[go: up one dir, main page]

CN101847570B - Selective etching and formation of xenon difluoride - Google Patents

Selective etching and formation of xenon difluoride Download PDF

Info

Publication number
CN101847570B
CN101847570B CN2010101044846A CN201010104484A CN101847570B CN 101847570 B CN101847570 B CN 101847570B CN 2010101044846 A CN2010101044846 A CN 2010101044846A CN 201010104484 A CN201010104484 A CN 201010104484A CN 101847570 B CN101847570 B CN 101847570B
Authority
CN
China
Prior art keywords
silicon
chamber
xef
fluorine
molybdenum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN2010101044846A
Other languages
Chinese (zh)
Other versions
CN101847570A (en
Inventor
吴定军
E·J·小卡瓦基
A·马利卡朱南
A·D·约翰逊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Versum Materials US LLC
Original Assignee
Air Products and Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US12/360,588 external-priority patent/US8278222B2/en
Application filed by Air Products and Chemicals Inc filed Critical Air Products and Chemicals Inc
Publication of CN101847570A publication Critical patent/CN101847570A/en
Application granted granted Critical
Publication of CN101847570B publication Critical patent/CN101847570B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F4/00Processes for removing metallic material from surfaces, not provided for in group C23F1/00 or C23F3/00
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F1/00Etching metallic material by chemical means
    • C23F1/02Local etching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F1/00Etching metallic material by chemical means
    • C23F1/10Etching compositions
    • C23F1/12Gaseous compositions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Plasma & Fusion (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

本发明涉及选择性蚀刻和形成二氟化氙。尤其涉及用于从二氧化硅、氮化硅、镍、铝、TiNi合金、光致抗蚀剂、磷硅酸盐玻璃、硼磷硅酸盐玻璃、聚酰亚胺、金、铜、铂、铬、氧化铝、碳化硅和其混合物选择性除去下述材料的工艺,比如:硅、钼、钨、钛、锆、铪、钒、钽、铌、硼、磷、锗、砷和其混合物。该工艺与下列重要应用相关,即用于半导体沉积腔室和半导体工具、微电动机械系统(MEMS)中的器件、以及离子注入系统的清洁或蚀刻工艺。本发明也提供通过将Xe与含氟化学品反应而形成XeF2的方法,其中,所述含氟化学品选自F2、NF3、C2F6、CF4、C3F8、SF6、从上游等离子发生器产生的含F原子的等离子体和它们的混合物。

Figure 201010104484

This invention relates to the selective etching and formation of xenon difluoride. In particular, it is related to the use of silicon dioxide, silicon nitride, nickel, aluminum, TiNi alloy, photoresist, phosphosilicate glass, borophosphosilicate glass, polyimide, gold, copper, platinum, Chromium, Aluminum Oxide, Silicon Carbide and their mixtures Process for the selective removal of materials such as silicon, molybdenum, tungsten, titanium, zirconium, hafnium, vanadium, tantalum, niobium, boron, phosphorus, germanium, arsenic and their mixtures. This process is relevant for important applications such as cleaning or etching processes for semiconductor deposition chambers and semiconductor tools, devices in microelectromechanical systems (MEMS), and ion implantation systems. The present invention also provides a process for forming XeF2 by reacting Xe with a fluorinated chemical selected from the group consisting of F2 , NF3 , C2F6 , CF4 , C3F8 , SF 6. F atom-containing plasmas and mixtures thereof generated from an upstream plasma generator.

Figure 201010104484

Description

选择性蚀刻和二氟化氙的形成Selective Etching and Formation of Xenon Difluoride

相关申请的交叉引用Cross References to Related Applications

本申请是提交于2005年11月22日的题为“SELECTIVE ETCHING OFTITANIUM NITRIDE WITH XENON DIFLUORIDE”的U.S.专利申请系列号No.11/285,056的部分延续。This application is a continuation-in-part of U.S. Patent Application Serial No. 11/285,056, filed November 22, 2005, entitled "SELECTIVE ETCHING OFTITANIUM NITRIDE WITH XENON DIFLUORIDE."

技术领域 technical field

本发明涉及选择性蚀刻和二氟化氙的形成。This invention relates to the selective etching and formation of xenon difluoride.

背景技术 Background technique

在电子工业中已开发出各种沉积技术,其中将选定材料沉积于目标基材上以制造电子元件比如半导体。一种沉积工艺是化学气相沉积(CVD),其中气体反应剂被导入至经加热的加工腔室(chamber)中得到被沉积于期望基材上的膜。CVD的一个亚型被称作等离子体增强CVD(PECVD),其中等离子体在CVD加工腔室中建立。Various deposition techniques have been developed in the electronics industry in which selected materials are deposited on a target substrate to fabricate electronic components such as semiconductors. One deposition process is chemical vapor deposition (CVD), in which gaseous reactants are introduced into a heated process chamber to obtain a film deposited on a desired substrate. A subtype of CVD is known as plasma enhanced CVD (PECVD), in which a plasma is established in a CVD process chamber.

通常,所有沉积方法均造成膜和颗粒材料累积在不同于目标基材的表面上,即,沉积材料也聚集在沉积工艺中使用的壁、工具表面、基座(susceptor)和其它设备上。任何聚集在壁、工具表面、基座和其它设备上的材料、膜等均被认为是污染物,并可能导致电子产品元件中的缺陷。In general, all deposition methods result in accumulation of film and particulate material on surfaces other than the target substrate, ie, deposition material also accumulates on walls, tool surfaces, susceptors and other equipment used in the deposition process. Any material, film, etc. that collects on walls, tool surfaces, bases, and other equipment is considered a contaminant and can lead to defects in electronic product components.

普遍认同沉积腔室、工具和设备必须定期地清洁以除去不需要的污染性沉积材料。通常优选的清洁沉积腔室、工具和设备的方法包括使用全氟化的化合物(PFC),例如C2F6、CF4、C3F8、SF6和NF3来作为蚀刻剂清洁剂。在这些清洁操作中,正常由过程气体携带的化学活性氟物种(species)将不需要的污染性残渣转化为挥发性产物。然后,挥发性产物被过程气体吹扫出反应器。It is generally accepted that deposition chambers, tools and equipment must be cleaned periodically to remove unwanted contaminating deposition materials. A generally preferred method of cleaning deposition chambers, tools and equipment involves the use of perfluorinated compounds (PFCs) such as C2F6 , CF4 , C3F8 , SF6 and NF3 as etchant cleaners. During these cleaning operations, chemically active fluorine species normally carried by the process gas convert unwanted polluting residues into volatile products. The volatile products are then purged out of the reactor by the process gas.

离子注入用在集成电路制造中以精确地将控制量的掺杂剂杂质导入至半导体晶片中,并且其是微电子/半导体生产中的重要工艺。在理想情形中,所有原料分子会被电离并提取,但实际上却发生一定量原料的分解,这造成在离子源区域内的表面上的、或者离子注入工具的部件,比如低压绝缘子和高压元件上的沉积和污染。已知的污染残渣是硅、硼、磷、锗或砷。将成为离子注入领域的重要进步的是,提供用于有效地、选择性除去在注入过程中沉积于注入机(implanter)各处,特别是离子源区域内的不需要残渣的原位清洁工艺。该原位清洁会增强工作人员安全并有助于注入设备的稳定、连续操作。将气相反应性卤化物组合物,例如XeF2、NF3、F2、XeF6、SF6、C2F6、IFs或IF7导入至被污染的部件以充足的时间并在充分的条件下以从元件至少部分地除去残渣,并且以下述方式进行,即,相对于构建离子注入机的元件的材料选择性地除去残渣。Ion implantation is used in integrated circuit fabrication to introduce precisely controlled amounts of dopant impurities into semiconductor wafers and is an important process in microelectronics/semiconductor production. In an ideal situation, all the feedstock molecules would be ionized and extracted, but in practice a certain amount of feedstock decomposition occurs, which results in the surface in the area of the ion source, or the components of the ion implantation tool, such as low voltage insulators and high voltage components deposition and contamination on the Known contaminating residues are silicon, boron, phosphorus, germanium or arsenic. What would be an important advancement in the field of ion implantation is the provision of an in-situ cleaning process for the efficient and selective removal of unwanted debris deposited throughout the implanter during implantation, particularly in the ion source region. This cleaning in place enhances worker safety and facilitates stable, continuous operation of the injection equipment. Introducing a gas phase reactive halide composition such as XeF2 , NF3 , F2 , XeF6, SF6 , C2F6 , IFs or IF7 to the contaminated component for a sufficient time and under sufficient conditions to Debris is at least partially removed from the component and is done in such a way that the debris is selectively removed with respect to the material from which the component of the ion implanter is constructed.

在微型电动机械系统(MEMS)中,形成牺牲层(通常具有非晶硅)和保护层的混合物,由此形成器件结构层。选择性地除去该牺牲材料是用于结构释放蚀刻(release etching)工艺的关键步骤,其中需要各向同性地除去数微米的牺牲材料而不损害其它的结构。已了解的是该蚀刻工艺是不蚀刻保护层的选择性蚀刻工艺。在MEMS中使用的典型牺牲材料为:硅、钼、钨、钛、锆、铪、钒、钽、铌。曲型保护材料是镍、铝、光致抗蚀剂、氧化硅、氮化硅。In Micro Electro Mechanical Systems (MEMS), a mixture of a sacrificial layer (often with amorphous silicon) and a protective layer is formed, thereby forming the device structural layers. Selective removal of this sacrificial material is a critical step for the structure release etching process, where microns of sacrificial material need to be removed isotropically without damaging other structures. It is understood that the etch process is a selective etch process that does not etch the protective layer. Typical sacrificial materials used in MEMS are: silicon, molybdenum, tungsten, titanium, zirconium, hafnium, vanadium, tantalum, niobium. The curved protection material is nickel, aluminum, photoresist, silicon oxide, silicon nitride.

为了有效地除去牺牲材料,释放蚀刻使用蚀刻剂气体,其能够进行牺牲层的自发性化学蚀刻,优选为除去牺牲层的各向同性蚀刻。因为二氟化氙的各向同性蚀刻效果强,故使用二氟化氙(XeF2)作为横向蚀刻工艺(lateral etching process)的蚀刻剂。For efficient removal of the sacrificial material, release etching uses an etchant gas that enables spontaneous chemical etching of the sacrificial layer, preferably an isotropic etch that removes the sacrificial layer. Because xenon difluoride has a strong isotropic etching effect, xenon difluoride (XeF 2 ) is used as an etchant for the lateral etching process.

然而,二氟化氙昂贵,且是难以处理的材料。二氟化氙与空气、光或水蒸气(湿气)接触而不稳定。所有的氟化氙都必须防止接触湿气、光和空气以避免形成三氧化氙和氟化氢。三氧化氙是危险的爆炸性无色、非挥发性固体。氟化氢不仅危险而且还降低蚀刻效率。However, xenon difluoride is expensive and a difficult material to handle. Xenon difluoride is unstable in contact with air, light, or water vapor (humidity). All xenon fluoride must be protected from moisture, light and air to avoid the formation of xenon trioxide and hydrogen fluoride. Xenon trioxide is a dangerous explosive colorless, non-volatile solid. Hydrogen fluoride is not only dangerous but also reduces etching efficiency.

此外,二氟化氙是具有低蒸气压的固体,这使得难以将二氟化氙运送至加工腔室。Furthermore, xenon difluoride is a solid with a low vapor pressure, which makes it difficult to transport xenon difluoride to the processing chamber.

以下参考文献举例说明了用于如下的方法:半导体生产中的膜沉积,以及沉积腔室、工具和设备的清洁,和基材的蚀刻、MEMS中牺牲层的蚀刻,和微电子器件制造中所用离子注入系统中的离子源区域的清洁:The following references exemplify methods used in film deposition in semiconductor production, as well as cleaning of deposition chambers, tools, and equipment, and etching of substrates, etching of sacrificial layers in MEMS, and in the fabrication of microelectronic devices. Cleaning of the ion source area in ion implantation systems:

US 5,421,957公开了用于低温清洁冷壁CVD腔室的工艺。该工艺在无湿气条件下原位进行。各种材料比如外延硅、多晶硅、氮化硅、氧化硅和耐火金属、钛、钨和它们的硅化物的膜的清洁使用蚀刻剂气体例如三氟化氮、三氟化氯、六氟化硫和四氟化碳来实现。US 5,421,957 discloses a process for cryogenic cleaning of cold-walled CVD chambers. The process takes place in situ under moisture-free conditions. Cleaning of films of various materials such as epitaxial silicon, polycrystalline silicon, silicon nitride, silicon oxide and refractory metals, titanium, tungsten and their silicides using etchant gases such as nitrogen trifluoride, chlorine trifluoride, sulfur hexafluoride and carbon tetrafluoride to achieve.

US 6,051,052公开了在离子增强等离子体中使用氟化合物例如NF3和C2F6作为蚀刻剂的导体材料的各向异性蚀刻。所述蚀刻剂由含氟化学制品和选自He、Ar、Xe和Kr的稀有气体组成。试验基材包括与基材连接的集成电路。在一个实施方案中,将钛层形成在绝缘层上并与钨插塞(tungsten plug)接触。然后,将铝-铜合金层形成在该钛层之上,并在其上形成氮化钛层。US 6,051,052 discloses anisotropic etching of conductor materials in an ion-enhanced plasma using fluorine compounds such as NF3 and C2F6 as etchant. The etchant consists of a fluorine-containing chemical and a noble gas selected from He, Ar, Xe and Kr. The test substrate includes an integrated circuit attached to the substrate. In one embodiment, a titanium layer is formed on the insulating layer and in contact with a tungsten plug. Then, an aluminum-copper alloy layer was formed over the titanium layer, and a titanium nitride layer was formed thereon.

US 2003/0047691公开了利用电子束加工来蚀刻或沉积材料或者修补在光刻掩模(lithography mask)中的缺陷。在一个实施方案中,二氟化氙通过电子束激活以蚀刻钨和氮化钽。US 2003/0047691 discloses the use of electron beam processing to etch or deposit material or to repair defects in lithography masks. In one embodiment, xenon difluoride is activated by electron beams to etch tungsten and tantalum nitride.

GB 2,183,204A公开了利用NF3来原位清洁CVD沉积硬件、船、管和石英器皿以及半导体晶片。将NF3导入至超过350℃的经加热反应器足够的时间以除去氮化硅、多晶硅、硅化钛、硅化钨、耐火金属和硅化物。GB 2,183,204A discloses the use of NF3 for in-situ cleaning of CVD deposition hardware, boats, tubes and quartz vessels, and semiconductor wafers. NF 3 is introduced into the heated reactor above 350° C. for a sufficient time to remove silicon nitride, polysilicon, titanium silicide, tungsten silicide, refractory metals, and silicides.

Holt,J.R.等,Comparison of the Interactions of XeF2 and F2 withSi(100)(2X1),J.Phys.Chem.B 2002,106,8399-8406公开了在250K时XeF2与Si(100)(2X1)的相互作用,并提供了与F2的比较。发现XeF2在室温下快速并各向同性地与Si反应。Holt, JR etc., Comparison of the Interactions of XeF 2 and F 2 withSi(100)(2X1), J.Phys.Chem.B 2002,106,8399-8406 disclosed that XeF 2 and Si(100)( 2X1) and a comparison with F2 is provided. XeF2 was found to react rapidly and isotropically with Si at room temperature.

Chang,F.I.,Gas-Phase Silicon Micromachining With XenonDifluoride,SPIE Vol.2641/117-127公开了利用XeF2作为气相、室温、各向同性的硅蚀刻剂,并且指出其对用于微电动机械系统的许多材料比如铝、光致抗蚀剂和二氧化硅具有高选择性。其还在119页指出,在硅基材上形成图案时,XeF2具有对二氧化硅以及铜、金、钛-镍合金和丙烯酸类(acrylic)的大于1000∶1的选择性。Chang, FI, Gas-Phase Silicon Micromachining With Xenon Difluoride, SPIE Vol.2641/117-127 discloses the use of XeF as a gas-phase, room-temperature, isotropic silicon etchant, and points out that it is useful for many microelectromechanical systems. Materials such as aluminum, photoresist, and silicon dioxide are highly selective. It also states on page 119 that XeF2 has greater than 1000:1 selectivity to silicon dioxide as well as copper, gold, titanium-nickel alloys and acrylic when patterned on silicon substrates.

Isaac,W.C.等,Gas Phase Pulse Etching of Silicon For MEMS WithXenon Difluoride,1999IEEE,1637-1642公开了利用XeF2作为用于硅的各向同性气相蚀刻剂。报道了XeF2对集成电路制造中的许多金属、电介质和聚合物具有高选择性。该作者也在1637页指出,XeF2不蚀刻铝、铬、氮化钛、钨、二氧化硅和碳化硅。还观测到了分别对于钼:硅;以及钛:硅的显著蚀刻。Isaac, WC et al., Gas Phase Pulse Etching of Silicon For MEMS With Xenon Difluoride, 1999 IEEE, 1637-1642 disclose the use of XeF2 as an isotropic gas phase etchant for silicon. XeF2 has been reported to be highly selective to many metals, dielectrics and polymers in integrated circuit fabrication. The author also states on page 1637 that XeF2 does not etch aluminum, chromium, titanium nitride, tungsten, silicon dioxide, and silicon carbide. Significant etching was also observed for molybdenum:silicon; and titanium:silicon, respectively.

Winters等,The Etching of Silicon With XeF2 Vapor,Appl.Phys.Lett.34(1)1979年1月1日,70-73公开了利用CF4的氟烃等离子体诱导离解中产生的F原子和CF3基团来蚀刻固体硅以制造挥发性SiF4物种。该论文诉诸于利用XeF2以在300K在1.4×10-2托下蚀刻硅。其它实验显示XeF2也快速地蚀刻钼、钛和或许钨。SiO2、Si3N4和SiC的蚀刻使用XeF2并不有效,但在电子或离子轰击的存在下蚀刻却有效。故作者断定这些材料的蚀刻不仅需要F原子而且还需要辐射或高温。Winters et al., The Etching of Silicon With XeF 2 Vapor, Appl. Phys. Lett. 34 (1) January 1, 1979, 70-73 discloses F atoms and CF3 groups to etch solid silicon to produce volatile SiF4 species. This paper resorts to utilizing XeF 2 to etch silicon at 300K at 1.4×10 −2 Torr. Other experiments have shown that XeF2 also rapidly etches molybdenum, titanium and perhaps tungsten. Etching of SiO 2 , Si 3 N 4 and SiC is not efficient with XeF 2 but is effective in the presence of electron or ion bombardment. Therefore, the authors conclude that the etching of these materials requires not only F atoms but also radiation or high temperature.

US 6870654和US 7078293两者均公开了结构释放蚀刻工艺,其通过使用具有氟基团或氯基团的蚀刻剂来代替二氟化氙,避免了因使用二氟化氙而造成的困难。然而,蚀刻效果不如使用二氟化氙时有效。因此,US 6870654和US 7078293公开了用于促进结构释放蚀刻工艺的特殊结构,以使加工时间等与二氟化氙的相当。Both US 6870654 and US 7078293 disclose structure release etching processes which avoid the difficulties caused by the use of xenon difluoride by using etchant having fluorine or chlorine groups instead of xenon difluoride. However, the etching effect is not as effective as when xenon difluoride is used. Therefore, US 6870654 and US 7078293 disclose special structures for facilitating the structure release etching process so that processing times etc. are comparable to those of xenon difluoride.

US 20060086376公开了在微电子器件的制造中,利用XeF2来从离子注入机的元件清洁残渣(硅、硼、磷、锗或砷)。US 20060086376 discloses the use of XeF2 to clean debris (silicon, boron, phosphorous, germanium or arsenic) from components of an ion implanter in the manufacture of microelectronic devices.

具体地,US 20060086376涉及从真空腔室和含于其中的元件原位除去残渣,其通过将所述真空腔室和/或元件与气相反应性卤化物组合物例如XeF2接触充分的时间并在充分的条件下,以从元件至少部分地除去残渣,并且以下述方式进行,即,相对于构建离子注入机的元件的材料选择性地除去残渣。Specifically, US 20060086376 relates to the in situ removal of residues from vacuum chambers and components contained therein by contacting said vacuum chambers and/or components with a gas-phase reactive halide composition such as XeF for a sufficient time and at The conditions are sufficient to at least partially remove the debris from the component, and in such a manner that the debris is selectively removed with respect to the material from which the component of the ion implanter is constructed.

一个工业目的是找到可用于从经二氧化硅(SiO2)和氮化硅(SiN)涂覆的表面除去难以除去的氮化钛(TiN)膜的新型蚀刻剂。这类表面见于半导体沉积腔室,特别是石英腔室和石英器皿、半导体工具和设备的壁中。许多常规的攻击TiN膜的基于氟的蚀刻剂也攻击SiO2和SiN表面,因此不可接受于用于从半导体沉积腔室和设备除去TiN沉积产物。An industrial goal is to find new etchants that can be used to remove difficult-to-remove titanium nitride (TiN) films from silicon dioxide ( SiO2 ) and silicon nitride (SiN) coated surfaces. Such surfaces are found in semiconductor deposition chambers, especially quartz chambers and walls of quartz vessels, semiconductor tools and equipment. Many conventional fluorine-based etchants that attack TiN films also attack SiO2 and SiN surfaces and are therefore unacceptable for use in removing TiN deposition products from semiconductor deposition chambers and equipment.

另一个工业目的是提供用于从二氧化硅(石英)表面选择性除去硅的方法,所述表面为比如普遍见于半导体沉积腔室和半导体工具以及MEMS中的器件中的那些。Another industrial objective is to provide methods for the selective removal of silicon from silicon dioxide (quartz) surfaces such as those commonly found in semiconductor deposition chambers and semiconductor tools and devices in MEMS.

又一个工业目的在于提供用于现场(on site)生产或形成二氟化氙的方法,如同降低物主成本所需的。Yet another industry object is to provide a method for on site production or formation of xenon difluoride as desired to reduce the cost of ownership.

发明内容 Contents of the invention

本发明涉及改进的工艺,其用于从二氧化硅(石英)表面比如普遍见于半导体沉积腔室和半导体工具的表面以及普遍见于半导体工具部件等的氮化硅(SiN)表面,选择性除去氮化钛(TiN)膜和沉积产物。在除去污染表面的不期望成分的基础工艺中,将蚀刻剂与所述不期望成分在接触区接触,并将该不期望成分转化为挥发性物种。然后将该挥发性物种从接触区除去。用于从接触区中选自SiO2和SiN的表面除去不期望的TiN沉积材料的基础工艺中的改进在于使用二氟化氙(XeF2)作为蚀刻剂。控制条件以使所述选自SiO2和SiN的表面不被转化为挥发性组分。The present invention relates to an improved process for the selective removal of nitrogen from silicon dioxide (quartz) surfaces such as those commonly found in semiconductor deposition chambers and semiconductor tools, and silicon nitride (SiN) surfaces commonly found in semiconductor tool components and the like Titanium oxide (TiN) films and deposition products. In the basic process of removing undesired constituents that contaminate a surface, an etchant is brought into contact with the undesired constituents at a contact zone and converts the undesired constituents into volatile species. The volatile species are then removed from the contact zone. An improvement in the basic process for removing undesired TiN deposition material from the surface selected from SiO 2 and SiN in the contact region consists in using xenon difluoride (XeF 2 ) as etchant. Conditions are controlled so that the surface selected from SiO2 and SiN is not converted into volatile components.

就选择性蚀刻很难从半导体沉积腔室(有时称作反应腔室)、工具部件和设备等除去的TiN膜和沉积材料而言,显著优点包括:Significant advantages for selectively etching TiN films and deposition materials that are difficult to remove from semiconductor deposition chambers (sometimes called reaction chambers), tool parts and equipment, etc. include:

从见于沉积腔室的清洁中的经石英即SiO2,和SiN涂覆的表面选择性除去TiN膜的能力;Ability to selectively remove TiN films from quartz, i.e. SiO 2 , and SiN coated surfaces found in cleaning of deposition chambers;

在适度温度下从石英表面除去TiN膜的能力;和The ability to remove TiN films from quartz surfaces at moderate temperatures; and

激活远程等离子体(remote plasma)中的全氟蚀刻剂以从SiO2和SiN表面除去TiN膜而没有正常情况下因远程等离子体中的氟原子攻击所引起的不良效果的能力。The ability to activate a perfluorinated etchant in a remote plasma to remove TiN films from SiO2 and SiN surfaces without the undesirable effects normally caused by attack of fluorine atoms in a remote plasma.

本发明也公开用于相对于第二材料选择性蚀刻第一材料的工艺,包含:The present invention also discloses a process for selectively etching a first material relative to a second material, comprising:

在腔室中提供含有第一材料和第二材料的结构;providing a structure comprising a first material and a second material in the chamber;

向所述腔室提供包含氙(Xe)、惰性气体和含氟化学品的蚀刻剂气体;providing an etchant gas comprising xenon (Xe), an inert gas, and a fluorine-containing chemical to the chamber;

将所述结构与所述蚀刻剂气体接触并将所述第一材料选择性地转化为挥发性物种;和contacting the structure with the etchant gas and selectively converting the first material to a volatile species; and

从所述腔室除去所述挥发性物种;removing the volatile species from the chamber;

其中,所述第一材料选自硅、钼、钨、钛、锆、铪、钒、钽、铌、硼、磷、锗、砷和它们的混合物;且所述第二材料选自二氧化硅、氮化硅、镍、铝、TiNi合金、光致抗蚀剂、磷硅酸盐玻璃、硼磷硅酸盐玻璃、聚酰亚胺、金、铜、铂、铬、氧化铝、碳化硅和它们的混合物。Wherein, the first material is selected from silicon, molybdenum, tungsten, titanium, zirconium, hafnium, vanadium, tantalum, niobium, boron, phosphorus, germanium, arsenic and mixtures thereof; and the second material is selected from silicon dioxide , silicon nitride, nickel, aluminum, TiNi alloy, photoresist, phosphosilicate glass, borophosphosilicate glass, polyimide, gold, copper, platinum, chromium, alumina, silicon carbide and their mixture.

本发明也公开在腔室中形成二氟化氙的工艺,包含:The invention also discloses a process for forming xenon difluoride in a chamber comprising:

向所述腔室提供选自NF3、C2F6、CF4、C3F8、SF6、从上游等离子体发生器产生的含F原子的等离子体和它们的混合物的含氟化学品;和Providing the chamber with a fluorine-containing chemical selected from the group consisting of NF3 , C2F6 , CF4 , C3F8 , SF6 , F atom-containing plasma generated from an upstream plasma generator, and mixtures thereof ;and

通过在所述腔室中使氙与所述含氟化学品反应而形成二氟化氙。Xenon difluoride is formed by reacting xenon with the fluorine-containing chemical in the chamber.

附图说明 Description of drawings

图1是硅基材的蚀刻速率作为NF3远程等离子体中Xe相比于Ar的浓度的函数图,给出了在各种Xe/(Xe+Ar)比率下的Xe添加对Si蚀刻的影响。Figure 1 is a graph of the etch rate of a silicon substrate as a function of the concentration of Xe compared to Ar in a NF 3 remote plasma, showing the effect of Xe addition on Si etching at various Xe/(Xe+Ar) ratios .

图2是SiO2的蚀刻速率作为NF3远程等离子体中Xe相比于Ar的浓度的函数图,给出了在各种Xe/(Xe+Ar)比率下的Xe添加对SiO2蚀刻的影响。Figure 2 is a graph of the etch rate of SiO2 as a function of the concentration of Xe compared to Ar in the NF3 remote plasma, showing the effect of Xe addition on SiO2 etching at various Xe/(Xe+Ar) ratios .

图3是比较硅相对于二氧化硅的蚀刻选择性作为NF3远程等离子体中Xe相比于Ar的浓度的函数图,给出了在各种Xe/(Xe+Ar)比率下的Xe添加对Si/SiO2选择性的影响。Figure 3 is a graph comparing the etch selectivity of silicon versus silicon dioxide as a function of Xe versus Ar concentration in a NF 3 remote plasma, showing Xe addition at various Xe/(Xe+Ar) ratios Effect on Si/ SiO2 selectivity.

图4是来自NF3远程等离子体中的Ar/NF3和Xe/NF3的傅里叶变换红外光谱(FTIR)光谱图,给出了来自Ar/NF3和Xe/NF3的FTIP光谱。Figure 4 is a graph of Fourier transform infrared spectroscopy (FTIR) spectra from Ar/NF 3 and Xe/NF 3 in a remote plasma of NF 3 , showing the FTIP spectra from Ar/NF 3 and Xe/NF 3 .

图5是来自NF3远程等离子体中的Xe/NF3的傅里叶变换红外光谱(FTIR)光谱图,给出了来自Xe/NF3的FTIP光谱。Figure 5 is a Fourier Transform Infrared Spectroscopy (FTIR) spectrum from Xe/NF 3 in a remote plasma of NF 3 , showing the FTIP spectrum from Xe/NF 3 .

图6是XeF2和XeF4傅里叶变换红外光谱(FTIR)峰高作为NF3远程等离子体中的Xe/(Xe+Ar)的函数图,给出了XeF2和XeF4FTIR峰高VSXe/(Xe+Ar)。Figure 6 is a graph of XeF 2 and XeF 4 Fourier Transform Infrared Spectroscopy (FTIR) peak heights as a function of Xe/(Xe+Ar) in the NF 3 remote plasma, giving the XeF 2 and XeF 4 FTIR peak heights VSXe /(Xe+Ar).

图7是XeF2和XeF4傅里叶变换红外光谱(FTIR)峰高作为NF3远程等离子体中的Xe/NF3流量比率的函数图,给出了XeF2和XeF4FTIR峰高VS Xe/NF3流量比率。Figure 7 is a graph of XeF 2 and XeF 4 Fourier Transform Infrared Spectroscopy (FTIR) peak heights as a function of the Xe/NF 3 flow ratio in the NF 3 remote plasma, giving the XeF 2 and XeF 4 FTIR peak heights vs Xe /NF 3 Flow Ratio.

图8是XeF2傅里叶变换红外光谱(FTIR)峰高和硅相对于二氧化硅的蚀刻选择性作为NF3远程等离子体中的Xe/(Xe+Ar)的函数图,给出了XeF2FTIR峰高VS蚀刻选择性。Figure 8 is a graph of XeF 2 Fourier transform infrared spectroscopy (FTIR) peak heights and silicon relative to silicon dioxide etch selectivity as a function of Xe/(Xe+Ar) in a NF 3 remote plasma, giving the XeF 2 FTIR peak height vs etch selectivity.

图9是TiN的蚀刻速率作为NF3远程等离子体中的温度和Xe相比于Ar浓度的函数图,给出了在各种基材温度下的Xe添加对TiN蚀刻的影响。Figure 9 is a graph of the etch rate of TiN as a function of temperature and Xe versus Ar concentration in the NF 3 remote plasma, showing the effect of Xe addition on TiN etch at various substrate temperatures.

图10是二氧化硅的蚀刻速率作为NF3远程等离子体中的温度和Xe相比于Ar的浓度的函数图,给出了在各种基材温度下的Xe添加对SiO2蚀刻的影响。Figure 10 is a graph of the etch rate of silicon dioxide as a function of temperature and the concentration of Xe compared to Ar in the NF3 remote plasma, showing the effect of Xe addition on SiO2 etching at various substrate temperatures.

图11是比较TiN相对于二氧化硅的蚀刻选择性作为NF3远程等离子体中Xe相比于Ar的浓度的函数图,给出了在各种基材温度下的Xe添加对TiN/SiO2选择性的影响。Figure 11 is a graph comparing the etch selectivity of TiN relative to SiO2 as a function of Xe relative to Ar concentration in a NF 3 remote plasma, showing the effect of Xe addition on TiN/SiO 2 at various substrate temperatures. Selective effects.

具体实施方式 Detailed ways

氮化钛(TiN)的沉积普遍实践于制造集成电路、电器元件等的电子工业中。在沉积工艺中,一些TiN沉积在不同于目标基材表面的表面上,例如在沉积腔室内的壁和表面上。已发现XeF2作为用于TiN污染的二氧化硅(SiO2)和氮化硅(SiN)表面的选择性蚀刻剂有效。基于该发现,人们可以使用二氟化氙(XeF2)作为蚀刻剂来除去不需要的TiN膜和沉积材料污染的表面,所述表面为比如见于涂覆有或内衬有二氧化硅(石英)或氮化硅的半导体反应器或沉积腔室、工具、设备、部件和芯片中的那些。The deposition of titanium nitride (TiN) is commonly practiced in the electronics industry in the manufacture of integrated circuits, electrical components, and the like. During the deposition process, some TiN is deposited on surfaces other than the target substrate surface, such as walls and surfaces within the deposition chamber. XeF2 has been found to be effective as a selective etchant for TiN-contaminated silicon dioxide ( SiO2 ) and silicon nitride (SiN) surfaces. Based on this discovery, one can use xenon difluoride (XeF 2 ) as an etchant to remove unwanted TiN films and deposition material contamination of surfaces such as those found on surfaces coated or lined with silicon dioxide (quartz ) or those in semiconductor reactors or deposition chambers, tools, equipment, components and chips of silicon nitride.

在从SiO2和SiN表面比如沉积腔室中的表面除去不需要的TiN残渣时,在接触区中在用于将TiN转化为挥发性TiF4然后再从所述接触区除去该挥发性物种的条件下将XeF2与所述表面接触。经常,将XeF2与惰性气体例如N2、Ar、和He等一起添加。When removing unwanted TiN residues from SiO2 and SiN surfaces such as those in deposition chambers, in the contact zone there is a large amount of energy used to convert TiN to volatile TiF4 and then remove this volatile species from the contact zone. The XeF 2 is brought into contact with the surface under conditions. Often, XeF2 is added together with inert gases such as N2 , Ar, and He, among others.

在进行从SiN和SiO2表面除去TiN沉积材料的工艺中,XeF2可以在导入至接触区之前预形成,或者为了本发明的目的,且由此处定义,XeF2可通过两种方法形成。In carrying out the process of removing the TiN deposited material from the SiN and SiO2 surfaces, the XeF2 can be pre-formed before being introduced into the contact area, or for the purposes of the present invention and as defined herein, the XeF2 can be formed by two methods.

在一个原位形成XeF2的实施方案中,将氙(Xe)添加至含氟化学品并装入远程等离子体发生器。在该处,Xe与存在于所得远程等离子体中的F原子反应而形成XeF2In one embodiment where XeF2 is formed in situ, xenon (Xe) is added to the fluorine-containing chemical and loaded into a remote plasma generator. There, Xe reacts with F atoms present in the resulting remote plasma to form XeF2 .

在另一个实施方案,即所述原位实施方案的变形中,将含氟化学品添加至远程等离子体发生器,然后再将Xe和含F原子的远程等离子体添加至远程等离子体发生器下游的腔室。在该处,Xe与F原子反应而在腔室中形成XeF2。所述腔室可以是任意类型的腔室,比如但不限定于加工腔室、沉积腔室、清洁腔室、反应器和等离子体发生器。In another embodiment, a variation of the in-situ embodiment, the fluorine-containing chemical is added to the remote plasma generator, and then the Xe and F atom-containing remote plasma is added downstream of the remote plasma generator chamber. There, Xe reacts with F atoms to form XeF2 in the chamber. The chamber may be any type of chamber such as, but not limited to, processing chambers, deposition chambers, cleaning chambers, reactors, and plasma generators.

该用于形成XeF2的含氟化学品的例示包括F2,NF3,全氟化碳如C2F6、CF4、C3F8,硫衍生物比如SF6,和产生于上游等离子体发生器的含F原子的远程等离子体。在优选实施方案中,使用NF3作为用于形成XeF2的含氟化学品。Exemplary of the fluorinated chemicals used to form XeF 2 include F 2 , NF 3 , perfluorocarbons such as C 2 F 6 , CF 4 , C 3 F 8 , sulfur derivatives such as SF 6 , and upstream plasma generated A remote plasma containing F atoms from a bulk generator. In a preferred embodiment, NF3 is used as the fluorine-containing chemical used to form XeF2 .

所述含氟化学品可以就地产生。例如,使用卤素发生器就地产生F2,然后再将该F2导入至工艺。这将成为减轻氟操作相关危险的可能手段。The fluorochemicals can be generated in situ. For example, a halogen generator is used to generate F2 on-site and then introduce this F2 into the process. This would be a possible means of mitigating the hazards associated with fluorine handling.

在形成XeF2的原位工艺中可以使用宽范围的Xe对含氟化学品的比。Xe对含氟化学品的摩尔比依赖于相比于所述远程等离子体中的F原子的浓度所形成的XeF2的量。A wide range of Xe to fluorine-containing chemical ratios can be used in the in situ process of forming XeF2 . The molar ratio of Xe to fluorine-containing chemical depends on the amount of XeF2 formed compared to the concentration of F atoms in the remote plasma.

并不受理论的束缚,但人们相信远程等离子体充当着用于激发和离解被作为氟源导入的含氟化学品的源。然后氟基团与存在于等离子体发生区段紧后面的区段中的Xe反应。除用于激发含氟物种的能量以及Xe之外,该区段的路径长度也被认为是平衡对于XeF2的优选和XeF4的减少中的重要参数。Without being bound by theory, it is believed that the remote plasma acts as a source for excitation and dissociation of the fluorine-containing chemical introduced as the fluorine source. The fluorine radicals then react with Xe present in the section immediately after the plasma generating section. In addition to the energy used to excite the fluorine-containing species and Xe, the path length of this segment is also considered to be an important parameter in balancing the preference for XeF2 and the reduction of XeF4 .

此外,人们相信如果Xe被导入到等离子体激发区段紧后面的空间中,则由于Xe还未被激发而能够导致XeF4形成的更进一步减少。熟知氙具有极低的亚稳能态。该亚稳态的形成能够导致形成在该区段内的XeF2分子之间另外的碰撞反应。这些碰撞可造成XeF2离解为XeF和F基团。然后这些物种可导致与其它XeF2分子的进一步反应以形成XeF4。因此,通过在等离子体激发后导入Xe,不形成Xe亚稳态。因此XeF4的形成会降低。这公开在第二实施方案,即原位实施方案的变形中,其中Xe被添加至产生于等离子体发生器上游的含有F原子的远程等离子体。Furthermore, it is believed that if Xe is introduced into the space immediately after the plasma excitation section, this can lead to a further reduction in XeF 4 formation since Xe has not been excited yet. Xenon is well known to have an extremely low metastable energy state. The formation of this metastable state can lead to additional collision reactions between XeF2 molecules formed within this segment. These collisions can cause dissociation of XeF2 into XeF and F groups. These species can then lead to further reactions with other XeF2 molecules to form XeF4 . Therefore, by introducing Xe after plasma excitation, a Xe metastable state is not formed. Therefore the formation of XeF 4 will be reduced. This is disclosed in a second embodiment, a variation of the in situ embodiment, in which Xe is added to the remote plasma containing F atoms generated upstream of the plasma generator.

Xe对含氟化学品的优选摩尔比是1∶10至10∶1。任选地,可将惰性气体例如氩包括于XeF2的远程等离子体发生中,作为调节相对于SiO2而蚀刻TiN,相对于SiO2和SiN而蚀刻SiN或Si的选择性的手段。The preferred molar ratio of Xe to fluorochemical is 1:10 to 10:1. Optionally, an inert gas such as argon may be included in the remote plasma generation of XeF 2 as a means of adjusting the selectivity of etching TiN versus SiO 2 , SiN or Si versus SiO 2 and SiN.

适于从SiO2和SiN表面除去TiN的压力为0.5至50托,优选为1至10托。实现从二氧化硅表面(石英)和SiN表面选择性蚀刻TiN膜的温度主要取决于进行该工艺的方法。由此,这意味着如果预先形成XeF2并直接添加至接触区,温度应当升高至至少100℃,例如100至800℃,优选150至500℃。用于XeF2的压力应当为至少0.1托,例如0.1至20托,优选0.2至10托。与其中蚀刻速率(Si蚀刻)随温度增高而减少的现有技术工艺相反,此处,蚀刻速率随温度增高而增加。认为该温度增加增大了TiN蚀刻的比率,因为TiF4在这些条件下是挥发性的且容易从SiO2和SiN表面除去。较低温度使得TiF4物种留在SiO2和SiN表面的附近,阻碍XeF2的进攻。Suitable pressures for removing TiN from SiO2 and SiN surfaces are 0.5 to 50 Torr, preferably 1 to 10 Torr. The temperature at which selective etching of TiN films from silicon dioxide surfaces (quartz) and SiN surfaces is achieved depends primarily on the method by which the process is carried out. Thus, this means that if the XeF2 is pre-formed and added directly to the contact zone, the temperature should be raised to at least 100°C, eg 100 to 800°C, preferably 150 to 500°C. The pressure for XeF2 should be at least 0.1 Torr, eg 0.1 to 20 Torr, preferably 0.2 to 10 Torr. Contrary to prior art processes where the etch rate (Si etch) decreases with increasing temperature, here the etch rate increases with increasing temperature. It is believed that this temperature increase increases the rate of TiN etching since TiF4 is volatile and easily removed from SiO2 and SiN surfaces under these conditions. The lower temperature makes TiF 4 species remain near the surface of SiO 2 and SiN, hindering the attack of XeF 2 .

在形成XeF2的原位工艺中,清洁或蚀刻在远程等离子体的存在下进行。温度在存在远程等离子体时可以为环境温度至500℃,优选为环境温度至300℃。In the in situ process of forming XeF2 , cleaning or etching is performed in the presence of a remote plasma. The temperature may be from ambient to 500°C in the presence of a remote plasma, preferably from ambient to 300°C.

公开的形成XeF2的工艺为所述原位清洁工艺提供了显著的进步。因为,它们不仅提供以低成本制造XeF2的工艺,它们也提供不需要残渣的有效的选择性除去同时不需大的停工,进而降低维护成本。另外,该公开的工艺使用高蒸气压气体而不使用低蒸气压固体。由于更高的气体流量因而这改善生产率,并因而可得到更高的蚀刻速率。The disclosed process for forming XeF2 provides a significant advance over the in-situ cleaning process. Because, not only do they provide a process for making XeF2 at low cost, they also provide efficient selective removal of unwanted residues without major downtime, thereby reducing maintenance costs. Additionally, the disclosed process uses high vapor pressure gases rather than low vapor pressure solids. This improves productivity due to higher gas flow and thus allows higher etch rates.

源于使用该公开的形成XeF2的工艺的进一步的利益在于,除了XeF2之外还提供一些可能有助于促进除去仅与XeF2接触时可能不反应的残渣的游离氟自由基。这对所有选择性清洁/蚀刻应用都是有利的,所述应用比如清洁涂覆有在其上沉积有某些不需要残渣的SiO2的部件和半导体工具;MEMS中牺牲层的蚀刻,以及在微电子器件的制造中使用的离子注入系统的离子源区域中的残渣清洁。A further benefit stemming from the use of the disclosed process for forming XeF2 is the provision in addition to XeF2 of some free fluorine radicals that may help facilitate the removal of residues that may not react when only in contact with XeF2 . This is beneficial for all selective cleaning/etching applications such as cleaning of components and semiconductor tools coated with SiO2 with some unwanted residue deposited thereon; etching of sacrificial layers in MEMS, and in Debris cleaning in the ion source region of ion implantation systems used in the fabrication of microelectronic devices.

以下实施例被提供以例示本发明的各种实施方案,而不欲限制其范围。The following examples are provided to illustrate various embodiments of the invention without intending to limit the scope thereof.

实施例1Example 1

在各种温度和压力下XeF2在沉积材料的蚀刻中的效力Efficacy of XeF2 in the etching of deposited materials at various temperatures and pressures

在本实施例中,使用XeF2作为蚀刻剂,在各种温度和压力下测定了对于TiN、SiO2和SiN的蚀刻速率。试验样品由涂覆有TiN、SiO2和SiN薄膜的硅晶片制备。蚀刻速率通过所述薄膜厚度在初始膜厚度和定时暴露于蚀刻或加工条件后的膜厚度之间的变化来计算。In this example, using XeF 2 as an etchant, the etching rates for TiN, SiO 2 and SiN were measured at various temperatures and pressures. Test samples were prepared from silicon wafers coated with thin films of TiN, SiO2 and SiN. The etch rate is calculated from the change in film thickness between the initial film thickness and the film thickness after timed exposure to etching or processing conditions.

为了实施蚀刻,将大量XeF2气体从气瓶经由从未用过的远程等离子体发生器导入反应器腔室。该XeF2气体在反应器腔室中的压力通过一经达到期望压力就关闭来自所述气瓶的气流而保持恒定。To perform the etching, large volumes of XeF gas were introduced from gas cylinders into the reactor chamber via a never-used remote plasma generator. The pressure of the XeF2 gas in the reactor chamber was kept constant by shutting off the gas flow from the cylinder once the desired pressure was reached.

将试验试样置于用来维持不同基材温度的基座加热器(pedestalheater)的表面上。结果示于以下表I。The test specimens were placed on the surface of a pedestal heater used to maintain different substrate temperatures. The results are shown in Table I below.

表ITable I

使用XeF2对于各种材料的蚀刻速率Etching rates for various materials using XeF2

  材料 Material   温度(℃) Temperature (°C)   压力(托) Pressure (Torr)   蚀刻速率(nm/min) Etching rate (nm/min)   TiN TiN   25 25   1 1   0 0   TiN TiN   100 100   1 1   0 0   TiN TiN   150 150   1 1   8 8   TiN TiN   200 200   1 1   13 13   TiN TiN   300 300   0.5 0.5   20 20   SiO2 SiO 2   300 300   0.5 0.5   0 0   SiN SiN   100 100   1 1   0 0   SiN SiN   150 150   1 1   0 0   SiN SiN   300 300   1 1   0 0

以上结果表明在0.5至1托的压力下,XeF2有效于在150至300℃的升高温度下蚀刻TiN膜,而在25℃的室温下无效。令人意外的是,XeF2在所采用的温度和压力的任一下并不蚀刻SiO2或SiN表面,却在这些温度下蚀刻TiN膜。因为XeF2在这些升高的温度下不能蚀刻SiO2和SiN表面,却蚀刻TiN膜,故断定XeF2可被用作从SiO2和SiN表面选择性蚀刻TiN膜和颗粒的试剂。The above results indicate that under the pressure of 0.5 to 1 Torr, XeF2 is effective in etching TiN films at elevated temperatures from 150 to 300 °C, but ineffective at room temperature of 25 °C. Surprisingly, XeF2 did not etch SiO2 or SiN surfaces at either of the temperatures and pressures employed, but did etch TiN films at these temperatures. Since XeF 2 could not etch SiO 2 and SiN surfaces, but did etch TiN films at these elevated temperatures, it was concluded that XeF 2 could be used as a reagent to selectively etch TiN films and particles from SiO 2 and SiN surfaces.

实施例2Example 2

硅相对于SiO2的选择性蚀刻Selective etching of silicon relative to SiO2

在该实施例中,将MKS Astron远程等离子体发生器安装在反应器腔室的顶部。该Astron发生器的出口和样品试样间的距离约为六英寸。打开远程等离子体发生器,但关闭反应器腔室中的基座加热器。将该腔室保持于室温。对使用远程等离子体情况下Si和SiO2基材两者的蚀刻速率进行测量。In this example, a MKS Astron remote plasma generator was mounted on top of the reactor chamber. The distance between the outlet of the Astron generator and the sample specimen was approximately six inches. Turn on the remote plasma generator, but turn off the pedestal heater in the reactor chamber. The chamber was kept at room temperature. Etch rates were measured for both Si and SiO2 substrates using remote plasma.

针对所述远程等离子体的过程气体是NF3,并且其和各种量的第二气体物流进行混合。所述第二气体物流包括Xe、氩(Ar)或它们的组合。将流至反应器腔室的总气体流率固定于400sccm,且将NF3流率固定于80sccm。一边将第二气体物流的总流率保持于320sccm,一边将Xe流率相对于第二气体物流总流率的比率(Xe/(Ar+Xe))在0(仅Ar作为所述另外的过程气体)和1(仅Xe作为所述另外的过程气体)之间进行变化。将Si基材蚀刻的结果示于表1,并将SiO2基材蚀刻的结果示于表2。The process gas for the remote plasma was NF3 and it was mixed with various amounts of the second gas stream. The second gas stream includes Xe, argon (Ar), or combinations thereof. The total gas flow rate to the reactor chamber was fixed at 400 seem and the NF 3 flow rate was fixed at 80 seem. While maintaining the total flow rate of the second gas stream at 320 sccm, the ratio of the Xe flow rate to the total flow rate of the second gas stream (Xe/(Ar+Xe)) was at 0 (Ar only as the additional process gas) and 1 (only Xe as the additional process gas). The results of Si substrate etching are shown in Table 1, and the results of SiO 2 substrate etching are shown in Table 2.

如图1所示,Xe添加至所述过程气体NF3中,提高了Si蚀刻速率。令人意外的是,Xe与NF3一起添加至远程等离子体发生器会产生提高Si蚀刻的等离子体。As shown in Figure 1, Xe added to the process gas NF 3 increases the Si etch rate. Surprisingly, adding Xe to the remote plasma generator together with NF 3 produces a plasma that enhances Si etching.

图2显示Xe添加至NF3/氩等离子体抑制了SiO2基材蚀刻速率,这是令人意外的。存在于远程等离子体中的F原子通常进攻以SiO2为基础的基材。Figure 2 shows that the addition of Xe to the NF3 /Argon plasma suppresses the SiO2 substrate etch rate, which is surprising. F atoms present in remote plasmas usually attack SiO2 -based substrates.

连同图1的分析,推测Xe添加至等离子体导致了Si基材蚀刻的提高,但却如实施例1所指出,减少或抑制了SiO2基材蚀刻。Along with the analysis of FIG. 1 , it is speculated that the addition of Xe to the plasma resulted in enhanced etching of Si substrates but, as noted in Example 1, reduced or inhibited etching of SiO substrates.

图3被提供来比较添加Xe至NF3过程气体对于Si相对于SiO2的蚀刻选择性的影响。如通过比较图1和2中的结果可见,图3显示Si相对于SiO2的蚀刻选择性随着Xe在过程气体中的量的增加而增大。特别地,该选择性随着Xe在所述气体物流中从0%增加至100%,而从30增大至250(>8倍)。Figure 3 is provided to compare the effect of adding Xe to the NF3 process gas on the etch selectivity of Si versus Si02 . As can be seen by comparing the results in Figures 1 and 2, Figure 3 shows that the etch selectivity of Si relative to SiO increases with increasing amount of Xe in the process gas. In particular, the selectivity increases from 30 to 250 (>8-fold) as Xe increases from 0% to 100% in the gas stream.

MEMS中的曲型牺牲材料是:硅、钼、钨、钛、锆、铪、钒、钽、铌。曲型的保护材料是镍、铝、光致抗蚀剂、氧化硅、氮化硅。The curved sacrificial materials in MEMS are: silicon, molybdenum, tungsten, titanium, zirconium, hafnium, vanadium, tantalum, niobium. The protective material of curved type is nickel, aluminum, photoresist, silicon oxide, silicon nitride.

实施例3Example 3

钼(Mo)相对于SiO2的选择性蚀刻Selective etching of molybdenum (Mo) relative to SiO2

使用长2.5m直径25cm的大圆柱形SS蚀刻腔室来测定MEMS应用中的另一普通牺牲材料:钼(Mo)的蚀刻速率。使用水冷MKS Astron AX76706slpm单元(unit)产生远程等离子体。将该等离子体源通过10cm长的内径4cm的输送管与所述腔室连接。将样品置于距该管的加载/卸载端2英尺处。A large cylindrical SS etch chamber 2.5 m long and 25 cm in diameter was used to determine the etch rate of another common sacrificial material in MEMS applications: molybdenum (Mo). A remote plasma was generated using a water-cooled MKS Astron AX76706 slpm unit. The plasma source was connected to the chamber by a 10 cm long delivery tube with an internal diameter of 4 cm. The sample was placed 2 feet from the load/unload end of the tube.

在2.75托、NF3流量275sccm和Xe或Ar流量600sccm下,Mo的蚀刻速率=1.1微米/分钟。SiO2的蚀刻速率对于NF3/Ar气体混合物为82nm/min,而对于NF3/Xe混合物为26nm/min。因此,Xe/NF3混合物的选择性是Ar/NF3混合物的选择性的至少3倍。请注意Mo蚀刻速率被表面氧化物所限制。在采用表面准备处理以破坏其固有的氧化物的情况下,Mo的蚀刻速率能够提高至>2.7微米/分钟。Mo etch rate = 1.1 microns/min at 2.75 Torr, NF 3 flow 275 sccm and Xe or Ar flow 600 sccm. The etch rate of SiO 2 was 82 nm/min for the NF 3 /Ar gas mixture and 26 nm/min for the NF 3 /Xe mixture. Therefore, the selectivity of the Xe/NF 3 mixture is at least 3 times that of the Ar/NF 3 mixture. Note that the Mo etch rate is limited by the surface oxide. The etch rate of Mo can be increased to >2.7 microns/minute with surface preparation treatments to destroy its native oxide.

实施例4Example 4

经由Xe和NF3的反应原位形成XeF2 In situ formation of XeF 2 via the reaction of Xe and NF 3

该实施例中沿行了实施例2的步骤。将备有6slpm MKS Astron eX远程等离子体发生器的Applied Materials P5000 DxZ2 PECVD腔室用于傅里叶变换红外光谱(FTIR)研究。在环境压力下在该腔室泵的下游进行了FTIR测量。使用了150℃的路径长度5.6m的室。仪器分辨率为2em-1In this embodiment, the steps of Embodiment 2 are followed. An Applied Materials P5000 DxZ2 PECVD chamber equipped with a 6 slpm MKS Astron eX remote plasma generator was used for Fourier transform infrared spectroscopy (FTIR) studies. FTIR measurements were performed downstream of the chamber pump at ambient pressure. A chamber with a path length of 5.6 m at 150°C was used. The instrument resolution is 2em -1 .

图4显示在与实施例2中相同的条件下收集到的FTIR光谱:4托的压力,400sccm的总气体流量,80sccm的NF3流量,320sccm的Xe和Ar的总流量。在Xe/NF3光谱中的500-600cm-1范围内观察到清楚显著的峰,而Ar/NF3光谱却在该区域未显示峰。551.5cm-1和570.3cm-1处的两个主锋被鉴定为XeF2峰。来自XeF3厂商的对照光谱在位于550.8和566.4cm-1处显示峰。Figure 4 shows the FTIR spectrum collected under the same conditions as in Example 2: a pressure of 4 Torr, a total gas flow of 400 sccm, a NF flow of 80 sccm, a total flow of Xe and Ar of 320 sccm. A clear and prominent peak was observed in the range of 500-600 cm -1 in the Xe/NF 3 spectrum, while the Ar/NF 3 spectrum showed no peak in this region. Two main fronts at 551.5cm -1 and 570.3cm -1 were identified as XeF 2 peaks. The control spectrum from the XeF 3 manufacturer shows peaks at 550.8 and 566.4 cm −1 .

图5显示,存在Xe和NF3的情况下,在551、570和590cm-1处观察到了3个明显的峰。XeF2通过在551、567cm-1处的峰而被鉴定,而XeF4在580、590cm-1处被检出。因而567cm-1处的峰是567和580cm-1峰的组合。所以XeF2和XeF4两者均形成于Xe/NF3混合物中。从FTIR光谱中没有发现XeF6或XeOF4形成的证据。Figure 5 shows that three distinct peaks were observed at 551, 570 and 590 cm in the presence of Xe and NF 3 . XeF 2 was identified by peaks at 551, 567 cm −1 , while XeF 4 was detected at 580, 590 cm −1 . Thus the peak at 567 cm -1 is a combination of the 567 and 580 cm -1 peaks. So both XeF 2 and XeF 4 are formed in the Xe/NF 3 mixture. No evidence of XeF 6 or XeOF 4 formation was found from the FTIR spectra.

表II显示压力从0.5至5托进行变化,Xe流速在200-1000sccm进行变化,且NF3流速从50至500sccm进行变化的几个条件。在所有情形中,均检出XeF2峰。此处记录了峰值。Table II shows several conditions where the pressure was varied from 0.5 to 5 Torr, the Xe flow rate was varied from 200-1000 sccm, and the NF 3 flow rate was varied from 50 to 500 sccm. In all cases, a XeF 2 peak was detected. Peaks are recorded here.

表IITable II

  压力(托) Pressure (Torr)   0.5 0.5   4 4   5 5   2.75 2.75   5 5   2 2   NF3(sccm)NF 3 (sccm)   50 50   80 80   200 200   275 275   50 50   500 500   Xe(sccm) Xe(sccm)   200 200   320 320   500 500   600 600   1000 1000   1000 1000   峰值(530.1cm-1)Peak (530.1cm -1 )   0.06 0.06   0.07 0.07   0.16 0.16   0.22 0.22   0.09 0.09   0.33 0.33   峰值(570.3cm-1)Peak (570.3cm -1 )   1.01 1.01   1.18 1.18   1.35 1.35   1.35 1.35   1.36 1.36   1.42 1.42   峰值(590cm-1)Peak (590cm -1 )   0.43 0.43   0.43 0.43   1.63 1.63   1.42 1.42   0.18 0.18   1.58 1.58   峰值(603.1cm-1)Peak (603.1cm -1 )   0.07 0.07   0.07 0.07   0.44 0.44   0.27 0.27   0.04 0.04   0.31 0.31

所述峰在一些条件下容易饱和,因此还分析了520.1cm-1处的XeF2峰的前沿和603.1cm-1处的XeF4峰的后沿。XeF2/XeF4比被定义为530cm-1和603cm-1处的峰高值的比。The peaks tend to saturate under some conditions, so the leading edge of the XeF 2 peak at 520.1 cm −1 and the trailing edge of the XeF 4 peak at 603.1 cm −1 were also analyzed. The XeF 2 /XeF 4 ratio is defined as the ratio of the peak height values at 530 cm −1 and 603 cm −1 .

使用响应表面回归的实验结果总结在以下表III中。The experimental results using response surface regression are summarized in Table III below.

表IIITable III

峰高Peak height 530.1530.1 551.5551.5 592592 603.1603.1   比率603.1/530.1 Ratio 603.1/530.1   意义 meaning   前沿XeF2信号Frontier XeF 2 signal   XeF2最大值XeF 2 max   XeF4最大值XeF 4 max   后沿XeF4信号trailing edge XeF 4 signal   XeF2/XeF4 XeF 2 /XeF 4 XeXe weak middle weak weak   强增(strong up) Enhanced (strong up) NF3 NF 3 powerful powerful powerful powerful   强降(strong down) strong down PP weak middle powerful powerful   强降(strong down) strong down

请注意:在此处所有条件下Xe的流量>NF3的流量,故NF3是更强的因子。更高的NF3流量增大XeF2和XeF4峰两者,且Xe对于所述峰有弱影响(由于存在过量Xe)。压力对XeF2峰有弱影响,而对XeF4峰有强影响。Astron工作压力典型为1-10托。Please note: the flux of Xe > the flux of NF 3 in all conditions here, so NF 3 is the stronger factor. Higher NF 3 flux increases both the XeF 2 and XeF 4 peaks, with Xe having a weak effect on the peaks (due to the presence of excess Xe). Pressure has a weak effect on the XeF 2 peak and a strong effect on the XeF 4 peak. Astron working pressures are typically 1-10 Torr.

因此,压力是控制XeF4形成的关键参数。XeF4可以水解制造XeO3,其是爆炸性和对冲击敏感的化合物。在当前试验条件下,XeF2/XeF4比可以在高Xe、低NF3和低压力条件下最大化。例如,Xe的流速为1000sccm,NF3的流速为50sccm,压力为0.5托。Therefore, pressure is a key parameter controlling the formation of XeF4 . XeF 4 can be hydrolyzed to produce XeO 3 , which is an explosive and shock-sensitive compound. Under the current experimental conditions, the XeF 2 /XeF 4 ratio can be maximized under high Xe, low NF 3 and low pressure conditions. For example, the flow rate of Xe is 1000 sccm, the flow rate of NF 3 is 50 sccm, and the pressure is 0.5 Torr.

图6显示作为Xe/(Xe+Ar)的函数的XeF2FTIR峰高和XeF4FTIR峰高。峰高的单位是任意的。随着Xe流量份数增加,制造的XeF2增加而XeF4份数降低。期望高Xe流量以相对于XeF4最大化XeF2的形成。图7显示作为Xe/NF3流速比率的函数的XeF2/XeF4FTIR峰高的比率。清楚地,期望Xe/NF3的高比率以相对于XeF4最大化XeF2的形成。Figure 6 shows the XeF 2 FTIR peak height and the XeF 4 FTIR peak height as a function of Xe/(Xe+Ar). The unit of peak height is arbitrary. As the fraction of Xe flow increases, the fraction of XeF 2 produced increases and the fraction of XeF 4 decreases. A high Xe flux is desired to maximize the formation of XeF2 relative to XeF4 . Figure 7 shows the ratio of XeF2 / XeF4 FTIR peak heights as a function of the Xe/ NF3 flow rate ratio. Clearly, a high ratio of Xe/NF 3 is desired to maximize the formation of XeF 2 relative to XeF 4 .

图8显示作为Xe/(Xe+Ar)的函数的XeF2FTIR峰高(右Y-轴)和Si/SiO2的蚀刻选择性(左Y-轴)。Si/SiO2的蚀刻选择性清楚地与XeF2的原位形成相关。Figure 8 shows the XeF2 FTIR peak height (right Y-axis) and the etch selectivity of Si/ SiO2 (left Y-axis) as a function of Xe/(Xe+Ar). The etch selectivity of Si/ SiO2 is clearly related to the in situ formation of XeF2 .

使用等离子体激发来制造XeF2也可以用于生产XeF2,用于在与其制造地点不直接相关的工艺中用作蚀刻剂。数据显示存在下述条件,其明显有助于XeF2的生产并最小化XeF4的生产。由于XeF4若在之后反应形成XeO3的爆炸性,故非常期望最小化XeF4生产。由于XeF2形成在等离子体发生器之后的反应区段中,故其可通过使用深冷捕集(cryogenictrapping)以将材料冷凝在冷表面上而从所述区段除去。然后可从加工腔室将固体XeF2提出,并再装填至传送气瓶中用于蚀刻工艺中。由于导入了过量的氙来减少XeF4形成,因而非常有帮助的是利用氙回收或将氙再循环至工艺中以确保所需用于XeF2生产的全部氙的有生产价值的使用。The use of plasma excitation to make XeF2 can also be used to produce XeF2 for use as an etchant in processes not directly related to where it is made. The data show that conditions exist that significantly favor the production of XeF 2 and minimize the production of XeF 4 . Due to the explosive nature of XeF 4 if it subsequently reacts to form XeO 3 , it is highly desirable to minimize XeF 4 production. Since XeF2 is formed in the reaction zone after the plasma generator, it can be removed from that zone by using cryogenic trapping to condense the material on cold surfaces. The solid XeF2 can then be extracted from the process chamber and refilled into transfer cylinders for use in the etch process. Since excess xenon is introduced to reduce XeF4 formation, it is very helpful to utilize xenon recovery or recycle xenon into the process to ensure productive use of all xenon required for XeF2 production.

实施例5Example 5

远程等离子体和温度对TiN和SiO2的蚀刻速率的影响Effects of Remote Plasma and Temperature on Etching Rates of TiN and SiO2

在该实施例中,除了将远程等离子体发生器和基座加热器均打开以允许在各种基材温度下使用远程等离子体来测定TiN和SiO2两者的蚀刻速率之外,沿行了实施例2的步骤。In this example, except that both the remote plasma generator and susceptor heater were turned on to allow the remote plasma to be used at various substrate temperatures to determine etch rates for both TiN and SiO2 , along the lines of The steps of embodiment 2.

在第一组实验中,TiN和SiO2的蚀刻速率使用NF3和Xe的混合物作为过程气体来进行测量。Xe的流速固定于320sccm。温度在100℃至150℃之间变化。这些实验的结果分别作为对于TiN和SiO2的方形点示于图9和10中。In the first set of experiments, the etch rates of TiN and SiO2 were measured using a mixture of NF3 and Xe as the process gas. The flow rate of Xe was fixed at 320 sccm. The temperature varies between 100°C and 150°C. The results of these experiments are shown in Figs 9 and 10 as square dots for TiN and SiO2 , respectively.

在第二组实验中,TiN和SiO2的蚀刻速率使用NF3和氩(Ar)的混合物作为过程气体来进行测量。Ar的流速固定于320sccm。温度在100℃至150℃之间变化。这些实验的结果分别作为对于TiN和SiO2的菱形点示于图4和5中。In a second set of experiments, the etch rates of TiN and SiO2 were measured using a mixture of NF3 and argon (Ar) as the process gas. The flow rate of Ar was fixed at 320 sccm. The temperature varies between 100°C and 150°C. The results of these experiments are shown in Figs 4 and 5 as diamond points for TiN and SiO2 , respectively.

如图9所示,Xe添加至过程气体在一般高于130℃的温度提高了TiN蚀刻速率。图10显示相比于Ar添加至NF3,Xe添加至NF3在所有研究温度下抑制了SiO2蚀刻速率。Xe添加至过程气体对蚀刻选择性的影响通过比较图9和10中的结果可见。As shown in Figure 9, the addition of Xe to the process gas increases the TiN etch rate at temperatures generally above 130°C. Figure 10 shows that addition of Xe to NF 3 suppresses the SiO 2 etch rate at all temperatures studied compared to Ar addition to NF 3 . The effect of Xe addition to the process gas on etch selectivity can be seen by comparing the results in FIGS. 9 and 10 .

图11显示TiN相对于SiO2的蚀刻选择性,且该图表显示在Xe相对于Ar添加至NF3过程气体时,TiN选择性在温度高于约110℃时开始增大,且在高于120℃时快速增大。Figure 11 shows the etch selectivity of TiN versus SiO2 , and the graph shows that when Xe versus Ar is added to the NF3 process gas, the TiN selectivity begins to increase at temperatures above about 110°C and rises above 120°C. increase rapidly at °C.

总之,实施例1显示,当该蚀刻在升高的温度下进行时,XeF2是相对于二氧化硅和氮化硅基材的对于TiN膜的选择性蚀刻剂。In summary, Example 1 shows that XeF2 is a selective etchant for TiN films relative to silicon dioxide and silicon nitride substrates when the etching is performed at elevated temperatures.

实施例2和3显示将Xe添加至远程等离子体发生器中(或反应器或腔室)的NF3过程气体,与仅将NF3用作过程气体时的蚀刻选择性比较,可以增大Si或Mo相对于SiO2的蚀刻选择性。Examples 2 and 3 show that adding Xe to the NF3 process gas in the remote plasma generator (or reactor or chamber) can increase the Si or the etch selectivity of Mo over SiO2 .

实施例4显示将氙和含氟气体比如NF3导入至等离子体发生器(或反应器或腔室)时,观测到XeF2的原位形成。组合氙与含氟气体比如NF3而不将XeF2直接用于清洁工艺具有经济优势(即,更低的物主的成本)。源自使用该公开的形成XeF2的工艺的进一步的好处在于,除了XeF2之外它们还提供一些游离氟自由基,所述游离氟自由基有助于促进去除当仅与XeF2接触时可能不是反应性的残渣。Example 4 shows that when xenon and a fluorine-containing gas such as NF 3 are introduced into the plasma generator (or reactor or chamber), the in situ formation of XeF 2 is observed. Combining xenon with a fluorine-containing gas such as NF 3 without using XeF 2 directly in the cleaning process has economic advantages (ie, lower cost of ownership). A further benefit derived from using this disclosed process for forming XeF is that they provide , in addition to XeF , some free fluorine radicals that help facilitate the removal of Not a reactive residue.

实施例5显示,与仅NF3用作过程气体时的蚀刻选择性相比,Xe添加至远程等离子体中的NF3过程气体可以在高(升高的)温度下增大TiN相对于SiO2的蚀刻选择性。增大的TiN相对于SiO2的选择性在石英管炉应用中重要,并对涂覆有其上具有TiN沉积的SiO2的部件和半导体工具重要。该方法可以通过将远程下游等离子体单元连接至工艺反应器上并通入过程气体,而促进沉积循环间的沉积反应器的清洁。组合氙与含氟气体比如NF3而不将XeF2用于该清洁工艺具有经济优势(即,更低的物主的成本)。 Example 5 shows that the addition of Xe to the NF3 process gas in the remote plasma can increase the etch selectivity of TiN relative to SiO2 at high (elevated) temperatures compared to the etch selectivity when only NF3 is used as the process gas etch selectivity. The increased selectivity of TiN over SiO2 is important in quartz tube furnace applications and is important for components and semiconductor tools coated with SiO2 with TiN deposited thereon. The method can facilitate cleaning of the deposition reactor between deposition cycles by connecting a remote downstream plasma unit to the process reactor and feeding process gases. Combining xenon with a fluorine-containing gas such as NF 3 without using XeF 2 for the cleaning process has economic advantages (ie, lower cost of ownership).

记载于实施例中的清洁工艺也可用在离线工艺反应器中,其唯一目的是在它们重新使用之前清洁工艺反应器部件。此处,会将远程下游等离子体反应器连接到离线工艺反应器上,在所述离线工艺反应器中放置有部件(来自沉积反应器的元件)处。随后,会在过程气体进气至含有待清洁部件的腔室之前,将氙和含氟气体比如NF3导入该远程下游单元。The cleaning process described in the examples can also be used in off-line process reactors for the sole purpose of cleaning process reactor components before they are reused. Here, a remote downstream plasma reactor would be connected to an off-line process reactor where the components (elements from the deposition reactor) are placed. Xenon and a fluorine-containing gas such as NF3 are then introduced into this remote downstream unit before the process gas is fed into the chamber containing the parts to be cleaned.

增大的Si、Mo或TiN相对于SiO2的选择性,以及公开的形成XeF2的工艺在许多应用中重要:比如清洁涂覆有其上具有不需要的Si、Mo或TiN淀积的SiO2的部件和半导体工具;MEMS中牺牲层的蚀刻;以及微电子器件制造中使用的离子注入系统的离子源区域中的残渣清洁。The increased selectivity of Si, Mo or TiN over SiO , and the disclosed process of forming XeF are important in many applications: such as cleaning coated SiO with unwanted Si, Mo or TiN deposition thereon 2 components and semiconductor tools; etching of sacrificial layers in MEMS; and residue cleaning in the ion source region of ion implantation systems used in microelectronic device fabrication.

所述应用可以扩展至从Si3N4、Al、Al2O3、Au、Ga、Ni、Pt、Cu、Cr、TiNi合金、SiC、光致抗蚀剂、磷硅酸盐玻璃、硼磷硅酸盐玻璃、聚酰亚胺、金、铜、铂、铬、氧化铝、碳化硅和它们的组合,清洁其它不需要的材料比如:钨、钛、锆、铪、钒、钽、铌、硼、磷、锗、砷和混合物。The application can be extended from Si 3 N 4 , Al, Al 2 O 3 , Au, Ga, Ni, Pt, Cu, Cr, TiNi alloy, SiC, photoresist, phosphosilicate glass, borophosphorous Silicate glass, polyimide, gold, copper, platinum, chromium, aluminum oxide, silicon carbide and their combinations, cleaning other unwanted materials such as: tungsten, titanium, zirconium, hafnium, vanadium, tantalum, niobium, Boron, phosphorus, germanium, arsenic and mixtures.

Claims (18)

1.用于相对于第二材料选择性蚀刻第一材料的工艺,包括:1. A process for selectively etching a first material relative to a second material, comprising: 在腔室中提供含有第一材料和第二材料的结构;providing a structure comprising a first material and a second material in the chamber; 向所述腔室提供包含氙(Xe)、惰性气体和含氟化学品的蚀刻剂气体;providing an etchant gas comprising xenon (Xe), an inert gas, and a fluorine-containing chemical to the chamber; 将所述结构与所述蚀刻剂气体接触并将所述第一材料选择性地转化为挥发性物种;和contacting the structure with the etchant gas and selectively converting the first material to a volatile species; and 从所述腔室除去所述挥发性物种;removing the volatile species from the chamber; 其中,所述第一材料选自硅、钼、钨、钛、锆、铪、钒、钽、铌、硼、磷、锗、砷和它们的混合物;且所述第二材料选自二氧化硅、氮化硅、镍、铝、TiNi合金、光致抗蚀剂、磷硅酸盐玻璃、硼磷硅酸盐玻璃、聚酰亚胺、金、铜、铂、铬、氧化铝、碳化硅和它们的混合物。Wherein, the first material is selected from silicon, molybdenum, tungsten, titanium, zirconium, hafnium, vanadium, tantalum, niobium, boron, phosphorus, germanium, arsenic and mixtures thereof; and the second material is selected from silicon dioxide , silicon nitride, nickel, aluminum, TiNi alloy, photoresist, phosphosilicate glass, borophosphosilicate glass, polyimide, gold, copper, platinum, chromium, alumina, silicon carbide and their mixture. 2.权利要求1的工艺,其中,所述含氟化学品选自F2、NF3、C2F6、CF4、C3F8、SF6、从上游等离子体发生器产生的含F原子的等离子体和它们的混合物。2. The process of claim 1, wherein the fluorine containing chemical is selected from the group consisting of F2 , NF3 , C2F6 , CF4 , C3F8 , SF6 , F containing Atomic plasmas and their mixtures. 3.权利要求1的工艺,其中,所述含氟化学品是从上游等离子体发生器产生的含F原子的等离子体。3. The process of claim 1, wherein the fluorine-containing chemical is an F atom-containing plasma generated from an upstream plasma generator. 4.权利要求1的工艺,其中所述惰性气体选自Xe、Ar、He和它们的混合物。4. The process of claim 1, wherein the inert gas is selected from the group consisting of Xe, Ar, He and mixtures thereof. 5.权利要求1的工艺,其中,所述腔室含有远程等离子体发生器。5. The process of claim 1, wherein the chamber contains a remote plasma generator. 6.权利要求1的工艺,其中,所述腔室中的温度为环境温度至500℃。6. The process of claim 1, wherein the temperature in the chamber is from ambient to 500°C. 7.权利要求1的工艺,其中,所述腔室中的压力为0.1至10托。7. The process of claim 1, wherein the pressure in the chamber is from 0.1 to 10 Torr. 8.权利要求1的工艺,其中Xe相对于含氟化学品的摩尔比为1∶10至10∶1。8. The process of claim 1, wherein the molar ratio of Xe to fluorochemical is from 1:10 to 10:1. 9.权利要求1的工艺,其中,所述结构是半导体器件或半导体加工腔室。9. The process of claim 1, wherein the structure is a semiconductor device or a semiconductor processing chamber. 10.权利要求1的工艺,其中,所述结构是微电动机械器件。10. The process of claim 1, wherein the structure is a microelectromechanical device. 11.权利要求1的工艺,其中,所述结构是离子注入系统中的离子注入机工具。11. The process of claim 1, wherein the structure is an ion implanter tool in an ion implantation system. 12.用于相对于二氧化硅、氮化硅或二氧化硅与氮化硅选择性蚀刻硅、钼或硅与钼的工艺,包含:12. A process for selectively etching silicon, molybdenum or silicon and molybdenum relative to silicon dioxide, silicon nitride or silicon dioxide and silicon nitride, comprising: 在腔室中提供含有硅、钼或硅与钼,以及二氧化硅、氮化硅或二氧化硅与氮化硅的结构;providing a structure containing silicon, molybdenum, or silicon and molybdenum, and silicon dioxide, silicon nitride, or silicon dioxide and silicon nitride in the chamber; 向所述腔室提供包含氙(Xe)、惰性气体和含氟化学品的蚀刻剂气体;providing an etchant gas comprising xenon (Xe), an inert gas, and a fluorine-containing chemical to the chamber; 将所述结构与所述蚀刻剂气体接触并将所述硅、钼或硅与钼选择性地转化为挥发性物种;和contacting the structure with the etchant gas and selectively converting the silicon, molybdenum, or silicon and molybdenum into volatile species; and 从所述腔室除去所述挥发性物种。The volatile species are removed from the chamber. 13.权利要求12的工艺,其中,所述含氟化学品选自F2、NF3、C2F6、CF4、C3F8、SF6、从上游等离子发生器产生的含F原子的等离子体和它们的混合物。13. The process of claim 12, wherein the fluorine-containing chemical is selected from the group consisting of F2, NF3, C2F6, CF4, C3F8 , SF6 , F - containing atoms generated from an upstream plasma generator plasmas and their mixtures. 14.权利要求12的工艺,其中,所述含氟化学品是从上游等离子发生器产生的含F原子的等离子体。14. The process of claim 12, wherein the fluorine-containing chemical is an F atom-containing plasma generated from an upstream plasma generator. 15.权利要求12的工艺,其中所述惰性气体选自Xe、Ar、He和它们的混合物。15. The process of claim 12, wherein the inert gas is selected from the group consisting of Xe, Ar, He and mixtures thereof. 16.权利要求12的工艺,其中,所述腔室含有远程等离子体发生器。16. The process of claim 12, wherein the chamber contains a remote plasma generator. 17.权利要求12的工艺,其中,所述结构是半导体器件或半导体加工腔室。17. The process of claim 12, wherein the structure is a semiconductor device or a semiconductor processing chamber. 18.权利要求12的工艺,其中,所述结构是离子注入系统中的离子注入机工具。18. The process of claim 12, wherein the structure is an ion implanter tool in an ion implantation system.
CN2010101044846A 2009-01-27 2010-01-27 Selective etching and formation of xenon difluoride Active CN101847570B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US12/360588 2009-01-27
US12/360,588 US8278222B2 (en) 2005-11-22 2009-01-27 Selective etching and formation of xenon difluoride

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN2012100285454A Division CN102592994A (en) 2009-01-27 2010-01-27 Selective etching and formation of xenon difluoride

Publications (2)

Publication Number Publication Date
CN101847570A CN101847570A (en) 2010-09-29
CN101847570B true CN101847570B (en) 2012-11-07

Family

ID=42371448

Family Applications (2)

Application Number Title Priority Date Filing Date
CN2012100285454A Pending CN102592994A (en) 2009-01-27 2010-01-27 Selective etching and formation of xenon difluoride
CN2010101044846A Active CN101847570B (en) 2009-01-27 2010-01-27 Selective etching and formation of xenon difluoride

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN2012100285454A Pending CN102592994A (en) 2009-01-27 2010-01-27 Selective etching and formation of xenon difluoride

Country Status (5)

Country Link
JP (1) JP2010177666A (en)
KR (1) KR20100087678A (en)
CN (2) CN102592994A (en)
CA (1) CA2690697A1 (en)
TW (1) TWI475611B (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5627990B2 (en) * 2010-10-25 2014-11-19 Hoya株式会社 Method for producing imprint mold
JP6408396B2 (en) * 2015-02-17 2018-10-17 三井化学株式会社 Pellicle film manufacturing method, pellicle manufacturing method, and photomask manufacturing method
NL2014497B1 (en) * 2015-03-20 2017-01-19 Asm Int Nv Method for cleaning deposition apparatus.
CN105537207B (en) * 2015-12-11 2018-09-25 上海交通大学 A kind of cleaning method of high temperature quartz ampoule
KR102179230B1 (en) * 2016-06-03 2020-11-16 엔테그리스, 아이엔씨. Vapor etching of hafnia and zirconia
JP6957252B2 (en) * 2017-07-20 2021-11-02 岩谷産業株式会社 Cutting method
JP7066263B2 (en) * 2018-01-23 2022-05-13 株式会社ディスコ Machining method, etching equipment, and laser processing equipment
CN110718459A (en) * 2018-07-13 2020-01-21 北京北方华创微电子装备有限公司 Non-plasma etching method and etching equipment
US11087989B1 (en) * 2020-06-18 2021-08-10 Applied Materials, Inc. Cryogenic atomic layer etch with noble gases
KR102731814B1 (en) * 2020-06-25 2024-11-20 주식회사 히타치하이테크 Vacuum treatment method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6018065A (en) * 1997-11-10 2000-01-25 Advanced Technology Materials, Inc. Method of fabricating iridium-based materials and structures on substrates, iridium source reagents therefor
US6355181B1 (en) * 1998-03-20 2002-03-12 Surface Technology Systems Plc Method and apparatus for manufacturing a micromechanical device
US6736987B1 (en) * 2000-07-12 2004-05-18 Techbank Corporation Silicon etching apparatus using XeF2

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5002632A (en) * 1989-11-22 1991-03-26 Texas Instruments Incorporated Method and apparatus for etching semiconductor materials
US5384009A (en) * 1993-06-16 1995-01-24 Applied Materials, Inc. Plasma etching using xenon
US6818566B2 (en) * 2002-10-18 2004-11-16 The Boc Group, Inc. Thermal activation of fluorine for use in a semiconductor chamber
US20070117396A1 (en) * 2005-11-22 2007-05-24 Dingjun Wu Selective etching of titanium nitride with xenon difluoride
TWI473149B (en) * 2006-04-26 2015-02-11 Advanced Tech Materials Cleaning of semiconductor processing systems

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6018065A (en) * 1997-11-10 2000-01-25 Advanced Technology Materials, Inc. Method of fabricating iridium-based materials and structures on substrates, iridium source reagents therefor
US6355181B1 (en) * 1998-03-20 2002-03-12 Surface Technology Systems Plc Method and apparatus for manufacturing a micromechanical device
US6736987B1 (en) * 2000-07-12 2004-05-18 Techbank Corporation Silicon etching apparatus using XeF2

Also Published As

Publication number Publication date
TW201029065A (en) 2010-08-01
JP2010177666A (en) 2010-08-12
CA2690697A1 (en) 2010-07-27
TWI475611B (en) 2015-03-01
KR20100087678A (en) 2010-08-05
CN102592994A (en) 2012-07-18
CN101847570A (en) 2010-09-29

Similar Documents

Publication Publication Date Title
CN101847570B (en) Selective etching and formation of xenon difluoride
US8278222B2 (en) Selective etching and formation of xenon difluoride
US20070117396A1 (en) Selective etching of titanium nitride with xenon difluoride
JP7470834B2 (en) Iodine-containing compounds for etching semiconductor structures
TWI781210B (en) Chemistries for etching multi-stacked layers
KR100644176B1 (en) Method for cleaning deposition chambers for high dielectric constant materials
KR100656770B1 (en) Method for etching high dielectric constant materials and for cleaning deposition chambers for high dielectric constant materials
KR100667723B1 (en) Etching method of high dielectric constant material and cleaning method of deposition chamber for high dielectric constant material
DE69320963T2 (en) PLASMA CLEANING METHOD FOR REMOVING RESIDUES IN A PLASMA TREATMENT CHAMBER
CN112981369B (en) Chamber Cleaning and Semiconductor Etching Gases
US20060017043A1 (en) Method for enhancing fluorine utilization
JP2009050854A (en) Process of removing titanium nitride
WO2016181723A1 (en) Dry etching method, dry etching agent and method for manufacturing semiconductor device
US11814726B2 (en) Dry etching method or dry cleaning method
JP2006324663A (en) Method of cleaning contaminated tool component
JP4320389B2 (en) CVD chamber cleaning method and cleaning gas used therefor

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20170623

Address after: Arizona, USA

Patentee after: Versum Materials US, LLC

Address before: American Pennsylvania

Patentee before: Air Products and Chemicals, Inc.

TR01 Transfer of patent right