CN101839991A - Oblique arrangement type high-energy ray detector of composite photosensor - Google Patents
Oblique arrangement type high-energy ray detector of composite photosensor Download PDFInfo
- Publication number
- CN101839991A CN101839991A CN 201010170816 CN201010170816A CN101839991A CN 101839991 A CN101839991 A CN 101839991A CN 201010170816 CN201010170816 CN 201010170816 CN 201010170816 A CN201010170816 A CN 201010170816A CN 101839991 A CN101839991 A CN 101839991A
- Authority
- CN
- China
- Prior art keywords
- photosensitive devices
- group
- energy ray
- photosensitive
- scintillation crystal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Measurement Of Radiation (AREA)
Abstract
本发明的实施例公开了一种复合光敏器件斜排列式高能射线探测器,包括:闪烁晶体模块、复合光敏器件阵列和解码模块,闪烁晶体模块用于产生闪烁光,由长条型闪烁晶体单元沿所述长条型闪烁晶体单元的宽度方向排列而成;复合光敏器件阵列,用于探测来自所述闪烁晶体模块的闪烁光并输出信号,包括第一组光敏器件和第二组光敏器件,第一组光敏器件的尺寸大于第二组光敏器件的尺寸,第一组光敏器件排列成菱形;解码模块,用于根据来自复合光敏器件阵列的信号,获得高能射线的空间位置和能量。根据本发明提供的高能射线探测器,可以通过灵活选择光敏器件尺寸,获得更小的探测死区,在两个方向上得到不同的空间分辨率。
The embodiment of the present invention discloses a composite photosensitive device obliquely arranged high-energy ray detector, including: a scintillation crystal module, a composite photosensitive device array and a decoding module. Arranged along the width direction of the elongated scintillation crystal unit; the composite photosensitive device array is used to detect the scintillation light from the scintillation crystal module and output signals, including a first group of photosensitive devices and a second group of photosensitive devices, The size of the first group of photosensitive devices is larger than that of the second group of photosensitive devices, and the first group of photosensitive devices is arranged in a rhombus; the decoding module is used to obtain the spatial position and energy of high-energy rays according to the signal from the composite photosensitive device array. According to the high-energy ray detector provided by the present invention, a smaller detection dead zone can be obtained by flexibly selecting the size of the photosensitive device, and different spatial resolutions can be obtained in two directions.
Description
技术领域technical field
本发明涉及辐射探测成像领域,尤其是涉及一种复合光敏器件斜排列式高能射线探测器。The invention relates to the field of radiation detection and imaging, in particular to a composite photosensitive device obliquely arranged high-energy ray detector.
背景技术Background technique
高能射线探测技术常用探测器之一为闪烁体探测器。闪烁体探测器通常利用一种能够有效阻挡和吸收电磁波辐射并与之产生发光作用的闪烁晶体作为探测材料。当高能射线入射到闪烁晶体内,根据射线能量、闪烁晶体有效原子系数和密度的不同,与闪烁晶体发生不同比例的光电效应、康普顿散射效应及电子对效应,将能量沉积在闪烁晶体中,被激发的闪烁晶体退激发出微弱的闪烁光,退激服从指数衰减规律,不同材料的闪烁晶体具有不同的发光光谱,包括不同的发光衰减时间,不同的峰位值等。利用光敏器件将位于可见光区或紫外光区的闪烁光经过光电转换和倍增,形成脉冲信号。脉冲信号强度反映了高能射线的能量;脉冲信号发生的时间反映了高能射线的入射时间;脉冲信号的在多个光敏器件中的强度分配反映了高能射线的入射位置等。闪烁探测器具有探测效率高,分辨时间短等特点,被广泛应用于核医学、安全检查、高能物理和宇宙射线探测的研究中,是当今辐射探测技术领域不可或缺的主要手段。One of the commonly used detectors in high-energy ray detection technology is a scintillator detector. Scintillator detectors usually use a scintillation crystal that can effectively block and absorb electromagnetic radiation and produce luminescence with it as a detection material. When high-energy rays are incident into the scintillation crystal, according to the difference in ray energy, effective atomic coefficient and density of the scintillation crystal, different proportions of photoelectric effect, Compton scattering effect and electron pair effect will occur with the scintillation crystal, and the energy will be deposited in the scintillation crystal. , The excited scintillation crystal de-excites to emit weak scintillation light, and the de-excitation obeys the law of exponential decay. The scintillation crystals of different materials have different luminescence spectra, including different luminescence decay times, different peak values, etc. The flashing light located in the visible light region or the ultraviolet light region is photoelectrically converted and multiplied by a photosensitive device to form a pulse signal. The intensity of the pulse signal reflects the energy of the high-energy ray; the occurrence time of the pulse signal reflects the incident time of the high-energy ray; the intensity distribution of the pulse signal in multiple photosensitive devices reflects the incident position of the high-energy ray, etc. Scintillation detectors have the characteristics of high detection efficiency and short resolution time, and are widely used in the research of nuclear medicine, safety inspection, high-energy physics and cosmic ray detection, and are an indispensable and main means in the field of radiation detection technology today.
传统闪烁探测器在进行成像探测时,通常用长条型闪烁晶体单元组成方形闪烁晶体阵列来耦合光敏器件方形阵列或六边形阵列的方法进行高能射线的定位分析。闪烁晶体阵列除与光敏器件耦合的一面外其他六面用反光膜覆盖。闪烁晶体阵列间的长条型闪烁晶体单元之间按一定的规则粘贴或喷涂上不同长度的反光材料,长条型闪烁晶体单元之间添加硅油,并用高度透明的光学胶固定。闪烁晶体阵列和光敏器件阵列之间直接耦合或添加光导材料,如有机塑料、玻璃、光纤等。When traditional scintillation detectors perform imaging detection, they usually use long scintillation crystal units to form square scintillation crystal arrays to couple square arrays or hexagonal arrays of photosensitive devices for positioning analysis of high-energy rays. Except the side coupled with the photosensitive device, the other six sides of the scintillation crystal array are covered with reflective film. The long scintillation crystal units between the scintillation crystal arrays are pasted or sprayed with reflective materials of different lengths according to certain rules, and silicone oil is added between the long scintillation crystal units, and fixed with highly transparent optical glue. The scintillation crystal array and the photosensitive device array are directly coupled or light-conducting materials are added, such as organic plastics, glass, optical fibers, etc.
当高能射线入射到闪烁晶体阵列,和长条型闪烁晶体单元发生作用,将能量沉积在长条型闪烁晶体单元上,长条型闪烁晶体单元退激发出大量低能光子,如可见光或紫外光,低能光子在长条型闪烁晶体单元中传播,经过多次反射最终被光敏器件探测到或逃逸或被长条型闪烁晶体单元吸收。当低能光子遇到没有反射膜的表面将透射到临近的长条型闪烁晶体单元中从而可能被其它光敏器件探测到。最终所有光敏器件将得到不同强度的信号,信号的强度反映了探测到低能光子的数量,各个光敏器件上信号的和可以反映入射高能射线的能量,通过低能光子在各个光敏器件的分布可以得到高能射线的入射位置。因此传统探测器通常采用Anger重心法定位。When the high-energy ray is incident on the scintillation crystal array and interacts with the long scintillation crystal unit, the energy is deposited on the long scintillation crystal unit, and the long scintillation crystal unit de-excites a large number of low-energy photons, such as visible light or ultraviolet light, The low-energy photons propagate in the elongated scintillation crystal unit, and after multiple reflections, are finally detected by the photosensitive device or escape or are absorbed by the elongated scintillation crystal unit. When low-energy photons encounter a surface without a reflective film, they will be transmitted to the adjacent elongated scintillation crystal unit and may be detected by other photosensitive devices. In the end, all photosensitive devices will get signals of different intensities. The intensity of the signal reflects the number of low-energy photons detected, and the sum of the signals on each photosensitive device can reflect the energy of incident high-energy rays. Through the distribution of low-energy photons in each photosensitive device, high-energy The incident position of the ray. Therefore, traditional detectors usually use the Anger center of gravity method for positioning.
如图1所示,为现有技术中采用闪烁晶体阵列耦合方形光敏器件阵列的传统闪烁探测器的原理图。图2为采用闪烁晶体阵列耦合PQS方式的光敏器件阵列的传统闪烁探测器的原理图。图3为采用闪烁晶体阵列耦合正六边形光敏器件阵列的传统闪烁探测器的原理。其中,1为光敏器件,2为闪烁晶体模块,3为长条型闪烁晶体单元。在图1中,光敏器件阵列排列为方形。在图3中,光敏器件阵列排列为正六边形。As shown in FIG. 1 , it is a schematic diagram of a traditional scintillation detector using a scintillation crystal array coupled with a square photosensitive device array in the prior art. FIG. 2 is a schematic diagram of a traditional scintillation detector using a scintillation crystal array coupled with a PQS photosensitive device array. Fig. 3 shows the principle of a traditional scintillation detector using a scintillation crystal array coupled with a regular hexagonal photosensitive device array. Wherein, 1 is a photosensitive device, 2 is a scintillation crystal module, and 3 is a strip type scintillation crystal unit. In Figure 1, the array of photosensitive devices is arranged in a square shape. In Figure 3, the array of photosensitive devices is arranged in a regular hexagon.
以光敏器件方形阵列为例,如图1中所示,四个光敏器件光输出信号为VA、VB、VC、VD,则高能射线的空间位置X,Y和能量E分别由以下公式确定:Taking the square array of photosensitive devices as an example, as shown in Figure 1, the light output signals of the four photosensitive devices are V A , V B , V C , and V D , then the spatial positions X, Y and energy E of high-energy rays are determined by the following The formula determines:
如果用泛源照射到探测器上,采集足够数量的高能射线粒子,根据上述重心法计算每一个高能射线粒子的位置,并绘于二维直方图中,得到泛场直方图或称二维位形图。从高能射线粒子与晶体发生作用到被光敏器件探测产生电脉冲信号的过程的随机性,导致输出信号的不确定性,入射到同一块长条型晶体单元的若干个高能射线粒子会输出不同的X、Y信号,反映在泛场直方图中就是每一个晶体块呈现一个白色团块。根据泛场直方图上的白色团块的分布情况,确定它们的分界线,并记录在查找表中。数据采集时可以根据每个入射事件产生的X、Y信号和查找表,判断该入射粒子进入了哪一个长条型晶体单元,从而得到相应的晶体块在探测器模块中的位置编码。另一种方法是利用泛场直方图使用最大似然估计方法,从粒子入射的X、Y值判断它发生在哪个长条型晶体单元中。If a flood source is used to irradiate the detector to collect a sufficient number of high-energy ray particles, the position of each high-energy ray particle is calculated according to the above-mentioned center of gravity method, and drawn in a two-dimensional histogram to obtain a flood histogram or two-dimensional position graphic. The randomness of the process from the interaction between the high-energy ray particles and the crystal to the detection of the photosensitive device to generate the electric pulse signal leads to the uncertainty of the output signal. Several high-energy ray particles incident on the same elongated crystal unit will output different The X and Y signals are reflected in the pan-field histogram, that is, each crystal block presents a white mass. According to the distribution of the white clusters on the pan-field histogram, determine their boundary lines and record them in the lookup table. During data collection, according to the X and Y signals generated by each incident event and the look-up table, it can be judged which elongated crystal unit the incident particle entered, so as to obtain the position code of the corresponding crystal block in the detector module. Another method is to use the full-field histogram to use the maximum likelihood estimation method to judge which elongated crystal unit it occurs in from the X and Y values of the incident particle.
现有技术的缺点是,传统探测器在X,Y方向上得到的空间分辨率是一样的,而且如果采用图1、图2和图3中的闪烁探测器,光敏器件之间有较大的探测死区。The disadvantage of the prior art is that the spatial resolution obtained by traditional detectors in the X and Y directions is the same, and if the scintillation detectors in Fig. 1, Fig. 2 and Fig. 3 are used, there is a large gap between photosensitive devices. Detect dead zone.
发明内容Contents of the invention
本发明的目的旨在至少解决上述问题之一,特别提出了一种具有光敏器件尺寸选择灵活、不同空间分辨率、探测死区小和可扩展等特点的复合光敏器件斜排列式高能射线探测器。The purpose of the present invention is to at least solve one of the above-mentioned problems, and specifically proposes a composite photosensitive device obliquely arranged high-energy ray detector with the characteristics of flexible photosensitive device size selection, different spatial resolutions, small detection dead zone, and expandability. .
本发明实施例开了一种复合光敏器件斜排列式高能射线探测器,包括:所述高能射线探测器包括:闪烁晶体模块、复合光敏器件阵列和解码模块,An embodiment of the present invention discloses a composite photosensitive device obliquely arranged high-energy ray detector, including: the high-energy ray detector includes: a scintillation crystal module, a composite photosensitive device array and a decoding module,
所述闪烁晶体模块,用于产生闪烁光,所述闪烁晶体模块由长条型闪烁晶体单元沿所述长条型闪烁晶体单元的宽度方向排列而成;The scintillation crystal module is used to generate scintillation light, and the scintillation crystal module is composed of strip-shaped scintillation crystal units arranged along the width direction of the strip-shaped scintillation crystal units;
所述复合光敏器件阵列,用于探测来自所述闪烁晶体模块的闪烁光并输出信号,所述复合光敏器件阵列包括第一组光敏器件和第二组光敏器件,所述第一组光敏器件的尺寸大于所述第二组光敏器件的尺寸,所述第一组光敏器件包括四个排列为菱形的光敏器件,所述第二组光敏器件包括一个光敏器件,放置于所述菱形中心,所述第二组光敏器件与所述第一组光敏器件中部分光敏器件紧密相邻;The composite photosensitive device array is used to detect the scintillation light from the scintillation crystal module and output signals, the composite photosensitive device array includes a first group of photosensitive devices and a second group of photosensitive devices, and the first group of photosensitive devices The size is larger than the size of the second group of photosensitive devices, the first group of photosensitive devices includes four photosensitive devices arranged in a rhombus, the second group of photosensitive devices includes one photosensitive device, placed in the center of the rhombus, the The second group of photosensitive devices is closely adjacent to some of the photosensitive devices in the first group of photosensitive devices;
所述解码模块,用于根据来自复合光敏器件阵列的信号获得高能射线的空间位置和能量。The decoding module is used to obtain the spatial position and energy of the high-energy ray according to the signal from the composite photosensitive device array.
根据本发明实施例提供的高能射线探测器,具有以下特点和优点:The high-energy ray detector provided according to the embodiment of the present invention has the following characteristics and advantages:
1、可以灵活选择光敏器件的尺寸:大尺寸光敏器件构成的菱形角度可以跟据小尺寸光敏器件的大小来确定,排列的倾斜角度可以任意改变,因此可以利用各种尺寸的光敏器件。1. The size of the photosensitive device can be flexibly selected: the rhombus angle formed by the large-sized photosensitive device can be determined according to the size of the small-sized photosensitive device, and the inclination angle of the arrangement can be changed arbitrarily, so photosensitive devices of various sizes can be used.
2、可以选择不同类型的光敏器件组合,可以由圆形的光敏器件如光电倍增管和长方形的光敏器件如雪崩二极管组成。2. Different types of photosensitive devices can be combined, which can be composed of circular photosensitive devices such as photomultiplier tubes and rectangular photosensitive devices such as avalanche diodes.
3、可以获得X,Y两个方向上不同的空间分辨率:由光敏器件的排列特性可以得出在Y方向上的分辨率优于X方向。3. Different spatial resolutions in X and Y directions can be obtained: According to the arrangement characteristics of photosensitive devices, it can be concluded that the resolution in the Y direction is better than that in the X direction.
4、更高效的探测高能射线:斜排列的复合光敏器件之间的缝隙面积小于传统方形排列的光敏器件阵列,因此复合光敏器件斜排列高能射线探测器探测的盲区较小。4. More efficient detection of high-energy rays: The gap area between the obliquely arranged composite photosensitive devices is smaller than that of the traditional square-arranged photosensitive device array, so the obliquely arranged composite photosensitive devices have a smaller blind area for detection by high-energy ray detectors.
5、可扩展:探测器模块可以拼接扩展成大平板探、弧形或环形探测器。5. Expandable: The detector modules can be spliced and expanded into large flat-panel detectors, arc or ring detectors.
本发明提供的高能射线探测器可以通过灵活选择光敏器件尺寸,获得更小的探测死区,在两个方向上得到不同的空间分辨率。The high-energy ray detector provided by the invention can obtain a smaller detection dead zone and different spatial resolutions in two directions by flexibly selecting the size of the photosensitive device.
本发明附加的方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。Additional aspects and advantages of the invention will be set forth in part in the description which follows, and in part will be obvious from the description, or may be learned by practice of the invention.
附图说明Description of drawings
本发明上述的和/或附加的方面和优点从下面结合附图对实施例的描述中将变得明显和容易理解,其中:The above and/or additional aspects and advantages of the present invention will become apparent and easy to understand from the following description of the embodiments in conjunction with the accompanying drawings, wherein:
图1为采用闪烁晶体阵列耦合方形光敏器件阵列的传统闪烁探测器的原理示意图;1 is a schematic diagram of the principle of a traditional scintillation detector using a scintillation crystal array coupled to a square photosensitive device array;
图2为采用闪烁晶体阵列耦合PQS方式的光敏器件阵列的传统闪烁探测器的原理示意图;Fig. 2 is the schematic diagram of the principle of a traditional scintillation detector using a photosensitive device array coupled with a scintillation crystal array in a PQS mode;
图3为采用闪烁晶体阵列耦合正六边形光敏器件阵列的传统闪烁探测器的原理示意图;3 is a schematic diagram of the principle of a traditional scintillation detector using a scintillation crystal array coupled to a regular hexagonal photosensitive device array;
图4为根据本发明实施例的采用方形闪烁晶体阵列耦合复合光敏器件斜排列式高能射线探测器原理示意图;Fig. 4 is a schematic diagram of the principle of an obliquely arranged high-energy ray detector using a square scintillation crystal array coupled with a composite photosensitive device according to an embodiment of the present invention;
图5为本根据本发明实施例的高能射线探测器获取的二维泛场直方图;FIG. 5 is a two-dimensional flood histogram obtained by a high-energy ray detector according to an embodiment of the present invention;
图6为根据本发明实施例的圆形的第一组光敏器件和长方形的第二组光敏器件组成的斜排列式高能射线探测器原理示意图;Fig. 6 is a schematic diagram of the principle of a diagonally arranged high-energy ray detector composed of a first group of circular photosensitive devices and a second group of rectangular photosensitive devices according to an embodiment of the present invention;
图7为图4中光敏器件斜排列式高能射线探测器扩展成平面探测器的原理示意图。FIG. 7 is a schematic diagram of the principle of expanding the obliquely arranged high-energy ray detector of photosensitive devices into a planar detector in FIG. 4 .
其中,in,
1为光敏器件阵列,11为第一组光敏器件,12为第二组光敏器件,2为闪烁晶体模块,3为长条型闪烁晶体单元。1 is a photosensitive device array, 11 is a first group of photosensitive devices, 12 is a second group of photosensitive devices, 2 is a scintillation crystal module, and 3 is a strip type scintillation crystal unit.
具体实施方式Detailed ways
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本发明,而不能解释为对本发明的限制。Embodiments of the present invention are described in detail below, examples of which are shown in the drawings, wherein the same or similar reference numerals designate the same or similar elements or elements having the same or similar functions throughout. The embodiments described below by referring to the figures are exemplary only for explaining the present invention and should not be construed as limiting the present invention.
为解决上述问题,本发明实施例提供了一种复合光敏器件斜排列式高能射线探测器,包括闪烁晶体模块、复合光敏器件阵列和解码模块。具体地说,复合光敏器件阵列,用于探测闪烁光并输出信号,包括第一组光敏器件和第二组光敏器件,至少五个光敏器件斜排列而成。在本发明的一个实施例中,其中两组光敏器件的尺寸不同,第一组光敏器件的尺寸大于第二组光敏器件的尺寸,以下为了便于描述将第一组光敏器件中的光敏器件称为大尺寸光敏器件,将第二组光敏器件中的光敏器件称为小尺寸光敏器件。在本发明的一个实施例中,大尺寸光敏器件的数量为4个,小尺寸光敏器件的数量为1个,小尺寸光敏器件位于四个大尺寸光敏器件构成的菱形的中心。In order to solve the above problems, an embodiment of the present invention provides a composite photosensitive device obliquely arranged high-energy ray detector, including a scintillation crystal module, a composite photosensitive device array and a decoding module. Specifically, the composite photosensitive device array, used to detect scintillation light and output signals, includes a first group of photosensitive devices and a second group of photosensitive devices, and at least five photosensitive devices are arranged obliquely. In one embodiment of the present invention, wherein the sizes of the two groups of photosensitive devices are different, the size of the first group of photosensitive devices is larger than the size of the second group of photosensitive devices, and the photosensitive devices in the first group of photosensitive devices are referred to as For large-size photosensitive devices, the photosensitive devices in the second group of photosensitive devices are called small-size photosensitive devices. In one embodiment of the present invention, the number of large-size photosensitive devices is 4, the number of small-size photosensitive devices is 1, and the small-size photosensitive device is located at the center of a rhombus formed by four large-size photosensitive devices.
结合图4所示,第一组光敏器件11包括四个排列为菱形的大尺寸光敏器件A、B、C、D,四个光敏器件的中心在一个菱形上。第二组光敏器件12包括一个小尺寸光敏器件E。小尺寸光敏器件E放置于上述菱形中心。菱形的角度能够通过大尺寸光敏器件和小尺寸光敏器件的尺寸而定,且可让小尺寸光敏器件与大尺寸光敏器件中的部分光敏器件紧密排列。如图4中所示让小尺寸光敏器件E和相对的两个大尺寸光敏器件A和D紧挨。As shown in FIG. 4 , the first group of
其中,第一组光敏器件和第二组光敏器件的光敏器件类型包括:光电倍增管、硅光电倍增管、雪崩二极管。第一组光敏器件和第二组光敏器件的光敏器件类型可以相同,也可不同。Wherein, the photosensitive device types of the first group of photosensitive devices and the second group of photosensitive devices include: photomultiplier tubes, silicon photomultiplier tubes, and avalanche diodes. The types of photosensitive devices of the first group of photosensitive devices and the second group of photosensitive devices may be the same or different.
此外,复合光敏器件斜排列式高能射线探测器还包括闪烁晶体模块2,用于生成闪烁光,闪烁晶体模块2由长条型闪烁晶体单元3沿长条型闪烁晶体单元的宽度方向排列而成。其中,长条型闪烁晶体单元3的宽度方向为方形、长方形或菱形,图4中所示宽度方向为方形。In addition, the composite photosensitive device obliquely arranged high-energy ray detector also includes a
长条型闪烁晶体单元3可以采用以下材料的晶体之一:锗酸铋、硅酸镥、硅酸钇镥、硅酸钆、硅酸钇、氟化钡、碘化钠、碘化铯、钨酸铅、铝酸钇、溴化镧、氯化澜、溴化铈、硅酸镥、铝酸镥、碘化镥。The elongated
将上述用于捕获高能射线的长条型闪烁晶体单元3排列成闪烁晶体模块2。其中,长条型晶体单元3的横切面以及组成的闪烁晶体模块2的形状包括正方形或长方形或菱形。The aforementioned elongated
闪烁晶体模块2在不同的位置粘结不同长度的反光膜,未粘接反光膜的地方用硅油填充,利用光学胶固定闪烁晶体模块2。其中为了提高闪烁晶体模块2与光敏器件阵列的耦合,可以对闪烁晶体模块进一步加工,进行切割和打磨成其它多边形。The
在本发明的一个实施例中,复合光敏器件斜排列式高能射线探测器是利用光学胶将上述闪烁晶体模块2与斜排列复合光敏器件阵列直接粘结在一起。在本发明的另一个实施例中,还可用上述闪烁晶体模块耦合光导材料后再耦合斜光敏器件阵列。其中,光导材料为以下材料中的一种:有机塑料、玻璃和光纤。In one embodiment of the present invention, the composite photosensitive device obliquely arranged high-energy ray detector uses optical glue to directly bond the
高能射线入射到闪烁晶体模块2后产生闪烁光,被光敏器件探测到。光敏器件将探测到的信号经过转换和放大后得到电脉冲信号,输出到解码模块。解码模块利用脉冲信号在光敏器件阵列的权重分配,得到高能射线在上述闪烁晶体模块中的坐标。After the high-energy ray is incident on the
其中,解码模块对对脉冲信号进行解码的方法包括两种。Wherein, the decoding module includes two methods for decoding the pulse signal.
方法一:使用直角坐标系XOY。Method 1: Use the Cartesian coordinate system XOY.
结合图4所示,五个光敏器件输出信号为VA、VB、VC、VD、VE,则高能射线的空间位置X,Y和能量E分别由以下公式确定:As shown in Figure 4, the output signals of the five photosensitive devices are V A , V B , V C , V D , and VE , then the spatial positions X, Y and energy E of high-energy rays are determined by the following formulas:
方法二:使用斜坐标系XOY’。Method 2: Use the oblique coordinate system XOY'.
结合图4所示,五个光敏器件输出信号为VA、VB、VC、VD、VE,θ为Y’与X的夹角,则高能射线的空间位置X,Y和能量E分别由以下公式确定:As shown in Figure 4, the output signals of the five photosensitive devices are V A , V B , V C , V D , V E , and θ is the angle between Y' and X, then the spatial position X, Y and energy E of the high-energy ray are determined by the following formulas, respectively:
通过上述方法可以获得X,Y两个方向上不同的空间分辨率。如图4中所示,由光敏器件的排列特性可以得出在Y方向上的分辨率优于X方向。根据上述方法计算每一个高能射线粒子的位置,并绘于二维直方图中,得到泛场直方图或称二维位形图。入射到同一块长条型晶体单元的若干个高能射线粒子会输出不同的X、Y信号,反映在泛场直方图中就是每一个晶体块呈现一个白色团块。根据泛场直方图上的白色团块的分布情况,确定它们的分界线,并记录在查找表中。数据采集时可以根据每个入射事件产生的X、Y信号和查找表,判断该入射粒子进入了哪一个长条型晶体单元,从而得到相应的晶体块在探测器模块中的位置编码。Different spatial resolutions in the X and Y directions can be obtained through the above method. As shown in FIG. 4 , it can be concluded that the resolution in the Y direction is better than that in the X direction from the arrangement characteristics of the photosensitive devices. Calculate the position of each high-energy ray particle according to the above method, and draw it in a two-dimensional histogram to obtain a pan-field histogram or a two-dimensional configuration map. Several high-energy ray particles incident on the same elongated crystal unit will output different X and Y signals, reflected in the pan-field histogram that each crystal block presents a white mass. According to the distribution of the white clusters on the pan-field histogram, determine their boundary lines and record them in the lookup table. During data collection, according to the X and Y signals generated by each incident event and the look-up table, it can be judged which elongated crystal unit the incident particle entered, so as to obtain the position code of the corresponding crystal block in the detector module.
下面以闪烁晶体模块为9行9列组成9×9方阵的高能射线探测器为例,对本发明进一步说明。Hereinafter, the present invention will be further described by taking a high-energy ray detector in which scintillation crystal modules form a 9×9 square matrix with 9 rows and 9 columns as an example.
其中,闪烁晶体材料为硅酸钇镥,长条型闪烁晶体单元尺寸:5.7mm×5.7mm×20mm;闪烁晶体阵列:9行9列组成9×9方阵,52mm×52mm。Among them, the scintillation crystal material is yttrium lutetium silicate, and the size of the elongated scintillation crystal unit is 5.7mm×5.7mm×20mm; the scintillation crystal array: 9 rows and 9 columns form a 9×9 square matrix, 52mm×52mm.
复合光敏器件阵列为:The composite photosensitive device array is:
第一组光敏器件:4个Hamamatsu R9779(直径51mm),光电倍增管,四个大尺寸光电倍增管斜排列角度:菱形小角角度86度。光电倍增管阴极电压:-1500V,光电倍增管阳极电压:0V(接地)。The first group of photosensitive devices: 4 Hamamatsu R9779 (diameter 51mm), photomultiplier tubes, four large-size photomultiplier tubes obliquely arranged Angle: small diamond-shaped angle of 86 degrees. Photomultiplier tube cathode voltage: -1500V, photomultiplier tube anode voltage: 0V (grounded).
第二组光敏器件:1个Photonis XP1912(直径19mm),小尺寸光电倍增管中心在菱形中心上。The second group of photosensitive devices: 1 Photonis XP1912 (diameter 19mm), the center of the small-sized photomultiplier tube is on the center of the rhombus.
伽马射线源:铯(Cs-137)点源,强度0.4μCi,能量662KeVGamma ray source: cesium (Cs-137) point source, intensity 0.4μCi, energy 662KeV
数据采集:光电倍增管信号经前置放大器进入ADC模块(模数转化模块),提取时间和位置信息,传入Flow board模块(数据接收模块),用PowerPC接收和传输到PC机,使用LabView程序采集。Data acquisition: The photomultiplier tube signal enters the ADC module (analog-to-digital conversion module) through the preamplifier, extracts time and position information, and transmits it to the Flow board module (data receiving module), receives and transmits it to the PC with PowerPC, and uses the LabView program collection.
实验结果分析:Analysis of results:
光敏器件斜排列式高能射线探测器的光敏器件采用光电倍增管,闪烁晶体阵列为9×9方阵,铯(Cs-137)伽马源距离探测器30cm远,可近似为泛场源,当伽马射线入射到闪烁晶体阵列后激发闪烁晶体,闪烁晶体退激、产生可见光,可见光经四个光电倍增管转化为电信号,放大后输出到数据采集部分。最后得到泛场的直方图如图5所示,其中9×9阵列结构清晰可见。图像灰度代表计数率,颜色越白表示该处伽马射线的强度越高。The photosensitive device of the obliquely arranged high-energy ray detector adopts a photomultiplier tube, and the scintillation crystal array is a 9×9 square array. The cesium (Cs-137) gamma source is 30cm away from the detector, which can be approximated as a flood source. After the gamma rays are incident on the scintillation crystal array, the scintillation crystals are excited, and the scintillation crystals are de-excited to generate visible light. The visible light is converted into electrical signals by four photomultiplier tubes, amplified and output to the data acquisition part. The final histogram of the pan field is shown in Figure 5, where the 9×9 array structure is clearly visible. The grayscale of the image represents the count rate, and the whiter the color, the higher the intensity of gamma rays at that location.
图4所示的第一组光敏器件和第二组光敏器件均为圆形,本发明实施例提供的复合光敏器件斜排列式高能射线探测器亦可实施为选择不同类型的光敏器件组合而成。如图6中所示,第一组光敏器件为圆形的光电倍增管,第二组光敏器件为长方形的雪崩二极管。具体的说,光敏器件A、B、C、D为圆形的光电倍增管,光敏器件E为长方形的雪崩二极管。The first group of photosensitive devices and the second group of photosensitive devices shown in Figure 4 are both circular, and the composite photosensitive device obliquely arranged high-energy ray detector provided by the embodiment of the present invention can also be implemented as a combination of different types of photosensitive devices. . As shown in FIG. 6 , the first group of photosensitive devices is a circular photomultiplier tube, and the second group of photosensitive devices is a rectangular avalanche diode. Specifically, the photosensitive devices A, B, C, and D are circular photomultiplier tubes, and the photosensitive device E is a rectangular avalanche diode.
并且上述实施例中提供的复合光敏器件斜排列式高能射线探测器可以扩展。即探测器模块可以拼接扩展成平面、弧形或环形探测器。图7示出了光敏器件斜排列式高能射线探测器扩展成平面探测器的原理示意图。如图中7所示,第一组光敏器件包括9个光敏器件,第二组光敏器件包括4个光敏器件。相邻4个大尺寸光敏器件,即第一组光敏器件斜排列,其菱形中心位置放置小尺寸光敏器件,即第二组光敏器件。Moreover, the composite photosensitive device obliquely arranged high-energy ray detector provided in the above embodiments can be expanded. That is, the detector modules can be spliced and expanded into plane, arc or ring detectors. Fig. 7 shows a schematic diagram of the principle of expanding the obliquely arranged high-energy ray detector of photosensitive devices into a planar detector. As shown in Figure 7, the first group of photosensitive devices includes 9 photosensitive devices, and the second group of photosensitive devices includes 4 photosensitive devices. Four adjacent large-size photosensitive devices, that is, the first group of photosensitive devices are arranged obliquely, and small-sized photosensitive devices, that is, the second group of photosensitive devices are placed at the center of the rhombus.
根据本发明实施例提供的高能射线探测器,具有以下特点和优点:The high-energy ray detector provided according to the embodiment of the present invention has the following characteristics and advantages:
1、可以灵活选择光敏器件的尺寸:大尺寸光敏器件构成的菱形角度可以跟据小尺寸光敏器件的大小来确定,排列的倾斜角度可以任意改变,因此可以利用各种尺寸的光敏器件。1. The size of the photosensitive device can be flexibly selected: the rhombus angle formed by the large-sized photosensitive device can be determined according to the size of the small-sized photosensitive device, and the inclination angle of the arrangement can be changed arbitrarily, so photosensitive devices of various sizes can be used.
2、可以选择不同类型的光敏器件组合,如图5中所示,可以由圆形的光敏器件如光电倍增管和长方形的光敏器件如雪崩二极管组成。2. A combination of different types of photosensitive devices can be selected. As shown in FIG. 5 , it can be composed of a circular photosensitive device such as a photomultiplier tube and a rectangular photosensitive device such as an avalanche diode.
3、可以获得X,Y两个方向上不同的空间分辨率:如图4中所示,由光敏器件的排列特性可以得出在Y方向上的分辨率优于X方向。3. Can obtain different spatial resolutions in the X and Y directions: as shown in Figure 4, the resolution in the Y direction is better than that in the X direction according to the arrangement characteristics of the photosensitive devices.
4、更高效的探测高能射线:斜排列的复合光敏器件之间的缝隙面积小于传统方形排列的光敏器件阵列,因此复合光敏器件斜排列高能射线探测器探测的盲区较小。4. More efficient detection of high-energy rays: The gap area between the obliquely arranged composite photosensitive devices is smaller than that of the traditional square-arranged photosensitive device array, so the obliquely arranged composite photosensitive devices have a smaller blind area for detection by high-energy ray detectors.
5、可扩展:探测器模块可以拼接扩展成大平板探、弧形或环形探测器。5. Expandable: The detector modules can be spliced and expanded into large flat-panel detectors, arc or ring detectors.
本发明提供的高能射线探测器可以通过灵活选择光敏器件尺寸,获得更小的探测死区,在两个方向上得到不同的空间分辨率。The high-energy ray detector provided by the invention can obtain a smaller detection dead zone and different spatial resolutions in two directions by flexibly selecting the size of the photosensitive device.
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。The above is only a preferred embodiment of the present invention, it should be pointed out that for those skilled in the art, without departing from the principle of the present invention, some improvements and modifications can also be made, and these improvements and modifications are also It should be regarded as the protection scope of the present invention.
Claims (11)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 201010170816 CN101839991B (en) | 2010-05-06 | 2010-05-06 | Oblique arrangement type high-energy ray detector of composite photosensor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 201010170816 CN101839991B (en) | 2010-05-06 | 2010-05-06 | Oblique arrangement type high-energy ray detector of composite photosensor |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101839991A true CN101839991A (en) | 2010-09-22 |
CN101839991B CN101839991B (en) | 2013-06-12 |
Family
ID=42743490
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN 201010170816 Active CN101839991B (en) | 2010-05-06 | 2010-05-06 | Oblique arrangement type high-energy ray detector of composite photosensor |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101839991B (en) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102455432A (en) * | 2010-10-19 | 2012-05-16 | 株式会社东芝 | Positron emission tomography detector module, radiation detector, positron emission tomography scanner system, method of processing signals, and method of manufacturing radiation detector module |
CN102565841A (en) * | 2012-02-06 | 2012-07-11 | 清华大学 | Scintillation crystal array and scintillation detector possessing the same |
CN102783961A (en) * | 2011-05-20 | 2012-11-21 | 上海生物医学工程研究中心 | Combined detector for positron emission tomography |
CN103158203A (en) * | 2011-12-16 | 2013-06-19 | 上海联影医疗科技有限公司 | Manufacturing method of crystal area array and crystal detector |
CN104155675A (en) * | 2014-08-27 | 2014-11-19 | 中国科学院高能物理研究所 | Radiation source positioning and imaging device |
CN106461793A (en) * | 2015-03-17 | 2017-02-22 | 皇家飞利浦有限公司 | Scintillation event position determination in a radiation particle detector |
US9696439B2 (en) | 2015-08-10 | 2017-07-04 | Shanghai United Imaging Healthcare Co., Ltd. | Apparatus and method for PET detector |
CN108121005A (en) * | 2017-12-05 | 2018-06-05 | 清华大学 | Utilize the method and neutron dose rate instrument of bromination cerium detector measurement neutron dose rate |
CN108398713A (en) * | 2017-02-08 | 2018-08-14 | 中国辐射防护研究院 | Whole-body counter calibrating patterns holder is irradiated in a kind of |
CN109507713A (en) * | 2018-11-09 | 2019-03-22 | 清华大学 | Handheld gamma radiation imaging apparatus and method |
WO2020114330A1 (en) * | 2018-12-07 | 2020-06-11 | 深圳先进技术研究院 | Method for locating hit point of ray in scintillation crystal, and system therefor |
WO2021016747A1 (en) * | 2019-07-26 | 2021-02-04 | Shenzhen Xpectvision Technology Co., Ltd. | Radiation detector with scintillator |
US12298454B2 (en) | 2015-08-10 | 2025-05-13 | Shanghai United Imaging Healthcare Co., Ltd. | Apparatus and method for PET detector |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3732419A (en) * | 1970-10-12 | 1973-05-08 | Nuclear Chicago Corp | Scintillation camera with improved resolution |
US5859893A (en) * | 1993-01-25 | 1999-01-12 | Cardiac Mariners, Inc. | X-ray collimation assembly |
WO2009018321A2 (en) * | 2007-07-31 | 2009-02-05 | Yu Wang | A novel scintillation detector array and associate signal processing method for gamma ray detection with encoding the energy, position, and time coordinates of the interaction |
CN101539630A (en) * | 2009-05-08 | 2009-09-23 | 上海生物医学工程研究中心 | Method for detecting and positioning compound high-energy rays |
CN101576514A (en) * | 2009-06-12 | 2009-11-11 | 北京紫方启研科技有限公司 | Portable X-ray detector based on highly sensitive line array detector |
-
2010
- 2010-05-06 CN CN 201010170816 patent/CN101839991B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3732419A (en) * | 1970-10-12 | 1973-05-08 | Nuclear Chicago Corp | Scintillation camera with improved resolution |
US5859893A (en) * | 1993-01-25 | 1999-01-12 | Cardiac Mariners, Inc. | X-ray collimation assembly |
WO2009018321A2 (en) * | 2007-07-31 | 2009-02-05 | Yu Wang | A novel scintillation detector array and associate signal processing method for gamma ray detection with encoding the energy, position, and time coordinates of the interaction |
CN101539630A (en) * | 2009-05-08 | 2009-09-23 | 上海生物医学工程研究中心 | Method for detecting and positioning compound high-energy rays |
CN101576514A (en) * | 2009-06-12 | 2009-11-11 | 北京紫方启研科技有限公司 | Portable X-ray detector based on highly sensitive line array detector |
Cited By (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102455432A (en) * | 2010-10-19 | 2012-05-16 | 株式会社东芝 | Positron emission tomography detector module, radiation detector, positron emission tomography scanner system, method of processing signals, and method of manufacturing radiation detector module |
CN102455432B (en) * | 2010-10-19 | 2014-11-12 | 株式会社东芝 | Positron emission tomography detector module, radiation detector, positron emission tomography scanner system, method of processing signals, and method of manufacturing radiation detector module |
CN102783961A (en) * | 2011-05-20 | 2012-11-21 | 上海生物医学工程研究中心 | Combined detector for positron emission tomography |
CN102783961B (en) * | 2011-05-20 | 2014-06-11 | 上海生物医学工程研究中心 | Combined detector for positron emission tomography |
CN103158203A (en) * | 2011-12-16 | 2013-06-19 | 上海联影医疗科技有限公司 | Manufacturing method of crystal area array and crystal detector |
CN103158203B (en) * | 2011-12-16 | 2015-09-02 | 上海联影医疗科技有限公司 | The preparation method of crystal area array and crystal counter |
CN102565841A (en) * | 2012-02-06 | 2012-07-11 | 清华大学 | Scintillation crystal array and scintillation detector possessing the same |
CN104155675A (en) * | 2014-08-27 | 2014-11-19 | 中国科学院高能物理研究所 | Radiation source positioning and imaging device |
CN106461793A (en) * | 2015-03-17 | 2017-02-22 | 皇家飞利浦有限公司 | Scintillation event position determination in a radiation particle detector |
CN106461793B (en) * | 2015-03-17 | 2019-02-05 | 皇家飞利浦有限公司 | Scintillation event position in radiating particle detector determines |
US9835740B2 (en) | 2015-08-10 | 2017-12-05 | Shanghai United Imaging Healthcare Co., Ltd. | Apparatus and method for PET detector |
US9696439B2 (en) | 2015-08-10 | 2017-07-04 | Shanghai United Imaging Healthcare Co., Ltd. | Apparatus and method for PET detector |
US10877169B2 (en) | 2015-08-10 | 2020-12-29 | Shanghai United Imaging Healthcare Co., Ltd. | Apparatus and method for pet detector |
US11378702B2 (en) | 2015-08-10 | 2022-07-05 | Shanghai United Imaging Healthcare Co., Ltd. | Apparatus and method for PET detector |
US11782175B2 (en) | 2015-08-10 | 2023-10-10 | Shanghai United Imaging Healthcare Co., Ltd. | Apparatus and method for PET detector |
US12298454B2 (en) | 2015-08-10 | 2025-05-13 | Shanghai United Imaging Healthcare Co., Ltd. | Apparatus and method for PET detector |
CN108398713A (en) * | 2017-02-08 | 2018-08-14 | 中国辐射防护研究院 | Whole-body counter calibrating patterns holder is irradiated in a kind of |
CN108121005A (en) * | 2017-12-05 | 2018-06-05 | 清华大学 | Utilize the method and neutron dose rate instrument of bromination cerium detector measurement neutron dose rate |
CN108121005B (en) * | 2017-12-05 | 2019-09-17 | 清华大学 | Utilize the method and neutron dose rate instrument of bromination cerium detector measurement neutron dose rate |
CN109507713A (en) * | 2018-11-09 | 2019-03-22 | 清华大学 | Handheld gamma radiation imaging apparatus and method |
WO2020114330A1 (en) * | 2018-12-07 | 2020-06-11 | 深圳先进技术研究院 | Method for locating hit point of ray in scintillation crystal, and system therefor |
WO2021016747A1 (en) * | 2019-07-26 | 2021-02-04 | Shenzhen Xpectvision Technology Co., Ltd. | Radiation detector with scintillator |
Also Published As
Publication number | Publication date |
---|---|
CN101839991B (en) | 2013-06-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101839991B (en) | Oblique arrangement type high-energy ray detector of composite photosensor | |
CN101839992B (en) | Photosensitive device inclined arrangement type high energy ray detector | |
CN101539630B (en) | Method for detecting and positioning compound high-energy rays | |
CN102597805B (en) | The design of flicker pixel and method of work | |
JP5930973B2 (en) | Radiation detector | |
EP2866057B1 (en) | Multilayer scintillation crystal and pet detector | |
US9040924B2 (en) | Optical-interface patterning for radiation detector crystals | |
CN101248370B (en) | High Resolution Medical Imaging Detectors | |
US7750306B2 (en) | Reduced edge effect detector | |
CN101806912A (en) | High-energy ray laminated type crystal module detector | |
JP2002071816A (en) | 2D radiation and neutron image detector | |
CN102890284B (en) | Nuclear detection device | |
CN106415319A (en) | Photon-counting detector | |
CN109073764A (en) | The photoelectric sensor arranged in scintillator surface | |
US20100237251A1 (en) | Radiation detector | |
US9612344B2 (en) | Positron emission tomography and single photon emission computed tomography based on intensity attenuation shadowing methods and effects | |
WO2024131738A1 (en) | Crystal array detector and emission imaging device | |
KR102316574B1 (en) | A Compton Imager and a Single Photon Emission and Positron Emission Tomography System including the same | |
CN219126405U (en) | Crystal array detector and emission imaging device | |
CN102783961A (en) | Combined detector for positron emission tomography | |
JP2010085415A (en) | Two-dimensional radiation and neutron image detector | |
CN216696122U (en) | Be used for X ray backscatter detector device | |
JP4590588B2 (en) | Two-dimensional radiation and neutron image detector | |
JP3950964B2 (en) | Actuated radiation position detector in strong magnetic field | |
CN208399701U (en) | It is a kind of for radiation detection and emit imaging device detector |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |