CN101845427B - A kind of halophilic cellulase and its coding gene and application - Google Patents
A kind of halophilic cellulase and its coding gene and application Download PDFInfo
- Publication number
- CN101845427B CN101845427B CN2010101000617A CN201010100061A CN101845427B CN 101845427 B CN101845427 B CN 101845427B CN 2010101000617 A CN2010101000617 A CN 2010101000617A CN 201010100061 A CN201010100061 A CN 201010100061A CN 101845427 B CN101845427 B CN 101845427B
- Authority
- CN
- China
- Prior art keywords
- sequence
- protein
- reaction system
- solution
- recombinant
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/52—Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
Landscapes
- Enzymes And Modification Thereof (AREA)
Abstract
Description
技术领域 technical field
本发明涉及一种嗜盐纤维素酶及其编码基因与应用。The invention relates to a halophilic cellulase, its coding gene and application.
背景技术 Background technique
纤维素是通过β-1,4葡萄糖苷键连接葡萄糖苷形成的线形聚合体,是植物细胞壁的主要成分,占植物干重的35%-50%。作为地球上最丰富的可再生资源,通过纤维素酶系将其水解成可利用的葡萄糖具有重要的应用价值。Cellulose is a linear polymer formed by linking glucosides through β-1,4 glucosidic bonds, and is the main component of plant cell walls, accounting for 35%-50% of plant dry weight. As the most abundant renewable resource on earth, its hydrolysis into usable glucose by cellulase system has important application value.
多种微生物都能够产生纤维素酶,如细菌、酵母、真菌、放线菌。微生物产生的纤维素酶系是一个多组分酶系,主要包括内切葡聚糖酶、外切葡聚糖酶和β-葡萄糖苷酶。先由内切葡聚糖酶作用于纤维素分子内部随机水解β-1,4-糖苷键,将长链纤维分子截断,产生大量小分子纤维素。再由外切葡聚糖酶,作用于纤维素线状分子末端,水解β-1,4-糖苷键,每次从纤维素链的非还原端切下一个纤维二糖分子。最后由β-葡萄糖苷酶将纤维二糖分子水解成可利用的葡萄糖。A variety of microorganisms can produce cellulase, such as bacteria, yeast, fungi, and actinomycetes. The cellulase system produced by microorganisms is a multi-component enzyme system, mainly including endoglucanase, exoglucanase and β-glucosidase. First, the endoglucanase acts on the inside of the cellulose molecule to randomly hydrolyze the β-1,4-glucosidic bond, cut off the long-chain fiber molecule, and produce a large amount of small molecule cellulose. Then exoglucanase acts on the end of the cellulose linear molecule to hydrolyze the β-1,4-glycosidic bond, and cut off a cellobiose molecule from the non-reducing end of the cellulose chain each time. Finally, the cellobiose molecule is hydrolyzed to available glucose by β-glucosidase.
微生物产生的纤维素酶在工农业上有着广泛的应用。应用于提取果蔬汁,提高浸出率,缩短浸出时间,提高营养价值,同时还可以降低萃取之后的混合物黏度。在酿造过程中加入纤维素酶可以弥补麦芽汁中酶活力的不足,并且可以减少发酵中的结块现象,提高过滤效率,增加啤酒产量。在动物饲养行业中,纤维素酶的应用可以提高饲料的利用率,平衡饲养动物间的个体差异,提高体重或者出奶率。在纺织业中,应用纤维素酶进行生物打磨可以降低手工打磨的破损率,缩短处理时间,减小工作强度,并有利于工作环境的安全。纤维素酶还可以提高洗涤衣物的效果,降低洗涤成本。Cellulase produced by microorganisms has a wide range of applications in industry and agriculture. It is used to extract fruit and vegetable juices to increase the extraction rate, shorten the extraction time, improve the nutritional value, and reduce the viscosity of the mixture after extraction. Adding cellulase in the brewing process can make up for the lack of enzyme activity in wort, and can reduce agglomeration in fermentation, improve filtration efficiency, and increase beer production. In the animal feeding industry, the application of cellulase can improve the utilization rate of feed, balance the individual differences among animals, and increase the body weight or milk yield. In the textile industry, the application of cellulase for biological grinding can reduce the breakage rate of manual grinding, shorten the processing time, reduce the work intensity, and is conducive to the safety of the working environment. Cellulase can also improve the effect of washing clothes and reduce the cost of washing.
发明内容 Contents of the invention
本发明的一个目的是提供一种嗜盐纤维素酶及其编码基因。One object of the present invention is to provide a halophilic cellulase and its coding gene.
本发明所提供的嗜盐纤维素酶属于糖基水解酶5家族,是如下(a)、(b)或(c)所示的蛋白质:The halophilic cellulase provided by the present invention belongs to the
(a)由序列表中序列1中自N端起第34-569位氨基酸残基所示的氨基酸序列组成的蛋白质;(a) a protein consisting of the amino acid sequence shown in amino acid residues 34-569 from the N-terminus in
(b)由序列表中序列1所示的氨基酸序列组成的蛋白质;(b) a protein consisting of the amino acid sequence shown in
(c)将(a)或(b)所示的氨基酸序列经过一个或几个氨基酸残基的取代和/或缺失和/或添加且具有纤维素酶活性的由(a)或(b)衍生的蛋白质。(c) The amino acid sequence shown in (a) or (b) undergoes substitution and/or deletion and/or addition of one or several amino acid residues and has cellulase activity derived from (a) or (b) of protein.
序列1所示的CelB蛋白由569个氨基酸残基组成。The CelB protein shown in
所述编码基因是如下1)或2)或3)或4)的DNA分子:The coding gene is the following 1) or 2) or 3) or 4) DNA molecule:
1)核苷酸序列是序列表中序列2自5′末端起第100至1710位核苷酸所示的DNA分子;1) The nucleotide sequence is the DNA molecule shown in the 100th to 1710th nucleotides from the 5' end of
2)核苷酸序列是序列表中序列2所示的DNA分子;2) The nucleotide sequence is the DNA molecule shown in
3)在严格条件下与1)或2)限定的DNA序列杂交且编码具有嗜盐纤维素酶活性的蛋白的DNA分子;3) a DNA molecule that hybridizes to the DNA sequence defined in 1) or 2) under stringent conditions and encodes a protein with halophilic cellulase activity;
4)与1)或2)或3)限定的DNA序列具有90%以上同源性,且编码具有嗜盐纤维素酶活性的蛋白的DNA分子。4) A DNA molecule having more than 90% homology with the DNA sequence defined in 1) or 2) or 3) and encoding a protein with halophilic cellulase activity.
序列2所示编码基因由1710个核苷酸组成。The coding gene shown in
上述严格条件可为在6×SSC,0.5%SDS的溶液中,在65℃下杂交,然后用2×SSC,0.1%SDS和1×SSC,0.1%SDS各洗膜一次。The above-mentioned stringent conditions can be hybridization at 65° C. in a solution of 6×SSC, 0.5% SDS, and then wash the membrane once with 2×SSC, 0.1% SDS and 1×SSC, 0.1% SDS respectively.
为了使(a)中的蛋白便于纯化,可在由序列表中序列1所示的氨基酸序列组成的蛋白质的氨基末端或羧基末端连接上如表1所示的标签。In order to make the protein in (a) easy to purify, the amino-terminal or carboxy-terminal of the protein consisting of the amino acid sequence shown in
表1标签的序列Sequence of Table 1 Tags
上述(a)或(b)中的蛋白可人工合成,也可先合成其编码基因,再进行生物表达得到。上述(b)中的蛋白的编码基因可通过将序列表中序列2自5′端第1至1710位核苷酸所示的DNA序列中缺失一个或几个氨基酸残基的密码子,和/或进行一个或几个碱基对的错义突变,和/或在其5′端和/或3′端连上表1所示的标签的编码序列得到。The protein in (a) or (b) above can be synthesized artificially, or its coding gene can be synthesized first, and then biologically expressed. The gene encoding the protein in the above (b) can be deleted by deleting one or several amino acid residue codons in the DNA sequence shown in the
含有上述任一所述编码基因的重组载体、表达盒、转基因细胞系或重组菌也属于本发明的保护范围。Recombinant vectors, expression cassettes, transgenic cell lines or recombinant bacteria containing any of the above-mentioned coding genes also belong to the protection scope of the present invention.
所述重组载体为将上述任一所述编码基因插入出发载体pET28a的多克隆位点得到的重组表达载体;所述重组菌是将上述任一所述编码基因插入出发载体pET28a的多克隆位点得到的重组表达载体转化大肠杆菌Rosetta(DE3)得到的。The recombinant vector is a recombinant expression vector obtained by inserting any of the above-mentioned coding genes into the multiple cloning site of the departure vector pET28a; The obtained recombinant expression vector was obtained by transforming Escherichia coli Rosetta (DE3).
可用现有的表达载体构建含有所述基因的重组表达载体。使用所述基因构建重组表达载体时,在其转录起始核苷酸前可加上任何一种增强型启动子或组成型启动子,它们可单独使用或与其它的启动子结合使用;此外,使用本发明的基因构建重组表达载体时,还可使用增强子,包括翻译增强子或转录增强子,这些增强子区域可以是ATG起始密码子或邻接区域起始密码子等,但必需与编码序列的阅读框相同,以保证整个序列的正确翻译。所述翻译控制信号和起始密码子的来源是广泛的,可以是天然的,也可以是合成的。翻译起始区域可以来自转录起始区域或结构基因。An existing expression vector can be used to construct a recombinant expression vector containing the gene. When using the gene to construct a recombinant expression vector, any enhanced promoter or constitutive promoter can be added before its transcription initiation nucleotide, and they can be used alone or in combination with other promoters; in addition, When using the gene of the present invention to construct a recombinant expression vector, enhancers can also be used, including translation enhancers or transcription enhancers, and these enhancer regions can be ATG start codons or adjacent region start codons, etc., but must be consistent with the coding The reading frames of the sequences are identical to ensure correct translation of the entire sequence. The sources of the translation control signals and initiation codons are extensive and can be natural or synthetic. The translation initiation region can be from a transcription initiation region or a structural gene.
本发明的另一个目的是提供一种制备嗜盐纤维素酶的方法。Another object of the present invention is to provide a method for preparing halophilic cellulase.
本发明所提供的制备嗜盐纤维素酶的方法,是培养上述任一所述的重组菌,得到所述蛋白质。The method for preparing halophilic cellulase provided by the present invention is to cultivate any of the above-mentioned recombinant bacteria to obtain the protein.
本发明所提供的制备嗜盐纤维素酶的方法,具体可为:将所述重组菌37℃培养3h,OD600=0.7-1.0时,加入IPTG至终浓度0.1-0.8mM,转至18℃继续培养4-20h。The method for preparing halophilic cellulase provided by the present invention can specifically be: culture the recombinant bacteria at 37°C for 3 hours, when OD 600 =0.7-1.0, add IPTG to a final concentration of 0.1-0.8mM, and transfer to 18°C Continue to cultivate for 4-20h.
扩增上述任一所述编码基因的全长及其任意片段的引物对也属于本发明的保护范围。A pair of primers for amplifying the full length of any of the above-mentioned coding genes and any fragment thereof also falls within the protection scope of the present invention.
所述引物对中的一条引物序列如序列表中序列3所示,另一条引物序列如序列表中序列4所示。One primer sequence in the primer pair is shown as
上述任一所述蛋白质、上述任一所述编码基因、上述任一所述重组表达载体、所述表达盒、转基因细胞系或重组菌中的任意一种在降解纤维素中的应用也属于本发明的保护范围。其中,所述纤维素具体可为羧甲基纤维素。The application of any of the above-mentioned proteins, any of the above-mentioned coding genes, any of the above-mentioned recombinant expression vectors, the above-mentioned expression cassettes, transgenic cell lines or recombinant bacteria in degrading cellulose also belongs to this invention. protection scope of the invention. Wherein, the cellulose may specifically be carboxymethyl cellulose.
上述应用中,所述羧甲基纤维素可为羧甲基纤维素的可溶性盐,具体可为羧甲基纤维素钠;所述蛋白在高盐条件下(0.5-4M)降解羧甲基纤维素钠时,反应体系的温度为20-70℃,优选为55℃,反应体系的pH值为4-10,优选为5.5;反应体系中盐浓度为如下1)或2)所示:1)所述盐为NaCl,反应体系中盐浓度为0.25-4M,优选为2.5M;2)所述盐为KCl,反应体系中盐浓度为0.25-3.5M,优选3M。In the above application, the carboxymethyl cellulose can be a soluble salt of carboxymethyl cellulose, specifically sodium carboxymethyl cellulose; the protein degrades carboxymethyl cellulose under high-salt conditions (0.5-4M) In the case of plain sodium, the temperature of the reaction system is 20-70° C., preferably 55° C., and the pH value of the reaction system is 4-10, preferably 5.5; the salt concentration in the reaction system is shown in 1) or 2) below: 1) The salt is NaCl, and the salt concentration in the reaction system is 0.25-4M, preferably 2.5M; 2) the salt is KCl, and the salt concentration in the reaction system is 0.25-3.5M, preferably 3M.
本发明的CelB蛋白具有嗜盐纤维素酶活性,属于嗜盐纤维素酶。CelB蛋白与其它已表征的纤维素酶的氨基酸序列相比,相似性小于55%,属于纤维素酶家族中的一员。本发明纤维素酶在高盐(2.5M氯化钠)的条件下,仍具有较高的酶活性,为33U/mg蛋白干粉,而一般的纤维素酶在2.5M氯化钠的条件下已完全或部分变性,完全或部分失去酶活性。在2.5M氯化钠的条件下,在40℃-70℃的温度范围内,本发明酶均具有较高活性,最适温度为55℃;在2.5M氯化钠的条件下,在pH4-pH10的pH值范围内,本发明酶均具有较高活性,最适pH值为5.5。因此,本发明酶具有广泛的pH耐受性、适用温度范围广和耐盐的特性,本发明酶具有宽广的使用范围,特别适合于高盐环境中应用,在高渗和高盐条件下纤维素的降解领域具有很好的应用前景。The CelB protein of the present invention has halophilic cellulase activity and belongs to halophilic cellulase. Compared with the amino acid sequences of other characterized cellulases, the CelB protein has a similarity of less than 55%, and belongs to a member of the cellulase family. Cellulase of the present invention still has higher enzymatic activity under the condition of high salt (2.5M sodium chloride), and is 33U/mg protein dry powder, and general cellulase has already been obtained under the condition of 2.5M sodium chloride Complete or partial denaturation, complete or partial loss of enzyme activity. Under the condition of 2.5M sodium chloride, in the temperature range of 40 ℃-70 ℃, the enzyme of the present invention has higher activity, and the optimum temperature is 55 ℃; Within the pH value range of
附图说明 Description of drawings
图1为CelB蛋白的SDS-PAGE电泳图。Figure 1 is the SDS-PAGE electrophoresis of CelB protein.
图2为CelB蛋白活性随盐浓度的变化Figure 2 is the change of CelB protein activity with salt concentration
图3为嗜盐纤维素酶活性随温度的变化。Figure 3 is the change of halophilic cellulase activity with temperature.
图4为嗜盐纤维素酶活性随pH的变化。Figure 4 shows the change of halophilic cellulase activity with pH.
具体实施方式 Detailed ways
下述实施例中所使用的实验方法如无特殊说明,均为常规方法。The experimental methods used in the following examples are conventional methods unless otherwise specified.
下述实施例中所用的材料、试剂等,如无特殊说明,均可从商业途径得到。The materials and reagents used in the following examples can be obtained from commercial sources unless otherwise specified.
遗传资源名称:芽孢杆菌Bacillus sp.BG-CS10。直接来源:获取时间2004年;采集方式:采集地(国家、省(市))内蒙古巴尔碱湖,采集者名称(姓名)薛燕芬,采集者联系方式e-mail:xueyfim.ac.cn。Genetic resource name: Bacillus sp.BG-CS10. Direct source: Acquisition time in 2004; Collection method: Collection place (country, province (city)) Barjian Lake, Inner Mongolia, name (name) of the collector Xue Yanfen, contact information of the collector e-mail: xueyfim.ac.cn.
实施例1、嗜盐纤维素酶的发现
一、芽孢杆菌Bacillus sp.BG-CS10总DNA的提取1. Extraction of total DNA from Bacillus sp.BG-CS10
采用芽孢杆菌Bacillus sp.BG-CS10,取其新鲜湿菌体20克,悬于10毫升50mMTris缓冲液中(pH8.0),加入少量溶菌酶和8毫升0.25mM EDTA(pH8.0),混匀后37℃放置20min;之后加入2毫升10%SDS,55℃放置5min,分别用等体积酚、氯仿各抽提一次;取最后一次的上清溶液,加入2倍体积乙醇,回收DNA,分别用70%和无水乙醇洗;沉淀溶于0.5毫升TE缓冲液(pH8.0,10mM Tris,1mMEDTA),加入10mg/ml RNase 3μl,37℃保温1小时,分别用等体积酚、氯仿各抽提一次;上清溶液加入2倍体积乙醇,回收DNA,分别用70%和无水乙醇洗,真空干燥,用去离子水溶解。Using Bacillus sp.BG-CS10, get 20 grams of fresh wet cells, suspend in 10 ml of 50mM Tris buffer (pH8.0), add a small amount of lysozyme and 8 ml of 0.25mM EDTA (pH8.0), mix After homogenization, place at 37°C for 20 minutes; then add 2 ml of 10% SDS, place at 55°C for 5 minutes, and extract once with equal volumes of phenol and chloroform respectively; take the last supernatant solution, add 2 times the volume of ethanol, recover DNA, and separate Wash with 70% and absolute ethanol; dissolve the precipitate in 0.5ml TE buffer (pH8.0, 10mM Tris, 1mMEDTA), add 10mg/ml RNase 3μl, keep warm at 37°C for 1 hour, and extract with equal volumes of phenol and chloroform respectively Extract once; add 2 times the volume of ethanol to the supernatant solution, recover DNA, wash with 70% and absolute ethanol respectively, dry in vacuum, and dissolve with deionized water.
二、嗜盐纤维素酶的发现2. Discovery of halophilic cellulase
1、取总DNA溶液10μl(约50μg DNA),用限制性内切酶Sau3AI部分酶切,经琼脂糖凝胶电泳,回收3-9kb DNA片段。1. Take 10 μl of the total DNA solution (about 50 μg DNA), partially digest it with the restriction endonuclease Sau3AI, and recover the 3-9kb DNA fragment by agarose gel electrophoresis.
2、连接反应16小时2. Ligation reaction for 16 hours
连接体系(20μl):2μl(5μg)Sau3AI酶解DNA片段;Ligation system (20μl): 2μl (5μg) Sau3AI digested DNA fragment;
1μl(1μg)经EarI酶解的质粒pHBM803DNA;1 μl (1 μg) of EarI-digested plasmid pHBM803DNA;
2μl 10×连接缓冲液;2
1μl T4DNA连接酶;1 μl T4 DNA ligase;
14μl水。14 μl of water.
3、用连接反应产物转化感受态大肠杆菌XL-Gold,然后涂于含50μg/ml Amp(氨苄青霉素)的固体培养基上,37℃培养16-18小时,将所得菌落影印到含有50μg/mlAmp(氨苄青霉素)、0.5mM IPTG、0.025%曲利本蓝和1%魔芋粉的固体培养基上,菌落周围有透明圈的即为阳性克隆。3. Transform competent Escherichia coli XL-Gold with the product of the ligation reaction, and then spread it on a solid medium containing 50 μg/ml Amp (ampicillin), culture it at 37°C for 16-18 hours, and copy the obtained colony to a medium containing 50 μg/ml Amp (Ampicillin), 0.5mM IPTG, 0.025% Triben blue and 1% konjac flour on the solid medium, the colony with a transparent circle around it is a positive clone.
4、阳性克隆在Amp-LB培养基中37℃培养16-18小时,经活性测试具有纤维素酶活性。4. Positive clones were cultured in Amp-LB medium at 37°C for 16-18 hours, and had cellulase activity after the activity test.
对阳性克隆中的重组质粒进行了测序。测序结果显示,重组质粒中,在pHBM803DNA骨架中插入了一个DNA片段,该DNA片段含有一个长1710bp的开放阅读框架(ORF),ORF核苷酸序列如序列表的序列2所示,其中自5’端第1至99位核苷酸为信号肽。质粒pHBM803见参考文献(Cloning and enzymatic characterizationof a xylanase gene from a soil-derived metagenomic library with an efficient approach.Applied Microbial Biotechnology,2008,80(5):823-30)。Recombinant plasmids in positive clones were sequenced. Sequencing results showed that in the recombinant plasmid, a DNA fragment was inserted into the pHBM803 DNA backbone, and the DNA fragment contained an open reading frame (ORF) with a length of 1710 bp. The 1st to 99th nucleotides at the 'end are signal peptides. See references for plasmid pHBM803 (Cloning and enzymatic characterization of a xylanase gene from a soil-derived metagenomic library with an efficient approach. Applied Microbial Biotechnology, 2008, 80(5): 823-30).
序列2所示核苷酸编码的蛋白如序列表中序列1所示(记作CelB蛋白),该蛋白由569个氨基酸残基组成。CelB蛋白属纤维素酶超家族,与来源于Bacillusagaradhaerens的纤维素酶一致性为80%,和全基因组测序的Bacillus haloduransC-125菌株的纤维素酶B一致性为68%;和Geobacillu sp.Y412MC10的纤维素酶一致性55%,但是这些蛋白均没有进行酶学性质的分析;将CelB蛋白的编码基因命名为celB基因。The protein encoded by the nucleotides shown in
实施例2、嗜盐纤维素酶的表达
一、celB基因的制备1. Preparation of celB gene
可采用如下方法制备celB基因;也可以采用人工合成的方法得到序列表中序列2自5’端起第100至1710位核苷酸所示的celB基因,并使其两端分别带有BamHI的酶切位点和SalI酶切位点。The following method can be used to prepare the celB gene; the celB gene shown in the 100th to 1710th nucleotides from the 5' end of the
根据celB基因的核苷酸序列(如序列表的序列2所示),设计引物对如下:According to the nucleotide sequence of celB gene (as shown in the
正向引物:5′-cgcggatccgatgaaggtgctaagcaaacagatattc-3′;Forward primer: 5′-cgcggatccgatgaaggtgctaagcaaacagatattc-3′;
反向引物:5′-agcgtcgacttatcgtctaccttgaacatggtttcc-3′;Reverse primer: 5′-agcgtcgacttatcgtctaccttgaacatggtttcc-3′;
正向引物的下划线部分为BamHI的酶切位点,反向引物的下划线部分为SalI酶切位点。The underlined part of the forward primer is the restriction site of BamHI, and the underlined part of the reverse primer is the restriction site of SalI.
以芽孢杆菌Bacillus sp.BG-CS10的总DNA为模板,用设计的引物对进行PCR扩增。Using the total DNA of Bacillus sp.BG-CS10 as a template, PCR amplification was performed with the designed primer pair.
PCR反应体系:PCR reaction system:
10×缓冲液 5μl10×
dNTP 4μldNTP 4μl
exTaq DNA聚合酶 0.5μlexTaq DNA polymerase 0.5μl
正向引物 1μl
反向引物 1μlReverse primer 1μl
模板 0.5μlTemplate 0.5μl
水 38μl。Water 38 μl.
PCR反应条件:94℃预变性5min,然后94℃变性30秒-58℃退火30秒-72℃延伸2min,30个循环,最后72℃延伸10min。PCR reaction conditions: pre-denaturation at 94°C for 5 minutes, then denaturation at 94°C for 30 seconds, annealing at 58°C for 30 seconds, extension at 72°C for 2 minutes, 30 cycles, and finally extension at 72°C for 10 minutes.
PCR产物用1%琼脂糖凝胶电泳检测产量和特异性,并用DNA纯化试剂盒(超薄离心柱型,天根公司生产)纯化。将纯化的PCR产物进行测序,结果表明PCR产物的序列如序列表中序列2自5’端起第100至1710位核苷酸所示。The yield and specificity of the PCR product were detected by 1% agarose gel electrophoresis, and purified with a DNA purification kit (ultra-thin spin column type, produced by Tiangen Company). The purified PCR product was sequenced, and the result showed that the sequence of the PCR product was as shown in the 100th to 1710th nucleotides from the 5' end of
二、重组表达载体的构建2. Construction of recombinant expression vector
1、将测序正确的PCR产物或人工合成的片段用BamHI和SalI双酶切,琼脂糖电泳回收酶切产物。1. Digest the correctly sequenced PCR products or artificially synthesized fragments with BamHI and SalI, and recover the digested products by agarose electrophoresis.
2、将质粒pET28a(Cat.N0 69864-3,Novogen)用BamHI和SalI双酶切,琼脂糖电泳回收酶切产物。2. Digest the plasmid pET28a (Cat.N0 69864-3, Novogen) with BamHI and SalI, and recover the digested product by agarose electrophoresis.
3、将步骤1的酶切产物和步骤2的酶切产物进行连接,连接产物电击转化大肠杆菌DH5α后涂布于含有50μg/ml卡那霉素的LB平板,37℃过夜培养,将得到的转化子用正向引物和反向引物进行菌落PCR,筛选到含有celB基因的重组菌,提取重组菌的质粒,进行测序验证,结果表明,在pET28a的BamHI和SalI酶切位点之间插入了序列表中序列2自5’端起第100至1710位核苷酸所示的celB基因,插入方向正确,将该重组质粒命名为pET28a-celB。3. Ligate the digested product of
三、工程菌的制备3. Preparation of Engineering Bacteria
将质粒pET28a-celB电击转化大肠杆菌Rosetta(DE3)(Cat.N0CD801,全式金公司)后涂布于含有50μg/ml卡那霉素的LB平板,37℃过夜培养,得到含有质粒pET28a-celB的工程菌,记作Rosetta/pET28a-celB。The plasmid pET28a-celB was transformed into Escherichia coli Rosetta (DE3) (Cat.NOCD801, Quanshijin Company) by electroporation, and spread on an LB plate containing 50 μg/ml kanamycin, and cultured overnight at 37°C to obtain the plasmid containing pET28a-celB The engineered bacterium was denoted as Rosetta/pET28a-celB.
用pET28a代替pET28a-celB,转化大肠杆菌Rosetta(DE3),步骤同上,得到含有pET28a的重组菌,作为对照菌。将转入pET28a的阳性重组菌记作Rosetta/pET28a。Replace pET28a-celB with pET28a, transform Escherichia coli Rosetta (DE3), and use the same procedure as above to obtain a recombinant bacterium containing pET28a as a control bacterium. The positive recombinant bacteria transformed into pET28a were recorded as Rosetta/pET28a.
四、嗜盐纤维素酶的制备和纯化4. Preparation and purification of halophilic cellulase
Ni-NTA His·Bind Superflow纯化柱购自Novagen公司,产品目录号为70971-3。Ni-NTA His·Bind Superflow purification column was purchased from Novagen, the product catalog number is 70971-3.
将步骤三制备的阳性重组菌Rosetta/pET28a-celB培养于含有50μg/ml卡那霉素的LB培养基中,37℃培养3h;OD600=0.7时,加入IPTG至其在LB培养基中的终浓度0.8mM,转至18℃继续培养16h。The positive recombinant Rosetta/pET28a-celB prepared in
5000rpm、10min离心收集菌体,悬浮于溶液A(20mM Tris-HCl,pH7.9,0.5MNaCl,10mM咪唑)中,于冰浴中超声破碎(60w,10min;超声2s,停止2s),之后15000rpm离心10min除去细胞碎片,取上清液;将上清液过Ni-IDA His·BindSuperflow纯化柱,用5ml溶液A冲洗,再用10ml溶液B(20mM Tris-HCl,pH7.9,0.5M NaCl,60m M咪唑)漂洗,最后用5ml溶液C(20mM Tris-HCl,pH7.9,0.5MNaCl,500mM咪唑)洗脱,收集洗脱液。然后将洗脱液用FPLC(快速蛋白液相层析)脱盐,获得纯化的CelB蛋白的溶液,真空冷冻干燥,得到CelB蛋白干粉。Collect the bacteria by centrifugation at 5000rpm for 10min, suspend in solution A (20mM Tris-HCl, pH7.9, 0.5MNaCl, 10mM imidazole), ultrasonically break in an ice bath (60w, 10min; ultrasonic 2s, stop 2s), then 15000rpm Centrifuge for 10min to remove cell debris, take the supernatant; pass the supernatant through the Ni-IDA His BindSuperflow purification column, wash with 5ml solution A, and then wash with 10ml solution B (20mM Tris-HCl, pH7.9, 0.5M NaCl, 60mM imidazole), and finally eluted with 5ml solution C (20mM Tris-HCl, pH7.9, 0.5MNaCl, 500mM imidazole), and the eluate was collected. Then, the eluate was desalted by FPLC (fast protein liquid chromatography) to obtain a solution of purified CelB protein, which was freeze-dried in vacuum to obtain CelB protein dry powder.
将步骤三制备的对照菌采用相同的步骤进行培养和纯化,得到的溶液作为对照酶液。The control bacteria prepared in
SDS-PAGE电泳显示纯化的CelB蛋白的分子量约为62kDa,符合理论推断的62kDa。结果如图1所示,图1中,泳道1表示Ni-NTA柱纯化后的CelB蛋白,泳道2表示大肠杆菌Rosetta/pET28a-celB破菌后的上清液,泳道3表示蛋白分子量标准(100,75,50,35,25kDa)。SDS-PAGE electrophoresis showed that the molecular weight of the purified CelB protein was about 62kDa, which was in line with the theoretical deduction of 62kDa. The results are as shown in Figure 1. In Figure 1,
对照菌没有得到目的蛋白。The control bacteria did not obtain the target protein.
实施例3、蛋白的功能验证Example 3, functional verification of protein
酶活单位定义为1min内催化产生1μmol葡萄糖所需的酶量。The enzyme activity unit is defined as the amount of enzyme required to catalyze the production of 1 μmol of glucose in 1 min.
(一)盐对酶活性的影响(1) Effect of salt on enzyme activity
实验组1:活性测定反应体系为0.5ml,由0.48ml溶液A和0.02ml实施例2得到的CelB蛋白干粉的稀释液组成;活性测定反应体系的pH值为8.8(该pH缓冲体系受NaCl浓度的影响小)。将反应体系在40℃温育30min后,加入0.5ml二硝基水杨酸溶液(DNS)终止反应,然后沸水浴5min后测定520nm的吸光值。用pH值8.8的Tris-HCl缓冲液代替CelB蛋白稀释液进行同样的操作,作为对照1。Experimental group 1: the activity measurement reaction system is 0.5ml, is made up of the dilution of the CelB protein dry powder that 0.48ml solution A and 0.02
溶液A的组成:由50mM的pH8.8的Tris-HCl缓冲液、NaCl和羧甲基纤维素钠(CMC)组成;NaCl在溶液A中的浓度为0.05-4M,羧甲基纤维素钠在溶液A中的浓度为0.5g/100ml。The composition of solution A: by the Tris-HCl buffer solution of 50mM pH8.8, NaCl and sodium carboxymethyl cellulose (CMC); The concentration of NaCl in solution A is 0.05-4M, and sodium carboxymethyl cellulose is in The concentration in solution A is 0.5g/100ml.
实验组2:活性测定反应体系为0.5ml,由0.48ml溶液A和0.02ml实施例2得到的CelB蛋白干粉的稀释液组成;活性测定反应体系的pH值为8.8(该pH缓冲体系受KCl浓度的影响小)。将反应体系在40℃温育30min后,加入0.5ml二硝基水杨酸溶液(DNS)终止反应,然后沸水浴5min后测定520nm的吸光值。用pH值8.8的Tris-HCl缓冲液代替CelB蛋白稀释液进行同样的操作,作为对照2。Experimental group 2: the activity measurement reaction system is 0.5ml, is made up of the dilution of the CelB protein dry powder that 0.48ml solution A and 0.02
溶液A的组成:由50mM的pH8.8的Tris-HCl缓冲液、KCl和羧甲基纤维素钠(CMC)组成;KCl在溶液A中的浓度为0.5-3.5M,羧甲基纤维素钠在溶液A中的浓度为0.5g/100ml。The composition of solution A: by the Tris-HCl buffer solution of 50mM pH8.8, KCl and sodium carboxymethylcellulose (CMC); The concentration of KCl in solution A is 0.5-3.5M, sodium carboxymethylcellulose The concentration in solution A is 0.5g/100ml.
对照3:活性测定反应体系为0.5ml,由0.48ml溶液A和0.02ml实施例2得到的CelB蛋白干粉的稀释液组成;活性测定反应体系的pH值为8.8。将反应体系在40℃温育30min后,加入0.5ml二硝基水杨酸溶液(DNS)终止反应,然后沸水浴5min后测定520nm的吸光值。Control 3: The activity measurement reaction system is 0.5ml, which is composed of 0.48ml solution A and 0.02ml dilution of CelB protein dry powder obtained in Example 2; the pH value of the activity measurement reaction system is 8.8. After incubating the reaction system at 40° C. for 30 minutes, 0.5 ml of dinitrosalicylic acid solution (DNS) was added to terminate the reaction, and the absorbance value at 520 nm was measured after 5 minutes in a boiling water bath.
溶液A的组成:由50mM的pH8.8的Tris-HCl缓冲液和羧甲基纤维素钠(CMC)组成;羧甲基纤维素钠在溶液A中的浓度为0.5g/100ml。该溶液中不含有NaCl或KCl。The composition of solution A: consists of 50mM Tris-HCl buffer solution with pH 8.8 and sodium carboxymethylcellulose (CMC); the concentration of sodium carboxymethylcellulose in solution A is 0.5g/100ml. The solution does not contain NaCl or KCl.
将不含NaCl或KCl时测的吸光值(即对照3)作为相对活性100%,其它组的吸光值与该吸光值的比值作为各自的相对活性。The absorbance value measured without NaCl or KCl (ie, control 3) was regarded as 100% of relative activity, and the ratio of the absorbance value of other groups to this absorbance value was regarded as their respective relative activities.
实验设3次重复。CelB蛋白溶液活性随盐浓度的变化见图2。在pH值为8.8的环境中,在含有2.5M NaCl或3M KCl时CelB蛋白溶液具有最高的酶活性,比不含盐时的酶活高出十倍以上。在盐浓度为0.5-4M的条件下,该蛋白均具有较高活性,说明该蛋白具有嗜盐特性。The experiment was repeated 3 times. The change of CelB protein solution activity with salt concentration is shown in Figure 2. In an environment with a pH value of 8.8, the CelB protein solution has the highest enzyme activity when it contains 2.5M NaCl or 3M KCl, which is more than ten times higher than that without salt. Under the condition of salt concentration of 0.5-4M, the protein has relatively high activity, indicating that the protein has halophilic properties.
对照1和对照2中均没有检测到酶活性。No enzyme activity was detected in both
以实施例2中的对照菌Rosetta/pET28a获得的蛋白(记作对照酶液)进行上述实验,结果不管在哪个盐浓度条件下,对照酶液均没有活性。The above experiment was carried out with the protein obtained from the control bacteria Rosetta/pET28a in Example 2 (referred to as the control enzyme solution). As a result, no matter what the salt concentration was, the control enzyme solution had no activity.
以上实验证明,本发明的CelB蛋白具有纤维素酶活性,是一种纤维素酶,且其具有嗜盐特性,是一种嗜盐纤维素酶。The above experiments prove that the CelB protein of the present invention has cellulase activity, is a cellulase, and has halophilic properties, and is a halophilic cellulase.
(二)最适温度(2) Optimum temperature
实验组:活性测定反应体系为0.5ml,由0.48ml溶液A和0.02ml实施例2得到的CelB蛋白干粉的稀释液组成;反应体系的pH值为8.8;将反应体系在特定温度温育30min后,加入0.5ml二硝基水杨酸溶液(DNS)终止反应,然后沸水浴5min后测定520nm的吸光值。Experimental group: The activity measurement reaction system is 0.5ml, which is composed of 0.48ml solution A and 0.02ml dilution of CelB protein dry powder obtained in Example 2; the pH value of the reaction system is 8.8; after incubating the reaction system at a specific temperature for 30min , adding 0.5ml of dinitrosalicylic acid solution (DNS) to terminate the reaction, and then measuring the absorbance at 520nm after 5min in a boiling water bath.
溶液A的组成:由50mM的pH8.8的Tris-HCl缓冲液、NaCl和羧甲基纤维素钠(CMC)组成;NaCl在溶液A中的浓度为2.5M,羧甲基纤维素钠在溶液A中的浓度为0.5g/100ml。The composition of solution A: by the Tris-HCl buffer solution of 50mM pH8.8, NaCl and sodium carboxymethylcellulose (CMC); The concentration of NaCl in solution A is 2.5M, sodium carboxymethylcellulose in solution The concentration in A is 0.5g/100ml.
对照组:活性测定反应体系为0.5ml,由0.48ml溶液A和0.02ml实施例2得到的CelB蛋白干粉的稀释液组成;反应体系的pH值为8.8;将反应体系在特定温度温育30min后,加入0.5ml二硝基水杨酸溶液(DNS)终止反应,然后沸水浴5min后测定520nm的吸光值。Control group: the activity measurement reaction system is 0.5ml, which is composed of 0.48ml solution A and 0.02ml dilution of CelB protein dry powder obtained in Example 2; the pH value of the reaction system is 8.8; after incubating the reaction system at a specific temperature for 30min , adding 0.5ml of dinitrosalicylic acid solution (DNS) to terminate the reaction, and then measuring the absorbance at 520nm after 5min in a boiling water bath.
溶液A的组成:由50mM的pH8.8的Tris-HCl缓冲液和羧甲基纤维素钠(CMC)组成;羧甲基纤维素钠在溶液A中的浓度为0.5g/100ml。该溶液中不含有氯化钠。The composition of solution A: consists of 50mM Tris-HCl buffer solution with pH 8.8 and sodium carboxymethylcellulose (CMC); the concentration of sodium carboxymethylcellulose in solution A is 0.5g/100ml. The solution does not contain sodium chloride.
实验设3次重复。The experiment was repeated 3 times.
在含有2.5M NaCl时,55℃时,嗜盐纤维素酶液具有最高的酶活性,为20U/mg蛋白干粉。以此最高酶活性体系的吸光值作为相对活性100%,其它反应体系的吸光值与此最高酶活性体系的吸光值的比值作为各自的相对活性。When containing 2.5M NaCl, at 55°C, the halophilic cellulosic enzyme solution has the highest enzyme activity, which is 20U/mg protein dry powder. The absorbance of the system with the highest enzyme activity was taken as 100% of the relative activity, and the ratio of the absorbance of the other reaction systems to the absorbance of the system with the highest enzyme activity was taken as their respective relative activities.
嗜盐纤维素酶活性随温度的变化见图3。在pH值为8.8的环境中,在无盐条件下,35℃时,纤维素酶液具有最高的酶活性;在2.5M NaCl的条件下,40℃-70℃时,CelB蛋白(嗜盐纤维素酶液)均具有较高的活性,55℃时,CelB蛋白(嗜盐纤维素酶液)具有最佳酶活性。The change of halophilic cellulase activity with temperature is shown in Figure 3. In an environment with a pH value of 8.8, under salt-free conditions, the cellulase solution has the highest enzyme activity at 35°C; under the condition of 2.5M NaCl, at 40°C-70°C, CelB protein (halophilic fiber CelB protein (halophilic cellulase solution) has the best enzymatic activity at 55°C.
以实施例2中的对照菌Rosetta/pET28a获得的蛋白(记作对照酶液)进行上述实验,结果不管在哪个温度条件下,对照酶液均没有活性。The above experiment was carried out with the protein obtained from the control bacteria Rosetta/pET28a in Example 2 (referred to as the control enzyme solution). As a result, no matter under which temperature conditions, the control enzyme solution had no activity.
(三)最适pH(3) Optimum pH
实验组:活性测定体系为0.5ml,由0.48ml溶液B(B1、B2、B3、B4、B5、B6或B7)和0.02ml实施例2得到的CelB蛋白干粉的稀释液组成;Experimental group: the activity assay system is 0.5ml, consisting of 0.48ml solution B (B1, B2, B3, B4, B5, B6 or B7) and 0.02ml dilution of CelB protein dry powder obtained in Example 2;
溶液B1的组成:由50mM的Na2HPO4-柠檬酸缓冲液、NaCl和羧甲基纤维素钠(CMC)组成;NaCl在溶液B1中的浓度为2.5M,羧甲基纤维素钠在溶液B1中的浓度为0.5g/100ml;溶液B1的pH值为4.0。The composition of solution B1: consists of 50mM Na 2 HPO 4 -citrate buffer, NaCl and sodium carboxymethylcellulose (CMC); the concentration of NaCl in solution B1 is 2.5M, sodium carboxymethylcellulose in solution The concentration in B1 is 0.5 g/100 ml; the pH of solution B1 is 4.0.
溶液B2的组成:与溶液B1的组成相同,不同的是溶液B2的pH值为5.0。Composition of solution B2: the same composition as solution B1, the difference is that the pH value of solution B2 is 5.0.
溶液B3的组成:与溶液B1的组成相同,不同的是溶液B2的pH值为6.0,将50mM的Na2HPO4-柠檬酸缓冲液替换为50mM的NaH2PO4-Na2HPO4缓冲液。The composition of solution B3: the same composition as solution B1, the difference is that the pH value of solution B2 is 6.0, and the 50mM Na 2 HPO 4 -citric acid buffer is replaced by 50mM NaH 2 PO 4 -Na 2 HPO 4 buffer .
溶液B4的组成:与溶液B1的组成相同,不同的是溶液B4的pH值为7.0,将50mM的Na2HPO4-柠檬酸缓冲液替换为50mM的NaH2PO4-Na2HPO4缓冲液。The composition of solution B4: the same composition as solution B1, the difference is that the pH value of solution B4 is 7.0, 50mM Na 2 HPO 4 -citric acid buffer is replaced by 50mM NaH 2 PO 4 -Na 2 HPO 4 buffer .
溶液B5的组成:与溶液B1的组成相同,不同的是溶液B5的pH值为8.0,将50mM的Na2HPO4-柠檬酸缓冲液替换为50mM的Tris-HCl缓冲液。Composition of solution B5: the same composition as solution B1, except that the pH of solution B5 is 8.0, and 50 mM Na 2 HPO 4 -citric acid buffer is replaced by 50 mM Tris-HCl buffer.
溶液B6的组成:与溶液B1的组成相同,不同的是溶液B6的pH值为9.0,将50mM的Na2HPO4-柠檬酸缓冲液替换为50mM的Glycine-NaOH缓冲液。Composition of solution B6: the same composition as solution B1, except that the pH of solution B6 is 9.0, and 50 mM Na 2 HPO 4 -citric acid buffer is replaced by 50 mM Glycine-NaOH buffer.
溶液B7的组成:与溶液B1的组成相同,不同的是溶液B7的pH值为10.0,将50mM的Na2HPO4-柠檬酸缓冲液替换为50mM的Glycine-NaOH缓冲液。Composition of solution B7: the same composition as solution B1, except that the pH of solution B7 is 10.0, and 50 mM Na 2 HPO 4 -citric acid buffer is replaced by 50 mM Glycine-NaOH buffer.
将反应体系在55℃,温育30min后,加入0.5ml二硝基水杨酸溶液(DNS)终止反应,然后沸水浴5min后测定520nm的吸光值。After incubating the reaction system at 55° C. for 30 minutes, 0.5 ml of dinitrosalicylic acid solution (DNS) was added to terminate the reaction, and the absorbance at 520 nm was measured after 5 minutes in a boiling water bath.
对照组:反应体系与实验组不同的是:对照组均不含有NaCl,在35℃进行反应。Control group: The difference between the reaction system and the experimental group is that the control group does not contain NaCl, and the reaction is carried out at 35°C.
实验设3次重复。The experiment was repeated 3 times.
实验组,在反应体系的pH值为5.5时,嗜盐纤维素酶液具有最高的酶活性,为33U/mg蛋白干粉。以此最高酶活性体系的吸光值作为相对活性100%,其它反应体系的吸光值与此最高酶活性体系的吸光值的比值作为各自的相对活性。In the experimental group, when the pH value of the reaction system was 5.5, the halophilic cellulosic enzyme liquid had the highest enzyme activity, which was 33U/mg protein dry powder. The absorbance of the system with the highest enzyme activity was taken as 100% of the relative activity, and the ratio of the absorbance of the other reaction systems to the absorbance of the system with the highest enzyme activity was taken as their respective relative activities.
对照组,在反应体系的pH值为5.5时,嗜盐纤维素酶液具有最高的酶活性,为3U/mg蛋白干粉。以此最高酶活性体系的吸光值作为相对活性100%,其它反应体系的吸光值与此最高酶活性体系的吸光值的比值作为各自的相对活性。In the control group, when the pH value of the reaction system was 5.5, the halophilic cellulosic enzyme solution had the highest enzyme activity, which was 3U/mg protein dry powder. The absorbance of the system with the highest enzyme activity was taken as 100% of the relative activity, and the ratio of the absorbance of the other reaction systems to the absorbance of the system with the highest enzyme activity was taken as their respective relative activities.
嗜盐纤维素酶活性随pH的变化见图4(A表示实验组,B表示对照组)。结果:在高盐(2.5M NaCl)或无盐条件下,55℃时,pH4-pH10时,CelB蛋白(嗜盐纤维素酶液)均具有活性,pH5.5时,CelB蛋白(嗜盐纤维素酶液)具有最佳酶活性。这说明盐对酶的最适pH基本没有影响。The change of halophilic cellulase activity with pH is shown in Figure 4 (A represents the experimental group, B represents the control group). Results: Under the condition of high salt (2.5M NaCl) or no salt, CelB protein (halophilic cellulosic enzyme solution) was active at 55°C, pH4-pH10, and CelB protein (halophilic cellulosic enzyme solution) was active at pH5.5. Suzyme solution) has the best enzyme activity. This shows that salt has little effect on the optimum pH of the enzyme.
以实施例2中的对照菌Rosetta/pET28a获得的蛋白(记作对照酶液)进行上述实验,结果不管在哪个pH条件下,对照酶液均没有活性。The above experiment was carried out with the protein obtained from the control bacteria Rosetta/pET28a in Example 2 (referred to as the control enzyme solution). As a result, the control enzyme solution had no activity regardless of the pH conditions.
(四)酶热稳定性(4) Enzyme thermostability
将酶分别用含有2.5MNaCl和不含NaCl的缓冲液稀释后,分别在30、40、50、60℃水浴放置15和30分钟,测定酶的残余活性。结果显示,酶在有2.5MNaCl时有很好的热稳定性,60℃处理30分钟未见酶活下降;酶在没有NaCl时,在30℃和40℃稳定,但在50℃处理15分钟完全丧失了活性。这说明盐可以增加酶的热稳定性。After diluting the enzyme with buffer containing 2.5M NaCl and without NaCl, respectively, place it in a water bath at 30, 40, 50, and 60°C for 15 and 30 minutes, and measure the residual activity of the enzyme. The results show that the enzyme has good thermal stability in the presence of 2.5M NaCl, and there is no decrease in enzyme activity when treated at 60°C for 30 minutes; the enzyme is stable at 30°C and 40°C without NaCl, but it is completely stable at 50°C for 15 minutes. Lost activity. This suggests that salt can increase the thermostability of the enzyme.
序列表Sequence Listing
<110>中国科学院微生物研究所<110>Institute of Microbiology, Chinese Academy of Sciences
<120>一种嗜盐纤维素酶及其编码基因与应用<120>A kind of halophilic cellulase and its coding gene and application
<160>4<160>4
<210>1<210>1
<211>569<211>569
<212>PRT<212>PRT
<213>芽孢杆菌(Bacillus sp.)<213> Bacillus sp.
<400>1<400>1
Met Val His Ile Gln Arg Lys Phe Ile Leu Thr Lys Ser Leu Ile ValMet Val His Ile Gln Arg Lys Phe Ile Leu Thr Lys Ser Leu Ile Val
1 5 10 151 5 10 15
Val Phe Thr Met Leu Leu Cys Leu Ser Leu Met Thr Pro Pro Leu LeuVal Phe Thr Met Leu Leu Cys Leu Ser Leu Met Thr Pro Pro Leu Leu
20 25 3020 25 30
Ala Asp Glu Gly Ala Lys Gln Thr Asp Ile Gln Ser Tyr Val Ala AspAla Asp Glu Gly Ala Lys Gln Thr Asp Ile Gln Ser Tyr Val Ala Asp
35 40 4535 40 45
Met Gln Pro Gly Trp Asn Leu Gly Asn Thr Phe Asp Ala Val Gly AspMet Gln Pro Gly Trp Asn Leu Gly Asn Thr Phe Asp Ala Val Gly Asp
50 55 6050 55 60
Asp Glu Thr Ala Trp Gly Asn Pro Arg Val Thr Arg Glu LeuIle LysAsp Glu Thr Ala Trp Gly Asn Pro Arg Val Thr Arg Glu LeuIle Lys
65 70 75 8065 70 75 80
Thr Ile Ala Asp Glu Gly Tyr Lys Ser Ile Arg Ile Pro Val Thr TrpThr Ile Ala Asp Glu Gly Tyr Lys Ser Ile Arg Ile Pro Val Thr Trp
85 90 9585 90 95
Glu Asn Gln Met Gly Asn Ala Pro Asp Tyr Thr Ile Asn Glu Asp PheGlu Asn Gln Met Gly Asn Ala Pro Asp Tyr Thr Ile Asn Glu Asp Phe
100 105 110100 105 110
Phe Ser Arg Val Glu Gln Val Ile Asp Trp Ala Leu Glu Glu Asp LeuPhe Ser Arg Val Glu Gln Val Ile Asp Trp Ala Leu Glu Glu Asp Leu
115 120 125115 120 125
Tyr Val Met Leu Asn Leu His His Asp Ser Trp Leu Trp Ile Tyr AsnTyr Val Met Leu Asn Leu His His Asp Ser Trp Leu Trp Ile Tyr Asn
130 135 140130 135 140
Met Glu His Asn Tyr Asp Glu Val Met Ala Lys Tyr Thr Ala Leu TrpMet Glu His Asn Tyr Asp Glu Val Met Ala Lys Tyr Thr Ala Leu Trp
145 150 155 160145 150 155 160
Glu Gln Leu Ser Glu Arg Phe Gln Gly His Ser His Lys Leu Met PheGlu Gln Leu Ser Glu Arg Phe Gln Gly His Ser His Lys Leu Met Phe
165 170 175165 170 175
Glu Ser Val Asn Glu Pro Arg Phe Thr Arg Asp Trp Gly Glu Ile GlnGlu Ser Val Asn Glu Pro Arg Phe Thr Arg Asp Trp Gly Glu Ile Gln
180 185 190180 185 190
Glu Asn His His Ala Phe Leu Glu Glu Leu Asn Thr Ala Phe Tyr HisGlu Asn His His Ala Phe Leu Glu Glu Leu Asn Thr Ala Phe Tyr His
195 200 205195 200 205
Ile Val Arg Glu Ser Gly Gly Ser Asn Thr Glu Arg Pro Leu Val LeuIle Val Arg Glu Ser Gly Gly Ser Asn Thr Glu Arg Pro Leu Val Leu
210 215 220210 215 220
Pro Thr Leu Glu Thr Ala Thr Ser Gln Asp Leu Leu Asn Arg Leu HisPro Thr Leu Glu Thr Ala Thr Ser Gln Asp Leu Leu Asn Arg Leu His
225 230 235 240225 230 235 240
Gln Thr Met Lys Asp Leu Asn Asp Pro Asn Leu Ile Ala Thr Val HisGln Thr Met Lys Asp Leu Asn Asp Pro Asn Leu Ile Ala Thr Val His
245 250 255245 250 255
Tyr Tyr Gly Phe Trp Pro Phe Ser Val Asn Val Ala Gly Tyr Thr ArgTyr Tyr Gly Phe Trp Pro Phe Ser Val Asn Val Ala Gly Tyr Thr Arg
260 265 270260 265 270
Phe Glu Glu Glu Thr Gln Gln Asp Ile Ile Asp Thr Phe Asn Arg ValPhe Glu Glu Glu Thr Gln Gln Asp Ile Ile Asp Thr Phe Asn Arg Val
275 280 285275 280 285
His Asn Thr Phe Thr Ala Asn Gly Ile Pro Val Val Leu Gly Glu PheHis Asn Thr Phe Thr Ala Asn Gly Ile Pro Val Val Leu Gly Glu Phe
290 295 300290 295 300
Gly Leu Leu Gly Phe Asp Thr Ser Thr Asp Val Ile Gln Gln Gly GluGly Leu Leu Gly Phe Asp Thr Ser Thr Asp Val Ile Gln Gln Gly Glu
305 310 315 320305 310 315 320
Lys Leu Lys Phe Phe Glu Phe Leu Ile His His Leu Asn Glu Arg AspLys Leu Lys Phe Phe Glu Phe Leu Ile His His Leu Asn Glu Arg Asp
325 330 335325 330 335
Val Thr His Met Leu Trp Asp Asn Gly Gln His Leu Asn Arg Glu ThrVal Thr His Met Leu Trp Asp Asn Gly Gln His Leu Asn Arg Glu Thr
340 345 350340 345 350
Tyr Ser Trp Tyr Asp Gln Glu Phe His Asn Met Leu Lys Ala Ser TrpTyr Ser Trp Tyr Asp Gln Glu Phe His Asn Met Leu Lys Ala Ser Trp
355 360 365355 360 365
Glu Gly Arg Ser Ala Thr Ala Glu Ser Asn Leu Ile His Val Arg AspGlu Gly Arg Ser Ala Thr Ala Glu Ser Asn Leu Ile His Val Arg Asp
370 375 380370 375 380
Gly Glu Pro Ile Arg Asp Gln Asp Ile Gln Leu His Leu His Gly AsnGly Glu Pro Ile Arg Asp Gln Asp Ile Gln Leu His Leu His Gly Asn
385 390 395 400385 390 395 400
Glu Leu Thr Gly Leu Gln Val Asp Gly Asp Ser Leu Ala Leu Gly GluGlu Leu Thr Gly Leu Gln Val Asp Gly Asp Ser Leu Ala Leu Gly Glu
405 410 415405 410 415
Asp Tyr Glu Leu Ala Gly Asp Val Leu Thr Met Lys Ala Asp Ala LeuAsp Tyr Glu Leu Ala Gly Asp Val Leu Thr Met Lys Ala Asp Ala Leu
420 425 430420 425 430
Thr Ala Leu Met Thr Pro Gly Glu Leu Gly Thr Asn Ala Val Ile ThrThr Ala Leu Met Thr Pro Gly Glu Leu Gly Thr Asn Ala Val Ile Thr
435 440 445435 440 445
Ala Gln Phe Asn Ser Gly Ala Asp Trp His Phe Gln Leu Gln Asn ValAla Gln Phe Asn Ser Gly Ala Asp Trp His Phe Gln Leu Gln Asn Val
450 455 460450 455 460
Asp Glu Pro Thr Leu Glu Asn Thr Glu Gly Ser Thr Ser Asn Phe AlaAsp Glu Pro Thr Leu Glu Asn Thr Glu Gly Ser Thr Ser Asn Phe Ala
465 470 475 480465 470 475 480
Ile Pro Ala His Phe Asn Gly Asp Ser Val Ala Thr Met Glu Ala ValIle Pro Ala His Phe Asn Gly Asp Ser Val Ala Thr Met Glu Ala Val
485 490 495485 490 495
Tyr Ala Asn Gly Glu Phe Ala Gly Pro Gln Asn Trp Thr Ser Phe LysTyr Ala Asn Gly Glu Phe Ala Gly Pro Gln Asn Trp Thr Ser Phe Lys
500 505 510500 505 510
Glu Phe Gly Tyr Thr Phe Ser Pro Val Tyr Asp Lys Gly Glu Ile ValGlu Phe Gly Tyr Thr Phe Ser Pro Val Tyr Asp Lys Gly Glu Ile Val
515 520 525515 520 525
Ile Thr Asp Ala Phe Phe Asn Glu Val Arg Asp Asp Asp Ile His LeuIle Thr Asp Ala Phe Phe Asn Glu Val Arg Asp Asp Asp Ile His Leu
530 535 540530 535 540
Thr Phe His Phe Trp Ser Gly Glu Met Val Glu Tyr Thr Leu Ser LysThr Phe His Phe Trp Ser Gly Glu Met Val Glu Tyr Thr Leu Ser Lys
545 550 555 560545 550 555 560
Asn Gly Asn His Val Gln Gly Arg ArgAsn Gly Asn His Val Gln Gly Arg Arg
565565
<210>2<210>2
<211>1710<211>1710
<212>DNA<212>DNA
<213>芽孢杆菌(Bacillus sp.)<213> Bacillus sp.
<400>2<400>2
atggtacaca tccaaagaaa gttcatactg acaaaatctc taatagtcgt gttcacaatg 60atggtacaca tccaaagaaa gttcatactg acaaaatctc taatagtcgt gttcacaatg 60
cttttgtgtt tgtcattaat gactccccca ttgttagctg atgaaggtgc taagcaaaca 120cttttgtgtt tgtcattaat gactccccca ttgttagctg atgaaggtgc taagcaaaca 120
gatattcaat cttatgtagc tgacatgcag cctggttgga atttaggaaa cacgtttgac 180gatattcaat cttatgtagc tgacatgcag cctggttgga atttaggaaa cacgtttgac 180
gctgttggcg atgatgaaac agcttggggg aatcctcgtg tgacgagaga gttaataaaa 240gctgttggcg atgatgaaac agcttggggg aatcctcgtg tgacgagaga gttaataaaa 240
acgattgctg atgaagggta taaaagtatt cgtatcccag tgacatggga aaatcagatg 300acgattgctg atgaagggta taaaagtatt cgtatccccag tgacatggga aaatcagatg 300
gggaatgcgc cagattatac gataaatgaa gattttttta gccgtgtgga gcaagtgatc 360gggaatgcgc cagattatac gataaatgaa gattttttta gccgtgtgga gcaagtgatc 360
gattgggcgt tggaagaaga cttatatgtc atgttaaatc tgcatcatga ttcatggctg 420gattgggcgt tggaagaaga cttatatgtc atgttaaatc tgcatcatga ttcatggctg 420
tggatatata atatggaaca caattacgat gaagtgatgg ctaaatatac agctctttgg 480tggatatata atatggaaca caattacgat gaagtgatgg ctaaatatac agctctttgg 480
gagcagttat cagagcgttt tcaaggccat tctcataaat taatgtttga gagtgtcaat 540gagcagttat cagagcgttt tcaaggccat tctcataaat taatgtttga gagtgtcaat 540
gagcctcggt ttacgcgaga ttggggagag attcaagaaa atcaccatgc tttcttagaa 600gagcctcggt ttacgcgaga ttggggagag attcaagaaa atcaccatgc tttcttagaa 600
gagttaaata cggcatttta tcatattgtc agagagtcgg gaggaagtaa tacagaacgg 660gagttaaata cggcatttta tcatattgtc agagagtcgg gaggaagtaa tacagaacgg 660
cctctagttt taccaacatt agaaacagca acgtcacagg atttactcaa tcggttgcat 720cctctagttt taccaacatt agaaacagca acgtcacagg atttactcaa tcggttgcat 720
caaacgatga aagacttaaa tgatccaaac ttgatagcca cagttcatta ttatggcttc 780caaacgatga aagacttaaa tgatccaaac ttgatagcca cagttcatta ttatggcttc 780
tggccattta gtgtaaatgt agcaggttac acccgttttg aggaggagac acaacaggat 840tggccatta gtgtaaatgt agcaggttac accccgttttg aggaggagac acaacaggat 840
atcatagaca cgtttaatcg tgttcataac acatttacag cgaatggcat tcctgtcgta 900atcatagaca cgtttaatcg tgttcataac acatttacag cgaatggcat tcctgtcgta 900
ttgggtgaat ttggcttgtt aggctttgat acaagtacag acgtcattca gcaaggtgag 960ttgggtgaat ttggcttgtt aggctttgat acaagtacag acgtcattca gcaaggtgag 960
aaattaaaat tttttgagtt tctcatccat catctcaatg aacgtgatgt aacccatatg 1020aaattaaaat tttttgagtt tctcatccat catctcaatg aacgtgatgt aacccatatg 1020
ttatgggaca acggtcagca tttaaatcga gaaacttatt catggtatga tcaagaattt 1080ttatgggaca acggtcagca tttaaatcga gaaacttatt catggtatga tcaagaattt 1080
cataacatgc taaaagcgag ctgggaagga cgttctgcta cagcagagtc taatttaatt 1140cataacatgc taaaagcgag ctgggaagga cgttctgcta cagcagagtc taatttaatt 1140
catgtgaggg acggggagcc aattagagac caagatatac agcttcattt acacggaaat 1200catgtgaggg acggggagcc aattagagac caagatatac agcttcattt acacggaaat 1200
gagctaacag gtttacaggt agatggagat tcgcttgctc taggggagga ttatgagcta 1260gagctaacag gtttacaggt agatggagat tcgcttgctc taggggga ttatgagcta 1260
gcgggagatg tgctaacgat gaaagcggac gccctaacag cactaatgac acctggagag 1320gcgggatg tgctaacgat gaaagcggac gccctaacag cactaatgac acctggagag 1320
ttagggacca atgccgtcat aacagctcaa tttaattctg gagctgactg gcattttcaa 1380ttagggacca atgccgtcat aacagctcaa tttaattctg gagctgactg gcattttcaa 1380
ctacagaatg tagacgaacc aactttagaa aatacggaag gctcaacttc gaatttcgca 1440ctacagaatg tagacgaacc aactttagaa aatacggaag gctcaacttc gaatttcgca 1440
atacctgctc attttaatgg ggatagtgtt gcgacgatgg aagctgttta tgcgaatggg 1500atacctgctc attttaatgg ggatagtgtt gcgacgatgg aagctgttta tgcgaatggg 1500
gaatttgccg gaccacaaaa ttggacatcg tttaaagaat tcggttatac cttttcacct 1560gaatttgccg gaccacaaaa ttggacatcg tttaaagaat tcggttatac cttttcacct 1560
gtttacgaca agggagaaat tgtcataaca gacgcattct ttaacgaggt acgcgatgat 1620gtttacgaca agggagaaat tgtcataaca gacgcattct ttaacgaggt acgcgatgat 1620
gacattcatt taacctttca tttttggagc ggggagatgg tggaatatac attaagtaaa 1680gacattcat taacctttca tttttggagc ggggagatgg tggaatatac attaagtaaa 1680
aatggaaacc atgttcaagg tagacgataa 1710aatggaaacc atgttcaagg tagacgataa 1710
<210>3<210>3
<211>37<211>37
<212>DNA<212>DNA
<213>人工序列<213> Artificial sequence
<220><220>
<223><223>
<400>3<400>3
cgcggatccg atgaaggtgc taagcaaaca gatattc 37cgcggatccg atgaaggtgc taagcaaaca gatattc 37
<210>4<210>4
<211>36<211>36
<212>DNA<212>DNA
<213>人工序列<213> Artificial sequence
<220><220>
<223><223>
<400>4<400>4
agcgtcgact tatcgtctac cttgaacatg gtttcc 36agcgtcgact tatcgtctac cttgaacatg gtttcc 36
Claims (16)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2010101000617A CN101845427B (en) | 2010-01-22 | 2010-01-22 | A kind of halophilic cellulase and its coding gene and application |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2010101000617A CN101845427B (en) | 2010-01-22 | 2010-01-22 | A kind of halophilic cellulase and its coding gene and application |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101845427A CN101845427A (en) | 2010-09-29 |
CN101845427B true CN101845427B (en) | 2012-05-30 |
Family
ID=42770246
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2010101000617A Expired - Fee Related CN101845427B (en) | 2010-01-22 | 2010-01-22 | A kind of halophilic cellulase and its coding gene and application |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101845427B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116042580B (en) * | 2022-10-10 | 2024-07-23 | 大理大学 | Psychrophilic and halophilic cellulase and application thereof |
-
2010
- 2010-01-22 CN CN2010101000617A patent/CN101845427B/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
CN101845427A (en) | 2010-09-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101805726B (en) | A kind of thermostable neutral xylanase and its coding gene and application | |
CN102021157B (en) | Pectinase and coding gene thereof | |
EP1297004A2 (en) | Thermostable cellulase | |
JP6340647B2 (en) | Super thermostable cellobiohydrolase | |
CN107164353A (en) | A kind of low-temperature alkali pectin lyase and its encoding gene and application | |
CN101775385B (en) | Heat-resisting beta-1, 3-1, 4-dextranase and encoding gene thereof | |
CN102864160A (en) | Xylanase gene as well as expression protein and application | |
CN105647888B (en) | Endochitinase and its encoding gene and its application in the production of chitobiose | |
CN101659948B (en) | A kind of thermostable xylanase and its coding gene and application | |
CN104877979B (en) | A kind of its encoding gene of the β mannonases of first genomic source and its expression | |
CN102719458B (en) | Gene encoding alkaline beta-glucosidase and application thereof | |
CN105754970B (en) | A kind of application of alkaline ' beta '-mannase and its encoding gene and they | |
CN105754981B (en) | A kind of application of alkaline pectase and its encoding gene and they | |
CN101845427B (en) | A kind of halophilic cellulase and its coding gene and application | |
CN107974442B (en) | Endoglucanase, its coding gene cel5A-h42 and its application | |
CN111269903A (en) | Xylanases, Genes and Their Applications | |
CN107974441B (en) | Endoglucanase, its coding gene cel5A-h37 and its application | |
CN102586208B (en) | Protein with β-N-acetylglucosaminidase activity, its coding gene and application | |
CN107236719B (en) | Thermostable cellobiohydrolase | |
CN107603965B (en) | Acid amylase mutants with improved thermal stability and preparation methods and applications thereof | |
CN107828763A (en) | Endoglucanase, its encoding gene cel5A h47 and its application | |
CN111484988B (en) | Bifunctional enzyme with xylanase and feruloyl esterase activities, and coding gene and application thereof | |
CN108456667B (en) | A kind of xylanase and its coding gene and their application | |
CN105754980B (en) | A kind of alkaline pectinase and its encoding gene and their application | |
JP5062730B2 (en) | Improved thermostable cellulase |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20120530 Termination date: 20160122 |
|
EXPY | Termination of patent right or utility model |