[go: up one dir, main page]

CN101839991A - Oblique arrangement type high-energy ray detector of composite photosensor - Google Patents

Oblique arrangement type high-energy ray detector of composite photosensor Download PDF

Info

Publication number
CN101839991A
CN101839991A CN 201010170816 CN201010170816A CN101839991A CN 101839991 A CN101839991 A CN 101839991A CN 201010170816 CN201010170816 CN 201010170816 CN 201010170816 A CN201010170816 A CN 201010170816A CN 101839991 A CN101839991 A CN 101839991A
Authority
CN
China
Prior art keywords
photosensitive devices
group
energy ray
photosensitive
scintillation crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN 201010170816
Other languages
Chinese (zh)
Other versions
CN101839991B (en
Inventor
刘亚强
王石
魏清阳
程建平
马天予
吴朝霞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsinghua University
Original Assignee
Tsinghua University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsinghua University filed Critical Tsinghua University
Priority to CN 201010170816 priority Critical patent/CN101839991B/en
Publication of CN101839991A publication Critical patent/CN101839991A/en
Application granted granted Critical
Publication of CN101839991B publication Critical patent/CN101839991B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measurement Of Radiation (AREA)

Abstract

本发明的实施例公开了一种复合光敏器件斜排列式高能射线探测器,包括:闪烁晶体模块、复合光敏器件阵列和解码模块,闪烁晶体模块用于产生闪烁光,由长条型闪烁晶体单元沿所述长条型闪烁晶体单元的宽度方向排列而成;复合光敏器件阵列,用于探测来自所述闪烁晶体模块的闪烁光并输出信号,包括第一组光敏器件和第二组光敏器件,第一组光敏器件的尺寸大于第二组光敏器件的尺寸,第一组光敏器件排列成菱形;解码模块,用于根据来自复合光敏器件阵列的信号,获得高能射线的空间位置和能量。根据本发明提供的高能射线探测器,可以通过灵活选择光敏器件尺寸,获得更小的探测死区,在两个方向上得到不同的空间分辨率。

The embodiment of the present invention discloses a composite photosensitive device obliquely arranged high-energy ray detector, including: a scintillation crystal module, a composite photosensitive device array and a decoding module. Arranged along the width direction of the elongated scintillation crystal unit; the composite photosensitive device array is used to detect the scintillation light from the scintillation crystal module and output signals, including a first group of photosensitive devices and a second group of photosensitive devices, The size of the first group of photosensitive devices is larger than that of the second group of photosensitive devices, and the first group of photosensitive devices is arranged in a rhombus; the decoding module is used to obtain the spatial position and energy of high-energy rays according to the signal from the composite photosensitive device array. According to the high-energy ray detector provided by the present invention, a smaller detection dead zone can be obtained by flexibly selecting the size of the photosensitive device, and different spatial resolutions can be obtained in two directions.

Description

一种复合光敏器件斜排列式高能射线探测器 A Composite Photosensitive Device Oblique Arrangement Type High Energy Ray Detector

技术领域technical field

本发明涉及辐射探测成像领域,尤其是涉及一种复合光敏器件斜排列式高能射线探测器。The invention relates to the field of radiation detection and imaging, in particular to a composite photosensitive device obliquely arranged high-energy ray detector.

背景技术Background technique

高能射线探测技术常用探测器之一为闪烁体探测器。闪烁体探测器通常利用一种能够有效阻挡和吸收电磁波辐射并与之产生发光作用的闪烁晶体作为探测材料。当高能射线入射到闪烁晶体内,根据射线能量、闪烁晶体有效原子系数和密度的不同,与闪烁晶体发生不同比例的光电效应、康普顿散射效应及电子对效应,将能量沉积在闪烁晶体中,被激发的闪烁晶体退激发出微弱的闪烁光,退激服从指数衰减规律,不同材料的闪烁晶体具有不同的发光光谱,包括不同的发光衰减时间,不同的峰位值等。利用光敏器件将位于可见光区或紫外光区的闪烁光经过光电转换和倍增,形成脉冲信号。脉冲信号强度反映了高能射线的能量;脉冲信号发生的时间反映了高能射线的入射时间;脉冲信号的在多个光敏器件中的强度分配反映了高能射线的入射位置等。闪烁探测器具有探测效率高,分辨时间短等特点,被广泛应用于核医学、安全检查、高能物理和宇宙射线探测的研究中,是当今辐射探测技术领域不可或缺的主要手段。One of the commonly used detectors in high-energy ray detection technology is a scintillator detector. Scintillator detectors usually use a scintillation crystal that can effectively block and absorb electromagnetic radiation and produce luminescence with it as a detection material. When high-energy rays are incident into the scintillation crystal, according to the difference in ray energy, effective atomic coefficient and density of the scintillation crystal, different proportions of photoelectric effect, Compton scattering effect and electron pair effect will occur with the scintillation crystal, and the energy will be deposited in the scintillation crystal. , The excited scintillation crystal de-excites to emit weak scintillation light, and the de-excitation obeys the law of exponential decay. The scintillation crystals of different materials have different luminescence spectra, including different luminescence decay times, different peak values, etc. The flashing light located in the visible light region or the ultraviolet light region is photoelectrically converted and multiplied by a photosensitive device to form a pulse signal. The intensity of the pulse signal reflects the energy of the high-energy ray; the occurrence time of the pulse signal reflects the incident time of the high-energy ray; the intensity distribution of the pulse signal in multiple photosensitive devices reflects the incident position of the high-energy ray, etc. Scintillation detectors have the characteristics of high detection efficiency and short resolution time, and are widely used in the research of nuclear medicine, safety inspection, high-energy physics and cosmic ray detection, and are an indispensable and main means in the field of radiation detection technology today.

传统闪烁探测器在进行成像探测时,通常用长条型闪烁晶体单元组成方形闪烁晶体阵列来耦合光敏器件方形阵列或六边形阵列的方法进行高能射线的定位分析。闪烁晶体阵列除与光敏器件耦合的一面外其他六面用反光膜覆盖。闪烁晶体阵列间的长条型闪烁晶体单元之间按一定的规则粘贴或喷涂上不同长度的反光材料,长条型闪烁晶体单元之间添加硅油,并用高度透明的光学胶固定。闪烁晶体阵列和光敏器件阵列之间直接耦合或添加光导材料,如有机塑料、玻璃、光纤等。When traditional scintillation detectors perform imaging detection, they usually use long scintillation crystal units to form square scintillation crystal arrays to couple square arrays or hexagonal arrays of photosensitive devices for positioning analysis of high-energy rays. Except the side coupled with the photosensitive device, the other six sides of the scintillation crystal array are covered with reflective film. The long scintillation crystal units between the scintillation crystal arrays are pasted or sprayed with reflective materials of different lengths according to certain rules, and silicone oil is added between the long scintillation crystal units, and fixed with highly transparent optical glue. The scintillation crystal array and the photosensitive device array are directly coupled or light-conducting materials are added, such as organic plastics, glass, optical fibers, etc.

当高能射线入射到闪烁晶体阵列,和长条型闪烁晶体单元发生作用,将能量沉积在长条型闪烁晶体单元上,长条型闪烁晶体单元退激发出大量低能光子,如可见光或紫外光,低能光子在长条型闪烁晶体单元中传播,经过多次反射最终被光敏器件探测到或逃逸或被长条型闪烁晶体单元吸收。当低能光子遇到没有反射膜的表面将透射到临近的长条型闪烁晶体单元中从而可能被其它光敏器件探测到。最终所有光敏器件将得到不同强度的信号,信号的强度反映了探测到低能光子的数量,各个光敏器件上信号的和可以反映入射高能射线的能量,通过低能光子在各个光敏器件的分布可以得到高能射线的入射位置。因此传统探测器通常采用Anger重心法定位。When the high-energy ray is incident on the scintillation crystal array and interacts with the long scintillation crystal unit, the energy is deposited on the long scintillation crystal unit, and the long scintillation crystal unit de-excites a large number of low-energy photons, such as visible light or ultraviolet light, The low-energy photons propagate in the elongated scintillation crystal unit, and after multiple reflections, are finally detected by the photosensitive device or escape or are absorbed by the elongated scintillation crystal unit. When low-energy photons encounter a surface without a reflective film, they will be transmitted to the adjacent elongated scintillation crystal unit and may be detected by other photosensitive devices. In the end, all photosensitive devices will get signals of different intensities. The intensity of the signal reflects the number of low-energy photons detected, and the sum of the signals on each photosensitive device can reflect the energy of incident high-energy rays. Through the distribution of low-energy photons in each photosensitive device, high-energy The incident position of the ray. Therefore, traditional detectors usually use the Anger center of gravity method for positioning.

如图1所示,为现有技术中采用闪烁晶体阵列耦合方形光敏器件阵列的传统闪烁探测器的原理图。图2为采用闪烁晶体阵列耦合PQS方式的光敏器件阵列的传统闪烁探测器的原理图。图3为采用闪烁晶体阵列耦合正六边形光敏器件阵列的传统闪烁探测器的原理。其中,1为光敏器件,2为闪烁晶体模块,3为长条型闪烁晶体单元。在图1中,光敏器件阵列排列为方形。在图3中,光敏器件阵列排列为正六边形。As shown in FIG. 1 , it is a schematic diagram of a traditional scintillation detector using a scintillation crystal array coupled with a square photosensitive device array in the prior art. FIG. 2 is a schematic diagram of a traditional scintillation detector using a scintillation crystal array coupled with a PQS photosensitive device array. Fig. 3 shows the principle of a traditional scintillation detector using a scintillation crystal array coupled with a regular hexagonal photosensitive device array. Wherein, 1 is a photosensitive device, 2 is a scintillation crystal module, and 3 is a strip type scintillation crystal unit. In Figure 1, the array of photosensitive devices is arranged in a square shape. In Figure 3, the array of photosensitive devices is arranged in a regular hexagon.

以光敏器件方形阵列为例,如图1中所示,四个光敏器件光输出信号为VA、VB、VC、VD,则高能射线的空间位置X,Y和能量E分别由以下公式确定:Taking the square array of photosensitive devices as an example, as shown in Figure 1, the light output signals of the four photosensitive devices are V A , V B , V C , and V D , then the spatial positions X, Y and energy E of high-energy rays are determined by the following The formula determines:

EE. == VV AA ++ VV BB ++ VV CC ++ VV DD. Xx == VV BB ++ VV DD. EE. YY == VV AA ++ VV BB EE.

如果用泛源照射到探测器上,采集足够数量的高能射线粒子,根据上述重心法计算每一个高能射线粒子的位置,并绘于二维直方图中,得到泛场直方图或称二维位形图。从高能射线粒子与晶体发生作用到被光敏器件探测产生电脉冲信号的过程的随机性,导致输出信号的不确定性,入射到同一块长条型晶体单元的若干个高能射线粒子会输出不同的X、Y信号,反映在泛场直方图中就是每一个晶体块呈现一个白色团块。根据泛场直方图上的白色团块的分布情况,确定它们的分界线,并记录在查找表中。数据采集时可以根据每个入射事件产生的X、Y信号和查找表,判断该入射粒子进入了哪一个长条型晶体单元,从而得到相应的晶体块在探测器模块中的位置编码。另一种方法是利用泛场直方图使用最大似然估计方法,从粒子入射的X、Y值判断它发生在哪个长条型晶体单元中。If a flood source is used to irradiate the detector to collect a sufficient number of high-energy ray particles, the position of each high-energy ray particle is calculated according to the above-mentioned center of gravity method, and drawn in a two-dimensional histogram to obtain a flood histogram or two-dimensional position graphic. The randomness of the process from the interaction between the high-energy ray particles and the crystal to the detection of the photosensitive device to generate the electric pulse signal leads to the uncertainty of the output signal. Several high-energy ray particles incident on the same elongated crystal unit will output different The X and Y signals are reflected in the pan-field histogram, that is, each crystal block presents a white mass. According to the distribution of the white clusters on the pan-field histogram, determine their boundary lines and record them in the lookup table. During data collection, according to the X and Y signals generated by each incident event and the look-up table, it can be judged which elongated crystal unit the incident particle entered, so as to obtain the position code of the corresponding crystal block in the detector module. Another method is to use the full-field histogram to use the maximum likelihood estimation method to judge which elongated crystal unit it occurs in from the X and Y values of the incident particle.

现有技术的缺点是,传统探测器在X,Y方向上得到的空间分辨率是一样的,而且如果采用图1、图2和图3中的闪烁探测器,光敏器件之间有较大的探测死区。The disadvantage of the prior art is that the spatial resolution obtained by traditional detectors in the X and Y directions is the same, and if the scintillation detectors in Fig. 1, Fig. 2 and Fig. 3 are used, there is a large gap between photosensitive devices. Detect dead zone.

发明内容Contents of the invention

本发明的目的旨在至少解决上述问题之一,特别提出了一种具有光敏器件尺寸选择灵活、不同空间分辨率、探测死区小和可扩展等特点的复合光敏器件斜排列式高能射线探测器。The purpose of the present invention is to at least solve one of the above-mentioned problems, and specifically proposes a composite photosensitive device obliquely arranged high-energy ray detector with the characteristics of flexible photosensitive device size selection, different spatial resolutions, small detection dead zone, and expandability. .

本发明实施例开了一种复合光敏器件斜排列式高能射线探测器,包括:所述高能射线探测器包括:闪烁晶体模块、复合光敏器件阵列和解码模块,An embodiment of the present invention discloses a composite photosensitive device obliquely arranged high-energy ray detector, including: the high-energy ray detector includes: a scintillation crystal module, a composite photosensitive device array and a decoding module,

所述闪烁晶体模块,用于产生闪烁光,所述闪烁晶体模块由长条型闪烁晶体单元沿所述长条型闪烁晶体单元的宽度方向排列而成;The scintillation crystal module is used to generate scintillation light, and the scintillation crystal module is composed of strip-shaped scintillation crystal units arranged along the width direction of the strip-shaped scintillation crystal units;

所述复合光敏器件阵列,用于探测来自所述闪烁晶体模块的闪烁光并输出信号,所述复合光敏器件阵列包括第一组光敏器件和第二组光敏器件,所述第一组光敏器件的尺寸大于所述第二组光敏器件的尺寸,所述第一组光敏器件包括四个排列为菱形的光敏器件,所述第二组光敏器件包括一个光敏器件,放置于所述菱形中心,所述第二组光敏器件与所述第一组光敏器件中部分光敏器件紧密相邻;The composite photosensitive device array is used to detect the scintillation light from the scintillation crystal module and output signals, the composite photosensitive device array includes a first group of photosensitive devices and a second group of photosensitive devices, and the first group of photosensitive devices The size is larger than the size of the second group of photosensitive devices, the first group of photosensitive devices includes four photosensitive devices arranged in a rhombus, the second group of photosensitive devices includes one photosensitive device, placed in the center of the rhombus, the The second group of photosensitive devices is closely adjacent to some of the photosensitive devices in the first group of photosensitive devices;

所述解码模块,用于根据来自复合光敏器件阵列的信号获得高能射线的空间位置和能量。The decoding module is used to obtain the spatial position and energy of the high-energy ray according to the signal from the composite photosensitive device array.

根据本发明实施例提供的高能射线探测器,具有以下特点和优点:The high-energy ray detector provided according to the embodiment of the present invention has the following characteristics and advantages:

1、可以灵活选择光敏器件的尺寸:大尺寸光敏器件构成的菱形角度可以跟据小尺寸光敏器件的大小来确定,排列的倾斜角度可以任意改变,因此可以利用各种尺寸的光敏器件。1. The size of the photosensitive device can be flexibly selected: the rhombus angle formed by the large-sized photosensitive device can be determined according to the size of the small-sized photosensitive device, and the inclination angle of the arrangement can be changed arbitrarily, so photosensitive devices of various sizes can be used.

2、可以选择不同类型的光敏器件组合,可以由圆形的光敏器件如光电倍增管和长方形的光敏器件如雪崩二极管组成。2. Different types of photosensitive devices can be combined, which can be composed of circular photosensitive devices such as photomultiplier tubes and rectangular photosensitive devices such as avalanche diodes.

3、可以获得X,Y两个方向上不同的空间分辨率:由光敏器件的排列特性可以得出在Y方向上的分辨率优于X方向。3. Different spatial resolutions in X and Y directions can be obtained: According to the arrangement characteristics of photosensitive devices, it can be concluded that the resolution in the Y direction is better than that in the X direction.

4、更高效的探测高能射线:斜排列的复合光敏器件之间的缝隙面积小于传统方形排列的光敏器件阵列,因此复合光敏器件斜排列高能射线探测器探测的盲区较小。4. More efficient detection of high-energy rays: The gap area between the obliquely arranged composite photosensitive devices is smaller than that of the traditional square-arranged photosensitive device array, so the obliquely arranged composite photosensitive devices have a smaller blind area for detection by high-energy ray detectors.

5、可扩展:探测器模块可以拼接扩展成大平板探、弧形或环形探测器。5. Expandable: The detector modules can be spliced and expanded into large flat-panel detectors, arc or ring detectors.

本发明提供的高能射线探测器可以通过灵活选择光敏器件尺寸,获得更小的探测死区,在两个方向上得到不同的空间分辨率。The high-energy ray detector provided by the invention can obtain a smaller detection dead zone and different spatial resolutions in two directions by flexibly selecting the size of the photosensitive device.

本发明附加的方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。Additional aspects and advantages of the invention will be set forth in part in the description which follows, and in part will be obvious from the description, or may be learned by practice of the invention.

附图说明Description of drawings

本发明上述的和/或附加的方面和优点从下面结合附图对实施例的描述中将变得明显和容易理解,其中:The above and/or additional aspects and advantages of the present invention will become apparent and easy to understand from the following description of the embodiments in conjunction with the accompanying drawings, wherein:

图1为采用闪烁晶体阵列耦合方形光敏器件阵列的传统闪烁探测器的原理示意图;1 is a schematic diagram of the principle of a traditional scintillation detector using a scintillation crystal array coupled to a square photosensitive device array;

图2为采用闪烁晶体阵列耦合PQS方式的光敏器件阵列的传统闪烁探测器的原理示意图;Fig. 2 is the schematic diagram of the principle of a traditional scintillation detector using a photosensitive device array coupled with a scintillation crystal array in a PQS mode;

图3为采用闪烁晶体阵列耦合正六边形光敏器件阵列的传统闪烁探测器的原理示意图;3 is a schematic diagram of the principle of a traditional scintillation detector using a scintillation crystal array coupled to a regular hexagonal photosensitive device array;

图4为根据本发明实施例的采用方形闪烁晶体阵列耦合复合光敏器件斜排列式高能射线探测器原理示意图;Fig. 4 is a schematic diagram of the principle of an obliquely arranged high-energy ray detector using a square scintillation crystal array coupled with a composite photosensitive device according to an embodiment of the present invention;

图5为本根据本发明实施例的高能射线探测器获取的二维泛场直方图;FIG. 5 is a two-dimensional flood histogram obtained by a high-energy ray detector according to an embodiment of the present invention;

图6为根据本发明实施例的圆形的第一组光敏器件和长方形的第二组光敏器件组成的斜排列式高能射线探测器原理示意图;Fig. 6 is a schematic diagram of the principle of a diagonally arranged high-energy ray detector composed of a first group of circular photosensitive devices and a second group of rectangular photosensitive devices according to an embodiment of the present invention;

图7为图4中光敏器件斜排列式高能射线探测器扩展成平面探测器的原理示意图。FIG. 7 is a schematic diagram of the principle of expanding the obliquely arranged high-energy ray detector of photosensitive devices into a planar detector in FIG. 4 .

其中,in,

1为光敏器件阵列,11为第一组光敏器件,12为第二组光敏器件,2为闪烁晶体模块,3为长条型闪烁晶体单元。1 is a photosensitive device array, 11 is a first group of photosensitive devices, 12 is a second group of photosensitive devices, 2 is a scintillation crystal module, and 3 is a strip type scintillation crystal unit.

具体实施方式Detailed ways

下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本发明,而不能解释为对本发明的限制。Embodiments of the present invention are described in detail below, examples of which are shown in the drawings, wherein the same or similar reference numerals designate the same or similar elements or elements having the same or similar functions throughout. The embodiments described below by referring to the figures are exemplary only for explaining the present invention and should not be construed as limiting the present invention.

为解决上述问题,本发明实施例提供了一种复合光敏器件斜排列式高能射线探测器,包括闪烁晶体模块、复合光敏器件阵列和解码模块。具体地说,复合光敏器件阵列,用于探测闪烁光并输出信号,包括第一组光敏器件和第二组光敏器件,至少五个光敏器件斜排列而成。在本发明的一个实施例中,其中两组光敏器件的尺寸不同,第一组光敏器件的尺寸大于第二组光敏器件的尺寸,以下为了便于描述将第一组光敏器件中的光敏器件称为大尺寸光敏器件,将第二组光敏器件中的光敏器件称为小尺寸光敏器件。在本发明的一个实施例中,大尺寸光敏器件的数量为4个,小尺寸光敏器件的数量为1个,小尺寸光敏器件位于四个大尺寸光敏器件构成的菱形的中心。In order to solve the above problems, an embodiment of the present invention provides a composite photosensitive device obliquely arranged high-energy ray detector, including a scintillation crystal module, a composite photosensitive device array and a decoding module. Specifically, the composite photosensitive device array, used to detect scintillation light and output signals, includes a first group of photosensitive devices and a second group of photosensitive devices, and at least five photosensitive devices are arranged obliquely. In one embodiment of the present invention, wherein the sizes of the two groups of photosensitive devices are different, the size of the first group of photosensitive devices is larger than the size of the second group of photosensitive devices, and the photosensitive devices in the first group of photosensitive devices are referred to as For large-size photosensitive devices, the photosensitive devices in the second group of photosensitive devices are called small-size photosensitive devices. In one embodiment of the present invention, the number of large-size photosensitive devices is 4, the number of small-size photosensitive devices is 1, and the small-size photosensitive device is located at the center of a rhombus formed by four large-size photosensitive devices.

结合图4所示,第一组光敏器件11包括四个排列为菱形的大尺寸光敏器件A、B、C、D,四个光敏器件的中心在一个菱形上。第二组光敏器件12包括一个小尺寸光敏器件E。小尺寸光敏器件E放置于上述菱形中心。菱形的角度能够通过大尺寸光敏器件和小尺寸光敏器件的尺寸而定,且可让小尺寸光敏器件与大尺寸光敏器件中的部分光敏器件紧密排列。如图4中所示让小尺寸光敏器件E和相对的两个大尺寸光敏器件A和D紧挨。As shown in FIG. 4 , the first group of photosensitive devices 11 includes four large-sized photosensitive devices A, B, C, and D arranged in a rhombus, and the centers of the four photosensitive devices are on a rhombus. The second group of photosensitive devices 12 includes a photosensitive device E of small size. The small-sized photosensitive device E is placed in the center of the above-mentioned rhombus. The angle of the rhombus can be determined by the size of the large-size photosensitive device and the small-size photosensitive device, and can allow the small-size photosensitive device and part of the large-size photosensitive device to be closely arranged. As shown in FIG. 4 , the small-sized photosensitive device E and two opposite large-sized photosensitive devices A and D are placed next to each other.

其中,第一组光敏器件和第二组光敏器件的光敏器件类型包括:光电倍增管、硅光电倍增管、雪崩二极管。第一组光敏器件和第二组光敏器件的光敏器件类型可以相同,也可不同。Wherein, the photosensitive device types of the first group of photosensitive devices and the second group of photosensitive devices include: photomultiplier tubes, silicon photomultiplier tubes, and avalanche diodes. The types of photosensitive devices of the first group of photosensitive devices and the second group of photosensitive devices may be the same or different.

此外,复合光敏器件斜排列式高能射线探测器还包括闪烁晶体模块2,用于生成闪烁光,闪烁晶体模块2由长条型闪烁晶体单元3沿长条型闪烁晶体单元的宽度方向排列而成。其中,长条型闪烁晶体单元3的宽度方向为方形、长方形或菱形,图4中所示宽度方向为方形。In addition, the composite photosensitive device obliquely arranged high-energy ray detector also includes a scintillation crystal module 2 for generating scintillation light, and the scintillation crystal module 2 is formed by arranging strip-shaped scintillation crystal units 3 along the width direction of the strip-shaped scintillation crystal units . Wherein, the width direction of the elongated scintillation crystal unit 3 is a square, a rectangle or a rhombus, and the width direction shown in FIG. 4 is a square.

长条型闪烁晶体单元3可以采用以下材料的晶体之一:锗酸铋、硅酸镥、硅酸钇镥、硅酸钆、硅酸钇、氟化钡、碘化钠、碘化铯、钨酸铅、铝酸钇、溴化镧、氯化澜、溴化铈、硅酸镥、铝酸镥、碘化镥。The elongated scintillation crystal unit 3 can use one of the crystals of the following materials: bismuth germanate, lutetium silicate, yttrium lutetium silicate, gadolinium silicate, yttrium silicate, barium fluoride, sodium iodide, cesium iodide, tungsten Lead acid, yttrium aluminate, lanthanum bromide, lanthanum chloride, cerium bromide, lutetium silicate, lutetium aluminate, lutetium iodide.

将上述用于捕获高能射线的长条型闪烁晶体单元3排列成闪烁晶体模块2。其中,长条型晶体单元3的横切面以及组成的闪烁晶体模块2的形状包括正方形或长方形或菱形。The aforementioned elongated scintillation crystal units 3 for capturing high-energy rays are arranged into a scintillation crystal module 2 . Wherein, the cross-section of the elongated crystal unit 3 and the shape of the scintillation crystal module 2 composed include a square, a rectangle or a rhombus.

闪烁晶体模块2在不同的位置粘结不同长度的反光膜,未粘接反光膜的地方用硅油填充,利用光学胶固定闪烁晶体模块2。其中为了提高闪烁晶体模块2与光敏器件阵列的耦合,可以对闪烁晶体模块进一步加工,进行切割和打磨成其它多边形。The scintillation crystal module 2 is bonded with reflective films of different lengths at different positions, the places where the reflective film is not bonded are filled with silicone oil, and the scintillation crystal module 2 is fixed with optical glue. Wherein, in order to improve the coupling between the scintillation crystal module 2 and the photosensitive device array, the scintillation crystal module can be further processed, cut and polished into other polygons.

在本发明的一个实施例中,复合光敏器件斜排列式高能射线探测器是利用光学胶将上述闪烁晶体模块2与斜排列复合光敏器件阵列直接粘结在一起。在本发明的另一个实施例中,还可用上述闪烁晶体模块耦合光导材料后再耦合斜光敏器件阵列。其中,光导材料为以下材料中的一种:有机塑料、玻璃和光纤。In one embodiment of the present invention, the composite photosensitive device obliquely arranged high-energy ray detector uses optical glue to directly bond the scintillation crystal module 2 and the obliquely arranged composite photosensitive device array together. In another embodiment of the present invention, the above-mentioned scintillation crystal module can also be used to couple the light guide material and then couple the oblique photosensitive device array. Wherein, the light guide material is one of the following materials: organic plastic, glass and optical fiber.

高能射线入射到闪烁晶体模块2后产生闪烁光,被光敏器件探测到。光敏器件将探测到的信号经过转换和放大后得到电脉冲信号,输出到解码模块。解码模块利用脉冲信号在光敏器件阵列的权重分配,得到高能射线在上述闪烁晶体模块中的坐标。After the high-energy ray is incident on the scintillation crystal module 2, scintillation light is generated, which is detected by the photosensitive device. The photosensitive device converts and amplifies the detected signal to obtain an electric pulse signal, which is output to the decoding module. The decoding module uses the weight distribution of the pulse signal in the photosensitive device array to obtain the coordinates of the high-energy rays in the scintillation crystal module.

其中,解码模块对对脉冲信号进行解码的方法包括两种。Wherein, the decoding module includes two methods for decoding the pulse signal.

方法一:使用直角坐标系XOY。Method 1: Use the Cartesian coordinate system XOY.

结合图4所示,五个光敏器件输出信号为VA、VB、VC、VD、VE,则高能射线的空间位置X,Y和能量E分别由以下公式确定:As shown in Figure 4, the output signals of the five photosensitive devices are V A , V B , V C , V D , and VE , then the spatial positions X, Y and energy E of high-energy rays are determined by the following formulas:

EE. == VV AA ++ VV BB ++ VV CC ++ VV DD. ++ VV EE. Xx == VV BB ++ VV DD. ++ 11 22 VV EE. EE. YY == VV AA ++ VV BB ++ 11 22 VV EE. EE.

方法二:使用斜坐标系XOY’。Method 2: Use the oblique coordinate system XOY'.

结合图4所示,五个光敏器件输出信号为VA、VB、VC、VD、VE,θ为Y’与X的夹角,则高能射线的空间位置X,Y和能量E分别由以下公式确定:As shown in Figure 4, the output signals of the five photosensitive devices are V A , V B , V C , V D , V E , and θ is the angle between Y' and X, then the spatial position X, Y and energy E of the high-energy ray are determined by the following formulas, respectively:

EE. == VV AA ++ VV BB ++ VV CC ++ VV DD. ++ VV EE. Xx == VV AA ×× coscos (( θθ )) ++ VV BB ×× (( 11 ++ coscos (( θθ )) )) ++ VV DD. ++ 11 22 VV EE. ×× (( 11 ++ coscos (( θθ )) )) EE. YY == (( VV AA ++ VV BB )) ×× sinsin (( θθ )) EE.

通过上述方法可以获得X,Y两个方向上不同的空间分辨率。如图4中所示,由光敏器件的排列特性可以得出在Y方向上的分辨率优于X方向。根据上述方法计算每一个高能射线粒子的位置,并绘于二维直方图中,得到泛场直方图或称二维位形图。入射到同一块长条型晶体单元的若干个高能射线粒子会输出不同的X、Y信号,反映在泛场直方图中就是每一个晶体块呈现一个白色团块。根据泛场直方图上的白色团块的分布情况,确定它们的分界线,并记录在查找表中。数据采集时可以根据每个入射事件产生的X、Y信号和查找表,判断该入射粒子进入了哪一个长条型晶体单元,从而得到相应的晶体块在探测器模块中的位置编码。Different spatial resolutions in the X and Y directions can be obtained through the above method. As shown in FIG. 4 , it can be concluded that the resolution in the Y direction is better than that in the X direction from the arrangement characteristics of the photosensitive devices. Calculate the position of each high-energy ray particle according to the above method, and draw it in a two-dimensional histogram to obtain a pan-field histogram or a two-dimensional configuration map. Several high-energy ray particles incident on the same elongated crystal unit will output different X and Y signals, reflected in the pan-field histogram that each crystal block presents a white mass. According to the distribution of the white clusters on the pan-field histogram, determine their boundary lines and record them in the lookup table. During data collection, according to the X and Y signals generated by each incident event and the look-up table, it can be judged which elongated crystal unit the incident particle entered, so as to obtain the position code of the corresponding crystal block in the detector module.

下面以闪烁晶体模块为9行9列组成9×9方阵的高能射线探测器为例,对本发明进一步说明。Hereinafter, the present invention will be further described by taking a high-energy ray detector in which scintillation crystal modules form a 9×9 square matrix with 9 rows and 9 columns as an example.

其中,闪烁晶体材料为硅酸钇镥,长条型闪烁晶体单元尺寸:5.7mm×5.7mm×20mm;闪烁晶体阵列:9行9列组成9×9方阵,52mm×52mm。Among them, the scintillation crystal material is yttrium lutetium silicate, and the size of the elongated scintillation crystal unit is 5.7mm×5.7mm×20mm; the scintillation crystal array: 9 rows and 9 columns form a 9×9 square matrix, 52mm×52mm.

复合光敏器件阵列为:The composite photosensitive device array is:

第一组光敏器件:4个Hamamatsu R9779(直径51mm),光电倍增管,四个大尺寸光电倍增管斜排列角度:菱形小角角度86度。光电倍增管阴极电压:-1500V,光电倍增管阳极电压:0V(接地)。The first group of photosensitive devices: 4 Hamamatsu R9779 (diameter 51mm), photomultiplier tubes, four large-size photomultiplier tubes obliquely arranged Angle: small diamond-shaped angle of 86 degrees. Photomultiplier tube cathode voltage: -1500V, photomultiplier tube anode voltage: 0V (grounded).

第二组光敏器件:1个Photonis XP1912(直径19mm),小尺寸光电倍增管中心在菱形中心上。The second group of photosensitive devices: 1 Photonis XP1912 (diameter 19mm), the center of the small-sized photomultiplier tube is on the center of the rhombus.

伽马射线源:铯(Cs-137)点源,强度0.4μCi,能量662KeVGamma ray source: cesium (Cs-137) point source, intensity 0.4μCi, energy 662KeV

数据采集:光电倍增管信号经前置放大器进入ADC模块(模数转化模块),提取时间和位置信息,传入Flow board模块(数据接收模块),用PowerPC接收和传输到PC机,使用LabView程序采集。Data acquisition: The photomultiplier tube signal enters the ADC module (analog-to-digital conversion module) through the preamplifier, extracts time and position information, and transmits it to the Flow board module (data receiving module), receives and transmits it to the PC with PowerPC, and uses the LabView program collection.

实验结果分析:Analysis of results:

光敏器件斜排列式高能射线探测器的光敏器件采用光电倍增管,闪烁晶体阵列为9×9方阵,铯(Cs-137)伽马源距离探测器30cm远,可近似为泛场源,当伽马射线入射到闪烁晶体阵列后激发闪烁晶体,闪烁晶体退激、产生可见光,可见光经四个光电倍增管转化为电信号,放大后输出到数据采集部分。最后得到泛场的直方图如图5所示,其中9×9阵列结构清晰可见。图像灰度代表计数率,颜色越白表示该处伽马射线的强度越高。The photosensitive device of the obliquely arranged high-energy ray detector adopts a photomultiplier tube, and the scintillation crystal array is a 9×9 square array. The cesium (Cs-137) gamma source is 30cm away from the detector, which can be approximated as a flood source. After the gamma rays are incident on the scintillation crystal array, the scintillation crystals are excited, and the scintillation crystals are de-excited to generate visible light. The visible light is converted into electrical signals by four photomultiplier tubes, amplified and output to the data acquisition part. The final histogram of the pan field is shown in Figure 5, where the 9×9 array structure is clearly visible. The grayscale of the image represents the count rate, and the whiter the color, the higher the intensity of gamma rays at that location.

图4所示的第一组光敏器件和第二组光敏器件均为圆形,本发明实施例提供的复合光敏器件斜排列式高能射线探测器亦可实施为选择不同类型的光敏器件组合而成。如图6中所示,第一组光敏器件为圆形的光电倍增管,第二组光敏器件为长方形的雪崩二极管。具体的说,光敏器件A、B、C、D为圆形的光电倍增管,光敏器件E为长方形的雪崩二极管。The first group of photosensitive devices and the second group of photosensitive devices shown in Figure 4 are both circular, and the composite photosensitive device obliquely arranged high-energy ray detector provided by the embodiment of the present invention can also be implemented as a combination of different types of photosensitive devices. . As shown in FIG. 6 , the first group of photosensitive devices is a circular photomultiplier tube, and the second group of photosensitive devices is a rectangular avalanche diode. Specifically, the photosensitive devices A, B, C, and D are circular photomultiplier tubes, and the photosensitive device E is a rectangular avalanche diode.

并且上述实施例中提供的复合光敏器件斜排列式高能射线探测器可以扩展。即探测器模块可以拼接扩展成平面、弧形或环形探测器。图7示出了光敏器件斜排列式高能射线探测器扩展成平面探测器的原理示意图。如图中7所示,第一组光敏器件包括9个光敏器件,第二组光敏器件包括4个光敏器件。相邻4个大尺寸光敏器件,即第一组光敏器件斜排列,其菱形中心位置放置小尺寸光敏器件,即第二组光敏器件。Moreover, the composite photosensitive device obliquely arranged high-energy ray detector provided in the above embodiments can be expanded. That is, the detector modules can be spliced and expanded into plane, arc or ring detectors. Fig. 7 shows a schematic diagram of the principle of expanding the obliquely arranged high-energy ray detector of photosensitive devices into a planar detector. As shown in Figure 7, the first group of photosensitive devices includes 9 photosensitive devices, and the second group of photosensitive devices includes 4 photosensitive devices. Four adjacent large-size photosensitive devices, that is, the first group of photosensitive devices are arranged obliquely, and small-sized photosensitive devices, that is, the second group of photosensitive devices are placed at the center of the rhombus.

根据本发明实施例提供的高能射线探测器,具有以下特点和优点:The high-energy ray detector provided according to the embodiment of the present invention has the following characteristics and advantages:

1、可以灵活选择光敏器件的尺寸:大尺寸光敏器件构成的菱形角度可以跟据小尺寸光敏器件的大小来确定,排列的倾斜角度可以任意改变,因此可以利用各种尺寸的光敏器件。1. The size of the photosensitive device can be flexibly selected: the rhombus angle formed by the large-sized photosensitive device can be determined according to the size of the small-sized photosensitive device, and the inclination angle of the arrangement can be changed arbitrarily, so photosensitive devices of various sizes can be used.

2、可以选择不同类型的光敏器件组合,如图5中所示,可以由圆形的光敏器件如光电倍增管和长方形的光敏器件如雪崩二极管组成。2. A combination of different types of photosensitive devices can be selected. As shown in FIG. 5 , it can be composed of a circular photosensitive device such as a photomultiplier tube and a rectangular photosensitive device such as an avalanche diode.

3、可以获得X,Y两个方向上不同的空间分辨率:如图4中所示,由光敏器件的排列特性可以得出在Y方向上的分辨率优于X方向。3. Can obtain different spatial resolutions in the X and Y directions: as shown in Figure 4, the resolution in the Y direction is better than that in the X direction according to the arrangement characteristics of the photosensitive devices.

4、更高效的探测高能射线:斜排列的复合光敏器件之间的缝隙面积小于传统方形排列的光敏器件阵列,因此复合光敏器件斜排列高能射线探测器探测的盲区较小。4. More efficient detection of high-energy rays: The gap area between the obliquely arranged composite photosensitive devices is smaller than that of the traditional square-arranged photosensitive device array, so the obliquely arranged composite photosensitive devices have a smaller blind area for detection by high-energy ray detectors.

5、可扩展:探测器模块可以拼接扩展成大平板探、弧形或环形探测器。5. Expandable: The detector modules can be spliced and expanded into large flat-panel detectors, arc or ring detectors.

本发明提供的高能射线探测器可以通过灵活选择光敏器件尺寸,获得更小的探测死区,在两个方向上得到不同的空间分辨率。The high-energy ray detector provided by the invention can obtain a smaller detection dead zone and different spatial resolutions in two directions by flexibly selecting the size of the photosensitive device.

以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。The above is only a preferred embodiment of the present invention, it should be pointed out that for those skilled in the art, without departing from the principle of the present invention, some improvements and modifications can also be made, and these improvements and modifications are also It should be regarded as the protection scope of the present invention.

Claims (11)

1.一种复合光敏器件斜排列式高能射线探测器,其特征在于,包括闪烁晶体模块、复合光敏器件阵列和解码模块,1. A composite photosensitive device oblique arrangement type high-energy ray detector, is characterized in that, comprises scintillation crystal module, composite photosensitive device array and decoding module, 所述闪烁晶体模块,用于产生闪烁光,所述闪烁晶体模块由长条型闪烁晶体单元沿所述长条型闪烁晶体单元的宽度方向排列而成;The scintillation crystal module is used to generate scintillation light, and the scintillation crystal module is composed of strip-shaped scintillation crystal units arranged along the width direction of the strip-shaped scintillation crystal units; 所述复合光敏器件阵列,用于探测来自所述闪烁晶体模块的闪烁光并输出信号,所述复合光敏器件阵列包括第一组光敏器件和第二组光敏器件,所述第一组光敏器件的尺寸大于所述第二组光敏器件的尺寸,所述第一组光敏器件包括四个排列为菱形的光敏器件,所述第二组光敏器件包括一个光敏器件,放置于所述菱形中心,所述第二组光敏器件与所述第一组光敏器件中部分光敏器件紧密相邻;The composite photosensitive device array is used to detect the scintillation light from the scintillation crystal module and output signals, the composite photosensitive device array includes a first group of photosensitive devices and a second group of photosensitive devices, and the first group of photosensitive devices The size is larger than the size of the second group of photosensitive devices, the first group of photosensitive devices includes four photosensitive devices arranged in a rhombus, the second group of photosensitive devices includes one photosensitive device, placed in the center of the rhombus, the The second group of photosensitive devices is closely adjacent to some of the photosensitive devices in the first group of photosensitive devices; 所述解码模块,用于根据来自复合光敏器件阵列的信号获得高能射线的空间位置和能量。The decoding module is used to obtain the spatial position and energy of the high-energy ray according to the signal from the composite photosensitive device array. 2.如权利要求1所述的高能射线探测器,所述复合光敏器件阵列包括多个由所述第一组光敏器件和第二组光敏器件组成的阵列。2. The high-energy ray detector according to claim 1, wherein the composite photosensitive device array comprises a plurality of arrays composed of the first group of photosensitive devices and the second group of photosensitive devices. 3.如权利要求1所述的高能射线探测器,其特征在于,所述第一组光敏器件和第二组光敏器件的光敏器件包括光电倍增管、硅光电倍增管或雪崩二极管。3. The high-energy ray detector according to claim 1, wherein the photosensitive devices of the first group of photosensitive devices and the second group of photosensitive devices comprise photomultiplier tubes, silicon photomultiplier tubes or avalanche diodes. 4.如权利要求1所述的高能射线探测器,其特征在于,所述第二组光敏器件与第一组光敏器件中相对的两个光敏器件紧密相邻。4. The high-energy ray detector according to claim 1, wherein the second group of photosensitive devices is closely adjacent to two opposite photosensitive devices in the first group of photosensitive devices. 5.如权利要求1所述的高能射线探测器,其特征在于,所述长条型闪烁晶体单元的宽度方向为方形、长方形或菱形。5. The high-energy ray detector according to claim 1, wherein the width direction of the elongated scintillation crystal unit is square, rectangular or rhombus. 6.如权利要求1所述的高能射线探测器,其特征在于,所述长条型闪烁晶体单元为以下材料的晶体之一:6. The high-energy ray detector according to claim 1, wherein the elongated scintillation crystal unit is one of the crystals of the following materials: 锗酸铋、硅酸镥、硅酸钇镥、硅酸钆、硅酸钇、氟化钡、碘化钠、碘化铯、钨酸铅、铝酸钇、溴化镧、氯化澜、溴化铈、硅酸镥、铝酸镥、碘化镥。Bismuth germanate, lutetium silicate, yttrium lutetium silicate, gadolinium silicate, yttrium silicate, barium fluoride, sodium iodide, cesium iodide, lead tungstate, yttrium aluminate, lanthanum bromide, bluestone chloride, bromine Cerium oxide, lutetium silicate, lutetium aluminate, lutetium iodide. 7.如权利要求1所述的高能射线探测器,其特征在于,所述闪烁晶体模块为方形、长方形或加工研磨成多边形。7. The high-energy ray detector according to claim 1, characterized in that, the scintillation crystal module is square, rectangular or processed and ground into a polygon. 8.如权利要求1所述的高能射线探测器,其特征在于,所述复合光敏器件阵列与闪烁晶体模块之间通过光学胶或光导材料粘结。8. The high-energy ray detector according to claim 1, wherein the composite photosensitive device array and the scintillation crystal module are bonded by optical glue or photoconductive material. 9.如权利要求8所述的高能射线探测器,其特征在于,所述光导材料为以下材料中的一种:有机塑料、玻璃和光纤。9. The high-energy ray detector according to claim 8, wherein the light guide material is one of the following materials: organic plastic, glass and optical fiber. 10.如权利要求1所述的高能射线探测器,其特征在于,所述高能射线探测器为单块或多块拼接成平面、弧形或环形。10. The high-energy ray detector according to claim 1, characterized in that, the high-energy ray detector is a single piece or multiple pieces spliced into a plane, an arc or a ring. 11.如权利要求1所述的高能射线探测器,其特征在于,所述解码模块得到高能射线的空间位置和能量,包括以下方式之一:11. The high-energy ray detector according to claim 1, wherein the decoding module obtains the spatial position and energy of the high-energy ray, including one of the following methods: 当使用直接坐标系时,When using a direct coordinate system, EE. == VV AA ++ VV BB ++ VV CC ++ VV DD. ++ VV EE. Xx == VV BB ++ VV DD. ++ 11 22 VV EE. EE. YY == VV AA ++ VV BB ++ 11 22 VV EE. EE. ;; 当使用斜坐标系时,When using an oblique coordinate system, EE. == VV AA ++ VV BB ++ VV CC ++ VV DD. ++ VV EE. Xx == VV AA ×× coscos (( θθ )) ++ VV BB ×× (( 11 ++ coscos (( θθ )) )) ++ VV DD. ++ 11 22 VV EE. ×× (( 11 ++ coscos (( θθ )) )) EE. YY == (( VV AA ++ VV BB )) ×× sinsin (( θθ )) EE. 其中,X和Y分别高能射线的空间位置中的水平位置和垂直位置;E为高能射线能量;VA、VB、Vc、VD分别为第一组光敏器件中的四个光敏器件的输出信号;VE为第二组光敏器件的输出信号;θ为Y’与X的夹角。Among them, X and Y are the horizontal position and vertical position in the spatial position of the high-energy ray; E is the energy of the high-energy ray; V A , V B , V c , V D are the four photosensitive devices in the first group of photosensitive devices Output signal; V E is the output signal of the second group of photosensitive devices; θ is the angle between Y' and X.
CN 201010170816 2010-05-06 2010-05-06 Oblique arrangement type high-energy ray detector of composite photosensor Active CN101839991B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201010170816 CN101839991B (en) 2010-05-06 2010-05-06 Oblique arrangement type high-energy ray detector of composite photosensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201010170816 CN101839991B (en) 2010-05-06 2010-05-06 Oblique arrangement type high-energy ray detector of composite photosensor

Publications (2)

Publication Number Publication Date
CN101839991A true CN101839991A (en) 2010-09-22
CN101839991B CN101839991B (en) 2013-06-12

Family

ID=42743490

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201010170816 Active CN101839991B (en) 2010-05-06 2010-05-06 Oblique arrangement type high-energy ray detector of composite photosensor

Country Status (1)

Country Link
CN (1) CN101839991B (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102455432A (en) * 2010-10-19 2012-05-16 株式会社东芝 Positron emission tomography detector module, radiation detector, positron emission tomography scanner system, method of processing signals, and method of manufacturing radiation detector module
CN102565841A (en) * 2012-02-06 2012-07-11 清华大学 Scintillation crystal array and scintillation detector possessing the same
CN102783961A (en) * 2011-05-20 2012-11-21 上海生物医学工程研究中心 Combined detector for positron emission tomography
CN103158203A (en) * 2011-12-16 2013-06-19 上海联影医疗科技有限公司 Manufacturing method of crystal area array and crystal detector
CN104155675A (en) * 2014-08-27 2014-11-19 中国科学院高能物理研究所 Radiation source positioning and imaging device
CN106461793A (en) * 2015-03-17 2017-02-22 皇家飞利浦有限公司 Scintillation event position determination in a radiation particle detector
US9696439B2 (en) 2015-08-10 2017-07-04 Shanghai United Imaging Healthcare Co., Ltd. Apparatus and method for PET detector
CN108121005A (en) * 2017-12-05 2018-06-05 清华大学 Utilize the method and neutron dose rate instrument of bromination cerium detector measurement neutron dose rate
CN108398713A (en) * 2017-02-08 2018-08-14 中国辐射防护研究院 Whole-body counter calibrating patterns holder is irradiated in a kind of
CN109507713A (en) * 2018-11-09 2019-03-22 清华大学 Handheld gamma radiation imaging apparatus and method
WO2020114330A1 (en) * 2018-12-07 2020-06-11 深圳先进技术研究院 Method for locating hit point of ray in scintillation crystal, and system therefor
WO2021016747A1 (en) * 2019-07-26 2021-02-04 Shenzhen Xpectvision Technology Co., Ltd. Radiation detector with scintillator
US12298454B2 (en) 2015-08-10 2025-05-13 Shanghai United Imaging Healthcare Co., Ltd. Apparatus and method for PET detector

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3732419A (en) * 1970-10-12 1973-05-08 Nuclear Chicago Corp Scintillation camera with improved resolution
US5859893A (en) * 1993-01-25 1999-01-12 Cardiac Mariners, Inc. X-ray collimation assembly
WO2009018321A2 (en) * 2007-07-31 2009-02-05 Yu Wang A novel scintillation detector array and associate signal processing method for gamma ray detection with encoding the energy, position, and time coordinates of the interaction
CN101539630A (en) * 2009-05-08 2009-09-23 上海生物医学工程研究中心 Method for detecting and positioning compound high-energy rays
CN101576514A (en) * 2009-06-12 2009-11-11 北京紫方启研科技有限公司 Portable X-ray detector based on highly sensitive line array detector

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3732419A (en) * 1970-10-12 1973-05-08 Nuclear Chicago Corp Scintillation camera with improved resolution
US5859893A (en) * 1993-01-25 1999-01-12 Cardiac Mariners, Inc. X-ray collimation assembly
WO2009018321A2 (en) * 2007-07-31 2009-02-05 Yu Wang A novel scintillation detector array and associate signal processing method for gamma ray detection with encoding the energy, position, and time coordinates of the interaction
CN101539630A (en) * 2009-05-08 2009-09-23 上海生物医学工程研究中心 Method for detecting and positioning compound high-energy rays
CN101576514A (en) * 2009-06-12 2009-11-11 北京紫方启研科技有限公司 Portable X-ray detector based on highly sensitive line array detector

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102455432A (en) * 2010-10-19 2012-05-16 株式会社东芝 Positron emission tomography detector module, radiation detector, positron emission tomography scanner system, method of processing signals, and method of manufacturing radiation detector module
CN102455432B (en) * 2010-10-19 2014-11-12 株式会社东芝 Positron emission tomography detector module, radiation detector, positron emission tomography scanner system, method of processing signals, and method of manufacturing radiation detector module
CN102783961A (en) * 2011-05-20 2012-11-21 上海生物医学工程研究中心 Combined detector for positron emission tomography
CN102783961B (en) * 2011-05-20 2014-06-11 上海生物医学工程研究中心 Combined detector for positron emission tomography
CN103158203A (en) * 2011-12-16 2013-06-19 上海联影医疗科技有限公司 Manufacturing method of crystal area array and crystal detector
CN103158203B (en) * 2011-12-16 2015-09-02 上海联影医疗科技有限公司 The preparation method of crystal area array and crystal counter
CN102565841A (en) * 2012-02-06 2012-07-11 清华大学 Scintillation crystal array and scintillation detector possessing the same
CN104155675A (en) * 2014-08-27 2014-11-19 中国科学院高能物理研究所 Radiation source positioning and imaging device
CN106461793A (en) * 2015-03-17 2017-02-22 皇家飞利浦有限公司 Scintillation event position determination in a radiation particle detector
CN106461793B (en) * 2015-03-17 2019-02-05 皇家飞利浦有限公司 Scintillation event position in radiating particle detector determines
US9835740B2 (en) 2015-08-10 2017-12-05 Shanghai United Imaging Healthcare Co., Ltd. Apparatus and method for PET detector
US9696439B2 (en) 2015-08-10 2017-07-04 Shanghai United Imaging Healthcare Co., Ltd. Apparatus and method for PET detector
US10877169B2 (en) 2015-08-10 2020-12-29 Shanghai United Imaging Healthcare Co., Ltd. Apparatus and method for pet detector
US11378702B2 (en) 2015-08-10 2022-07-05 Shanghai United Imaging Healthcare Co., Ltd. Apparatus and method for PET detector
US11782175B2 (en) 2015-08-10 2023-10-10 Shanghai United Imaging Healthcare Co., Ltd. Apparatus and method for PET detector
US12298454B2 (en) 2015-08-10 2025-05-13 Shanghai United Imaging Healthcare Co., Ltd. Apparatus and method for PET detector
CN108398713A (en) * 2017-02-08 2018-08-14 中国辐射防护研究院 Whole-body counter calibrating patterns holder is irradiated in a kind of
CN108121005A (en) * 2017-12-05 2018-06-05 清华大学 Utilize the method and neutron dose rate instrument of bromination cerium detector measurement neutron dose rate
CN108121005B (en) * 2017-12-05 2019-09-17 清华大学 Utilize the method and neutron dose rate instrument of bromination cerium detector measurement neutron dose rate
CN109507713A (en) * 2018-11-09 2019-03-22 清华大学 Handheld gamma radiation imaging apparatus and method
WO2020114330A1 (en) * 2018-12-07 2020-06-11 深圳先进技术研究院 Method for locating hit point of ray in scintillation crystal, and system therefor
WO2021016747A1 (en) * 2019-07-26 2021-02-04 Shenzhen Xpectvision Technology Co., Ltd. Radiation detector with scintillator

Also Published As

Publication number Publication date
CN101839991B (en) 2013-06-12

Similar Documents

Publication Publication Date Title
CN101839991B (en) Oblique arrangement type high-energy ray detector of composite photosensor
CN101839992B (en) Photosensitive device inclined arrangement type high energy ray detector
CN101539630B (en) Method for detecting and positioning compound high-energy rays
CN102597805B (en) The design of flicker pixel and method of work
JP5930973B2 (en) Radiation detector
EP2866057B1 (en) Multilayer scintillation crystal and pet detector
US9040924B2 (en) Optical-interface patterning for radiation detector crystals
CN101248370B (en) High Resolution Medical Imaging Detectors
US7750306B2 (en) Reduced edge effect detector
CN101806912A (en) High-energy ray laminated type crystal module detector
JP2002071816A (en) 2D radiation and neutron image detector
CN102890284B (en) Nuclear detection device
CN106415319A (en) Photon-counting detector
CN109073764A (en) The photoelectric sensor arranged in scintillator surface
US20100237251A1 (en) Radiation detector
US9612344B2 (en) Positron emission tomography and single photon emission computed tomography based on intensity attenuation shadowing methods and effects
WO2024131738A1 (en) Crystal array detector and emission imaging device
KR102316574B1 (en) A Compton Imager and a Single Photon Emission and Positron Emission Tomography System including the same
CN219126405U (en) Crystal array detector and emission imaging device
CN102783961A (en) Combined detector for positron emission tomography
JP2010085415A (en) Two-dimensional radiation and neutron image detector
CN216696122U (en) Be used for X ray backscatter detector device
JP4590588B2 (en) Two-dimensional radiation and neutron image detector
JP3950964B2 (en) Actuated radiation position detector in strong magnetic field
CN208399701U (en) It is a kind of for radiation detection and emit imaging device detector

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant