CN101841945A - Electromagnetic induction heating device - Google Patents
Electromagnetic induction heating device Download PDFInfo
- Publication number
- CN101841945A CN101841945A CN201010113132A CN201010113132A CN101841945A CN 101841945 A CN101841945 A CN 101841945A CN 201010113132 A CN201010113132 A CN 201010113132A CN 201010113132 A CN201010113132 A CN 201010113132A CN 101841945 A CN101841945 A CN 101841945A
- Authority
- CN
- China
- Prior art keywords
- circuit
- resonance
- electromagnetic induction
- capacitor
- switch element
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Induction Heating Cooking Devices (AREA)
Abstract
本发明的课题是提供一种电磁感应加热装置,其能够防止在同时驱动多个逆变器的场合的干涉音的发生,控制各个的输入电力。本发明的电磁感应加热装置,具有把直流电压变换为高频交流电压的逆变器电路,该逆变器电路包含开关电路和共振电路,共振电路包含加热线圈和在该加热线圈上串联的两个共振电容器,具有在所述共振电容器之一上并联连接的共振点可变电路。
An object of the present invention is to provide an electromagnetic induction heating device capable of preventing the generation of interference noise when a plurality of inverters are driven simultaneously and controlling each input power. The electromagnetic induction heating device of the present invention has an inverter circuit for converting DC voltage into high-frequency AC voltage. The inverter circuit includes a switch circuit and a resonant circuit. a resonant capacitor having a resonant point variable circuit connected in parallel to one of the resonant capacitors.
Description
技术领域technical field
本发明涉及具有多个加热部的电磁感应加热装置。The present invention relates to an electromagnetic induction heating device having a plurality of heating parts.
背景技术Background technique
近年来,逐渐广泛地使用不用火加热锅等被加热物的逆变器方式的电磁感应加热装置。电磁感应加热装置,在加热线圈中流过高频电流,使在接近线圈配置的用铁或不锈钢等材质制作的被加热物中发生涡流,使其通过被加热物自身的电阻发热。因为能够控制被加热物的温度,安全性高,所以已被视之为新的热源。In recent years, an inverter-type electromagnetic induction heating device that does not heat an object to be heated, such as a pan, has been widely used. In the electromagnetic induction heating device, a high-frequency current flows through the heating coil, so that eddy currents are generated in the heated object made of iron or stainless steel that is placed close to the coil, so that it generates heat through the resistance of the heated object itself. Because it can control the temperature of the object to be heated and has high safety, it has been regarded as a new heat source.
历来,在被纳入到系统厨房中的电烹调器中,已经使用把铠装加热器、平板加热器、卤素加热器等的电阻作为热源的器具,但是近年来,正在代之为把一部分置换成感应加热烹调器的器具、或者把两个灶以上做成感应加热烹调器的器具。作为使电磁感应加热装置的输入电压变化进行被加热物的温度控制的方法,一般的是使逆变器的驱动频率变化的方法。但是在具有多个加热线圈、分别加热不同的被加热物的场合,有由逆变器的差频引起从被加热物发生干涉音这样的问题。Conventionally, electric cookers incorporated into system kitchens have used appliances using resistances such as armored heaters, flat-panel heaters, and halogen heaters as heat sources, but in recent years, some of them have been replaced with Appliances for induction heating cookers, or appliances for making induction heating cookers with two or more stoves. As a method of changing the input voltage of the electromagnetic induction heating device to control the temperature of the object to be heated, a method of changing the drive frequency of the inverter is generally used. However, when a plurality of heating coils are provided and different objects to be heated are heated separately, there is a problem that interference noise is generated from the object to be heated due to the difference frequency of the inverter.
作为解决这样的问题的现有例子,有在专利文献1中公开那样的感应加热用逆变器。该逆变器用开关元件在一定驱动频率旁路共振的共振电容器的一部分,使导通期间变化来控制输入电力。由此,即使使多个逆变器动作也能够用同一驱动频率改变输入电力,因此能够防止干涉音的发生。As a conventional example for solving such a problem, there is an inverter for induction heating as disclosed in
【专利文献1】特开2002-8840号公报[Patent Document 1] JP-A-2002-8840
如上述,在专利文献1中,能够防止干涉音的发生,但是因为大的共振电流流过旁路用的开关元件,所以有发生的损失变大的问题。As described above, in
发明内容Contents of the invention
本发明的课题是提供一种电磁感应加热装置,其能够防止在同时驱动多个逆变器的场合的干涉音的发生,抑制旁路用的开关元件发生损失。An object of the present invention is to provide an electromagnetic induction heating device capable of preventing generation of interference noise when a plurality of inverters are simultaneously driven, and suppressing loss of bypass switching elements.
上述课题通过下述这样一种电磁感应加热装置来解决,该电磁感应加热装置,具有直流电源、把从该直流电源供给的直流电压变换为高频交流电压的逆变器电路、和控制电路,其中,所述逆变器电路具有开关电路、共振电路、和共振点可变电路;所述开关电路通过在所述直流电源的两端子上连接的、上臂的功率半导体开关元件和下臂的功率半导体开关元件的串联形成;串联加热线圈和第一共振电容器和第二共振电容器而形成的所述共振电路,一端连接在所述开关电路的上臂和下臂的连接点上,另一端连接在所述直流电源的某一个端子上;与所述第二共振电容器并联的所述共振点可变电路,通过第三共振电容器和第一开关元件串联、和与所述第一开关元件反向并联的第一二极管形成;通过由所述控制电路控制所述第一开关元件的导通期间使所述共振电路的共振频率可变。The above-mentioned problems are solved by an electromagnetic induction heating device having a DC power supply, an inverter circuit for converting a DC voltage supplied from the DC power supply into a high-frequency AC voltage, and a control circuit, Wherein, the inverter circuit has a switch circuit, a resonant circuit, and a variable resonance point circuit; The series connection of semiconductor switching elements is formed; the resonance circuit formed by connecting the heating coil and the first resonance capacitor and the second resonance capacitor in series, one end is connected to the connection point of the upper arm and the lower arm of the switching circuit, and the other end is connected to the On a certain terminal of the DC power supply; the resonance point variable circuit connected in parallel with the second resonant capacitor, connected in series with the first switch element through the third resonant capacitor, and antiparallel connected with the first switch element A first diode is formed; and the resonance frequency of the resonance circuit is variable by controlling the conduction period of the first switching element by the control circuit.
另外,上述课题通过下述这样一种用于感应加热被加热物的电磁感应加热装置来解决,其具有:从正电极和负电极供给直流电压的电源电路;连接在该电源电路的正电极和负电极之间的、把直流电压变换为交流电压后输出的开关电路;连接在该开关电路的输出端子和所述电源电路的端子之间、用加热线圈和第一共振电容器和第二共振电容器的串联连接构成的共振电路;以及与所述第二共振电容器并联、使所述共振电路的共振点可变的共振点可变电路。In addition, the above-mentioned problems are solved by an electromagnetic induction heating device for inductively heating an object to be heated, which has: a power supply circuit for supplying a DC voltage from a positive electrode and a negative electrode; Between the negative electrodes, a switching circuit that converts the DC voltage into an AC voltage and then outputs it; is connected between the output terminal of the switching circuit and the terminal of the power supply circuit, and uses a heating coil and a first resonant capacitor and a second resonant capacitor and a resonant point variable circuit connected in parallel with the second resonant capacitor to change the resonant point of the resonant circuit.
根据本发明,通过在共振电容器上配备共振点可变电路,使共振频率可变,能够将共振电路的负荷特性维持为电感性,通过Duty控制能够控制输入电力,能够抑制开关元件的损失发生。即使在同时驱动多个逆变器的场合,因为能够使全部逆变器的驱动频率相同,所以能够提供不发生干涉音的电磁感应加热装置。According to the present invention, by providing the resonant point variable circuit on the resonant capacitor, the resonant frequency can be varied, the load characteristic of the resonant circuit can be maintained as inductive, the input power can be controlled by duty control, and the loss of switching elements can be suppressed. Even when a plurality of inverters are driven at the same time, since all the inverters can be driven at the same frequency, it is possible to provide an electromagnetic induction heating device that does not generate interference noise.
附图说明Description of drawings
图1是实施例1的电磁感应加热装置的框图。FIG. 1 is a block diagram of the electromagnetic induction heating device of the first embodiment.
图2是实施例1的电磁感应加热装置的电路的变形例。Fig. 2 is a modified example of the electric circuit of the electromagnetic induction heating device of the first embodiment.
图3是实施例1的电磁感应加热装置的电路的变形例。Fig. 3 is a modified example of the electric circuit of the electromagnetic induction heating device of the first embodiment.
图4是实施例1的电磁感应加热装置的电路的变形例。Fig. 4 is a modified example of the electric circuit of the electromagnetic induction heating device of the first embodiment.
图5是实施例2的电磁感应加热装置的电路结构图。5 is a circuit configuration diagram of the electromagnetic induction heating device of the second embodiment.
图6是实施例2的动作说明图。FIG. 6 is an explanatory view of the operation of the second embodiment.
图7是实施例2的控制方法的说明图。FIG. 7 is an explanatory diagram of a control method of the second embodiment.
图8是实施例2的控制方法的说明图。FIG. 8 is an explanatory diagram of a control method of the second embodiment.
图9是实施例2的控制方法的说明图。FIG. 9 is an explanatory diagram of a control method of the second embodiment.
图10是实施例3的电磁感应加热装置的电路结构图。Fig. 10 is a circuit configuration diagram of the electromagnetic induction heating device of the third embodiment.
图11是实施例4的电磁感应加热装置的电路结构图。Fig. 11 is a circuit configuration diagram of the electromagnetic induction heating device of the fourth embodiment.
图12是实施例5的电磁感应加热装置的电路的一部分。Fig. 12 is a part of the circuit of the electromagnetic induction heating device of the fifth embodiment.
图13是实施例6的电磁感应加热装置的电路的一部分。Fig. 13 is a part of the circuit of the electromagnetic induction heating device of the sixth embodiment.
图14是表示各被加热物的电阻值和对于铁的电感比率的图。Fig. 14 is a graph showing the resistance value of each object to be heated and the inductance ratio to iron.
图15是实施例2的动作说明图的变形例。Fig. 15 is a modified example of the operation explanatory diagram of the second embodiment.
〖符号说明〗〖Symbol Description〗
1商用电源1 commercial power supply
2整流电路2 rectifier circuit
3电感器3 inductors
4电容器4 capacitors
5加热线圈5 heating coils
6、7、8共振电容器6, 7, 8 resonance capacitors
10电源电路10 power circuit
11、12、13、14、15、16IGBT11, 12, 13, 14, 15, 16IGBTs
20开关电路20 switch circuit
21、22、23、25二极管21, 22, 23, 25 diodes
30共振点可变电路30 resonance point variable circuit
31、32减振电容器31, 32 Damping capacitors
60共振电路60 resonant circuit
61、62、63驱动电路61, 62, 63 driving circuit
70控制电路70 control circuit
71、73电流检测元件71, 73 current detection element
72共振电流检测电路72 Resonant current detection circuit
74输入电流检测电路74 input current detection circuit
75输入电力设定部75 input power setting section
100第一逆变器100 first inverter
200第二逆变器200 second inverter
300第三逆变器300 third inverter
具体实施方式Detailed ways
以下使用附图说明本发明的实施例。Embodiments of the present invention will be described below using the drawings.
【实施例1】【Example 1】
实施例1的电磁感应加热装置,具有把直流电压变换为高频交流电压的逆变器电路,该逆变器电路包含开关电路和共振电路,共振电路包含加热线圈和与该加热线圈串联的两个共振电容器,在所述直流电源的两端子(p/o)中的某一方和开关电路的输出端子(t)之间连接所述共振电路,该电磁感应加热装置还具有在所述共振电容器的一个上并联的共振点可变电路。The electromagnetic induction heating device of
图1表示实施例1的电磁感应加热装置的框图。如图1所示,本实施例的电磁感应加热装置,具有第一逆变器100、第二逆变器200、第三逆变器300。因为各逆变器能够加热被加热物,所以本实施例的电磁感应加热装置能够同时加热多个被加热物。在本实施例中,因为各个逆变器的结构相同,所以以第一逆变器100为代表进行说明。FIG. 1 shows a block diagram of the electromagnetic induction heating device of the first embodiment. As shown in FIG. 1 , the electromagnetic induction heating device of this embodiment has a
在图1中,第一逆变器100由开关电路20、共振电路60、共振点可变电路30构成。开关电路20在电源电路10的正电极p点和负电极o点之间连接,把从电源电路10供给的直流电压变换为高频交流电压后施加在共振电路60上。共振电路60由串联连接的加热线圈5共振电容器6、7构成,由开关电路20向加热线圈5供给高频电力。共振点可变电路30与共振电容器7并联,通过旁路流过共振电容器7的电流,控制共振电路60的共振点。In FIG. 1 , a
开关电路20通过驱动电路61驱动,共振点可变电路30通过驱动电路62驱动。驱动电路61、62由控制电路70控制。输入电力设定部75,是用于使用者设定输入电力(火力)的接口,根据设定向控制电路70发送信号。控制电路70根据来自输入电力设定部75的信号控制开关电路20以及共振点可变电路30。The
一般,在共振型的逆变器中,通过设定开关电路的驱动频率fs>共振电路的共振频率fr,使共振负荷的特性为电感性,控制使流入共振电路的电流对于开关电路的输出电压成为滞后的相位。由此抑制开关电路中的损失增加。亦即,在图1中,通过控制使流入共振电路60的电流IL5对于作为开关电路20和共振电路60的连接点的输出端子t点的电压成为滞后相位,能够抑制开关电路20的损失。Generally, in a resonant type inverter, by setting the driving frequency fs of the switching circuit > the resonant frequency fr of the resonant circuit, the characteristic of the resonant load is made inductive, and the current flowing into the resonant circuit is controlled to the output voltage of the switching circuit. become a lagging phase. An increase in loss in the switching circuit is thereby suppressed. That is, in FIG. 1 , the loss of the switching
但是,在固定了驱动频率fs的状态下,当使开关电路20的导通期间变化来进行电力控制时,也有时在开关电路20的导通期间电流IL5的极性反转,移向电流IL5成为比开关电路20的输出电压超前的相位的相位超前方式。因为相位超前方式会引起开关电路20的损失增加,所以在共振型的逆变器中是必须避免的方式。However, when the power control is performed by changing the on-period of the
在本实施例中,根据被加热物的材质或者形状、厚度、大小、或者设定的输入电力(火力)的大小来变化共振点可变电路30的导通期间,控制共振电路60的共振点,把共振电路60的负荷特性维持为电感性。亦即,通过控制共振频率fr,使其总满足开关电路20的驱动频率fs>共振电路60的共振频率fr,能够避免相位超前方式,避免开关电路20的损失增加。例如,在被加热物是铁等的磁性体中,在大电力时,停止共振点可变电路30的导通进行加热。在控制电力的场合,通过延长共振点可变电路30的导通期间减低电力。图14表示各被加热物的电阻值对铁的电感比率。在非磁性不锈钢等的非磁性体中,电感值比铁低到2/3左右。亦即共振点由于电感的降低会升高。因此,变成了电容性(开关电路的驱动频率fs<共振电路的共振频率fr)。因此,即使在大电力时通过使共振点可变电路30成为导通状态,也把负荷特性维持为电感性。在控制电力的场合,和铁同样,通过延长振点可变电路的导通期间,可以降低电力。In this embodiment, the conduction period of the resonant point
由此,第一逆变器100使驱动频率fs一定,使开关电路20的导通期间变化,即使控制输入电力也能够避免开关电路20的损失增加。这样,共振点可变电路30,起作为用于以一定的驱动频率fs实现动作的辅助开关电路的作用。Thus, the
接着使用图2~图4说明图1的实施例的变形例。在图2~图4的变形例中,因为共振电路60和共振点可变电路30的结构、动作也和图1中说明的同样,所以省略详细的说明。如上所述,在图1中,在电源电路10的负电极o点上连接共振电路60的o点,同时在电源电路10的负电极o点上连接共振点可变电路30的o点。如图2所示,即使在电源电路10的负电极o点上连接共振电路60的o点、同时在电源电路10的正电极p点上连接共振点可变电路30的o点也能得到同样的效果。另外,如图3所示,即使在电源电路10的正电极p点上连接共振电路60以及共振点可变电路30的o点也能得到同样的效果。另外,如图4所示,即使在电源电路10的正电极p点上连接共振电路60的o点、同时在电源电路10的负电极o点上连接共振点可变电路30的o点也能得到同样的效果。Next, a modified example of the embodiment shown in FIG. 1 will be described using FIGS. 2 to 4 . In the modified examples of FIGS. 2 to 4 , since the structures and operations of the
再者,通过使共振电容器6的容量做成比共振电容器7的容量小,能够减低在共振电容器7上发生的共振电压,减小施加在共振点可变电路上的电压。亦即,能够减低共振点可变电路30中的损失发生,提高耐压性能。Furthermore, by making the capacity of the
【实施例2】使用图5说明使实施例1的电磁感应加热装置的结构和动作更加具体的实施例2。另外,对实施例1中已说明的结构附以相同的符号,省略说明。[Embodiment 2]
在图5中,电源电路10由整流来自商用电源1的交流电压的整流电路2和用电感器3以及电容器4构成的滤波电路组成,把交流电压变换为直流电压,向第一逆变器100供给电力。In Fig. 5, the
在电源电路10内的电容器4的正电极p点和负电极o点之间连接开关电路20。开关电路20,串联连接作为功率半导体开关元件的IGBT11和IGBT12而构成。在IGBT11、IGBT12上分别反方向并联二极管21、22。以下,把用IGBT11和二极管21构成的电路称为上臂,把用IGBT12和二极管22构成的电路称为下臂。另外,在IGBT11、IGBT12上分别并联减振电容器31、32。通过关断IGBT11或者IGBT12时的关断电流对减振电容器31、32充电或者放电。减振电容器31、32的容量,因为比IGBT11、12的集电极和发射极之间的输出电容大很多,所以可减低在关断时施加在两IGBT上的电压的变化,可抑制关断损失。A
在作为IGBT11、12的连接点的输出端子t点和电源电路10的负电极o点之间连接共振电路60。共振电路60由串联的加热线圈5和共振电容器6、7构成。A
在共振电路60内的共振电容器7上并联的共振点可变电路30,通过共振电容器8和IGBT13的串联以及与IGBT13反向并联的二极管23构成。这里,把从输出端子t点朝向加热线圈5流动的方向作为共振电流IL5的正方向。The resonant point
电流检测元件71检测流入共振电路60的电流。共振电流检测电路72把电流检测元件71的输出信号电平变换为适合控制电路70的输入电平的信号。电流检测元件73检测从商用电源1输入的电流。输入电流检测电路74把电流检测元件73的输出信号电平变换为适合控制电路70的输入电平的信号。控制电路70从用电流检测电路74检出的输入电流和用共振电流检测电路72检出的共振电流的关系判断被加热物的材质或状态,进行加热动作的开始或者停止。被加热物的判别,区别为磁性体和非磁性体。作为区别方法,在加热前用低电力(300W左右)进行通电。检测其时的共振电流IL5或者IGBT11、12的电流值,根据该电流值,判别被加热物的材质。在电流值小的场合,判别为是铁等的磁性体的被加热物;在电流值大的场合,判别为是非磁性不锈钢或者铝、铜这样的非磁性体的被加热物。图14表示频率20kHz下的各被加热物的电阻值。如图14所示,非磁性不锈钢的电阻值为铁的1/3,铝的电阻值为铁的1/20,铜的电阻值约为铁的1/25。The
另外,控制电路70,根据来自输入电力设定部75的信号,通过驱动电路61、62设定开关电路20的IGBT11、12以及IGBT13的导通期间,控制输入电力。为防止过电流或者过电压的发生,需要以低的电力而且短的时间来实施材质的检测。在本实施例中在材质检测的初期阶段,通过使共振点可变电路30成为导通状态,能够增大共振电路的电感,能够防止过电流或者过电压的发生以及输入电力的激增。In addition, the
另外,如图5所示,把流入开关电路20的上臂的电流设为Ic1,流入下臂的电流设为Ic2,流入共振点可变电路30的电流设为Ic3,共振电流设为IL5。把上臂的IGBT11的集电极、发射极之间的电压设为Vc1,下臂的IGBT12的集电极、发射极之间的电压设为Vc2,共振点可变电路30的IGBT13的集电极、发射极之间的电压设为Vc3,共振电容器7的共振电压设为Vc4,共振电容器8的共振电压设为Vc5,逆变器的电源电压设为Vp。In addition, as shown in FIG. 5 , let the current flowing into the upper arm of the
按以上的结构,说明在降低铁等的磁性被加热物的输入电力的场合、或者在降低铝锅等非磁性被加热物的加热输入电力的场合的动作。首先,当共振点可变电路30流入电流时,因为在共振电容器7上并联共振电容器8,所以共振电路60的电感增加同时共振频率fr降低,可以降低输入电力。下面表示共振频率的计算式(式1)。如(式1)所示,可知随着C的大小增大共振频率减小。With the above configuration, the operation when reducing the input power of a magnetic object to be heated such as iron, or when reducing the heating input power of a nonmagnetic object to be heated such as an aluminum pan will be described. First, when a current flows into the resonance point
【数学式1】【Mathematical formula 1】
fr:共振频率,L:搭载了被加热物时的加热线圈的电感,fr: resonance frequency, L: inductance of the heating coil when the object to be heated is mounted,
C:共振电容器6、7和共振点可变电路30的合成容量C: combined capacity of
为进一步降低输入电力,在缩短上臂的导通期间的同时延长下臂的导通期间。此时,在下臂的导通期间内共振电流IL5的流动方向容易从负反转为正,但是如上所述,因为共振频率fr降低,所以开关电路的驱动频率和共振频率fr的差增大。因此能够防止共振电流IL5的极性从负反转。In order to further reduce the input power, the conduction period of the lower arm is extended while the conduction period of the upper arm is shortened. At this time, the flow direction of the resonance current IL5 is easily reversed from negative to positive during the conduction period of the lower arm. However, since the resonance frequency fr decreases as described above, the difference between the driving frequency of the switching circuit and the resonance frequency fr increases. Therefore, it is possible to prevent the polarity of the resonance current IL5 from being reversed from negative.
接着使用图6更详细地说明通过共振点可变电路30的导通期间的控制降低输入电力时的动作。另外,如图6所示,用ts表示IGBT11~13的控制的一周期(驱动周期),分别用t1、t2、t3表示IGBT11、12、13的导通期间。另外分成方式1~5来表示共振电流IL5的一周期。Next, the operation when the input power is reduced by controlling the on-period of the resonance point
(方式1)(mode 1)
如图6所示,在方式1中,IGBT11、12、13的驱动信号分别成为导通、关断、导通,IGBT11、13导通。当加热线圈5的积蓄能量成为零时共振电流IL5的极性从负变为正,共振电流IL5流过IGBT11、加热线圈5、共振电容器6、7的路径和IGBT11、加热线圈5、共振电容器6、8、IGBT13的路径。亦即,方式1的共振特性由IGBT11、加热线圈5、共振电容器6、7、8决定。另外,在方式1中,通过共振电流IL5使共振电容器6、7、8放电。As shown in FIG. 6 , in
(方式2)(method 2)
接着说明继方式1之后的方式2。在方式2中,使IGBT11、12、13的驱动信号分别成为导通、关断、关断,仅使IGBT11导通。亦即,在方式2中,因为不使IGBT13导通,所以Ic3被切断。如图6所示,在方式2中共振电流IL5有正的极性,该电流流过IGBT11、加热线圈5、共振电容器6、7的路径。亦即,方式2的共振特性由IGBT11、加热线圈5、共振电容器6、7决定。Next,
(方式3)(mode 3)
接着说明继方式2之后的方式3。在方式3中,首先使IGBT11、12、13的驱动信号全部关断,不使全部IGBT导通。如图6所示,在方式3下共振电流IL5有正的极性,共振电流IL5持续流过减振电容器31、加热线圈5、共振电容器6、7的路径和减振电容器32、加热线圈5、共振电容器6、7的路径,使上臂的减振电容器31充电,使下臂的减振电容器32放电。因此,IGBT11的集电极、发射极之间的电压Vc1慢慢增加,IGBT12的集电极、发射极之间的电压Vc2亦即输出电压慢慢减小。此时的共振特性由减振电容器31、32、加热线圈5、共振电容器6、7决定。Next,
其后,当Vc1的电压达到逆变器的电源电压Vp、在下臂的二极管22上施加正方向的电压时,共振电流IL5作为环流电流流过加热线圈5、共振电容器6、7、二极管22的路径。此时,当分别使IGBT11、12、13的驱动电流成为关断、导通、关断,仅使IGBT12导通时,只要共振电流IL5的极性不变,共振电流IL5就持续流过二极管22。Thereafter, when the voltage of Vc1 reaches the power supply voltage Vp of the inverter and a forward voltage is applied to the
(方式4)(mode 4)
接着说明继方式3之后的方式4。在方式4中,首先使IGBT11、12、13的驱动信号分别成为关断、导通、关断,仅使IGBT12导通。当加热线圈5的积蓄能量成为零、共振电流IL%的极性从正变为负时,共振电流IL5流过共振电容器6、7、加热线圈5、IGBT12的路径。亦即,方式4的共振特性由IGBT12、加热线圈5、共振电容器6、7决定。如图6所示,因为在Vc5上施加负的电压,所以在共振点可变电路30中不流过负方向的电流。另外,在方式4中,通过IL5使共振电容器6、7放电。Next,
(方式5)(mode 5)
接着说明继方式4之后的方式5。在方式5中,首先使IGBT11、12、13的驱动信号全部成为关断,不使全部IGBT导通。如图6所示,在方式5下共振电流IL5有负的极性,共振电流IL5持续流过加热线圈5、减振电容器32、共振电容器6、7的路径和加热线圈5、减振电容器31、电容器4、共振电容器6、7的路径,使上臂的减振电容器31放电,使下臂的减振电容器32充电。因此,IGBT11的集电极、发射极之间的电压Vc1慢慢减小,IGBT12的集电极、发射极之间的电压Vc2亦即输出电压慢慢增加。此时的共振特性由减振电容器31、32、加热线圈5、共振电容器6、7决定。Next,
其后,当Vc2的电压达到逆变器的电源电压Vp、在上臂的二极管21上施加正方向的电压时,共振电流IL5作为环流电流流过加热线圈5、二极管21、电容器4、共振电容器6、7的路径。此时,在共振电容器8上充电负的电压,当共振电容器7的负的充电电压超过共振电容器8的充电电压时,在二极管23上施加正方向电压,共振电流IL5分流,流过二极管23、共振电容器8、6、加热线圈5、二极管21、电容器4的路径和共振电容器7、6、加热线圈5、二极管21、电容器4的路径。Thereafter, when the voltage of Vc2 reaches the power supply voltage Vp of the inverter and a forward voltage is applied to the
此时,当使IGBT11、12、13的驱动信号分别成为导通、关断、导通,使IGBT11和13一起导通时,只要共振电流IL5的极性不变,共振电流IL5就持续流过二极管21。At this time, when the driving signals of IGBT11, 12, and 13 are respectively turned on, off, and turned on, and IGBT11 and IGBT13 are turned on together, the resonance current IL5 will continue to flow as long as the polarity of the resonance current IL5 remains unchanged.
如上所述,在共振电流IL5的一周期期间进行方式1~5的动作,以后,重复该动作。如从方式2以及方式4的说明可知,在IGBT11以及12中电流Ic1以及Ic2通电的状态下IGBT11、12被关断。由此Vc2的电压0V和共振电流IL5的0A的相位差总在电流滞后相位下动作。这样本实施例通过与共振电容器并联设置共振点可变电路30,使负荷的共振特性变化,能够总是在电流滞后相位下动作,能够避免相位超前方式。As described above, the operations of
接着,作为更加减低输入电力的方法,使IGBT11的导通期间缩短,使IGBT12的导通期间延长。使用图15详细说明此时的逆变器的动作。如图15所示,用ts表示IGBT11~13的一周期,分别用t1、t2表示IGBT11、12的导通期间。IGBT13为常导通状态。另外,把共振电流IL5的一周期分成为方式1~4来表示。Next, as a method of further reducing the input power, the on-period of IGBT11 is shortened, and the on-period of IGBT12 is extended. The operation of the inverter at this time will be described in detail using FIG. 15 . As shown in FIG. 15 , one cycle of the
(方式1)(mode 1)
如图15所示,在方式1中,IGBT11、12、13的驱动信号分别成为导通、关断、导通,IGBT11、13导通。当加热线圈5的积蓄能量成为零时共振电流IL5的极性从负变为正,共振电流IL5流过IGBT11、加热线圈5、共振电容器6、7的路径和IGBT11、加热线圈5、共振电容器6、8、IGBT13的路径。亦即,方式1的共振特性由IGBT11、加热线圈5、共振电容器6、7、8决定。另外,在方式1中共振电容器6、7、8通过共振电流IL5放电。As shown in FIG. 15 , in
(方式2)(method 2)
接着说明继方式1之后的方式2。在方式2中,使IGBT11、12、13的驱动信号分别成为关断、关断、导通,仅使IGBT13导通。如图15所示,在方式2下共振电流IL5有正的极性,共振电流IL5持续流过减振电容器31、加热线圈5、共振电容器6、7的路径和减振电容器31、加热线圈5、共振电容器8、IGBT13的路径和减振电容器32、加热线圈5、共振电容器6、7的路径和减振电容器32、加热线圈5、共振电容器8、IGBT13的路径,上臂的减振电容器31充电,下臂的减振电容器32放电。因此,IGBT11的集电极、发射极之间的电压Vc1慢慢增加,IGBT12的集电极、发射极之间的电压Vc2亦即输出电压慢慢减小。此时的共振特性由减振电容器31、32、加热线圈5、共振电容器6、7、8决定。Next,
其后,当Vc1的电压达到逆变器的电源电压Vp、在下臂的二极管22上施加正方向的电压时,共振电流IL5作为环流电流流过加热线圈5、共振电容器6、7、二极管22的路径和加热线圈5、共振电容器8、二极管22的路径。此时,即使分别使IGBT11、12、13的驱动电流成为关断、导通、导通,使IGBT12导通,只要共振电流IL5的极性不变,共振电流IL5就持续流过二极管22。Thereafter, when the voltage of Vc1 reaches the power supply voltage Vp of the inverter and a forward voltage is applied to the
(方式3)(mode 3)
接着说明继方式2之后的方式3。在方式3中,分别使IGBT11、12、13的驱动信号成为关断、导通、导通,使IGBT12、13导通。当加热线圈5的积蓄能量成为零、共振电流IL5的极性从正变为负时,共振电流IL5流过共振电容器7、6、加热线圈5、IGBT12的路径和共振电容器8、6、加热线圈5、IGBT12、二极管23的路径。亦即,方式4的共振特性由IGBT12、加热线圈5、共振电容器6、7、8决定。另外,共振电容器6、7、8通过IL5放电。Next,
(方式4)(mode 4)
接着说明继方式3之后的方式4。在方式5中,首先使IGBT11、12、13的驱动信号成为关断、关断、导通,仅使IGBT13导通。如图15所示,在方式4下共振电流IL5有负的极性,共振电流IL5持续流过加热线圈5、减振电容器32、共振电容器7、6的路径和加热线圈5、减振电容器32、二极管23、共振电容器8、6的路径和加热线圈5、减振电容器31、电容器4、共振电容器7、6的路径和加热线圈5、减振电容器31、电容器4、二极管23、共振电容器8、6的路径,使上臂的减振电容器31放电,使下臂的减振电容器32充电。因此,IGBT11的集电极、发射极之间的电压Vc1慢慢减小,IGBT12的集电极、发射极之间的电压Vc2亦即输出电压慢慢增加。此时的共振特性由减振电容器31、32、加热线圈5、共振电容器6、7、8决定。Next,
其后,当Vc2的电压达到逆变器的电源电压Vp、在上臂的二极管21上施加正方向的电压时,共振电流IL5作为环流电流流过加热线圈5、二极管21、电容器4、共振电容器7、6的路径。此时,向共振电容器8充电负的电压,当共振电容器7的负的充电电压超过共振电容器8充电电压时,在二极管23上施加正方向电压,共振电流IL5分流,流过二极管23、共振电容器8、6、加热线圈5、二极管21、电容器4的路径和共振电容器7、6、加热线圈5、二极管21、电容器4的路径。Thereafter, when the voltage of Vc2 reaches the power supply voltage Vp of the inverter and a forward voltage is applied to the
此时,当分别使IGBT11、12、13的驱动信号成为导通、关断、导通、使IGBT11和13一起导通时,只要共振电流IL5的极性不变,共振电流IL5就持续流过二极管21。At this time, when the driving signals of IGBT11, 12, and 13 are respectively turned on, off, and turned on, and IGBT11 and 13 are turned on together, the resonance current IL5 will continue to flow as long as the polarity of the resonance current IL5 remains unchanged.
如上所述,在共振电流IL5的一周期期间进行方式1~4的动作,以后,重复该动作。在共振点可变电路30常导通状态下,如从方式1、4的说明可知,即使延长IGBT12的导通期间t2,在二极管21或者22导通的期间内共振电流IL5也从负变化为正。因此,共振电流IL5不会从负向正反转极性,负荷特性保持电感性,能够避免相位超前方式。As described above, the operations of
由此,通过使开关电路20的期间变化,能够控制输入电力。Thus, by changing the period of the switching
另外,流入共振电容器8的电流,由共振电容器7和共振电容器8的容量比决定。因为在本实施例中做成了振电容器7的容量≥共振电容器8的容量,所以流入共振电容器8的电流在共振电容器7以下。由此,能够减低IGBT13中的损失发生,提高IGBT13的耐电流性能。In addition, the current flowing into the
另外,在共振电容器7中发生的电压(Vc4),由共振电容器6的容量和共振电容器8的容量决定。因此,为减低在共振电容器7中发生的电压,通过使共振电容器7的容量≥共振电容器6的容量,使共振电容器7的发生电压成为1/2以下。由此,在能够减低IGBT13中的损失发生、提高IGBT13的耐电压性能的同时,能够宽广地设定共振点可变范围。In addition, the voltage ( Vc4 ) generated in
下面说明共振电容器8的充电电压。用式2表示共振电容器8(Vc5)的电压的关系式。Next, the charging voltage of the
【数学式2】【Mathematical formula 2】
C7:共振电容器7的容量,C8:共振电容器8的容量C7: capacity of
在本实施例中,因为C8<C7,所以Vc5的电压被充电到比C7低的电压。在IGBT13上施加Vc4和Vc5的合计电压,但是因为给Vc5充电的电压低,所以对于IGBT13的元件耐压的增大没有影响。In this embodiment, since C8<C7, the voltage of Vc5 is charged to a voltage lower than that of C7. The total voltage of Vc4 and Vc5 is applied to IGBT13, but since the voltage charged to Vc5 is low, it has no influence on the increase of the element withstand voltage of IGBT13.
接着使用图7说明输入电力的控制方法。如已在图6中说明的那样,用t1、t2、t3表示IGBT11、12、13的导通期间,用ts表示驱动周期。图7表示用逆变器驱动频率21kHz高输出加热铁制的被加热物和非磁性不锈钢的场合的控制条件的一例,横轴表示IGBT13的导通期间IGBT13的Duty(t3/ts),纵轴表示输入电压Pin。这里,说明t1、t2不变,而使t3变化来控制输入电压Pin的场合。Next, a method of controlling input power will be described using FIG. 7 . As already described in FIG. 6 , the conduction periods of the
如图7所示,在铁制的被加热物的场合,在IGBT13的Duty=0(IGBT13常关断状态)时成为最大的输入电力。当Duty增大时,输入电力Pin减小,在Duty=约0.5以上时输入电力Pin大体恒定。另一方面,在非磁性不锈钢中,在IGBT13的Duty=0.45时成为最大电力的3kW,通过进一步增加Duty,输入电力减小,在Duty=0.7以上时大体恒定。由此可知,通过增大IGBT13的Duty,能够减小输入电力Pin。As shown in FIG. 7 , in the case of an iron-made object to be heated, the maximum input power is obtained when the duty of IGBT13 is 0 (the IGBT13 is in a normally-off state). When Duty increases, the input power Pin decreases, and when Duty=about 0.5 or more, the input power Pin is substantially constant. On the other hand, in non-magnetic stainless steel, the maximum power is 3 kW at Duty=0.45 of IGBT13, and the input power decreases by further increasing Duty, and becomes almost constant at Duty=0.7 or more. From this, it can be seen that the input power Pin can be reduced by increasing the Duty of the
下面说明通过控制IGBT13的Duty能够控制输入电力的理由。当导通IGBT13时,因为共振电容器7和共振电容器8并联,因此共振电容器6、7、8的合成共振电容器容量变大,由加热线圈5和合成共振电容器决定的共振频率降低。图8表示加热铁制的被加热物时使IGBT13的Duty变化的场合的共振特性图表。如图8所示,当使t3延长、增大IGBT13的Duty时,共振频率降低。因此,例如在把逆变器驱动频率固定为21kHz的场合,在Duty=0时输入电力约为3kW,Duty=0.35时输入电力约为1.5kW,Duty=0.5时输入电力约为0.5kW。通过这样控制t3的导通时间(IGBT13的Duty),就能够控制输入电力。Next, the reason why the input electric power can be controlled by controlling the duty of the
如上所述,当IGBT13的Duty成为约0.5以上时,输入电力Pin约为0.5kW恒定。这是因为,在IGBT13导通的t3期间,共振电流IL5从正变为负,电流流入二极管23,超过IGBT13的Duty下的共振点可变电路30的可变范围。实际上,,由共振点可变电路30能够控制共振电流的期间,是共振电流IL5是正的期间。因此,在共振电流IL5是负的期间,即使控制IGBT13的Duty,也不能控制共振点。因此,在图7中,不改变t1、t2、仅用t3能够调整的输入电力Pin的下限值为约0.5kW,在要设定为该值以下的场合,需要使t1、t2变化。As mentioned above, when the Duty of IGBT13 becomes about 0.5 or more, input electric power Pin becomes constant at about 0.5 kW. This is because, during the t3 period when the IGBT13 is turned on, the resonance current IL5 changes from positive to negative, and the current flows into the
下面说明在使IGBT13的Duty成为约0.5以上的同时,使t1、t2变化来控制输入电力Pin的场合。图9表示以低输出加热被加热物的场合的控制条件,横轴表示上臂IGBT11的导通期间t1相对于驱动周期ts的导通比(=t1/ts),此时,IGBT12的导通比为1-Duty。纵轴表示输入电力Pin。如图9所示,通过在使共振点可变电路30内的IGBT13的Duty成为约0.5以上的同时减小IGBT11的Duty,能够更加减小输入电力Pin。。Next, a case where the input power Pin is controlled by changing t1 and t2 while making the Duty of the
另一方面,在非磁性不锈钢中,如图14所示,因为与铁相比电感值成为2/3,所以与共振电容器6、7的串联电路的共振频率升高,变得比开关电路20的驱动频率高,负荷特性成为电容性,成为相位超前方式。因此,需要增大共振点可变电路30的导通期间,降低共振点,使负荷特性成为电感性。关于输入电力的控制方法,和铁制的被加热物同样,可以通过IGBT13的Duty和IGBT11的Duty进行控制。On the other hand, in non-magnetic stainless steel, as shown in FIG. 14 , since the inductance value becomes 2/3 compared with iron, the resonance frequency of the series circuit with the
【实施例3】[Example 3]
图10是实施例3的电磁感应加热装置的电路结构图。在实施例3的结构中,对于与在前面的实施例中已说明的结构相同的结构,省略说明。Fig. 10 is a circuit configuration diagram of the electromagnetic induction heating device of the third embodiment. Among the configurations of the third embodiment, descriptions of the same configurations as those already described in the previous embodiments are omitted.
在图10中,用加热线圈5和共振电容器6、7构成的共振电路60,连接在第一逆变器100的输出端子t点和o点之间。在共振电容器7上并联共振点可变电路30,共振点可变电路30,由串联的共振电容器8和阻止反向电流的二极管25和IGBT13、以及与IGBT13反方向并联的二极管23构成。这里,当把从输出端子t朝向共振电容器6流动的共振电流IL5设为正时,流入共振点可变电路30的电流Ic3是正的方向。在本实施例中,为能防止向共振电容器8充电负的电压,向IGBT13施加的电压成为共振电容器7的充电电压。因此,不会向共振电容器8充电负的电压,能够减低耐压。一般来说,当IGBT的耐压变低时能够减低导通损失。由此能够减低元件损失。In FIG. 10 , a
【实施例4】【Example 4】
图11是实施例4的电磁感应加热装置的电路的一部分。在实施例4的结构中,对于与在前面的实施例中已说明的结构相同的结构,省略说明。FIG. 11 is a part of the circuit of the electromagnetic induction heating device of the fourth embodiment. Among the configurations of the fourth embodiment, descriptions of the same configurations as those already described in the previous embodiments are omitted.
在图11中,共振点可变电路30的开关元件,是有反向耐压的反电流阻止型的IGBT4(附带耐反压功能的IGBT),为把上述图10的IGBT13和阻止反电流用的二极管25置换为一个IGBT14的结构。在上述图10的共振点可变电路30中,在IGBT13和二极管25中分别发生损失,但是在本实施例中,因为为IGBT14的损失量,所以减低了第一逆变器100中的电路损失,提高了变换效率。关于本实施例的动作,和上述实施例3相同,省略说明。In FIG. 11, the switching element of the resonance point
【实施例5】【Example 5】
图12是实施例5的电磁感应加热装置的电路的一部分。在实施例5的结构中,对于与在前面的实施例中已说明的结构相同的结构,省略说明。Fig. 12 is a part of the circuit of the electromagnetic induction heating device of the fifth embodiment. Among the configurations of the fifth embodiment, descriptions of the same configurations as those already described in the previous embodiments are omitted.
在图12中,与实施例3的不同之点是:因为在共振点可变电路30的二极管25上并联连接了IGBT15,所以能够在共振点可变电路30中控制正负的电流。在本实施例中,通过驱动IGBT13、15,能够控制流入共振点可变电路30的正负的电流,可在维持共振电路60的负荷特性为电感性的情况下,使共振频率可变在共振电流IL5的正负方向上控制IGBT13或者15来改变输入电力。关于控制方法,IGBT13与上述实施例2同样,使其导通定时与IGBT11同步,进行IGBT13的Duty控制,IGBT15使其导通定时与IGBT12同步,进行IGBT15的Duty控制。在共振电流IL5是正电流的场合,控制IGBT13,在共振电流IL5是负电流的场合,控制IGBT15。由此,因为在共振电流IL5的正负期间能够使共振点可变,所以能够扩大电力控制范围。In FIG. 12 , the difference from
【实施例6】[Example 6]
图13是实施例6的电磁感应加热装置的电路的一部分。在实施例6的结构中,对于与在前面的实施例中已说明的结构相同的结构,省略说明。Fig. 13 is a part of the circuit of the electromagnetic induction heating device of the sixth embodiment. Among the configurations of the sixth embodiment, descriptions of the same configurations as those already described in the previous embodiments are omitted.
在图13中,共振点可变电路30反向并联具有反向耐压的逆电流阻止型的IGBT14和IGBT16。在上述图12的共振点可变电路30中,因为正向电流流入二极管25和IGBT13,负向电流流入二极管23和IGBT15,所以在二极管以及IGBT的各个中发生损失。在本实施例中,因为成为了IGBT14和IGBT16的损失,所以减低了第一逆变器100中的电路损失,提高了变换效率。关于本实施例的动作,和上述实施例5相同,省略说明。In FIG. 13 , a resonance point
Claims (13)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009062221A JP4929305B2 (en) | 2009-03-16 | 2009-03-16 | Electromagnetic induction heating device |
JP2009-062221 | 2009-03-16 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101841945A true CN101841945A (en) | 2010-09-22 |
CN101841945B CN101841945B (en) | 2013-02-06 |
Family
ID=42744951
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN 201010113132 Expired - Fee Related CN101841945B (en) | 2009-03-16 | 2010-02-08 | Electromagnetic induction heating device |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP4929305B2 (en) |
CN (1) | CN101841945B (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104170524A (en) * | 2012-03-14 | 2014-11-26 | 三菱电机株式会社 | Induction heat cooker |
CN111059684A (en) * | 2019-12-05 | 2020-04-24 | 珠海格力电器股份有限公司 | Method for preventing power semiconductor switch from being in unsaturated conduction, computer readable storage medium and air conditioner |
CN112888100A (en) * | 2019-11-29 | 2021-06-01 | 浙江绍兴苏泊尔生活电器有限公司 | Electromagnetic heating control method of half-bridge electromagnetic appliance and half-bridge electromagnetic appliance |
CN113784470A (en) * | 2021-08-31 | 2021-12-10 | 河北工业大学 | Induction heating system based on LLC |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ITUA20162518A1 (en) * | 2016-04-12 | 2017-10-12 | Redox S R L | Instant heating device for solids, liquids, gases and vapors |
JP7403354B2 (en) * | 2020-03-11 | 2023-12-22 | 三菱電機株式会社 | induction heating cooker |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002008840A (en) * | 2000-06-19 | 2002-01-11 | Fuji Electric Co Ltd | Inverter for induction heating |
JP3831298B2 (en) * | 2002-06-05 | 2006-10-11 | 株式会社日立製作所 | Electromagnetic induction heating device |
JP4167926B2 (en) * | 2003-04-17 | 2008-10-22 | 日立アプライアンス株式会社 | Electromagnetic induction heating device |
JP4444076B2 (en) * | 2004-11-15 | 2010-03-31 | 株式会社東芝 | Induction heating cooker |
JP4310293B2 (en) * | 2005-05-30 | 2009-08-05 | 日立アプライアンス株式会社 | Induction heating device |
JP4521338B2 (en) * | 2005-09-16 | 2010-08-11 | 日立アプライアンス株式会社 | Induction heating cooker |
-
2009
- 2009-03-16 JP JP2009062221A patent/JP4929305B2/en not_active Expired - Fee Related
-
2010
- 2010-02-08 CN CN 201010113132 patent/CN101841945B/en not_active Expired - Fee Related
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104170524A (en) * | 2012-03-14 | 2014-11-26 | 三菱电机株式会社 | Induction heat cooker |
CN104170524B (en) * | 2012-03-14 | 2016-01-27 | 三菱电机株式会社 | Induction heating cooking instrument |
CN112888100A (en) * | 2019-11-29 | 2021-06-01 | 浙江绍兴苏泊尔生活电器有限公司 | Electromagnetic heating control method of half-bridge electromagnetic appliance and half-bridge electromagnetic appliance |
CN111059684A (en) * | 2019-12-05 | 2020-04-24 | 珠海格力电器股份有限公司 | Method for preventing power semiconductor switch from being in unsaturated conduction, computer readable storage medium and air conditioner |
CN113784470A (en) * | 2021-08-31 | 2021-12-10 | 河北工业大学 | Induction heating system based on LLC |
CN113784470B (en) * | 2021-08-31 | 2023-07-25 | 河北工业大学 | A LLC-Based Induction Heating System |
Also Published As
Publication number | Publication date |
---|---|
CN101841945B (en) | 2013-02-06 |
JP4929305B2 (en) | 2012-05-09 |
JP2010218782A (en) | 2010-09-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4909662B2 (en) | Electromagnetic induction heating device | |
CN101447743B (en) | Electric power converter and control method for the same | |
JP4900248B2 (en) | Induction heating device | |
JP4910004B2 (en) | Electromagnetic induction heating device | |
CN101841945B (en) | Electromagnetic induction heating device | |
JP4167926B2 (en) | Electromagnetic induction heating device | |
JP5178378B2 (en) | Power converter and control method of power converter | |
JP2016143568A (en) | Electromagnetic induction heating device | |
JP7045295B2 (en) | Electromagnetic induction heating device | |
JP3831298B2 (en) | Electromagnetic induction heating device | |
JP2020064719A (en) | Electromagnetic induction heating device | |
JP2007194228A (en) | Electromagnetic induction heating device | |
JP7344740B2 (en) | electromagnetic induction heating device | |
JP2019067690A (en) | Electromagnetic induction heating device | |
JP7107746B2 (en) | electromagnetic induction cooker | |
JP2007194229A (en) | Electromagnetic induction heating device | |
JP4000992B2 (en) | Induction heating device | |
JP7360370B2 (en) | electromagnetic induction heating device | |
Yachiangkam et al. | Resonant inverter with a variable-frequency asymmetrical voltage-cancellation control for low q-factor loads in induction cooking | |
JP7215962B2 (en) | Electromagnetic induction heating device | |
JP6916098B2 (en) | Electromagnetic induction heating cooker | |
JP4909980B2 (en) | Electromagnetic induction heating device | |
JP4163662B2 (en) | Electromagnetic induction heating device | |
JP3931831B2 (en) | Induction heating cooker and its control program | |
JP4158753B2 (en) | Induction heating device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20130206 Termination date: 20180208 |