranase in industrial production.

发明内容Contents of the invention

本发明的目的是提供一种能高效应用的酸性葡聚糖酶。The purpose of the present invention is to provide an acid glucanase that can be used efficiently.

本发明的再一目的是提供编码上述酸性葡聚糖酶的基因。Another object of the present invention is to provide a gene encoding the above-mentioned acid glucanase.

本发明的另一目的是提供包含上述基因的重组载体。Another object of the present invention is to provide a recombinant vector comprising the above gene.

本发明的另一目的是提供包含上述基因的重组菌株。Another object of the present invention is to provide recombinant strains containing the above genes.

本发明的另一目的是提供一种制备上述酸性葡聚糖酶的基因工程方法。Another object of the present invention is to provide a genetic engineering method for preparing the above acid glucanase.

本发明的另一目的提供上述酸性葡聚糖酶的应用。Another object of the present invention is to provide the application of the above acid glucanase.

本发明从脂环酸芽孢杆菌Alicyclobacillus hesperidum A4,(保存于中国微生物菌种保藏管理委员会普通微生物中心(北京市朝阳区大屯路,中国科学院微生物研究所,100101),其保藏号为:CGMCC No.3147,保藏日期:2009年6月29号)中分离得到一种新的酸性葡聚糖酶CELA。The present invention is obtained from Alicyclobacillus hesperidum A4, (preserved in the General Microbiology Center of China Microbial Strain Preservation Management Committee (Datun Road, Chaoyang District, Beijing, Institute of Microbiology, Chinese Academy of Sciences, 100101), and its preservation number is: CGMCC No .3147, date of deposit: June 29, 2009), a new acid glucanase CELA was isolated.

本发明提供了一种酸性葡聚糖酶CELA,其氨基酸序列如SEQ ID NO.1所示。The invention provides an acid glucanase CELA, the amino acid sequence of which is shown in SEQ ID NO.1.

SEQ ID NO.1:SEQ ID NO.1:

MSPSGGVCVNRKQRTLKLGTLAATIVALSAVATPAVASADTTTAIASSTVHVTVMSPSGGVCVNRKQRTLKLGTLAATIVALSAVATPAVASADTTTAIASSTVHVTV

NAAAELGIVPNTALGVNTAVWDGHLLDAAIPSLLRGIGVTMLRYPGGSTSDENAAAELGIVPNTALGVNTAVWDGHLLDAAIPSLLRGIGVTMLRYPGGSTSDE

YNWQTNTVTGGYADPNNTFDNFMGVVQKAGAQPIITVNAGTGTPSEAAAWYNWQTNTVTGGYADPNNTFDNFMGVVQKAGAQPIITVNAGTGTPSEAAAW

VQDANVTHHYGVKYWEIGNEMYGSWEAGNFANNPSGYAKEAVSFIQAMKAVQDANVTHHYGVKYWEIGNEMYGSWEAGNFANNPSGYAKEAVSFIQAMKA

VDPSIKIGVDLIAPGTGEDDWNATVLSTMHSLGVLPDFAIVHWYAQNPGGETVDPSIKIGVDLIAPGTGEDDWNATVLSTMHSLGVLPDFFAIVHWYAQNPGGET

DAGLLSSTNQISTMMDTLKQQLSSYGTIPVFVTETNSVSYNPGRQSTSLVNALDAGLLSSTNQISTMMDTLKQQLSSYGTIPVFVTETNSVSYNPGRQSTSLVNAL

FLDDDMADWLESGAQNVDWWDLHNGIVTQQAGANVDPNLYGQYNYGDYFLDDDMADWLESGAQNVDWWDLHNGIVTQQAGANVDPNLYGQYNYGDY

GLLSNGSSDNGISEPAANTPFPTYYGYQMLAAVMVPGATMIGAGSNNDLVAVGLLSNGSSDNGISEPAANTFPPTYYGYQMLAAVMVPGATMIGAGSNNNDLVAV

HATKLPNGAVDVMLINKDPKQAYTVDLQAEGFAAKGPAFTLFYGQGSNAVTPHATKLPNGAVDVMLINKDPKQAYTVDLQAEGFAAKGPAFTLFYGQGSNAVTP

GKLDNLQNVTLPPYSVTDIIIPAVPGHQPQGPQFTDKTTLSTPQVKPSANETLTGKLDNLQNVTLPPYSVTDIIIPAVPGHQPQGPQFTDKTTLSTPQVKPSANETLT

TTFTDTRGAVKDGTLDVEIYNPAGQLVGQQVQSGVTFTPGQSSQPITWNWTATTFTDTRGAVKDGTLDVEIYNPAGQLVGQQVQSGVTFTPGQSSQPITWNWTA

PDSPGTYTVKAFVFSQDGTSVYAADPSAATFTVTQPDPPTISATVQLSATTVKPDSPGTYTVKAFVFSQDGTSVYAADPSAATFTVTQPDPPTISATVQLSATTVK

VGTPVTITTTYTETAPTGYLNNGLLVQYAVYNNWTSSQQSNPTATLTPGQSVTVGTPVTITTTYTETAPTGYLNNGLLVQYAVYNNWTSSQQSNPTATLTPGQSVT

ETWTFTPEQAGTYTFPEGIFTSGWTQLQWINQNVTLTVTNETWTFTPEQAGTYTFPEGIFTSGWTQLQWINQNVTLTVTN

该酶基因编码715个氨基酸,因此葡聚糖酶CELA的理论分子量为75.4kDa。The enzyme gene encodes 715 amino acids, so the theoretical molecular weight of glucanase CELA is 75.4kDa.

本发明的葡聚糖酶CELA在酸性范围内均具有较高活性。本发明筛选到一种脂环酸芽孢杆菌Alicyclobacillus hesperidum A4(CGMCCNo.3147)所产生的葡聚糖酶,其在毕赤酵母的重组酶最适pH值为3.4,在pH2.8~4.2的范围内维持80%以上的酶活性;在pH1.2~7.8的范围内37℃保温60分钟,能够保持80%以上的酶活性。最适温度为65℃,在45℃-75℃间均具有50%以上的酶活力;在70℃保温60分钟,剩余酶活达到80%以上。这种性质的葡聚糖酶还未曾有过报道。The glucanase CELA of the present invention has relatively high activity in the acid range. The present invention screens out a glucanase produced by Alicyclobacillus hesperidum A4 (CGMCCNo.3147), the optimal pH value of which is 3.4 for the recombinant enzyme of Pichia pastoris, which is in the range of pH2.8-4.2 Maintain more than 80% of the enzyme activity within the range of pH 1.2 to 7.8 and keep at 37°C for 60 minutes to maintain more than 80% of the enzyme activity. The optimum temperature is 65°C, and there is more than 50% of the enzyme activity between 45°C and 75°C; when incubated at 70°C for 60 minutes, the remaining enzyme activity reaches more than 80%. Glucanases of this nature have not been reported.

本发明提供了编码上述酸性葡聚糖酶CELA的基因。具体地,该基因的基因序列如SEQ ID NO.2所示:The present invention provides a gene encoding the above-mentioned acid glucanase CELA. Specifically, the gene sequence of the gene is shown in SEQ ID NO.2:

SEQ ID NO.2:SEQ ID NO.2:

ATGTCACCTTCAGGGGGAGTCTGTGTGAACCGAAAACAGCGTACGTTAAAGTTATGTCACCTTCAGGGGGAGTCTGTGTGAACCGAAAACAGCGTACGTTAAAGTT

GGGAACGCTCGCAGCAACGATTGTGGCACTCTCAGCCGTGGCCACGCCTGCGGGGGAACGCTCGCAGCAACGATTGTGGCACTCTCAGCCGTGGCCACGCCTGCGG

TCGCCAGTGCGGATACGACGACGGCCATTGCGTCATCGACAGTTCATGTCACAGTCGCCAGTGCGGATACGACGACGGCCATTGCGTCATCGACAGTTCATGTCACAG

TCAATGCCGCTGCTGAACTTGGAATCGTGCCCAATACTGCACTTGGTGTGAATATCAATGCCGCTGCTGAACTTGGAATCGTGCCCAATACTGCACTTGGTGTGAATA

CGGCCGTCTGGGACGGGCATTTACTCGATGCAGCCATTCCATCTCTGCTTCGTGCGGCCGTCTGGGACGGGCATTTACTCGATGCAGCCATTCCATCCTCTGCTTCGTG

GCATTGGGGTAACCATGTTGCGATATCCCGGAGGATCGACTTCAGATGAGTACAGCATTGGGGTAACCATGTTGCGATATCCCGGAGGATCGACTTCAGATGAGTACA

ATTGGCAAACGAATACCGTAACTGGGGGTTATGCAGATCCCAACAACACCTTTGATTGGCAAACGAATACCGTAACTGGGGGTTATGCAGATCCCAACAACACCTTTG

ACAACTTCATGGGAGTGGTCCAAAAGGCTGGTGCGCAACCCATTATTACGGTCACAACTTCATGGGAGTGGTCCAAAAGGCTGGTGCGCAACCCATTATTACGGTC

AACGCCGGCACGGGCACACCGAGTGAAGCTGCCGCATGGGTTCAAGATGCAAAACGCCGGCACGGGCACACCGAGTGAAGCTGCCGCATGGGTTCAAGATGCAA

ATGTCACGCACCACTACGGTGTCAAGTATTGGGAAATCGGAAATGAGATGTATGATGTCACGCACCACTACGGTGTCAAGTATTGGGAAATCGGAAATGAGATGTATG

GCAGCTGGGAAGCAGGGAATTTTGCAAATAACCCATCTGGTTATGCGAAAGAAGCAGCTGGGAAGCAGGGAATTTTGCAAATAACCCATCTGGTTATGCGAAAGAA

GCTGTATCCTTCATTCAGGCCATGAAAGCGGTTGATCCTTCTATTAAAATCGGCGGCTGTATCCTTCATTCAGGCCATGAAAGCGGTTGATCCTTCTATTAAAATCGGCG

TGGACCTCATCGCACCTGGTACTGGAGAAGATGACTGGAATGCAACCGTGCTTTGGACCTCATCGCACCTGGTACTGGAGAAGATGACTGGAATGCAACCGTGCTT

AGCACCATGCACAGCCTTGGGGTGCTTCCGGACTTCGCCATTGTGCACTGGTATAGCACCATGCACAGCCTTGGGGTGCTTCCGGACTTCGCCATTGTGCACTGGTAT

GCGCAAAATCCGGGAGGCGAGACGGACGCTGGGCTGCTCAGTTCGACGAATCGCGCAAAATCCGGGAGGCGAGACGGACGCTGGGCTGCTCAGTTCGACGAATC

AAATTTCGACGATGATGGATACCTTGAAGCAGCAATTGAGCTCCTATGGAACCAAAATTTCGACGATGATGGATACCTTGAAGCAGCAATTGAGCTCCTATGGAACCA

TCCCGGTTTTCGTCACCGAAACGAATTCGGTTTCGTATAACCCTGGGCGCCAGATCCCGGTTTTCGTCACCGAAACGAATTCGGTTTCGTATAACCCTGGGCGCCAGA

GTACAAGTCTGGTTAATGCACTGTTCCTCGATGATGACATGGCAGACTGGCTTGGTACAAGTCTGGTTAATGCACTGTTCCTCGATGATGACATGGCAGACTGGCTTG

AGTCCGGAGCGCAAAACGTCGACTGGTGGGACTTGCATAACGGCATTGTTACAAGTCCGGAGCGCAAAACGTCGACTGGTGGGACTTGCATAACGGCATTGTTACA

CAACAGGCCGGTGCAAATGTCGATCCGAATCTGTATGGGCAGTATAACTACGGACAACAGGCCGGTGCAAATGTCGATCCGAATCTGTATGGGCAGTATAACTACGGA

GACTATGGACTTTTGTCCAATGGCTCGAGTGACAATGGCATTTCAGAACCGGCTGACTATGGACTTTTGTCCAATGGCTCGAGTGACAATGGCATTTCAGAACCGGCT

GCCAATACACCATTCCCAACGTATTATGGATACCAAATGCTCGCAGCCGTCATGGGCCAATACCACCATTCCCAACGTATTATGGATACCAAATGCTCGCAGCCGTCATGG

TGCCAGGAGCGACGATGATCGGTGCCGGATCGAACAATGATCTGGTGGCCGTGTGCCAGGAGCGACGATGATCGGTGCCGGATCGAACAATGATCTGGTGGCCGTG

CATGCGACCAAGTTGCCCAATGGTGCTGTCGACGTCATGTTGATCAACAAGGATCATGCGACCAAGTTGCCCAATGGTGCTGTCGACGTCATGTTGATCAACAAGGAT

CCGAAACAAGCGTATACCGTCGATTTGCAAGCTGAAGGATTTGCTGCTAAGGGTCCGAAACAAGCGTATACCGTCGATTTGCAAGCTGAAGGATTTGCTGCTAAGGGT

CCTGCATTCACGTTATTCTACGGGCAAGGCAGTAACGCGGTGACGCCGGGCAACCTGCATTCACGTTATTCTACGGGCAAGGCAGTAACGCGGTGACGCCGGGCAA

ATTGGATAATCTGCAGAATGTGACACTACCGCCCTATTCTGTGACGGACATCATCATTGGATAATCTGCAGAATGTGACACTACCGCCCTATTCTGTGACGGACATCATC

ATACCGGCGGTGCCCGGGCATCAGCCACAAGGGCCACAGTTTACGGACAAGACATACCGGCGGTGCCCGGGCATCAGCCACAAGGGCCACAGTTTACGGACAAGAC

GACGTTATCCACTCCTCAGGTAAAGCCTAGTGCCAACGAGACTTTGACCACGAGACGTTATCCACTCCTCAGGTAAAGCCTAGTGCCAACGAGACTTTGACCACGA

CGTTTACCGACACGCGTGGTGCGGTCAAGGATGGTACACTCGACGTGGAAATCCGTTTACCGACACGCGTGGTGCGGTCAAGGATGGTACACTCGACGTGGAAATC

TACAATCCAGCAGGGCAATTGGTTGGGCAACAAGTGCAGTCTGGCGTGACGTTTACAATCCAGCAGGGCAATTGGTTGGGCAACAAGTGCAGTCTGGCGTGACGTT

TACGCCTGGGCAATCATCTCAACCGATTACCTGGAACTGGACGGCGCCCGATTCTACGCCTGGGCAATCATCTCAACCGATTACCTGGAACTGGACGGCGCCCGATTC

TCCTGGGACGTATACCGTGAAGGCGTTCGTCTTCAGCCAAGACGGAACAAGCGTCCTGGGACGTATACCGTGAAGGCGTTCGTCTTCAGCCAAGACGGAACAAGCG

TGTATGCGGCAGACCCGAGTGCAGCTACGTTCACGGTCACACAGCCGGATCCGTGTATGCGGCAGACCCGAGTGCAGCTACGTTCACGGTCACACAGCCGGATCCG

CCCACCATTTCGGCCACCGTTCAGCTGTCCGCAACTACGGTCAAAGTGGGTACCCCACCATTTCGGCCACCGTTCAGCTGTCCGCAACTACGGTCAAAGTGGGTAC

ACCTGTGACCATCACGACGACTTACACCGAAACCGCGCCTACGGGGTACCTGAACCTGTGACCATCACGACGACTTACACCGAAACCGCGCCTACGGGGTACCTGA

ACAACGGGTTGCTTGTACAGTACGCCGTGTACAATAACTGGACATCATCGCAACACAACGGGTTGCTTGTACAGTACGCCGTGTACAATAACTGGACATCATCGCAAC

AGTCCAATCCAACTGCGACATTGACTCCTGGGCAATCGGTGACTGAGACTTGGAGTCCAATCCAACTGCGACATTGACTCCTGGGCAATCGGTGACTGAGACTTGG

ACATTTACGCCAGAGCAGGCCGGAACCTACACATTCCCTGAAGGCATCTTTACCACATTTACGCCAGAGCAGGCCGGAACCTACACATTCCCTGAAGGCATCTTTACC

AGTGGATGGACACAATTGCAGTGGATTAATCAGAACGTGACCTTGACTGTGACAGTGGATGGACACAATTGCAGTGGATTAATCAGAACGTGACCTTGACTGTGAC

AAACTAAAAACTAA

本发明通过PCR的方法分离克隆了葡聚糖酶基因CELA,DNA全序列分析结果表明,葡聚糖酶CELA结构基因CELA全长2148bp,含有一个终止子TAA。葡聚糖酶CELA的成熟蛋白理论分子量为75.4kDa。将葡聚糖酶基因CELA序列及推导出的氨基酸序列在GenBank中进行BLAST比对。该基因与来源于Alicyclobacillusacidocaldarius的纤维素酶(CAD86595)氨基酸序列最高一致性为44%,说明CELA是一种新的葡聚糖酶。The present invention isolates and clones the glucanase gene CELA through the PCR method, and the DNA sequence analysis result shows that the full length of the glucanase CELA structural gene CELA is 2148bp, and contains a terminator TAA. The theoretical molecular weight of the mature protein of glucanase CELA is 75.4kDa. The glucanase gene CELA sequence and the deduced amino acid sequence were compared by BLAST in GenBank. The gene has the highest amino acid sequence identity of 44% with the cellulase (CAD86595) derived from Alicyclobacillus acidocaldarius, indicating that CELA is a new glucanase.

本发明还提供了包含上述葡聚糖酶基因的重组载体,优选为pPIC9-CelA。将本发明的葡聚糖酶基因插入到表达载体合适的限制性酶切位点之间,使其核苷酸序列可操作的与表达调控序列相连接。作为本发明的一个最优选的实施方案,优选为将葡聚糖酶基因插入到质粒pPIC9上的SnaBI和NotI限制性酶切位点之间,使该核苷酸序列位于AOX1启动子的下游并受其调控,得到重组酵母表达质粒pPIC9-CelA。The present invention also provides a recombinant vector comprising the above-mentioned glucanase gene, preferably pPIC9-CelA. The dextranase gene of the present invention is inserted between suitable restriction enzyme cutting sites of the expression vector, so that its nucleotide sequence is operably linked with the expression control sequence. As a most preferred embodiment of the present invention, it is preferred that the glucanase gene is inserted between SnaBI and the NotI restriction enzyme site on the plasmid pPIC9, so that the nucleotide sequence is positioned at the downstream of the AOX1 promoter and Under its regulation, the recombinant yeast expression plasmid pPIC9-CelA was obtained.

本发明还提供了包含上述葡聚糖酶基因的重组菌株,优选为重组菌株GS115/CelA。The present invention also provides a recombinant strain comprising the above glucanase gene, preferably the recombinant strain GS115/CelA.

本发明还提供了一种制备酸性葡聚糖酶CELA的方法,包括以下步骤:The present invention also provides a method for preparing acid glucanase CELA, comprising the following steps:

1)用上述重组载体转化宿主细胞,得重组菌株;1) Transforming host cells with the above-mentioned recombinant vectors to obtain recombinant strains;

2)培养重组菌株,诱导重组葡聚糖酶CELA表达;以及2) cultivating the recombinant strain to induce the expression of recombinant glucanase CELA; and

3)回收并纯化所表达的葡聚糖酶CELA。3) Recover and purify the expressed glucanase CELA.

其中,优选所述宿主细胞为毕赤酵母细胞、啤酒酵母细胞或多型逊酵母细胞,优选将重组酵母表达质粒转化毕赤酵母细胞(Pichic pastoris)GS115,得到重组菌株GS115/CelA。Wherein, the host cell is preferably Pichia cells, Saccharomyces cerevisiae cells or Sinusia polymorpha cells, and the recombinant yeast expression plasmid is preferably transformed into Pichia pastoris cell (Pichic pastoris) GS115 to obtain the recombinant strain GS115/CelA.

本发明还提供了上述酸性葡聚糖酶CELA的应用。The present invention also provides the application of the above acid glucanase CELA.

本发明首先所要解决的技术问题是克服现有技术的不足,提供一种性质优良的、适合于在食品,特别是饲料工业中应用新的葡聚糖酶。本发明的葡聚糖酶最适pH为3.4,在pH2.8~4.2的范围内都有较高的酶活性(80%以上);酸性条件下pH稳定性好;具有较好的耐热的能力和抗各种蛋白酶(特别是胃蛋白酶)。其较高耐热性能,可以有效降低在饲料加工过程中酶活力的损失,降低葡聚糖酶的应用成本。最适pH为酸性范围和较好的蛋白酶抗性(特别是胃蛋白酶)可以提高饲料中非淀粉性多糖的转化率,降低配方成本,减少环境污染;还可以用于生物能源中,如将造纸工业废料及农业废弃物中的葡聚糖转化为D-葡萄糖单体,进而被大多数微生物代谢,转化成有价值的燃料。水解产物(葡萄糖和低聚葡糖)可应用在保健食品行业;在制药工业中葡聚糖与其它物质结合使用,可以延缓药物成分的释放。The first technical problem to be solved by the present invention is to overcome the deficiencies of the prior art and provide a new dextranase with excellent properties and suitable for application in the food industry, especially the feed industry. The optimum pH of the glucanase of the present invention is 3.4, and all have higher enzymatic activity (more than 80%) in the scope of pH 2.8~4.2; pH stability is good under acidic conditions; Ability and resistance to various proteases (especially pepsin). Its high heat resistance can effectively reduce the loss of enzyme activity during feed processing and reduce the application cost of dextranase. The optimum pH is in the acidic range and good protease resistance (especially pepsin) can improve the conversion rate of non-starch polysaccharides in feed, reduce formulation costs, and reduce environmental pollution; it can also be used in bioenergy, such as making paper Glucan in industrial waste and agricultural waste is converted into D-glucose monomer, which is then metabolized by most microorganisms and converted into valuable fuel. Hydrolyzed products (glucose and oligoglucose) can be used in the health food industry; in the pharmaceutical industry, dextran is used in combination with other substances to delay the release of pharmaceutical ingredients.

附图说明Description of drawings

图1在毕赤酵母表达的重组葡聚糖酶的SDS-PAGE分析,其中,1:低分子量蛋白质Marker;2:纯化的重组葡聚糖酶。Fig. 1 SDS-PAGE analysis of recombinant glucanase expressed in Pichia pastoris, wherein, 1: low molecular weight protein Marker; 2: purified recombinant glucanase.

图2重组葡聚糖酶的最适pH。Figure 2 Optimum pH of recombinant dextranase.

图3重组葡聚糖酶的pH稳定性。Figure 3 pH stability of recombinant dextranase.

图4重组葡聚糖酶的最适温度。Figure 4 Optimum temperature of recombinant dextranase.

图5重组葡聚糖酶的热稳定性。Figure 5 Thermostability of recombinant dextranase.

图6重组葡聚糖酶的各种蛋白酶抗性Figure 6 Various protease resistance of recombinant dextranase

脂环酸芽孢杆菌Alicyclobacillus hesperidum A4 CGMCC3147,保存于中国微生物菌种保藏管理委员会普通微生物中心(北京市朝阳区大屯路,中国科学院微生物研究所,100101),其保藏号为:CGMCCNo.3147,保藏日期:2009年06月29号。Alicyclobacillus hesperidum A4 CGMCC3147, preserved in the General Microbiology Center of China Committee for Culture Collection of Microorganisms (Datun Road, Chaoyang District, Beijing, Institute of Microbiology, Chinese Academy of Sciences, 100101), its preservation number is: CGMCCNo.3147, preserved Date: June 29, 2009.

具体实施方式Detailed ways

试验材料和试剂Test materials and reagents

1、菌株及载体:脂环酸芽孢杆菌Alicyclobacillus hesperidum A4由本发明人分离获得,保存于中国微生物菌种保藏管理委员会普通微生物中心(北京市朝阳区大屯路,中国科学院微生物研究所,100101),其保藏号为:CGMCCNo.3147。毕赤酵母表达载体pPIC9及菌株GS115购自于Invitrogen公司。1. Bacterial strains and carriers: Alicyclobacillus hesperidum A4 was isolated and obtained by the inventor, and was preserved in the General Microbiology Center of China Microbiological Culture Collection Management Committee (Datun Road, Chaoyang District, Beijing, Institute of Microbiology, Chinese Academy of Sciences, 100101), Its deposit number is: CGMCCNo.3147. Pichia pastoris expression vector pPIC9 and strain GS115 were purchased from Invitrogen.

2、酶类及其它生化试剂:内切酶购自TaKaRa公司,连接酶购自Invitrogen公司。大麦葡聚糖购自Sigma公司,其它都为国产试剂(均可从普通生化试剂公司购买得到)。2. Enzymes and other biochemical reagents: endonucleases were purchased from TaKaRa Company, and ligases were purchased from Invitrogen Company. Barley dextran was purchased from Sigma Company, and the others were domestic reagents (all of which can be purchased from common biochemical reagent companies).

3、培养基:3. Medium:

(1)脂环酸芽孢杆菌AlicyclobacillushesperidumA4CGMCC3147培养基组成为:0.2%蛋白胨、0.1%酵母提取物、0.2%葡萄糖,pH3.0.(1) The culture medium of Alicyclobacillus peridum A4CGMCC3147 consists of: 0.2% peptone, 0.1% yeast extract, 0.2% glucose, pH3.0.

(2)BMGY培养基:1%酵母提取物,2%蛋白胨,1.34%YNB,0.00004%Biotin,1%甘油(V/V)。(2) BMGY medium: 1% yeast extract, 2% peptone, 1.34% YNB, 0.00004% Biotin, 1% glycerol (V/V).

(3)BMMY培养基:除以0.5%甲醇代替甘油,其余成份均与BMGY相同。(3) BMMY medium: replace glycerol with 0.5% methanol, and the rest of the ingredients are the same as BMGY.

说明:以下实施例中未作具体说明的分子生物学实验方法,均参照《分子克隆实验指南》(第三版)J.萨姆布鲁克一书中所列的具体方法进行,或者按照试剂盒和产品说明书进行。Explanation: For the molecular biology experimental methods not specifically described in the following examples, all refer to the specific methods listed in the book "Molecular Cloning Experiment Guide" (Third Edition) J. Sambrook, or follow the kit and product manual.

实施例1脂环酸芽孢杆菌AlicyclobacillushesperidumA4(CGMCCNo.3147)的分离纯化及其产酶特性Example 1 Isolation and purification of Alicyclobacillus peridum A4 (CGMCC No.3147) and its enzyme-producing properties

将脂环酸芽孢杆菌AlicyclobacillushesperidumA4接种至产酶培养基平板(酵母提取物1.0g、胰蛋白胨2.0g、燕麦葡聚糖5.0g,琼脂30,刚果红0.5g,用盐酸调pH3.0)60℃培养72小时后,用0.5%的刚果红染色,根据透明圈的有无和大小初步验证其具有葡聚糖酶活性。将脂环酸芽孢杆菌AlicyclobacillushesperidumA4经产酶培养基(酵母提取物1.0g、胰蛋白胨2.0g燕麦葡聚糖5.0g,用硫酸调pH3.0)60℃培养48小时后,测定上清液的葡聚糖酶活性。证明其具有葡聚糖酶活性。Inoculate Alicyclobacillus speridum A4 on the enzyme-producing medium plate (yeast extract 1.0g, tryptone 2.0g, oat dextran 5.0g, agar 30, Congo red 0.5g, adjust the pH to 3.0 with hydrochloric acid) at 60°C After culturing for 72 hours, it was stained with 0.5% Congo red, and it was preliminarily verified that it had glucanase activity according to the presence or absence and size of the transparent circle. Alicyclobacillus speridum A4 was cultured at 60°C for 48 hours in an enzyme-producing medium (1.0 g of yeast extract, 2.0 g of tryptone, 5.0 g of oat dextran, adjusted to pH 3.0 with sulfuric acid), and the glucose content of the supernatant was determined. Glycanase activity. Proved to have dextranase activity.

实施例2脂环酸芽孢杆菌AlicyclobacillushesperidumA4(CGMCCNo.3147)葡聚糖酶编码基因CELA的克隆Example 2 Cloning of Alicyclobacillus peridum A4 (CGMCC No.3147) Glucanase Encoding Gene CELA

基因序列的获得Acquisition of gene sequence

根据第51家族葡聚糖酶基因的保守(YWEIGNE和AMKAVD)序列设计合成了简并引物Cel51F,Cel51R如表1According to the conserved (YWEIGNE and AMKAVD) sequence of the 51st family glucanase gene, degenerate primers Cel51F and Cel51R were designed and synthesized as shown in Table 1

以脂环酸芽孢杆菌Alicyclobacillus hesperidum A4(CGMCC No.3147)总DNA为模板进行PCR扩增。PCR反应参数为:94℃变性5min;前10个循环,94℃变性30sec,50℃-55℃touchdown(0.5℃/循环)退火30sec,72℃延伸0.5min,然后25个循环条件为后94℃变性30sec,55℃退火30sec,72℃延伸1.5min。最后72℃保温10min。得到一约180bp片段,将该片段回收后与pEASY-T3载体相连送三博生物技术有限公司测序。PCR amplification was performed using the total DNA of Alicyclobacillus hesperidum A4 (CGMCC No.3147) as a template. The PCR reaction parameters are: denaturation at 94°C for 5 min; the first 10 cycles, denaturation at 94°C for 30 sec, touchdown (0.5°C/cycle) at 50°C-55°C for 30 sec, extension at 72°C for 0.5 min, and the last 25 cycles at 94°C Denaturation for 30 sec, annealing at 55°C for 30 sec, extension at 72°C for 1.5 min. Finally, keep warm at 72°C for 10 minutes. A fragment of about 180bp was obtained, which was recovered and connected with the pEASY-T3 vector and sent to Sanbo Biotechnology Co., Ltd. for sequencing.

根据测序得到的核甘酸序列,设计上游和下游各三条TAIL-PCR特异性嵌套引物:设计方向为需要扩增的未知区域方向,并将它们分别命名为usp1,usp2,usp3(上游特异性引物),dsp1,dsp2,dsp3(下游特异性引物)见表1。According to the nucleotide sequence obtained by sequencing, three TAIL-PCR specific nested primers were designed upstream and downstream respectively: the design direction was the direction of the unknown region to be amplified, and they were respectively named usp1, usp2, usp3 (upstream specific primers ), dsp1, dsp2, dsp3 (downstream specific primers) are shown in Table 1.

表1.葡聚糖酶CelA TAIL-PCR特异性引物Table 1. Dextranase CelA TAIL-PCR specific primers

Figure GSA00000095917200071
Figure GSA00000095917200071

N代表A,G,C或T;H代表T,A或C;R代表A或G;Y代表C或TN stands for A, G, C or T; H stands for T, A or C; R stands for A or G; Y stands for C or T

通过TAIL-PCR得到已知基因序列的侧翼序列,扩增得到产物回收后测序。The flanking sequence of the known gene sequence was obtained by TAIL-PCR, and the amplified product was recovered and then sequenced.

通过比较葡聚糖酶的基因组序列后发现该基因全长2148bp,编码715个氨基酸和一个终止密码子,N端1-39氨基酸残基为信号肽序列。所推测出的基因CELA的氨基酸序列与GeneBank上的葡聚糖酶基因序列进行同源比较,最高一致性为44%,说明CELA是一种新的葡聚糖酶,表明从AlicyclobacillushesperidumA4(CGMCCNo.3147)中分离克隆得到的编码葡聚糖酶的基因为新基因。After comparing the genome sequence of glucanase, it was found that the gene was 2148bp in full length, encoded 715 amino acids and a stop codon, and the N-terminal 1-39 amino acid residues were signal peptide sequences. The amino acid sequence of the deduced gene CELA is homologously compared with the glucanase gene sequence on the GeneBank, and the highest identity is 44%, indicating that CELA is a new glucanase, which shows that it is derived from AlicyclobacillussperidumA4 (CGMCCNo.3147 The gene encoding dextranase isolated and cloned in ) is a new gene.

提取脂环酸芽孢杆菌AlicyclobacillushesperidumA4(CGMCCNo.3147)基因组DNA:Alicyclobacillus peridum A4 (CGMCCNo.3147) genomic DNA was extracted:

将液体培养2天的菌液离心取菌体,加入1mL溶菌酶,37℃处理60min,再加入裂解液,65℃水浴锅裂解30min,每隔10min混匀一次,在4℃下10000rpm离心5min。取上清于酚/氯仿中抽提除去杂蛋白,再取上清加入等体积异丙醇,于室温静置5min后,4℃下10000rpm离心10min。弃上清,沉淀用70%的乙醇洗涤两次,真空干燥,加入适量TE溶解,置于-20℃备用。Centrifuge the cultured bacteria for 2 days, add 1mL lysozyme, treat at 37°C for 60min, then add lysate, lyse in a water bath at 65°C for 30min, mix every 10min, and centrifuge at 10,000rpm at 4°C for 5min. The supernatant was extracted in phenol/chloroform to remove impurity proteins, and then an equal volume of isopropanol was added to the supernatant. After standing at room temperature for 5 minutes, centrifuge at 10,000 rpm for 10 minutes at 4°C. The supernatant was discarded, the precipitate was washed twice with 70% ethanol, dried in vacuum, dissolved by adding an appropriate amount of TE, and stored at -20°C for later use.

根据CelA序列信息设计合成了引物CelAF和CelAR如表1。According to the sequence information of CelA, the primers CelAF and CelAR were designed and synthesized as shown in Table 1.

以脂环酸芽孢杆菌AlicyclobacillushesperidumA4(CGMCCNo.3147)总DNA为模板进行PCR扩增。PCR反应参数为:95℃变性5min,94℃变性30sec,60℃退火30sec,72℃延伸120s,30个循环。最后72℃保温10min。The total DNA of Alicyclobacillus peridum A4 (CGMCC No.3147) was used as template for PCR amplification. The PCR reaction parameters were: denaturation at 95°C for 5 min, denaturation at 94°C for 30 sec, annealing at 60°C for 30 sec, extension at 72°C for 120 s, and 30 cycles. Finally, keep warm at 72°C for 10 minutes.

实施例3重组葡聚糖酶的制备。Example 3 Preparation of recombinant dextranase.

将表达载体pPIC9进行双酶切(SnaBI和NotI),同时将编码葡聚糖酶的基因CelA双酶切(SnaBI和NotI),切出编码葡聚糖酶的基因片段与表达载体pPIC9连接,获得含有葡聚糖酶基因CelA的重组质粒pPIC9-CelA并转化毕赤酵母GS115,获得重组毕赤酵母菌株GS115/CelA。The expression vector pPIC9 is subjected to double digestion (SnaBI and NotI), and the gene CelA encoding glucanase is double-digested (SnaBI and NotI) at the same time, and the gene fragment encoding glucanase is cut out and connected to the expression vector pPIC9 to obtain The recombinant plasmid pPIC9-CelA containing the glucanase gene CelA was transformed into Pichia pastoris GS115 to obtain the recombinant Pichia pastoris strain GS115/CelA.

取含有重组质粒的GS115菌株,接种于400mL BMGY培养液中,30℃250rpm振荡培养48h后,离心收集菌体。然后于200mLBMMY培养基重悬,30℃250rpm振荡培养。诱导48h后,离心收集上清。测定葡聚糖酶的活力。重组葡聚糖酶的表达量为20.41U/mL。SDS-PAGE结果(图1)表明,重组葡聚糖酶在毕赤酵母中得到了表达。Take the GS115 strain containing the recombinant plasmid, inoculate it in 400mL BMGY culture medium, shake it at 250rpm at 30°C for 48h, and collect the bacteria by centrifugation. Then resuspend in 200mL BMMY medium, shake culture at 250rpm at 30°C. After 48 hours of induction, the supernatant was collected by centrifugation. Determination of dextranase activity. The expression level of recombinant glucanase was 20.41U/mL. SDS-PAGE results (Figure 1) showed that the recombinant glucanase was expressed in Pichia pastoris.

实施例4重组葡聚糖酶的活性分析Activity Analysis of Embodiment 4 Recombinant Glucanase

DNS法:具体方法如下:在pH3.4(0.1M磷酸二氢钠-柠檬酸),65℃条件下,1mL的反应体系包括100μL适当的稀释酶液和900μL(1%,w/v)底物,反应10min,加入1.5mLDNS终止反应,沸水煮5min。冷却后540nm测定OD值。1个酶活单位(U)定义为在给定的条件下每分钟释放出1μmol还原糖的酶量。DNS method: the specific method is as follows: at pH 3.4 (0.1M sodium dihydrogen phosphate-citric acid), at 65°C, 1 mL of reaction system includes 100 μL of appropriate diluted enzyme solution and 900 μL (1%, w/v) bottom The mixture was reacted for 10 minutes, and 1.5mL DNS was added to terminate the reaction, and boiled for 5 minutes. After cooling, the OD value was measured at 540 nm. One enzyme activity unit (U) is defined as the amount of enzyme that releases 1 μmol of reducing sugar per minute under given conditions.

实施例5重组葡聚糖酶CELA的性质测定The property determination of embodiment 5 recombinant glucanase CELA

1、重组葡聚糖酶CELA的最适pH和pH稳定性的测定方法如下:1. The optimum pH and pH stability determination methods of recombinant glucanase CELA are as follows:

将实施例3纯化的重组葡聚糖酶在不同的pH下进行酶促反应以测定其最适pH。底物葡聚糖用不同pH的缓冲液(0.1M甘氨酸-盐酸pH 1.2-2.6;0.1mol/L柠檬酸-磷酸氢二钠pH 3.0-7.4;0.1MTris-HCl pH 7.8-8.6)、在65℃下进行葡聚糖酶活力测定。结果(图2)表明,CELA的最适pH为3.4,在pH2.8~4.2的范围内维持80%以上的酶活性。葡聚糖酶于上述各种不同pH的缓冲液中37℃处理60min,再在pH3.4缓冲液体系中65℃下测定酶活性,以研究酶的pH耐性。结果(图3)表明葡聚糖酶在pH1.2-7.8之间均很稳定,在此pH范围内处理60min后剩余酶活性在80%以上,这说明此酶具有较好的pH稳定性。The recombinant glucanase purified in Example 3 was subjected to enzymatic reactions at different pHs to determine its optimum pH. The substrate dextran was buffered with different pH (0.1M glycine-hydrochloric acid pH 1.2-2.6; 0.1mol/L citric acid-disodium hydrogen phosphate pH 3.0-7.4; 0.1M Tris-HCl pH 7.8-8.6), at 65 Determination of glucanase activity was carried out at ℃. The results ( FIG. 2 ) showed that the optimum pH of CELA was 3.4, and more than 80% of the enzyme activity was maintained in the range of pH 2.8-4.2. Dextranase was treated at 37°C for 60min in the above-mentioned buffers with different pH, and then the enzyme activity was measured at 65°C in the pH3.4 buffer system to study the pH tolerance of the enzyme. The result (Fig. 3) shows that the dextranase is very stable between pH 1.2-7.8, and the remaining enzyme activity is above 80% after 60 minutes of treatment in this pH range, which shows that the enzyme has good pH stability.

2、葡聚糖酶的最适温度及热稳定性测定方法如下:2. The optimal temperature and thermostability determination method of dextranase is as follows:

葡聚糖酶的最适温度的测定为在柠檬酸-磷酸氢二钠缓冲液(pH3.4)缓冲液体系及不同温度下进行酶促反应。耐温性测定为葡聚糖酶在不同温度下处理不同时间,再在65℃下进行酶活性测定。酶反应最适温度测定结果(图4)表明其最适温度为65℃。酶的热稳定性性试验表明(图5),重组酶在70℃时稳定性非常好。70℃下保温60min,剩余酶活性为84%,所述酶在45℃-75℃间均具有50%以上的酶活力。Determination of optimum temperature of dextranase is carried out enzymatic reaction in citric acid-disodium hydrogen phosphate buffer (pH3.4) buffer solution system and different temperatures. The temperature resistance was measured by treating the dextranase at different temperatures for different times, and then measuring the enzyme activity at 65°C. The measurement results of the optimum temperature of the enzyme reaction (Fig. 4) showed that the optimum temperature was 65°C. The thermostability test of the enzyme showed (Fig. 5) that the recombinant enzyme had very good stability at 70°C. After incubation at 70°C for 60 minutes, the remaining enzyme activity is 84%, and the enzymes all have more than 50% enzyme activity at 45°C-75°C.

3、不同金属离子化学试剂对XYLA4酶活的影响测定如下:3. The influence of different metal ion chemical reagents on XYLA4 enzyme activity was determined as follows:

在酶促反应体系中加入不同浓度的不同的金属离子及化学试剂,研究其对酶活性的影响,各种物质终浓度为1和10mmol/L。在65℃、pH3.4条件下测定酶活性。结果(表1)表明,除了SDS,大多数离子和化学试剂在浓度为1mmol时重组葡聚糖酶的活力没有明显变化。当浓度为10mmo时Co2+,Cr3+,Fe2+,Pb2+,Cu2+,Ag+,Hg2+’和SDS均强烈抑制其活力。β-巯基乙醇在1mmol和10mmol时能分别使重组酶活力增加到原来的1.16和1.39倍。Add different concentrations of different metal ions and chemical reagents to the enzymatic reaction system to study their effects on enzyme activity. The final concentrations of various substances are 1 and 10mmol/L. Enzyme activity was measured at 65°C and pH 3.4. The results (Table 1) showed that, except for SDS, most ions and chemical reagents had no significant change in the activity of recombinant dextranase at a concentration of 1 mmol. Co 2+ , Cr 3+ , Fe 2+ , Pb 2+ , Cu 2+ , Ag + , Hg 2+ ' and SDS strongly inhibited its activity when the concentration was 10mmo. β-mercaptoethanol can increase the activity of recombinase to 1.16 and 1.39 times at 1mmol and 10mmol respectively.

表1各种化学试剂对葡聚糖酶CELA活力的影响Table 1 Effects of various chemical reagents on the activity of dextranase CELA

Figure GSA00000095917200091
Figure GSA00000095917200091

Figure GSA00000095917200101
Figure GSA00000095917200101

实施例6重组葡聚糖酶在人工胃液中对大麦豆粕型日粮粘度的影响Example 6 Effect of Recombinant Glucanase on the Viscosity of Barley Soybean Meal Type Diet in Artificial Gastric Juice

具体方法如下1g大麦豆粕型溶解在9mL的含有1U CelA的人工胃液中,混合溶液放置在37℃摇床180rpm振荡1h。为了确定在消化过程中,随着pH条件的变化导致水解产物的累积效果(Haraldsson et al.,2005),根据Minekus et al.(1995)描述的pH梯度模型,对CelA在人工胃液中从大麦豆粕型日粮中水解的累积效果进行了实验模拟研究。整个pH梯度按照以下策略进行pH 2.0,20min;pH 2.3,20min;pH 2.8,20min;pH 3.8,10min;pH 4.6,10min;pH 5.5,10min。在这个过程中溶液的pH放置在冰上通过HCl或NaOH进行调节。作用的最终累计效果通过测定粘度来表示。粘度的测定用毛细管粘度计来测定。具体地,将经过上述处理的料液通过新华一号滤纸好,取5ml的滤过液,通过毛细管粘度计测定。The specific method is as follows: 1g of barley soybean meal was dissolved in 9mL of artificial gastric juice containing 1U CelA, and the mixed solution was placed on a shaker at 37°C at 180rpm for 1h. In order to determine the effect of hydrolyzate accumulation as a function of pH conditions during digestion (Haraldsson et al., 2005), CelA from barley in artificial gastric juice was tested according to the pH gradient model described by Minekus et al. (1995). The cumulative effect of hydrolysis in soybean meal-based diets was studied in experimental simulations. The entire pH gradient was carried out according to the following strategy: pH 2.0, 20min; pH 2.3, 20min; pH 2.8, 20min; pH 3.8, 10min; pH 4.6, 10min; pH 5.5, 10min. During this process the pH of the solution was adjusted by HCl or NaOH on ice. The final cumulative effect of action is expressed by measuring the viscosity. Viscosity was measured with a capillary viscometer. Specifically, pass the feed liquid through the above-mentioned treatment through Xinhua No. 1 filter paper, take 5ml of the filtrate, and measure it by a capillary viscometer.

结果表明:经过酶液处理的大麦豆粕饲料粘度比对照下降了36.72%。表明CelA可以很好应用在饲料工业中。The results showed that the viscosity of barley and soybean meal treated with enzyme solution was 36.72% lower than that of the control. It shows that CelA can be well applied in the feed industry.

序列表sequence listing

<110>中国农业科学院饲料研究所<110> Feed Research Institute, Chinese Academy of Agricultural Sciences

 the

<120>一种酸性葡聚糖酶CELA及其基因和应用<120> A kind of acid glucanase CELA and its gene and application

 the

<160>2<160>2

 the

<210>1<210>1

 the

<211>715<211>715

 the

<212>PRT<212>PRT

 the

<213>脂环酸芽孢杆菌(Alicyclobacillus hesperidum A4)<213> Alicyclobacillus hesperidum A4

 the

<400>1<400>1

MSPSGGVCVN RKQRTLKLGT LAATIVALSA VATPAVASAD TTTAIASSTVMSPSGGVCVN RKQRTLKLGT LAATIVALSA VATPAVASAD TTTAIASSTV

HVTVNAAAEL     60HVTVNAAAEL 60

GIVPNTALGV NTAVWDGHLL DAAIPSLLRG IGVTMLRYPG GSTSDEYNWQGIVNTALGV NTAVWDGHLL DAAIPSLLRG IGVTMLRYPG GSTSDEYNWQ

TNTVTGGYAD    120TNTVTGGYAD 120

PNNTFDNFMG VVQKAGAQPI ITVNAGTGTP SEAAAWVQDA NVTHHYGVKYPNNTFDNFMG VVQKAGAQPI ITVNAGTGTP SEAAAWVQDA NVTHHYGVKY

WEIGNEMYGS    180WEIGNEMYGS 180

WEAGNFANNP SGYAKEAVSF IQAMKAVDPS IKIGVDLIAP GTGEDDWNATWEAGNFANNP SGYAKEAVSF IQAMKAVDPS IKIGVDLIAP GTGEDDWNAT

VLSTMHSLGV    240VLSTMHSLGV 240

LPDFAIVHWY AQNPGGETDA GLLSSTNQIS TMMDTLKQQL SSYGTIPVFVLPDFAIVHWY AQNPGGETDA GLLSSTNQIS TMMDTLKQQL SSYGTIPVFV

TETNSVSYNP    300TETNSVSYNP 300

GRQSTSLVNA LFLDDDMADW LESGAQNVDW WDLHNGIVTQ QAGANVDPNLGRQSTSLVNA LFLDDDMADW LESGAQNVDW WDLHNGIVTQ QAGANVDPNL

YGQYNYGDYG    360YGQYNYGDYG 360

LLSNGSSDNG ISEPAANTPF PTYYGYQMLA AVMVPGATMI GAGSNNDLVALLSNGSSNG ISEPAANTPF PTYYGYQMLA AVMVPGATMI GAGSNNDLVA

VHATKLPNGA    420VHATKLPNGA 420

VDVMLINKDP KQAYTVDLQA EGFAAKGPAF TLFYGQGSNA VTPGKLDNLQVDVMLINKDP KQAYTVDLQA EGFAAKGPAF TLFYGQGSNA VTPGKLDNLQ

NVTLPPYSVT    480NVTLPPYSVT 480

DIIIPAVPGH QPQGPQFTDK TTLSTPQVKP SANETLTTTF TDTRGAVKDGDIIIPAVPGH QPQGPQFTDK TTLSTPQVKP SANETLTTTF TDTRGAVKDG

TLDVEIYNPA    540TLDVEIYNPA 540

GQLVGQQVQS GVTFTPGQSS QPITWNWTAP DSPGTYTVKA FVFSQDGTSVGQLVGQQVQS GVTFTPGQSS QPITWNWTAP DSPGTYTVKA FVFSQDGTSV

YAADPSAATF    600YAADPSAATF 600

TVTQPDPPTI SATVQLSATT VKVGTPVTIT TTYTETAPTG YLNNGLLVQYTVTQPDPPTI SATVQLSATT VKVGTPVTIT TTYTETAPTG YLNNGLLVQY

AVYNNWTSSQ  660AVYNNWTSSQ 660

QSNPTATLTP GQSVTETWTF TPEQAGTYTF PEGIFTSGWT QLQWINQNVTQSNPTATLTP GQSVTETWTF TPEQAGTYTF PEGIFTSGWT QLQWINQNVT

LTVTN         715LTVTN 715

 the

<210>2<210>2

<211>2148<211>2148

<212>DNA<212> DNA

<213>脂环酸芽孢杆菌(Alicyclobacillus hesperidum A4)<213> Alicyclobacillus hesperidum A4

 the

<400>2<400>2

atgtcacctt cagggggagt ctgtgtgaac cgaaaacagc gtacgttaaa gttgggaacg     60atgtcacctt caggggggagt ctgtgtgaac cgaaaacagc gtacgttaaa gttgggaacg 60

ctcgcagcaa cgattgtggc actctcagcc gtggccacgc ctgcggtcgc cagtgcggat    120ctcgcagcaa cgattgtggc actctcagcc gtggccacgc ctgcggtcgc cagtgcggat 120

acgacgacgg ccattgcgtc atcgacagtt catgtcacag tcaatgccgc tgctgaactt    180acgacgacgg ccattgcgtc atcgacagtt catgtcacag tcaatgccgc tgctgaactt 180

ggaatcgtgc ccaatactgc acttggtgtg aatacggccg tctgggacgg gcatttactc    240ggaatcgtgc ccaatactgc acttggtgtg aatacggccg tctgggacgg gcatttactc 240

gatgcagcca ttccatctct gcttcgtggc attggggtaa ccatgttgcg atatcccgga    300gatgcagcca ttccatctct gcttcgtggc attggggtaa ccatgttgcg atatcccgga 300

ggatcgactt cagatgagta caattggcaa acgaataccg taactggggg ttatgcagat    360ggatcgactt cagatgagta caattggcaa acgaataccg taactggggg ttatgcagat 360

cccaacaaca cctttgacaa cttcatggga gtggtccaaa aggctggtgc gcaacccatt    420cccaacaaca cctttgacaa cttcatggga gtggtccaaa aggctggtgc gcaacccatt 420

attacggtca acgccggcac gggcacaccg agtgaagctg ccgcatgggt tcaagatgca    480attacggtca acgccggcac gggcacaccg agtgaagctg ccgcatgggt tcaagatgca 480

aatgtcacgc accactacgg tgtcaagtat tgggaaatcg gaaatgagat gtatggcagc    540aatgtcacgc accactacgg tgtcaagtat tgggaaatcg gaaatgagat gtatggcagc 540

tgggaagcag ggaattttgc aaataaccca tctggttatg cgaaagaagc tgtatccttc    600tgggaagcag ggaattttgc aaataaccca tctggttatg cgaaagaagc tgtatccttc 600

attcaggcca tgaaagcggt tgatccttct attaaaatcg gcgtggacct catcgcacct    660attcaggcca tgaaagcggt tgatccttct attaaaatcg gcgtggacct catcgcacct 660

ggtactggag aagatgactg gaatgcaacc gtgcttagca ccatgcacag ccttggggtg    720ggtactggag aagatgactg gaatgcaacc gtgcttagca ccatgcacag ccttggggtg 720

cttccggact tcgccattgt gcactggtat gcgcaaaatc cgggaggcga gacggacgct    780cttccggact tcgccattgt gcactggtat gcgcaaaatc cgggaggcga gacggacgct 780

gggctgctca gttcgacgaa tcaaatttcg acgatgatgg ataccttgaa gcagcaattg    840gggctgctca gttcgacgaa tcaaatttcg acgatgatgg ataccttgaa gcagcaattg 840

agctcctatg gaaccatccc ggttttcgtc accgaaacga attcggtttc gtataaccct    900agctcctatg gaaccatccc ggttttcgtc accgaaacga attcggtttc gtataaccct 900

gggcgccaga gtacaagtct ggttaatgca ctgttcctcg atgatgacat ggcagactgg    960gggcgccaga gtacaagtct ggttaatgca ctgttcctcg atgatgacat ggcagactgg 960

cttgagtccg gagcgcaaaa cgtcgactgg tgggacttgc ataacggcat tgttacacaa   1020cttgagtccg gagcgcaaaa cgtcgactgg tgggacttgc ataacggcat tgttacacaa 1020

caggccggtg caaatgtcga tccgaatctg tatgggcagt ataactacgg agactatgga   1080caggccggtg caaatgtcga tccgaatctg tatgggcagt ataactacgg agactatgga 1080

cttttgtcca atggctcgag tgacaatggc atttcagaac cggctgccaa tacaccattc   1140cttttgtcca atggctcgag tgacaatggc atttcagaac cggctgccaa tacaccattc 1140

ccaacgtatt atggatacca aatgctcgca gccgtcatgg tgccaggagc gacgatgatc   1200ccaacgtatt atggatacca aatgctcgca gccgtcatgg tgccaggagc gacgatgatc 1200

ggtgccggat cgaacaatga tctggtggcc gtgcatgcga ccaagttgcc caatggtgct   1260ggtgccggat cgaacaatga tctggtggcc gtgcatgcga ccaagttgcc caatggtgct 1260

gtcgacgtca tgttgatcaa caaggatccg aaacaagcgt ataccgtcga tttgcaagct   1320gtcgacgtca tgttgatcaa caaggatccg aaacaagcgt ataccgtcga tttgcaagct 1320

gaaggatttg ctgctaaggg tcctgcattc acgttattct acgggcaagg cagtaacgcg    1380gaaggatttg ctgctaaggg tcctgcattc acgttattct acgggcaagg cagtaacgcg 1380

gtgacgccgg gcaaattgga taatctgcag aatgtgacac taccgcccta ttctgtgacg    1440gtgacgccgg gcaaattgga taatctgcag aatgtgacac taccgcccta ttctgtgacg 1440

gacatcatca taccggcggt gcccgggcat cagccacaag ggccacagtt tacggacaag    1500gacatcatca taccggcggt gcccgggcat cagccacaag ggccacagtt tacggacaag 1500

acgacgttat ccactcctca ggtaaagcct agtgccaacg agactttgac cacgacgttt    1560acgacgttat ccactcctca ggtaaagcct agtgccaacg agactttgac cacgacgttt 1560

accgacacgc gtggtgcggt caaggatggt acactcgacg tggaaatcta caatccagca    1620accgacacgc gtggtgcggt caaggatggt acactcgacg tggaaatcta caatccagca 1620

gggcaattgg ttgggcaaca agtgcagtct ggcgtgacgt ttacgcctgg gcaatcatct    1680gggcaattgg ttgggcaaca agtgcagtct ggcgtgacgt ttacgcctgg gcaatcatct 1680

caaccgatta cctggaactg gacggcgccc gattctcctg ggacgtatac cgtgaaggcg    1740caaccgatta cctggaactg gacggcgccc gattctcctg ggacgtatac cgtgaaggcg 1740

ttcgtcttca gccaagacgg aacaagcgtg tatgcggcag acccgagtgc agctacgttc    1800ttcgtcttca gccaagacgg aacaagcgtg tatgcggcag acccgagtgc agctacgttc 1800

acggtcacac agccggatcc gcccaccatt tcggccaccg ttcagctgtc cgcaactacg    1860acggtcacac agccggatcc gcccaccatt tcggccaccg ttcagctgtc cgcaactacg 1860

gtcaaagtgg gtacacctgt gaccatcacg acgacttaca ccgaaaccgc gcctacgggg    1920gtcaaagtgg gtacacctgt gaccatcacg acgacttaca ccgaaaccgc gcctacgggg 1920

tacctgaaca acgggttgct tgtacagtac gccgtgtaca ataactggac atcatcgcaa    1980tacctgaaca acgggttgct tgtacagtac gccgtgtaca ataactggac atcatcgcaa 1980

cagtccaatc caactgcgac attgactcct gggcaatcgg tgactgagac ttggacattt    2040cagtccaatc caactgcgac attgactcct gggcaatcgg tgactgagac ttggacattt 2040

acgccagagc aggccggaac ctacacattc cctgaaggca tctttaccag tggatggaca    2100acgccagagc aggccggaac ctacacattc cctgaaggca tctttaccag tggatggaca 2100

caattgcagt ggattaatca gaacgtgacc ttgactgtga caaactaa                 2148caattgcagt ggattaatca gaacgtgacc ttgactgtga caaactaa 2148

Claims (9)

1. an acid glucanase CELA is characterized in that, its aminoacid sequence is shown in SEQ ID NO.1.
2. an acidic dextranase gene C elA is characterized in that, the described acid glucanase CELA of coding claim 1.
3. acidic dextranase gene C elA as claimed in claim 2 is characterized in that its base sequence is shown in SEQ ID NO.2.
4. the recombinant vectors that comprises the described acidic dextranase gene C of claim 3 elA.
5. recombinant vectors according to claim 4 is characterized in that, the described recombinant vectors that comprises acidic dextranase gene C elA is pPIC9-CelA.
6. the recombinant bacterial strain that comprises the described acidic dextranase gene C of claim 3 elA.
7. recombinant bacterial strain as claimed in claim 6 is characterized in that, described bacterial strain is a pichia spp.
8. a method for preparing acid glucanase CELA is characterized in that, may further comprise the steps:
1) with the recombinant vectors transformed host cell of claim 4, gets recombinant bacterial strain;
2) cultivate recombinant bacterial strain, induce the reorganization dextranase to express; And
3) reclaim the also expressed dextranase CELA of purifying.
9. the described acid glucanase CELA of claim 1 is in the application of fodder industry.
CN2010101549287A 2010-04-20 2010-04-20 A kind of acid glucanase CELA and its gene and application Active CN101851612B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2010101549287A CN101851612B (en) 2010-04-20 2010-04-20 A kind of acid glucanase CELA and its gene and application

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2010101549287A CN101851612B (en) 2010-04-20 2010-04-20 A kind of acid glucanase CELA and its gene and application

Publications (2)

Publication Number Publication Date
CN101851612A CN101851612A (en) 2010-10-06
CN101851612B true CN101851612B (en) 2011-09-21

Family

ID=42803292

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2010101549287A Active CN101851612B (en) 2010-04-20 2010-04-20 A kind of acid glucanase CELA and its gene and application

Country Status (1)

Country Link
CN (1) CN101851612B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108823188A (en) * 2018-06-15 2018-11-16 华中科技大学 A kind of endoglucanase and its encoding gene and application

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102154246B (en) * 2011-01-28 2012-11-28 武汉新华扬生物股份有限公司 Acid glucanase CEL7G5 and gene and application thereof
CN103667131B (en) * 2013-12-05 2015-09-16 中国科学院微生物研究所 A kind of method and special strain therefore thereof improving metallic ore leaching rate

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050147983A1 (en) * 2004-01-06 2005-07-07 Novozymes A/S Polypeptides of Alicyclobacillus sp.
CN101538548A (en) * 2009-04-22 2009-09-23 无锡瑞宝科技有限公司 Beta-1,3-1,4-dextranase gene engineering bacterium for feeds and construction thereof
CN101619309B (en) * 2009-06-24 2011-10-05 郑荣 Enzyme composition for high-efficiency decomposition of cellulose

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108823188A (en) * 2018-06-15 2018-11-16 华中科技大学 A kind of endoglucanase and its encoding gene and application

Also Published As

Publication number Publication date
CN101851612A (en) 2010-10-06

Similar Documents

Publication Publication Date Title
CN101457207B (en) Eosinophil beta-mannanase MAN5A and gene and application thereof
JP5340138B2 (en) Cloning and expression of a novel phytase
CN101457206B (en) Acidic xylanase XYL10A and gene and application thereof
CN101748108B (en) Acidophil Beta-glucanase GLU7A and gene and application thereof
CN101851612B (en) A kind of acid glucanase CELA and its gene and application
CN104388408B (en) Acid glucanase GLU16-3 with high specific activity, gene for same and application of acid glucanase GLU16-3
CN101457208B (en) A protease-resistant acid α-galactosidase Aga-F75 and its gene and application
CN102220304B (en) A low-temperature xylanase XynAHJ2 and its gene
CN101838637B (en) A wide temperature applicability acid glucanase AGL9A and its gene and application
CN101701214B (en) A wide pH applicability xylanase XYNA4 and its gene and application
CN102533698B (en) High temperature acidic mannase Man5C1, and gene and application thereof
CN101818135B (en) Acidophilic alpha-galactosidase AgalB with galactomannan degradation capability and gene and application thereof
CN101701213B (en) Dual-function xylanase XYNBE18 and gene and application thereof
CN101368175B (en) Novel phytase, encoding gene, cell and feedstuff additive including the enzyme
CN114621987B (en) A method for preparing arabinoxylan with different molecular weight distribution characteristics
CN105779420A (en) High temperature-resistant acid arabinfuranosidease AbfaHLB and gene and application thereof
CN101838636A (en) High-specific-activity xylanase XYN11F63 and genes and application thereof
CN107488221B (en) Swollenin protein from fungi and gene and application thereof
CN102363773B (en) Novel beta-glucanase GLU, novel high temperature resistant beta-glucanase VGLU, and genes and applications of novel beta-glucanase GLU and novel high temperature resistant beta-glucanase VGLU
CN102399768B (en) Low temperature xylanase BA-XYL11a as well as gene and application
CN103695397B (en) Mesophilic acidic xylanase XYN10L1 and gene and application thereof
CN103074317B (en) High temperature neutral xylanase XYNA used for brewing beer and gene and application thereof
RU2388820C2 (en) Gene abfb-2 penicillium funiculosum
CN101892208B (en) High-temperature acidic xylanase XYN10J88, gene and application thereof
CN106566818A (en) Acidic thermophilic polygalacturonase TePG28A, and coding gene and application thereof

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20200901

Address after: 100193 Beijing Old Summer Palace West Road, Haidian District, No. 2

Patentee after: Beijing Institute of Animal Science and Veterinary Medicine, Chinese Academy of Agricultural Sciences

Address before: 100086 No. 12 South Main Street, Haidian District, Beijing, Zhongguancun

Patentee before: FEED Research Institute CHINESE ACADEMY OF AGRICULTURAL SCIENCES