CN101839986B - Satellite navigation monitoring method and system based on LAAS (Local Area Augmentation System) and WAAS (Wide Area Augmentation System) - Google Patents
Satellite navigation monitoring method and system based on LAAS (Local Area Augmentation System) and WAAS (Wide Area Augmentation System) Download PDFInfo
- Publication number
- CN101839986B CN101839986B CN201010169439A CN201010169439A CN101839986B CN 101839986 B CN101839986 B CN 101839986B CN 201010169439 A CN201010169439 A CN 201010169439A CN 201010169439 A CN201010169439 A CN 201010169439A CN 101839986 B CN101839986 B CN 101839986B
- Authority
- CN
- China
- Prior art keywords
- satellite
- navigation
- wide
- local
- area
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Position Fixing By Use Of Radio Waves (AREA)
Abstract
本发明提供一种基于LAAS和WAAS的卫星导航监测方法和系统,该方法包括LAAS接收机接收导航卫星信号,WAAS接收机接收广域增强系统信号;卫星导航监测装置分别获取每个接收机接收的导航卫星信号和广域增强系统信号;并根据导航卫星信号和广域增强系统信号,分别获取各定位卫星的局域伪距校正值和广域伪距校正值;再根据各定位卫星的局域伪距校正值和广域伪距校正值,分别获取各定位卫星的估计广域校正误差值;并将各定位卫星的所述估计广域误差校正值携带在局域导航参数中播发给机载用户装置,以供机载用户装置根据接收到的局域导航参数判断卫星导航装置的可用性。
The present invention provides a satellite navigation monitoring method and system based on LAAS and WAAS, the method comprises LAAS receivers receiving navigation satellite signals, WAAS receivers receiving wide area augmentation system signals; Navigation satellite signals and wide-area augmentation system signals; and according to the navigation satellite signals and wide-area augmentation system signals, obtain the local pseudo-range correction value and wide-area pseudo-range correction value of each positioning satellite; Pseudorange correction value and wide-area pseudorange correction value, respectively obtain the estimated wide-area correction error value of each positioning satellite; and carry the estimated wide-area error correction value of each positioning satellite in the local navigation parameters and broadcast to the airborne The user device is used for the airborne user device to judge the availability of the satellite navigation device according to the received local area navigation parameters.
Description
技术领域 technical field
本发明实施例涉及卫星导航技术,尤其涉及一种基于LAAS和WAAS的卫星导航监测方法和系统。 Embodiments of the present invention relate to satellite navigation technology, and in particular to a satellite navigation monitoring method and system based on LAAS and WAAS. the
背景技术 Background technique
现有的卫星导航系统,从覆盖范围上,可以分为广域增强系统(WideArea Augmentation System;简称:WAAS)和局域增强系统(Local AreaAugmentation System;简称LAAS)。其中,WAAS用于对全球定位系统(Global Positioning System;简称:GPS)观测量的误差源进行区分,并对每一个误差源分别加以“模型化”,然后将计算得出的每一个误差源的误差修正值通过数据通讯链广播给用户,从而使得用户的接收机根据接收的误差修正值对观测误差进行改正,以达到削弱误差源的影响,进而提高用户定位的精度。 Existing satellite navigation systems can be divided into Wide Area Augmentation System (WAAS for short) and Local Area Augmentation System (LAAS for short) in terms of coverage. Among them, WAAS is used to distinguish the error sources of the Global Positioning System (Global Positioning System; GPS) observations, and to "model" each error source, and then calculate the error source of each error source The error correction value is broadcast to the user through the data communication link, so that the user's receiver corrects the observation error according to the received error correction value, so as to weaken the influence of the error source and improve the accuracy of user positioning. the
LAAS主要包括地面基准站、机载差分GPS接收设备和数据链。LASS主要设置在机场区域,用于对飞机的精密进近和着陆。其中,LAAS在地面完好性测试(Integrity Monitoring Test;简称:IMT)中使用了数据质量监测(Data Quality Monitoring;简称:DQM),测量质量监测(MeasurementQuality Monitoring;简称:MQM),信号质量监测(Signal QualityMonitoring;简称:SQM),以及两个阶段的监视执行判决(ExecutiveMonitoring;简称:EXM)等一系列措施。从而使得在正常情况下,LAAS在定位精度大大提高,并且使得完好性、连续性和可用性也到达了C为服务等级(GSL C)甚至E为服务等级(GSL E)的标准。 LAAS mainly includes ground reference stations, airborne differential GPS receivers and data links. LASS is mainly installed in the airport area for precision approach and landing of aircraft. Among them, LAAS uses data quality monitoring (Data Quality Monitoring; abbreviation: DQM), measurement quality monitoring (Measurement Quality Monitoring; abbreviation: MQM) and signal quality monitoring (Signal QualityMonitoring; abbreviation: SQM), and a series of measures such as two-stage monitoring and execution judgment (ExecutiveMonitoring; abbreviation: EXM). As a result, under normal circumstances, the positioning accuracy of LAAS has been greatly improved, and the integrity, continuity and availability have also reached the standard of service level C (GSL C) or even service level E (GSL E). the
但是,WAAS的精度虽然满足了I类精密进近(CAT I),但不能满足 II类精密进近(CAT II)和III类精密进近(CAT III),其完好性也无法满足I类精密进近(CAT I);同时LAAS的监测范围有限,尤其是在发生电离层异常时,LAAS的性能会大大降低。 However, although the accuracy of WAAS meets Category I precision approach (CAT I), it cannot meet Category II precision approach (CAT II) and Category III precision approach (CAT III), and its integrity cannot meet Category I precision approach. Approach (CAT I); at the same time, the monitoring range of LAAS is limited, especially when the ionospheric anomaly occurs, the performance of LAAS will be greatly reduced. the
发明内容 Contents of the invention
本发明实施例提供一种基于LAAS和WAAS的卫星导航监测方法和系统,以提高卫星导航系统的监测范围,从而提高了对电离层风暴的抵御能力。 Embodiments of the present invention provide a satellite navigation monitoring method and system based on LAAS and WAAS, so as to increase the monitoring range of the satellite navigation system, thereby improving the ability to resist ionospheric storms. the
本发明实施例提供一种基于LAAS和WAAS的卫星导航监测方法,包括: The embodiment of the present invention provides a kind of satellite navigation monitoring method based on LAAS and WAAS, comprising:
LAAS接收机接收导航卫星信号,WAAS接收机接收广域增强系统信号; The LAAS receiver receives navigation satellite signals, and the WAAS receiver receives wide area augmentation system signals;
卫星导航监测装置分别获取每个接收机接收的导航卫星信号和广域增强系统信号; The satellite navigation monitoring device respectively acquires the navigation satellite signal and the wide area augmentation system signal received by each receiver;
所述卫星导航监测装置根据所述导航卫星信号和广域增强系统信号,分别获取各定位卫星的局域伪距校正值和广域伪距校正值; The satellite navigation monitoring device obtains the local pseudo-range correction value and the wide-area pseudo-range correction value of each positioning satellite respectively according to the navigation satellite signal and the wide-area augmentation system signal;
所述卫星导航监测装置根据各所述定位卫星的局域伪距校正值和广域伪距校正值,分别获取各所述定位卫星的估计广域校正误差值; The satellite navigation monitoring device obtains the estimated wide-area correction error value of each of the positioning satellites respectively according to the local pseudo-range correction value and the wide-area pseudo-range correction value of each of the positioning satellites;
所述卫星导航监测装置将各所述定位卫星的所述估计广域校正误差值携带在局域导航参数中播发给机载用户装置,以供所述机载用户装置根据接收到的所述局域导航参数判断所述卫星导航装置的可用性。 The satellite navigation monitoring device carries the estimated wide-area correction error value of each positioning satellite in the local navigation parameters and broadcasts it to the airborne user device, so that the airborne user device can Domain navigation parameters determine the availability of the satellite navigation device. the
本发明实施例提供一种基于LAAS和WAAS的卫星导航监测系统,包括LAAS接收机、WAAS接收机、卫星导航监测装置和机载用户装置,其中, An embodiment of the present invention provides a satellite navigation monitoring system based on LAAS and WAAS, including a LAAS receiver, a WAAS receiver, a satellite navigation monitoring device and an airborne user device, wherein,
所述LAAS接收机用于接收导航卫星信号,所述WAAS接收机用于接收广域增强系统信号; The LAAS receiver is used to receive navigation satellite signals, and the WAAS receiver is used to receive wide area augmentation system signals;
所述卫星导航监测装置包括: The satellite navigation monitoring device includes:
信号获取模块,用于分别获取每个接收机接收的导航卫星信号和广域增强系统信号; The signal acquisition module is used to obtain the navigation satellite signal and the wide area enhancement system signal received by each receiver respectively;
校正值获取模块,用于根据所述导航卫星信号和广域增强系统信号, The correction value acquisition module is used for according to the navigation satellite signal and the wide area enhancement system signal,
分别获取各定位卫星的局域伪距校正值和广域伪距校正值; Obtain the local pseudo-range correction value and wide-area pseudo-range correction value of each positioning satellite respectively;
估计校正误差值获取模块,用于根据各所述定位卫星的局域伪距校正值和广域伪距校正值,分别获取各所述定位卫星的估计广域校正误差值; The estimated correction error value acquisition module is used to obtain the estimated wide-area correction error value of each of the positioning satellites according to the local pseudo-range correction value and the wide-area pseudo-range correction value of each of the positioning satellites;
发送模块,用于将各所述定位卫星的所述估计广域校正误差值携带在局域导航参数中播发给所述机载用户装置,以供所述机载用户装置根据接收到的所述局域导航参数判断所述卫星导航装置的可用性。 A sending module, configured to carry the estimated wide-area correction error value of each positioning satellite in local navigation parameters and broadcast to the airborne user device, so that the airborne user device can use the received A local navigation parameter determines the availability of the satellite navigation device. the
本发明实施例的基于LAAS和WAAS的卫星导航监测方法和系统,通过LAAS接收机接收导航卫星信号,WAAS接收机接收广域增强系统信号,卫星导航监测装置分别根据获取的每个接收机的导航卫星信号和广域增强系统信号,分别获取各定位卫星的局域伪距校正值和广域伪距校正值;并根据该局域伪距校正值和广域伪距校正值,分别获取各定位卫星的估计广域校正误差值;并将各定位卫星的广域误差校正值携带在在局域导航参数中播发给机载用户装置,以供机载用户装置根据接收到的局域导航参数判断卫星导航装置的可用性。由于该卫星导航装置同时接收导航卫星信号和广域增强系统信号,从而提高了估计广域校正误差值的估计精度,进而扩大了卫星导航装置的监测范围,并有效的提高了对电离层风暴的抵御能力。 According to the satellite navigation monitoring method and system based on LAAS and WAAS in the embodiment of the present invention, the LAAS receiver receives the navigation satellite signal, the WAAS receiver receives the wide-area augmentation system signal, and the satellite navigation monitoring device is respectively based on the navigation information obtained by each receiver. Satellite signals and wide-area augmentation system signals to obtain the local pseudo-range correction value and wide-area pseudo-range correction value of each positioning satellite; and according to the local pseudo-range correction value and wide-area pseudo-range correction value, respectively obtain the The estimated wide-area correction error value of the satellite; and the wide-area error correction value of each positioning satellite is carried in the local area navigation parameters and broadcast to the airborne user device, so that the airborne user device can judge according to the received local area navigation parameters Availability of satellite navigation devices. Since the satellite navigation device receives navigation satellite signals and wide area augmentation system signals at the same time, the estimation accuracy of the estimated wide area correction error value is improved, thereby expanding the monitoring range of the satellite navigation device, and effectively improving the ionospheric storm. resilience. the
附图说明 Description of drawings
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。 In order to more clearly illustrate the technical solutions in the embodiments of the present invention or the prior art, the following will briefly introduce the drawings that need to be used in the description of the embodiments or the prior art. Obviously, the accompanying drawings in the following description These are some embodiments of the present invention. For those skilled in the art, other drawings can also be obtained according to these drawings without any creative effort. the
图1为本发明基于LAAS和WAAS的卫星导航监测方法一个实施例的流程图; Fig. 1 is the flowchart of an embodiment of the satellite navigation monitoring method based on LAAS and WAAS of the present invention;
图2为本发明基于LAAS和WAAS的卫星导航监测方法另一个实施例的 流程图; Fig. 2 is the flowchart of another embodiment of the satellite navigation monitoring method based on LAAS and WAAS of the present invention;
图3为本发明基于LAAS和WAAS的卫星导航监测系统一个实施例的结构示意图; Fig. 3 is the structural representation of an embodiment of the satellite navigation monitoring system based on LAAS and WAAS of the present invention;
图4为本发明基于LAAS和WAAS的卫星导航监测系统另一个实施例的结构示意图。 Fig. 4 is a structural diagram of another embodiment of the satellite navigation monitoring system based on LAAS and WAAS of the present invention. the
具体实施方式 Detailed ways
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。 In order to make the purpose, technical solutions and advantages of the embodiments of the present invention clearer, the technical solutions in the embodiments of the present invention will be clearly and completely described below in conjunction with the drawings in the embodiments of the present invention. Obviously, the described embodiments It is a part of embodiments of the present invention, but not all embodiments. Based on the embodiments of the present invention, all other embodiments obtained by persons of ordinary skill in the art without creative efforts fall within the protection scope of the present invention. the
图1为本发明基于LAAS和WAAS的卫星导航监测方法一个实施例的流程图,如图1所示,本实施例的方法包括: Fig. 1 is the flow chart of an embodiment of the satellite navigation monitoring method based on LAAS and WAAS of the present invention, as shown in Fig. 1, the method of the present embodiment comprises:
步骤101、LAAS接收机接收导航卫星信号,WAAS接收机接收广域增强系统信号。
在本实施例中,地面基准站的接收机接收导航卫星信号和广域增强系统信号。其中,导航卫星信号具体可以包括GPS星座中的卫星发射的信号和全球卫星导航装置(Global Navigation Satellite System;简称GLONASS)星座中的卫星发射的信号;广域增强系统信号具体可以为同步轨道卫星(Geostationary Orbit;以下简称GEO)卫星发射的信号。需要说明的是,本发明各实施例中的接收机可以包括两种接收机,一种为LAAS接收机,用于接收导航卫星信号,另一种为WAAS接收机,用于接收广域增强系统信号。需要说明的是,WAAS接收机还可以用于接收导航卫星信号。同时,本实施例并不限制地面基准站中接收机的个数,接收机可以为一个或者多个。本发明各实施例中的接收机个数M,M通常为1-4。 In this embodiment, the receiver of the ground reference station receives the navigation satellite signal and the wide area augmentation system signal. Wherein, the navigation satellite signal may specifically include the signal transmitted by the satellite in the GPS constellation and the signal transmitted by the satellite in the Global Navigation Satellite System (GLONASS) constellation; the wide area augmentation system signal may specifically be a geostationary orbit satellite ( Geostationary Orbit (hereinafter referred to as GEO) signal transmitted by satellite. It should be noted that the receivers in the various embodiments of the present invention may include two types of receivers, one is a LAAS receiver for receiving navigation satellite signals, and the other is a WAAS receiver for receiving wide area augmentation system signals. Signal. It should be noted that the WAAS receiver can also be used to receive navigation satellite signals. Meanwhile, this embodiment does not limit the number of receivers in the ground reference station, and there may be one or more receivers. The number M of receivers in each embodiment of the present invention is usually 1-4. the
步骤102、卫星导航监测装置分别获取每个接收机接收的导航卫星信号和广域增强系统信号。
步骤103、卫星导航监测装置根据导航卫星信号和广域增强系统信号,分别获取各定位卫星的局域伪距校正值和广域伪距校正值。
在本实施例中,根据导航卫星信号,获取局域伪距校正值的具体实现方式为:首先根据导航卫星信号中的导航电文的星历参数计算N颗定位卫星的地心地固坐标系(Earth-Centered Earth-Fixed;简称ECEF)坐标值,并获取每个接收机的精确位置信息,再将该接收机的精确位置信息转换为接收机的ECEF坐标值。根据接收机的ECEF坐标值和与之对应的定位卫星的ECEF坐标值,分别计算每个接收机和每个接收机对应的每颗定位卫星之间的距离。再从导航卫星信号中分别获取各颗定位卫星对应的伪距观测值和载波相位观测值,并根据载波相位观测值,对伪距观测值进行平滑处理,以获取各颗定位卫星的平滑后的伪距观测值。再根据每个接收机和每个接收机对应的定位卫星之间的距离、以及每个接收机对应的定位卫星的平滑后的伪距观测值,获取每个接收机对应的每颗定位卫星的局域伪距校正值。 In this embodiment, according to the navigation satellite signal, the specific implementation method of obtaining the local pseudo-range correction value is as follows: firstly, according to the ephemeris parameters of the navigation message in the navigation satellite signal, the earth-centered earth-fixed coordinate system (Earth -Centered Earth-Fixed (ECEF for short) coordinate value, and obtain the precise position information of each receiver, and then convert the precise position information of the receiver into the ECEF coordinate value of the receiver. According to the ECEF coordinate value of the receiver and the ECEF coordinate value of the corresponding positioning satellite, the distance between each receiver and each positioning satellite corresponding to each receiver is calculated respectively. Then obtain the pseudo-range observation value and carrier phase observation value corresponding to each positioning satellite from the navigation satellite signal, and smooth the pseudo-range observation value according to the carrier phase observation value to obtain the smoothed position of each positioning satellite Pseudorange observations. Then according to the distance between each receiver and the positioning satellite corresponding to each receiver, and the smoothed pseudo-range observation value of the positioning satellite corresponding to each receiver, the distance of each positioning satellite corresponding to each receiver is obtained Local pseudorange correction value. the
在本实施例中,根据广域增强系统信号,获取广域伪距校正值的具体实现方式为:根据广域增强系统信号中WAAS电文类型10的信息,计算得到定位卫星的广域长期时钟校正值;根据航空无线电技术委员会的标准(Radio Technical Commission for Aeronautics;简称RTCA)DO-229D中提供的方法和给出的模型计算定位卫星的广域对流层校正值;根据WAAS电文类型18和26中的信息,计算定位卫星的广域电离层校正值;根据WAAS电文类型2-5,7,24中的信息,计算定位卫星广域快速误差校正值,并将广域长期时钟校正值、广域对流层校正值、广域电离层校正值和广域快速误差校正值相加,以获取广域伪距校正值。 In this embodiment, the specific implementation method of obtaining the wide-area pseudorange correction value according to the wide-area augmentation system signal is: according to the information of WAAS message type 10 in the wide-area augmentation system signal, the wide-area long-term clock correction of the positioning satellite is calculated Value; Calculate the wide-area tropospheric correction value of the positioning satellite according to the method and model provided in the standard of the Radio Technical Commission for Aeronautics (Radio Technical Commission for Aeronautics; RTCA for short) DO-229D; according to the WAAS message types 18 and 26 information, calculate the wide-area ionospheric correction value of the positioning satellite; calculate the wide-area fast error correction value of the positioning satellite according to the information in WAAS message types 2-5, 7, and 24, and calculate the wide-area long-term clock correction value, wide-area tropospheric The correction value, the wide-area ionospheric correction value and the wide-area fast error correction value are added to obtain the wide-area pseudorange correction value. the
需要说明的是,地面基准站可以从全球导航卫星系统中选择可观测到的卫星作为定位卫星,本实施例并不限制定位卫星的颗数,定位卫星可以为一 颗也可以为多颗。本发明各实施例中的定位卫星可以为N颗,N可以具体为5-8。 It should be noted that the ground reference station can select observable satellites from the global navigation satellite system as positioning satellites. This embodiment does not limit the number of positioning satellites, and there can be one positioning satellite or multiple positioning satellites. There may be N positioning satellites in each embodiment of the present invention, and N may specifically be 5-8. the
步骤104、卫星导航监测装置根据各定位卫星的局域伪距校正值和广域伪距校正值,分别获取各定位卫星的估计广域校正误差值。
在本实施例中,由于广域伪距校正值是由定位卫星广域快速误差校正值,并将广域长期时钟校正值、广域对流层校正值、广域电离层校正值和广域快速误差校正值相加计算得出的,因此根据局域伪距校正值和该广域伪距校正值,计算得出的估计广域校正误差值中已经对电离层风暴进行了监测,从而使得卫星导航装置的监测范围相对LAAS的监测范围扩大,进而有效提高了估计广域校正误差值的估计精度,并提高了电离层风暴的抵御能力。 In this embodiment, since the wide-area pseudorange correction value is the wide-area fast error correction value of the positioning satellite, the wide-area long-term clock correction value, the wide-area troposphere correction value, the wide-area ionosphere correction value and the wide-area fast error Therefore, according to the local pseudo-range correction value and the wide-area pseudo-range correction value, the ionospheric storm has been monitored in the calculated estimated wide-area correction error value, so that the satellite navigation Compared with the monitoring range of LAAS, the monitoring range of the device is expanded, thereby effectively improving the estimation accuracy of the estimated wide-area correction error value, and improving the ability to resist ionospheric storms. the
步骤105、卫星导航监测装置将各定位卫星的估计广域校正误差值携带在局域导航参数中播发给机载用户装置,以供机载用户装置根据接收到的局域导航参数判断卫星导航装置的可用性。
在本实施例中,局域导航参数可以包括局域伪距校正值的标准偏差、电离层空间梯度、对流层发散系数和导航系统的有效作用距离等。具体的,地面监测保护级包括垂直地面监测保护级和侧向地面监测保护级。告警门限包括垂直告警门限和侧向告警门限。以垂直方向为例,垂直地面监测保护级与垂直告警门限进行比较,当获取的比较结果为垂直地面监测保护级小于垂直告警门限时,则判断出卫星导航装置处于正常运行状态。当获取的比较结果为垂直地面监测保护级大于垂直告警门限时,则卫星导航装置会发出报警,以使机载用户启用其他卫星导航装置。 In this embodiment, the local navigation parameters may include the standard deviation of the local pseudorange correction value, the ionospheric spatial gradient, the tropospheric divergence coefficient, and the effective range of the navigation system. Specifically, the ground monitoring protection level includes the vertical ground monitoring protection level and the lateral ground monitoring protection level. The alarm threshold includes vertical alarm threshold and lateral alarm threshold. Taking the vertical direction as an example, the vertical ground monitoring protection level is compared with the vertical warning threshold, and when the obtained comparison result is that the vertical ground monitoring protection level is less than the vertical warning threshold, it is determined that the satellite navigation device is in normal operation. When the obtained comparison result is that the vertical ground monitoring protection level is greater than the vertical warning threshold, the satellite navigation device will issue an alarm so that the airborne user activates other satellite navigation devices. the
在本实施例中,通过LAAS接收机接收导航卫星信号,WAAS接收机接收广域增强系统信号,卫星导航监测装置分别根据获取的每个接收机的导航卫星信号和广域增强系统信号,分别获取每颗定位卫星的局域伪距校正值和广域伪距校正值,并根据该局域伪距校正值和广域伪距校正值,分别获取每颗定位卫星的估计广域校正误差值;并将各定位卫星的广域误差校正值携带 在在局域导航参数中播发给机载用户装置,以供机载用户装置根据接收到的局域导航参数判断卫星导航装置的可用性。由于该卫星导航装置同时接收导航卫星信号和广域增强系统信号,从而提高了估计广域校正误差值的估计精度,进而扩大了卫星导航装置的监测范围,并有效的提高了对电离层风暴的抵御能力。 In this embodiment, the navigation satellite signal is received by the LAAS receiver, the WAAS receiver receives the wide area augmentation system signal, and the satellite navigation monitoring device respectively obtains the navigation satellite signal and the wide area augmentation system signal of each receiver respectively The local pseudo-range correction value and the wide-area pseudo-range correction value of each positioning satellite, and according to the local pseudo-range correction value and the wide-area pseudo-range correction value, respectively obtain the estimated wide-area correction error value of each positioning satellite; And carrying the wide-area error correction value of each positioning satellite in the local area navigation parameters and broadcasting to the airborne user device, so that the airborne user device can judge the availability of the satellite navigation device according to the received local area navigation parameters. Since the satellite navigation device receives navigation satellite signals and wide area augmentation system signals at the same time, the estimation accuracy of the estimated wide area correction error value is improved, thereby expanding the monitoring range of the satellite navigation device, and effectively improving the ionospheric storm. resilience. the
进一步的,图2为本发明基于LAAS和WAAS的卫星导航监测方法另一个实施例的流程图,如图2所示,本发明卫星导航监测方法的一种具体实现方式为: Further, Fig. 2 is a flowchart of another embodiment of the satellite navigation monitoring method based on LAAS and WAAS of the present invention, as shown in Fig. 2, a specific implementation of the satellite navigation monitoring method of the present invention is:
步骤201、LAAS接收机接收导航卫星信号,WAAS接收机接收广域增强系统信号。 Step 201, the LAAS receiver receives navigation satellite signals, and the WAAS receiver receives wide area augmentation system signals. the
步骤202、卫星导航监测装置分别获取每个接收机接收的导航卫星信号和广域增强系统信号。 Step 202, the satellite navigation monitoring device respectively acquires the navigation satellite signal and the wide area augmentation system signal received by each receiver. the
步骤203、卫星导航监测装置根据获取接收机对应的定位卫星的距离 Step 203, the satellite navigation monitoring device acquires the distance of the positioning satellite corresponding to the receiver
具体的,根据导航卫星信号中的导航电文的星历参数计算N颗定位卫星的ECEF坐标值,并获取每个接收机的精确位置信息,再将该接收机的精确位置信息转换为接收机的ECEF坐标值。根据每个接收机的ECEF坐标值和每个接收机对应的每颗定位卫星的ECEF坐标值,分别计算出每个接收机和每个接收机对应的每颗定位卫星的距离 需要说明的是,根据导航卫星信号中的导航电文的星历参数计算N颗定位卫星的ECEF坐标值存在误差,同时获取的接收机的精确位置也会存在微小测量误差,因此,定位卫星和接收机之间的距离 并不是每个接收机和每个接收机对应的每颗定位卫星的真实距离。 Specifically, calculate the ECEF coordinate values of N positioning satellites according to the ephemeris parameters of the navigation message in the navigation satellite signal, and obtain the precise position information of each receiver, and then convert the precise position information of the receiver into the receiver's ECEF coordinate value. According to the ECEF coordinate value of each receiver and the ECEF coordinate value of each positioning satellite corresponding to each receiver, the distance between each receiver and each positioning satellite corresponding to each receiver is calculated respectively It should be noted that there is an error in calculating the ECEF coordinates of N positioning satellites based on the ephemeris parameters of the navigation message in the navigation satellite signal, and at the same time, there will be a small measurement error in the precise position of the receiver. Therefore, the positioning satellite and receiving distance between machines It is not the true distance between each receiver and each positioning satellite corresponding to each receiver.
步骤204、根据导航卫星信号,分别获取各定位卫星的局域伪距观测值和局域载波观测值,并应用公式(1): Step 204, according to the navigation satellite signal, obtain the local pseudo-range observation value and the local area carrier observation value of each positioning satellite respectively, and apply the formula (1):
分别获取各定位卫星的平滑后的局域伪距观测值 Obtain the smoothed local pseudorange observations of each positioning satellite respectively
其中,k表示历元, τs表示滤波时间常数,Ts表示局域伪距观测值的测量间隔; 表示局域伪距观测值, 表示局域载波观测值;M表示接收机个数,1≤i≤M;N表示表示定位卫星颗数,1≤j≤N; where k represents the epoch, τ s represents the filtering time constant, and T s represents the measurement interval of local pseudorange observations; Represents the local pseudorange observations, Indicates local carrier observation value; M indicates the number of receivers, 1≤i≤M; N indicates the number of positioning satellites, 1≤j≤N;
步骤205、根据距离 和定位卫星的平滑后的局域伪距观测值 应用公式(2): Step 205, according to the distance and the smoothed local pseudorange observations of the positioning satellite Apply formula (2):
分别获取各定位卫星的局域伪距校正值 Obtain the local pseudorange correction value of each positioning satellite separately
步骤206、根据从广域增强系统信号中获取的广域长期时钟校正值、广域对流层校正值、广域电离层校正值和广域快速误差校正值,分别获取各定位卫星的广域伪距校正值 Step 206: According to the wide-area long-term clock correction value, wide-area troposphere correction value, wide-area ionosphere correction value and wide-area fast error correction value obtained from the wide-area augmentation system signal, respectively obtain the wide-area pseudorange of each positioning satellite correction value
步骤207、根据定位卫星的局域伪距校正值 和广域伪距校正值 采用公式(3): Step 207, according to the local pseudo-range correction value of the positioning satellite and wide-area pseudorange correction values Using formula (3):
分别获取各定位卫星的估计广域校正误差值 Obtain the estimated wide-area correction error value of each positioning satellite separately
在本实施例中,假设真实的伪距校正值为Ti j,局域监测的测量噪声为 以及接收机钟差估值 则局域伪距校正值 还可以如公式(4)所示: In this embodiment, assuming that the real pseudorange correction value is T i j , the measurement noise of local monitoring is and receiver clock bias estimates Then the local pseudorange correction value It can also be shown in formula (4):
对于某一接收机而言,该接收机接收到的N颗定位卫星的LAAS接收机钟差估值 是相同的,因此可以设 又由于该接收机钟差估值 为用户可以通过对N颗定位卫星的伪距差值取平均得到,因此,还可以设LAAS接收机钟差估值 为0,从而使公式(4)变为公式(5): For a receiver, the LAAS receiver clock error estimation of the N positioning satellites received by the receiver are the same, so we can set And since the receiver clock bias estimate For the user, it can be obtained by averaging the pseudo-range differences of N positioning satellites, therefore, the LAAS receiver clock error estimation can also be set is 0, so that formula (4) becomes formula (5):
另外,对于广域伪距校正值 还可以如公式(6)所示: In addition, for the wide-area pseudorange correction value It can also be shown in formula (6):
其中, 为真实广域校正误差值; 为WAAS接收机钟差估值。对于某一接收机而言,该接收机接收到的N颗定位卫星的WAAS接收机钟差估值 是相同的,因此可以设 又由于该WAAS接收机钟差估值 为用户可以通过对N颗定位卫星的伪距差值取平均得到,因此,还可以设接收机钟差估值 为0,从而使公式(6)变为公式(7): in, Correct the error value for the real wide area; Estimated clock bias for WAAS receivers. For a certain receiver, the WAAS receiver clock error estimation of the N positioning satellites received by the receiver are the same, so we can set And since the WAAS receiver clock bias estimates For the user, it can be obtained by averaging the pseudorange differences of N positioning satellites, therefore, the receiver clock error estimation can also be set is 0, so that formula (6) becomes formula (7):
根据公式(3)、(5)和(7),计算得出公式(8): According to the formulas (3), (5) and (7), the formula (8) is calculated:
基于上述分析可知,真实广域校正误差值是由测量噪声 和估计广域校正误差值 组成的。同时,假设测量噪声 服从均值为0、局域伪距校正值的标准偏差 的高斯分布前提下,则真实广域校正误差值 和估计广域校正误差值 满足: Based on the above analysis, it can be seen that the real wide-area correction error value is caused by the measurement noise and estimated wide-area corrected error values consist of. Also, assuming the measurement noise Subject to mean 0, standard deviation of local pseudorange correction values Under the premise of the Gaussian distribution of , the real wide-area correction error value and estimated wide-area corrected error values satisfy:
其中, 如公式(10)所示: in, As shown in formula (10):
其中,a0、a1、a2、a3和θ0表示与接收机性能相关的参数。 Among them, a 0 , a 1 , a 2 , a 3 and θ 0 represent parameters related to receiver performance.
步骤208、将各定位卫星的估计广域校正误差值 携带在局域导航参数中播发给机载用户装置,以供机载用户装置根据接收到的局域导航参数判断卫星导航装置的可用性。 Step 208, the estimated wide-area correction error value of each positioning satellite carried in the local area navigation parameters and broadcast to the airborne user device, so that the airborne user device can judge the availability of the satellite navigation device according to the received local area navigation parameters.
进一步的,步骤208包括: Further, step 208 includes:
步骤2081、根据局域导航参数,获取地面监测保护级。 Step 2081. Obtain the ground monitoring protection level according to the local area navigation parameters. the
具体的,地面监测保护级包括垂直地面监测保护级和侧向地面监测保护 级。其中,垂直地面监测保护级和侧向地面监测保护级的一种具体实现方式为: Specifically, the ground monitoring protection level includes the vertical ground monitoring protection level and the lateral ground monitoring protection level. Among them, a specific implementation method of the vertical ground monitoring protection level and the lateral ground monitoring protection level is:
根据局域导航参数,并采用公式(11): According to the local navigation parameters, and using the formula (11):
获取卫星导航装置的垂直保护级VPLWLS; Obtain vertical protection level VPL WLS for satellite navigation devices;
其中,K为误差放大因子;N为定位卫星的颗数;Sv(j)表示一个从伪局域到定位域的转换矩阵;σtot(j)为用户针对第j颗定位卫星计算的总标准差; 为M个接收机的估计广域校正误差值的平均值。 Among them, K is the error amplification factor; N is the number of positioning satellites; S v (j) represents a conversion matrix from the pseudo-local domain to the positioning domain; σ tot (j) is the total calculated by the user for the jth positioning satellite standard deviation; is the average of estimated wide-area correction error values for M receivers.
具体的,误差放大因子K的具体计算方法为: Specifically, the specific calculation method of the error amplification factor K is:
应用公式(12)和公式(13): Applying formula (12) and formula (13):
K=Q-1(PHMI-ff/2) (12) K=Q -1 (P HMI-ff /2) (12)
获取误差放大因子K。其中,PHMI-ff是地面基准站无接收机故障时的完好性风险值。该值可以采用LAAS的最小航空系统性能标准(Minimum AviationSystem Performance Standards;简称MASPS)DO-245A中提供的值。 Get the error amplification factor K. Among them, P HMI-ff is the integrity risk value when the ground reference station has no receiver failure. This value may adopt the value provided in DO-245A of the Minimum Aviation System Performance Standards (MASPS for short) of LAAS.
伪局域到定位域的转换矩阵Sv(j)的计算方法为: The calculation method of the conversion matrix S v (j) from the pseudo-local domain to the positioning domain is:
应用公式(14): Apply formula (14):
Sv(j)=Sz(j)+Sx(j)*tanθGS (14) S v (j)=S z (j)+S x (j)*tanθ GS (14)
获取伪局域到定位域的转换矩阵Sv(j)。其中,Sz(j)和Sx(j)分别代表S矩阵中与z方向和x方向相关的第j列元素,θGS是进近滑翔角。 Obtain the transformation matrix S v (j) from the pseudo-local domain to the localization domain. Among them, S z (j) and S x (j) represent the j-th column elements in the S matrix related to the z direction and the x direction, respectively, and θ GS is the approach glide angle.
σtot(j)的表达公式可以如公式(15)所示: The expression formula of σ tot (j) can be shown as formula (15):
其中,σair,j指多径和热噪声误差的标准差;σiono,j指电离层误差的标准差;σtrop,j 指对流层误差的标准差,它们的具体计算公式可参考LAAS的MASPS DO-245A。σLj为M个接收机的 的平均值,如公式(16)所示: Among them, σ air, j refers to the standard deviation of multipath and thermal noise errors; σ iono, j refers to the standard deviation of ionospheric errors; σ trop, j refers to the standard deviation of tropospheric errors, and their specific calculation formulas can refer to MASPS of LAAS DO-245A. σ Lj is the The average value of , as shown in formula (16):
如公式(10)所示: As shown in formula (10):
其中,a0、a1、a2、a3和θ0表示与接收机性能相关的参数。 Among them, a 0 , a 1 , a 2 , a 3 and θ 0 represent parameters related to receiver performance.
M个接收机的估计广域校正误差值的平均值 如公式(17)所示: Average of estimated wide-area correction error values for M receivers As shown in formula (17):
根据局域导航参数,并采用公式(18): According to the local navigation parameters, and adopt the formula (18):
获取卫星导航装置的侧向保护级LPLWLS。 Get Lateral Protection Level LPL WLS for Sat Nav.
其中,伪局域到定位域的转换矩阵SL(j)的计算方法为: Among them, the calculation method of the transformation matrix S L (j) from the pseudo-local domain to the positioning domain is:
应用公式(19): Apply formula (19):
SL(j)=Sy(j) (19) S L (j) = S y (j) (19)
获取伪局域到定位域的转换矩阵SL(j)。其中,Sy(j)代表S矩阵中与y方向相关的第j列元素。 Obtain the transformation matrix S L (j) from the pseudo-local domain to the localization domain. Wherein, S y (j) represents the jth column element related to the y direction in the S matrix.
根据局域导航参数,并采用公式(20): According to the local navigation parameters, and adopt the formula (20):
获取每颗定位卫星的垂直星历保护级VEBj; Obtain the vertical ephemeris protection level VEB j of each positioning satellite;
其中;χair为机载用户装置和地面基准站之间的距离,单位为米;Pj为星历相关参数,携带在导航卫星参数中并由地面基准站播发给机载用户装置的; Kmd_e单颗定位卫星发生故障时的完好性风险值所对应的漏检概率系数,其计算方法和步骤207中K的计算方法相同。在此不再赘述。 Among them; χ air is the distance between the airborne user device and the ground reference station, in meters; P j is the ephemeris related parameters, which are carried in the navigation satellite parameters and broadcast to the airborne user device by the ground reference station; K The missing detection probability coefficient corresponding to the integrity risk value of md_e when a single positioning satellite fails, its calculation method is the same as the calculation method of K in step 207 . I won't repeat them here.
需要说明的是,每颗定位卫星的垂直星历保护级VEBj的最大值即为导航卫星增强系统的垂直星历保护级VEB,如公式(21)所示: It should be noted that the maximum value of the vertical ephemeris protection level VEB j of each positioning satellite is the vertical ephemeris protection level VEB of the navigation satellite augmentation system, as shown in formula (21):
VEB=max(VEBj) (21) VEB=max(VEB j ) (21)
根据局域导航参数,并采用公式(22): According to the local navigation parameters, and adopt the formula (22):
获取每颗定位卫星的侧向星历保护级LEBj; Obtain the lateral ephemeris protection level LEB j of each positioning satellite;
需要说明的是,每颗定位卫星的侧向星历保护级LEBj的最大值即为导航卫星增强系统的侧向星历保护级LEB,如公式(23)所示: It should be noted that the maximum value of the lateral ephemeris protection level LEB j of each positioning satellite is the lateral ephemeris protection level LEB of the navigation satellite augmentation system, as shown in formula (23):
LEB=max(LEBj) (23) LEB=max(LEB j ) (23)
根据卫星导航装置的垂直保护级VPLWLS、卫星导航装置的侧向保护级LPLWLS、导航卫星增强系统的垂直星历保护级VEB和导航卫星增强系统的侧向星历保护级LEB,并采用公式(24)和公式(25): According to the vertical protection level VPL WLS of the satellite navigation device, the lateral protection level LPL WLS of the satellite navigation device, the vertical ephemeris protection level VEB of the navigation satellite augmentation system and the lateral ephemeris protection level LEB of the navigation satellite augmentation system, and adopt the formula (24) and formula (25):
VPL=max(VPLWLS,VEB) (24) VPL=max( VPLWLS , VEB) (24)
LPL=max(VPLWLS,LEB) (25) LPL = max(VPL WLS , LEB) (25)
获取垂直地面监测保护级VPL和侧向地面监测保护级LPL。 Obtain vertical ground monitoring protection level VPL and lateral ground monitoring protection level LPL. the
步骤2082、将地面监测保护级与预设的告警门限进行比较,获取比较结果,并根据比较结果判断卫星导航装置的可用性。 Step 2082, comparing the ground monitoring protection level with the preset alarm threshold, obtaining the comparison result, and judging the availability of the satellite navigation device according to the comparison result. the
具体的,地面监测保护级包括垂直地面监测保护级和侧向地面监测保护级。告警门限包括垂直告警门限和侧向告警门限。以垂直方向为例,垂直地面监测保护级与垂直告警门限进行比较,当获取的比较结果为垂直地面监测保护级小于垂直告警门限时,则判断出卫星导航装置处于正常运行状态。当获取的比较结果为垂直地面监测保护级大于垂直告警门限时,则卫星导航装 置会发出报警,以使机载用于启用其他卫星导航装置。 Specifically, the ground monitoring protection level includes the vertical ground monitoring protection level and the lateral ground monitoring protection level. The alarm threshold includes vertical alarm threshold and lateral alarm threshold. Taking the vertical direction as an example, the vertical ground monitoring protection level is compared with the vertical warning threshold, and when the obtained comparison result is that the vertical ground monitoring protection level is less than the vertical warning threshold, it is determined that the satellite navigation device is in normal operation. When the obtained comparison result is that the vertical ground monitoring protection level is greater than the vertical warning threshold, the satellite navigation device will send out an alarm, so that the airborne is used to activate other satellite navigation devices. the
需要说明的是,侧向地面监测保护级与侧向告警门限进行比较的方法与垂直地面监测保护级与垂直告警门限进行比较方法相同,在此不再赘述。 It should be noted that the method of comparing the protection level of lateral ground monitoring with the lateral warning threshold is the same as the method of comparing the protection level of vertical ground monitoring with the vertical warning threshold, and will not be repeated here. the
在本实施例中,通过根据接收到的局域导航参数,获取地面监测保护级,并对地面监测保护级和预设的告警门限进行比较,以根据比较结果判断卫星导航装置的可用性。由于该局域导航参数包含估计广域校正误差值,该广域误差校正值中包括对电离层风暴进行精确的监测,从而提高了估计广域校正误差值的估计精度,进而扩大了卫星导航装置的监测范围,并有效的提高了对电离层风暴的抵御能力。 In this embodiment, the ground monitoring protection level is obtained according to the received local area navigation parameters, and the ground monitoring protection level is compared with the preset alarm threshold to judge the availability of the satellite navigation device according to the comparison result. Since the local navigation parameters include the estimated wide-area correction error value, the wide-area error correction value includes accurate monitoring of ionospheric storms, thereby improving the estimation accuracy of the estimated wide-area correction error value, thereby expanding the satellite navigation device monitoring range, and effectively improve the ability to resist ionospheric storms. the
图3为本发明基于LAAS和WAAS的卫星导航监测系统一个实施例的结构示意图,如图3所示,本实施例的系统包括:LAAS接收机11、WAAS接收机12、卫星导航监测装置13和机载用户装置14。其中,LAAS接收机11接收导航卫星信号;WAAS接收机12接收广域增强系统信号。卫星导航监测装置13包括信号获取模块131、校正值获取模块132、估计校正误差值获取模块133和发送模块134。
Fig. 3 is the structural representation of an embodiment of the satellite navigation monitoring system based on LAAS and WAAS of the present invention, as shown in Fig. 3, the system of the present embodiment comprises:
具体的,信号获取模块131用于分别获取每个接收机的导航卫星信号和广域增强系统信号;校正值获取模块132用于根据导航卫星信号和广域增强系统信号,分别获取每颗定位卫星的局域伪距校正值和广域伪距校正值;估计校正误差值获取模块133用于根据各定位卫星的局域伪距校正值和广域伪距校正值,分别获取各定位卫星的估计广域校正误差值;发送模块134用于将各定位卫星的估计广域校正误差值携带在局域导航参数中播发给机载用户装置,以供机载用户装置根据接收到的局域导航参数判断卫星导航装置的可用性。
Specifically, the
本实施例的基于LAAS和WAAS的卫星导航系统可以用于执行图1所示方法实施例的技术方案,其实现原理类似,此处不再赘述。 The satellite navigation system based on LAAS and WAAS in this embodiment can be used to implement the technical solution of the method embodiment shown in FIG. 1 , and its implementation principles are similar, so details will not be repeated here. the
在本实施例中,通过LAAS接收机接收导航卫星信号,WAAS接收机接收广域增强系统信号,卫星导航监测装置分别根据获取的每个接收机的导航 卫星信号和广域增强系统信号,分别获取各定位卫星的局域伪距校正值和广域伪距校正值,并根据该局域伪距校正值和广域伪距校正值,分别获取每颗定位卫星的估计广域校正误差值;并将各定位卫星的广域误差校正值携带在在局域导航参数中播发给机载用户装置,以供机载用户装置根据接收到的局域导航参数判断卫星导航装置的可用性。由于该卫星导航装置同时接收导航卫星信号和广域增强系统信号,从而提高了估计广域校正误差值的估计精度,进而扩大了卫星导航装置的监测范围,并有效的提高了对电离层风暴的抵御能力。 In this embodiment, the navigation satellite signal is received by the LAAS receiver, the WAAS receiver receives the wide area augmentation system signal, and the satellite navigation monitoring device obtains respectively according to the navigation satellite signal and the wide area augmentation system signal of each receiver obtained. The local pseudorange correction value and the wide area pseudorange correction value of each positioning satellite, and according to the local pseudorange correction value and the wide area pseudorange correction value, respectively obtain the estimated wide area correction error value of each positioning satellite; and The wide-area error correction value of each positioning satellite is carried in the local area navigation parameters and broadcast to the airborne user device, so that the airborne user device can judge the availability of the satellite navigation device according to the received local area navigation parameters. Since the satellite navigation device receives navigation satellite signals and wide area augmentation system signals at the same time, the estimation accuracy of the estimated wide area correction error value is improved, thereby expanding the monitoring range of the satellite navigation device, and effectively improving the ionospheric storm. resilience. the
图4为本发明基于LAAS和WAAS的卫星导航监测系统另一个实施例的结构示意图,如图4所示,在上述实施例的基础上,校正值获取模块132包括距离获取单元1321、平滑处理单元1322、局域伪距校正值获取单元1323和广域伪距校正值获取单元1324。
Fig. 4 is the schematic structural diagram of another embodiment of the satellite navigation monitoring system based on LAAS and WAAS of the present invention, as shown in Fig. 4, on the basis of the above embodiment, the correction
具体的,距离获取单元1321用于分别获取接收机对应的定位卫星的距离 平滑处理单元1322用于根据导航卫星信号,分别获取各定位卫星对应的局域伪距观测值和局域载波观测值;并应用公式 获取每颗定位卫星的平滑后的局域伪距观测值 局域伪距校正值获取单元1323用于根据距离 和定位卫星对应的平滑后的局域伪距观测值 应用公式 分别获取各定位卫星的局域伪距校正值 广域伪距校正值获取单元1324用于根据从广域增强系统信号中获取的广域长期时钟校正值、广域对流层校正值、广域电离层校正值和广域快速误差校正值,分别获取各定位卫星的广域伪距校正值 Specifically, the
同时,估计校正误差值获取模块133用于根据每颗定位卫星的局域伪距校正值 和广域伪距校正值 应用公式 分别获取各定位卫星的估计广域校正误差值 At the same time, the estimated correction error
进一步的,机载用户装置14包括:地面监测保护级获取模块141和比较模块142。其中,地面监测保护级获取模块141用于根据局域导航参数,获取地面监测保护级;比较模块142用于将地面监测保护级与预设的告警门限进行比较,获取比较结果,并根据比较结果判断卫星导航装置的可用性。
Further, the
进一步的,地面监测保护级获取模块141包括卫星导航装置保护级获取单元1411、卫星导航装置星历保护级获取单元1412和地面监测保护级获取单元1413。其中,卫星导航装置保护级获取单元1411根据局域导航参数,并采用公式 和 分别获取卫星导航装置的垂直保护级VPLWLS和卫星导航装置的侧向保护级LPLWLS;卫星导航装置星历保护级获取单元1412根据局域导航参数,并采用公式
本实施例的基于LAAS和WAAS的导航卫星监测系统可以用于执行图2所示方法实施例的技术方案,其实现原理类似,此处不再赘述。 The LAAS- and WAAS-based navigation satellite monitoring system of this embodiment can be used to implement the technical solution of the method embodiment shown in FIG. 2 , and its implementation principles are similar, so details will not be repeated here. the
在本实施例中,通过LAAS接收机从至少一颗LASS系统定位卫星接收导航卫星信号,WAAS接收机从至少一颗WASS系统定位卫星接收广域增强系统信号,卫星导航监测装置分别根据获取的每个接收机的导航卫星信号和广域增强系统信号,分别获取每颗定位卫星的局域伪距校正值和广域伪距校正值,并根据该局域伪距校正值和广域伪距校正值,分别获取每颗定位卫星的估计广域校正误差值;并将各定位卫星的广域误差校正值携带在在局域导航参数中播发给机载用户装置,以供机载用户装置根据接收到的局域导航参数,获取地面监测保护级,并对地面监测保护级和预设的告警门限进行比较,以根据比较结果判断卫星导航装置的可用性。由于该局域导航参数包含估计广域校正误差值,该广域误差校正值中包括对电离层风暴进行精确的监测,从而提高了估计广域校正误差值的估计精度,进而扩大了卫星导航装置的监测范围,并有效的提高了对电离层风暴的抵御能力。 In this embodiment, the LAAS receiver receives navigation satellite signals from at least one LASS system positioning satellite, and the WAAS receiver receives wide area augmentation system signals from at least one WASS system positioning satellite. The navigation satellite signals and wide-area augmentation system signals of two receivers obtain the local pseudo-range correction value and wide-area pseudo-range correction value of each positioning satellite respectively, and according to the local pseudo-range correction value and wide-area pseudo-range correction value value, to obtain the estimated wide-area correction error value of each positioning satellite respectively; and carry the wide-area error correction value of each positioning satellite in the local area navigation parameters and broadcast to the airborne user device for the airborne user device to receive The obtained local navigation parameters are obtained to obtain the ground monitoring protection level, and the ground monitoring protection level is compared with the preset alarm threshold, so as to judge the availability of the satellite navigation device according to the comparison result. Since the local navigation parameters include the estimated wide-area correction error value, the wide-area error correction value includes accurate monitoring of ionospheric storms, thereby improving the estimation accuracy of the estimated wide-area correction error value, thereby expanding the satellite navigation device monitoring range, and effectively improve the ability to resist ionospheric storms. the
本领域普通技术人员可以理解:实现上述方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成,前述的程序可以存储于一计算机可读取存储介质中,该程序在执行时,执行包括上述方法实施例的步骤;而前述的存储介质包括:ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。 Those of ordinary skill in the art can understand that all or part of the steps for realizing the above-mentioned method embodiments can be completed by hardware related to program instructions, and the aforementioned program can be stored in a computer-readable storage medium. When the program is executed, the It includes the steps of the above method embodiments; and the aforementioned storage medium includes: ROM, RAM, magnetic disk or optical disk and other various media that can store program codes. the
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。 Finally, it should be noted that: the above embodiments are only used to illustrate the technical solutions of the present invention, rather than to limit them; although the present invention has been described in detail with reference to the foregoing embodiments, those of ordinary skill in the art should understand that: it can still be Modifications are made to the technical solutions described in the foregoing embodiments, or equivalent replacements are made to some of the technical features; and these modifications or replacements do not make the essence of the corresponding technical solutions deviate from the spirit and scope of the technical solutions of the various embodiments of the present invention. the
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201010169439A CN101839986B (en) | 2010-05-11 | 2010-05-11 | Satellite navigation monitoring method and system based on LAAS (Local Area Augmentation System) and WAAS (Wide Area Augmentation System) |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201010169439A CN101839986B (en) | 2010-05-11 | 2010-05-11 | Satellite navigation monitoring method and system based on LAAS (Local Area Augmentation System) and WAAS (Wide Area Augmentation System) |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101839986A CN101839986A (en) | 2010-09-22 |
CN101839986B true CN101839986B (en) | 2012-10-03 |
Family
ID=42743485
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201010169439A Expired - Fee Related CN101839986B (en) | 2010-05-11 | 2010-05-11 | Satellite navigation monitoring method and system based on LAAS (Local Area Augmentation System) and WAAS (Wide Area Augmentation System) |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101839986B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11774598B2 (en) * | 2019-04-02 | 2023-10-03 | Mitsubishi Electric Corporation | Information processing device, information processing method, and computer readable medium |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102305935B (en) * | 2011-07-26 | 2013-01-02 | 上海埃威航空电子有限公司 | Method and system for improving positioning precision by multiple-satellite navigation star based enhancement system |
US9945954B2 (en) | 2014-11-20 | 2018-04-17 | Honeywell International Inc. | Using space-based augmentation system (SBAS) grid ionosphere vertical error (GIVE) information to mitigate ionosphere errors for ground based augmentation systems (GBAS) |
CN105388763B (en) * | 2015-12-11 | 2018-03-06 | 北京航空航天大学 | A kind of troposphere interval gliding flight control method |
US10345448B2 (en) | 2016-01-21 | 2019-07-09 | Honeywell International Inc. | Using space based augmentation system (SBAS) ephemeris sigma information to reduce ground based augmentation systems (GBAS) ephemeris decorrelation parameter |
US9989644B2 (en) | 2016-02-09 | 2018-06-05 | Honeywell International Inc. | Use of wide area reference receiver network data to mitigate local area error sources |
CN106873001B (en) * | 2016-12-22 | 2018-03-30 | 北京航空航天大学 | GBAS ground system distribution methods |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101419275A (en) * | 2008-12-08 | 2009-04-29 | 北京航空航天大学 | Local airport monitoring method and system based on multi-receiver |
CN101598780A (en) * | 2009-07-03 | 2009-12-09 | 北京航空航天大学 | Local airport monitoring method, device and system |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU2003299112A1 (en) * | 2002-09-25 | 2004-04-19 | John Fagan | Laas navigation system |
US7019688B1 (en) * | 2005-03-24 | 2006-03-28 | Honeywell International Inc. | LAAS ground facility sigma monitor |
-
2010
- 2010-05-11 CN CN201010169439A patent/CN101839986B/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101419275A (en) * | 2008-12-08 | 2009-04-29 | 北京航空航天大学 | Local airport monitoring method and system based on multi-receiver |
CN101598780A (en) * | 2009-07-03 | 2009-12-09 | 北京航空航天大学 | Local airport monitoring method, device and system |
Non-Patent Citations (1)
Title |
---|
王志鹏,张军,刘强.LAAS地面站伪距纠正量误差完好性监测算法研究.《电子与信息学报》.2009,第31卷(第1期),196-200. * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11774598B2 (en) * | 2019-04-02 | 2023-10-03 | Mitsubishi Electric Corporation | Information processing device, information processing method, and computer readable medium |
Also Published As
Publication number | Publication date |
---|---|
CN101839986A (en) | 2010-09-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104483678B (en) | A kind of many constellations satellite navigation integrity multistage monitoring method of air-ground coordination | |
CN101971047B (en) | Device and method for the real-time monitoring of the integrity of a satellite navigation system | |
US10732289B1 (en) | LDACS-based air-ground cooperative positioning and integrity monitoring method | |
CN101950025B (en) | Data quality monitoring method for local enhancing system | |
US9557419B2 (en) | Methods for generating accuracy information on an ionosphere model for satellite navigation applications | |
CN101839986B (en) | Satellite navigation monitoring method and system based on LAAS (Local Area Augmentation System) and WAAS (Wide Area Augmentation System) | |
US9720095B2 (en) | System and method for wireless collaborative verification of global navigation satellite system measurements | |
JP5305416B2 (en) | A method and apparatus for detecting ionospheric anomalies in a satellite navigation system. | |
CN105676233B (en) | The RAS anomalous of the ionospheres monitoring method and system of air-ground coordination | |
RU2615172C2 (en) | Adaptive method for electron content evaluation of ionosphere | |
CN104732085A (en) | Satellite navigation satellite-based augmentation system availability prediction method | |
CN105116423B (en) | ARAIM ground monitorings station completeness monitoring method and device | |
Hussain et al. | Adaptive GNSS receiver design for highly dynamic multipath environments | |
CN101833101A (en) | Completeness or adequateness monitoring method and device based on local area augmentation system (LAAS) | |
KR101738384B1 (en) | System for integrity checking of measured location of DGNSS and method for integrity checking using for thereof | |
CN103901440A (en) | GNSS data signal quality monitor method | |
CN105068088A (en) | Double-frequency satellite navigation satellite-based augmentation system (SBAS) availability predicting method | |
CN102749632B (en) | Method for monitoring double-almanac data fault of satellite navigation regional augmentation system | |
CN105044747A (en) | Time synchronization device and method based on multi-satellite common view and filtering | |
CN105866802B (en) | A kind of tropospheric delay completeness monitoring method and device | |
US9989644B2 (en) | Use of wide area reference receiver network data to mitigate local area error sources | |
CN114235007A (en) | A method and system for positioning and integrity monitoring of APNT services | |
Zhu | GNSS propagation channel modeling in constrained environments: Contribution to the improvement of the geolocation service quality | |
WO2023097595A1 (en) | Method and system for positioning and integrity monitoring of apnt service | |
JP4723932B2 (en) | Positioning system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20121003 Termination date: 20200511 |