CN101834275B - Intermediate electrode layer used in inversed laminated organic solar cell and preparation method - Google Patents
Intermediate electrode layer used in inversed laminated organic solar cell and preparation method Download PDFInfo
- Publication number
- CN101834275B CN101834275B CN 201010184894 CN201010184894A CN101834275B CN 101834275 B CN101834275 B CN 101834275B CN 201010184894 CN201010184894 CN 201010184894 CN 201010184894 A CN201010184894 A CN 201010184894A CN 101834275 B CN101834275 B CN 101834275B
- Authority
- CN
- China
- Prior art keywords
- layer
- metal
- preparation
- calcium
- gold
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000002360 preparation method Methods 0.000 title claims abstract description 20
- 229910052751 metal Inorganic materials 0.000 claims abstract description 58
- 239000002184 metal Substances 0.000 claims abstract description 58
- JKQOBWVOAYFWKG-UHFFFAOYSA-N molybdenum trioxide Chemical compound O=[Mo](=O)=O JKQOBWVOAYFWKG-UHFFFAOYSA-N 0.000 claims abstract description 46
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims abstract description 44
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 claims abstract description 34
- 229910052791 calcium Inorganic materials 0.000 claims abstract description 34
- 239000011575 calcium Substances 0.000 claims abstract description 34
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims abstract description 26
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims abstract description 24
- 229910052737 gold Inorganic materials 0.000 claims abstract description 24
- 239000010931 gold Substances 0.000 claims abstract description 24
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims abstract description 23
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims abstract description 22
- 229910052749 magnesium Inorganic materials 0.000 claims abstract description 22
- 239000011777 magnesium Substances 0.000 claims abstract description 22
- 229910052697 platinum Inorganic materials 0.000 claims abstract description 22
- 239000000758 substrate Substances 0.000 claims abstract description 21
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 20
- 229920000547 conjugated polymer Polymers 0.000 claims abstract description 9
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 claims abstract description 8
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims abstract description 4
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 claims abstract description 4
- 239000008367 deionised water Substances 0.000 claims abstract description 4
- 229910021641 deionized water Inorganic materials 0.000 claims abstract description 4
- 239000011521 glass Substances 0.000 claims abstract description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 4
- 238000000151 deposition Methods 0.000 claims description 18
- 230000008021 deposition Effects 0.000 claims description 17
- 238000002207 thermal evaporation Methods 0.000 claims description 6
- 238000005566 electron beam evaporation Methods 0.000 claims description 3
- 238000012986 modification Methods 0.000 claims description 3
- 230000004048 modification Effects 0.000 claims description 3
- 239000004411 aluminium Substances 0.000 claims 5
- 238000003475 lamination Methods 0.000 claims 5
- 239000003795 chemical substances by application Substances 0.000 claims 2
- 230000031700 light absorption Effects 0.000 claims 2
- 238000007740 vapor deposition Methods 0.000 claims 2
- 238000005406 washing Methods 0.000 claims 2
- 239000004568 cement Substances 0.000 claims 1
- 239000002131 composite material Substances 0.000 claims 1
- MRNHPUHPBOKKQT-UHFFFAOYSA-N indium;tin;hydrate Chemical compound O.[In].[Sn] MRNHPUHPBOKKQT-UHFFFAOYSA-N 0.000 claims 1
- 238000007747 plating Methods 0.000 claims 1
- 238000004506 ultrasonic cleaning Methods 0.000 claims 1
- 229910052709 silver Inorganic materials 0.000 abstract description 18
- 239000004332 silver Substances 0.000 abstract description 18
- 239000003599 detergent Substances 0.000 abstract description 6
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 abstract description 4
- 238000000034 method Methods 0.000 abstract description 4
- 229920000172 poly(styrenesulfonic acid) Polymers 0.000 description 5
- 229940005642 polystyrene sulfonic acid Drugs 0.000 description 5
- GKWLILHTTGWKLQ-UHFFFAOYSA-N 2,3-dihydrothieno[3,4-b][1,4]dioxine Chemical compound O1CCOC2=CSC=C21 GKWLILHTTGWKLQ-UHFFFAOYSA-N 0.000 description 3
- YTPLMLYBLZKORZ-UHFFFAOYSA-N Thiophene Chemical compound C=1C=CSC=1 YTPLMLYBLZKORZ-UHFFFAOYSA-N 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- 239000002800 charge carrier Substances 0.000 description 2
- 230000000295 complement effect Effects 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 239000011368 organic material Substances 0.000 description 2
- 238000009832 plasma treatment Methods 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 2
- 238000000411 transmission spectrum Methods 0.000 description 2
- 238000002834 transmittance Methods 0.000 description 2
- AGBXYHCHUYARJY-UHFFFAOYSA-N 2-phenylethenesulfonic acid Chemical compound OS(=O)(=O)C=CC1=CC=CC=C1 AGBXYHCHUYARJY-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 238000000862 absorption spectrum Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000002052 molecular layer Substances 0.000 description 1
- QGLKJKCYBOYXKC-UHFFFAOYSA-N nonaoxidotritungsten Chemical compound O=[W]1(=O)O[W](=O)(=O)O[W](=O)(=O)O1 QGLKJKCYBOYXKC-UHFFFAOYSA-N 0.000 description 1
- 229920000620 organic polymer Polymers 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 229930192474 thiophene Natural products 0.000 description 1
- 229910001930 tungsten oxide Inorganic materials 0.000 description 1
- 238000001771 vacuum deposition Methods 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/549—Organic PV cells
Landscapes
- Photovoltaic Devices (AREA)
- Hybrid Cells (AREA)
- Physical Vapour Deposition (AREA)
Abstract
一种用于倒置叠层有机太阳能电池中的中间电极层及制备方法,电极层是由下至上依次沉积的设置有:三氧化钼层,金属银或金或铂层,金属铝层和金属钙或镁层。方法是:将镀有氧化铟锡的玻璃衬底用洗涤剂擦洗,依次再用洗涤剂、去离子水、丙酮和酒精超声清洗;将烘干后的衬底,放于臭氧环境中进行等离子体处理,通过手套箱,将衬底转送到高真空腔中,蒸镀1纳米的金属钙,腔体真空度为9.0×10-5Pa,再将沉积有1纳米钙的衬底转移到手套箱中,进行共轭聚合物吸光层的制备;将沉积有1纳米钙和设定厚度的共轭聚合物吸光层的样品送入高真空腔中,依次沉积三氧化钼层,金属银或金或铂层,金属铝层和金属钙或镁层。本发明能够有效地保护已制备的下层吸光层。
An intermediate electrode layer used in an inverted laminated organic solar cell and its preparation method. The electrode layer is deposited sequentially from bottom to top and includes: molybdenum trioxide layer, metal silver or gold or platinum layer, metal aluminum layer and metal calcium or magnesium layer. The method is: scrub the glass substrate coated with indium tin oxide with detergent, and then ultrasonically clean it with detergent, deionized water, acetone and alcohol in sequence; place the dried substrate in an ozone environment for plasma Processing, through the glove box, the substrate is transferred to a high vacuum chamber, 1 nanometer calcium metal is evaporated, the vacuum degree of the chamber is 9.0×10 -5 Pa, and then the substrate deposited with 1 nanometer calcium is transferred to the glove box In , the preparation of the conjugated polymer light-absorbing layer is carried out; the sample deposited with 1 nanometer calcium and the conjugated polymer light-absorbing layer with a set thickness is sent into a high vacuum chamber, and the molybdenum trioxide layer, metal silver or gold or Platinum layer, metallic aluminum layer and metallic calcium or magnesium layer. The invention can effectively protect the prepared lower light-absorbing layer.
Description
技术领域 technical field
本发明涉及一种倒置叠层有机太阳能电池的中间电极层,特别是一种采用金属氧化物层和超薄多金属纳米层结构薄膜组合的用于倒置叠层有机太阳能电池中的中间电极层及制备方法。The invention relates to an intermediate electrode layer of an inverted laminated organic solar cell, in particular to an intermediate electrode layer used in an inverted laminated organic solar cell which uses a combination of a metal oxide layer and an ultra-thin multi-metal nanolayer structure film and Preparation.
背景技术 Background technique
太阳能是一种绿色环保、可再生能源。有机材料具备一定独特的优点,比如低成本、便携式、柔性以及易于大规模生产。这使得有机太阳能电池逐渐成为将太阳光能转化成电能的最具潜力的技术。然而,常规结构的有机太阳能电池受到有机材料本身诸多的限制,如:相对于整个太阳光谱吸收范围窄、激子扩散距离短、电荷载流子的迁移率低、寿命短等。为了克服这些弊病,叠层结构被应用于有机太阳能电池,即由两个或多个具有光谱互补的吸光层作为子电池组成。因此,能够有效地连接子电池的中间电极层对器件的整体性能起到极其重要的作用。Solar energy is a green and renewable energy. Organic materials have certain unique advantages, such as low cost, portability, flexibility, and ease of mass production. This makes organic solar cells gradually become the most potential technology for converting sunlight energy into electricity. However, organic solar cells with conventional structures are limited by organic materials, such as narrow absorption range relative to the entire solar spectrum, short exciton diffusion distance, low mobility of charge carriers, and short lifetime. In order to overcome these drawbacks, stacked structures are applied to organic solar cells, which consist of two or more light-absorbing layers with complementary spectra as sub-cells. Therefore, being able to effectively connect the intermediate electrode layers of the subcells plays an extremely important role in the overall performance of the device.
目前的中间电极层主要用于常规叠层有机太阳能电池。现有的中间电极层主要由真空蒸镀法和液态成膜法制备而成,其中的组合有:金属银纳米团簇,超薄金属金,金属铝/氧化钨,氧化铟锡/3,4-乙烯基二氧噻吩掺杂聚苯乙烯磺酸,铝/金/3,4-乙烯基二氧噻吩掺杂聚苯乙烯磺酸,氧化锌/3,4-乙烯基二氧噻吩掺杂聚苯乙烯磺酸,氧化钛/3,4-乙烯基二氧噻吩掺杂聚苯乙烯磺酸,金属铝/三氧化钼,金属铝/掺杂铯的氧化钛/3,4-乙烯基二氧噻吩掺杂聚苯乙烯磺酸。然而,至今尚未有用于倒置叠层有机太阳能电池的中间电极层。这种中间电极层除了要具有高的光透过率和有效地连接子电池,还需要起到保护已制备的下层吸光层的不被洗刷掉的作用。Current intermediate electrode layers are mainly used in conventional tandem organic solar cells. The existing intermediate electrode layer is mainly prepared by vacuum evaporation method and liquid film-forming method. The combinations include: metallic silver nanoclusters, ultra-thin metallic gold, metallic aluminum/tungsten oxide, indium tin oxide/3,4 -Ethylenedioxythiophene doped polystyrene sulfonic acid, aluminum/gold/3,4-ethylenedioxythiophene doped polystyrene sulfonic acid, zinc oxide/3,4-ethylenedioxythiophene doped polystyrene sulfonic acid Styrenesulfonic acid, titanium oxide/3,4-vinyldioxythiophene doped polystyrenesulfonic acid, metallic aluminum/molybdenum trioxide, metallic aluminum/cesium-doped titanium oxide/3,4-vinyldioxy Thiophene doped polystyrene sulfonic acid. However, to date there is no intermediate electrode layer for inverted tandem organic solar cells. In addition to having high light transmittance and effectively connecting sub-cells, this intermediate electrode layer also needs to protect the prepared lower light-absorbing layer from being washed off.
发明内容 Contents of the invention
本发明所要解决的技术问题是,提供一种可以应用于具有不同吸收光谱范围的有机/共轭聚合物材料作为吸光层的倒置叠层电池中,能够有效地保护已制备的下层吸光层,来实现倒置叠层有机太阳能电池的用于倒置叠层有机太阳能电池中的中间电极层及制备方法。The technical problem to be solved by the present invention is to provide an inverted laminate battery that can be applied to organic/conjugated polymer materials with different absorption spectrum ranges as the light-absorbing layer, which can effectively protect the prepared lower light-absorbing layer to An intermediate electrode layer used in an inverted stacked organic solar cell for realizing an inverted stacked organic solar cell and a preparation method thereof.
本发明所采用的技术方案是:一种用于倒置叠层有机太阳能电池中的中间电极层及制备方法,其中,用于倒置叠层有机太阳能电池中的中间电极层是设置于下层子电池和上层子电池之间,由下层子电池至上层子电池依次沉积的设置有:三氧化钼层,金属银或金或铂层,金属铝层和金属钙或镁层,所述的三氧化钼层的厚度为7~8纳米,金属银或金或铂层的厚度为0.5~1.5纳米,金属铝层的厚度为0.5~1.5纳米,金属钙或镁层的厚度为2.5~3.5纳米。The technical solution adopted in the present invention is: an intermediate electrode layer used in an inverted stacked organic solar cell and a preparation method thereof, wherein the intermediate electrode layer used in an inverted stacked organic solar cell is arranged between the lower sub-cell and the Between the upper sub-batteries, from the lower sub-battery to the upper sub-battery are sequentially deposited: molybdenum trioxide layer, metal silver or gold or platinum layer, metal aluminum layer and metal calcium or magnesium layer, the molybdenum trioxide layer The thickness of the metal silver or gold or platinum layer is 0.5-1.5 nanometers, the thickness of the metal aluminum layer is 0.5-1.5 nanometers, and the thickness of the metal calcium or magnesium layer is 2.5-3.5 nanometers.
用于倒置叠层有机太阳能电池中的中间电极层的制备方法,包括如下步骤:A method for preparing an intermediate electrode layer in an inverted stacked organic solar cell, comprising the steps of:
1)衬底的选择和处理:1) Selection and processing of the substrate:
首先将镀有氧化铟锡的玻璃衬底用洗涤剂擦洗,随后依次再用洗涤剂、去离子水、丙酮和酒精超声清洗;First, the glass substrate coated with indium tin oxide was scrubbed with detergent, and then ultrasonically cleaned with detergent, deionized water, acetone and alcohol in sequence;
2)衬底修饰的制备:2) Preparation of substrate modification:
将烘干后的衬底,放于臭氧环境中进行等离子体处理,之后通过手套箱,将衬底转送到高真空腔中,蒸镀1纳米的金属钙,腔体真空度为9.0×10-5Pa,再将沉积有1纳米钙的衬底转移到手套箱中,进行共轭聚合物吸光层的制备;Place the dried substrate in an ozone environment for plasma treatment, then transfer the substrate to a high-vacuum chamber through a glove box, and vapor-
3)中间电极层的制备:3) Preparation of the middle electrode layer:
将沉积有1纳米钙和设定厚度的共轭聚合物吸光层的样品送入高真空腔中,依次沉积三氧化钼层,金属银或金或铂层,金属铝层和金属钙或镁层。The sample deposited with 1 nanometer calcium and a conjugated polymer light-absorbing layer with a set thickness is sent into a high vacuum chamber, and a molybdenum trioxide layer, a metal silver or gold or platinum layer, a metal aluminum layer and a metal calcium or magnesium layer are sequentially deposited .
步骤3所述的三氧化钼层、金属银或金或铂层和金属钙或镁层均采用热蒸发蒸镀,所述的金属铝层采用热蒸发或者电子束蒸镀。The molybdenum trioxide layer, metal silver or gold or platinum layer, and metal calcium or magnesium layer described in
步骤3所述的三氧化钼层的沉积速率为0.02~0.05纳米/秒,所述的金属银或金或铂层的沉积速率为0.01~0.02纳米/秒,所述的金属铝层的沉积速率为0.02~0.05纳米/秒,所述的金属钙或镁层的沉积速率为0.04~0.08纳米/秒。The deposition rate of the molybdenum trioxide layer described in
本发明的用于倒置叠层有机太阳能电池中的中间电极层及制备方法,具有如下特点。The intermediate electrode layer used in the inverted stacked organic solar cell and the preparation method of the present invention have the following characteristics.
1.只采用了一系列的金属和金属氧化物的新组合来实现有效地连接子电池的目的。此方案易于用在各种类型的倒置叠层有机太阳能电池中,因而为提高器件的性能提供保障。其制备方法和流程简单、重复性强。1. Only a series of new combinations of metals and metal oxides are used to achieve the purpose of effectively connecting sub-cells. This scheme is easy to be used in various types of inverted tandem organic solar cells, thus guaranteeing the improvement of device performance. The preparation method and flow are simple and repeatable.
2.本发明的光学特性是高透过率,降低了由于多层结构而引起的光损失。它的电学特性是能够使得来自于子电池的电荷载流子对在此层中有效地复合,达到相应的倒置叠层电池的开路电压之和的目的。因此,此发明有利于用于具有光谱互补的吸光层作为子电池组成的倒置叠层有机太阳能电池中。2. The optical characteristic of the present invention is high transmittance, which reduces the light loss caused by the multilayer structure. Its electrical characteristic is that it can effectively recombine the charge carrier pairs from the sub-batteries in this layer to achieve the purpose of the sum of the open circuit voltages of the corresponding inverted laminated batteries. Therefore, this invention is advantageous for use in inverted tandem organic solar cells with spectrally complementary light-absorbing layers as sub-cell components.
3.此发明能够有效地保护已制备的下层吸光层,来实现倒置叠层有机太阳能电池。3. This invention can effectively protect the prepared lower light-absorbing layer to realize an inverted stacked organic solar cell.
附图说明 Description of drawings
图1是本发明的结构示意图;Fig. 1 is a structural representation of the present invention;
图2是本发明所得到的中间电极层的光透过率图谱;Fig. 2 is the optical transmittance spectrum of the intermediate electrode layer that the present invention obtains;
图3是本发明所得到的两个倒置子电池和倒置叠层有机太阳能电池电流密度-电压曲线的对比。Fig. 3 is a comparison of the current density-voltage curves of two inverted sub-cells and an inverted stacked organic solar cell obtained in the present invention.
其中:in:
1:下层子电池 2:三氧化钼层1: Lower sub-battery 2: Molybdenum trioxide layer
3:金属银或金或铂层 4:金属铝层3: Metal silver or gold or platinum layer 4: Metal aluminum layer
5:金属钙或镁层 6:上层子电池5: metal calcium or magnesium layer 6: upper sub-battery
7:入射太阳光7: Incident sunlight
具体实施方式 Detailed ways
下面结合附图给出具体实施例,进一步说明本发明的用于倒置叠层有机太阳能电池中的中间电极层及制备方法是如何实现的。Specific examples are given below in conjunction with the accompanying drawings to further illustrate how to realize the intermediate electrode layer used in the inverted stacked organic solar cell and the preparation method of the present invention.
如图1所示,本发明的用于倒置叠层有机太阳能电池中的中间电极层,是设置于下层子电池1和上层子电池6之间,由下层子电池1至上层子电池6依次沉积的设置有:三氧化钼层2,金属银或金或铂层3,金属铝层4和金属钙或镁层5。As shown in Figure 1, the intermediate electrode layer used in the inverted stacked organic solar cell of the present invention is arranged between the
所述的三氧化钼层2的厚度为7~8纳米,金属银或金或铂层3的厚度为0.5~1.5纳米,金属铝层4的厚度为0.5~1.5纳米,金属钙或镁层5的厚度为2.5~3.5纳米。The thickness of the
本发明实施例中选用:三氧化钼层2的厚度为7.5纳米,金属银或金或铂层3的厚度为1纳米,金属铝层4的厚度为1纳米,金属钙或镁层5的厚度为3纳米。Select in the embodiment of the present invention: the thickness of
本发明的用于倒置叠层有机太阳能电池中的中间电极层的制备方法,包括如下步骤:The preparation method for the intermediate electrode layer in the inverted laminated organic solar cell of the present invention comprises the following steps:
1)衬底的选择和处理:1) Selection and processing of the substrate:
首先将镀有氧化铟锡的玻璃衬底用洗涤剂擦洗,随后依次再用洗涤剂、去离子水、丙酮和酒精超声清洗;First, the glass substrate coated with indium tin oxide was scrubbed with detergent, and then ultrasonically cleaned with detergent, deionized water, acetone and alcohol in sequence;
2)衬底修饰的制备:2) Preparation of substrate modification:
将烘干后的衬底,放于臭氧环境中进行等离子体处理,之后通过手套箱,将衬底转送到高真空腔中,蒸镀1纳米的金属钙,腔体真空度为9.0×10-5Pa,再将沉积有1纳米钙的衬底转移到手套箱中,进行共轭聚合物吸光层的制备;Place the dried substrate in an ozone environment for plasma treatment, then transfer the substrate to a high-vacuum chamber through a glove box, and vapor-
3)中间电极层的制备:3) Preparation of the middle electrode layer:
将沉积有1纳米钙和设定厚度的共轭聚合物吸光层的样品送入高真空腔中,依次沉积三氧化钼层2,金属银或金或铂层3,金属铝层4和金属钙或镁层5。Send the sample deposited with 1 nanometer calcium and a conjugated polymer light-absorbing layer with a set thickness into a high vacuum chamber, and sequentially deposit
步骤3所述的三氧化钼层2的厚度为7~8纳米纳米,金属银或金或铂层3的厚度为0.5~1.5纳米,金属铝层4的厚度为0.5~1.5纳米,金属钙或镁层5的厚度为2.5~3.5纳米。The thickness of the
本发明实施例中选用:三氧化钼层2的厚度为7.5纳米,金属银或金或铂层3的厚度为1纳米,金属铝层4的厚度为1纳米,金属钙或镁层5的厚度为3纳米。Select in the embodiment of the present invention: the thickness of
步骤3所述的三氧化钼层2、金属银或金或铂层3和金属钙或镁层5均采用热蒸发蒸镀,所述的金属铝层4采用热蒸发或者电子束蒸镀。The
步骤3所述的三氧化钼层2的沉积速率为0.02~0.05纳米/秒,所述的金属银或金或铂层3的沉积速率为0.01~0.02纳米/秒,所述的金属铝层4的沉积速率为0.02~0.05纳米/秒,所述的金属钙或镁层5的沉积速率为0.04~0.08纳米/秒。The deposition rate of the
本发明实施例中选用:三氧化钼层2的沉积速率为0.05纳米/秒,金属银或金或铂层3的沉积速率为0.01纳米/秒,金属铝层4的沉积速率为0.03纳米/秒,金属钙或镁层5的沉积速率为0.06纳米/秒。Selected in the embodiment of the present invention: the deposition rate of
图2是本发明所得到的中间电极层的光透过率图谱;图3是本发明所得到的两个倒置子电池和倒置叠层有机太阳能电池电流密度-电压曲线的对比。Figure 2 is the light transmittance spectrum of the intermediate electrode layer obtained in the present invention; Figure 3 is the comparison of the current density-voltage curves of the two inverted sub-cells and the inverted stacked organic solar cell obtained in the present invention.
表1本发明所得到的两个倒置子电池和倒置叠层有机太阳能电池的性能对比Table 1 Performance comparison of two inverted sub-cells obtained in the present invention and an inverted stacked organic solar cell
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 201010184894 CN101834275B (en) | 2010-05-27 | 2010-05-27 | Intermediate electrode layer used in inversed laminated organic solar cell and preparation method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 201010184894 CN101834275B (en) | 2010-05-27 | 2010-05-27 | Intermediate electrode layer used in inversed laminated organic solar cell and preparation method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101834275A CN101834275A (en) | 2010-09-15 |
CN101834275B true CN101834275B (en) | 2012-01-11 |
Family
ID=42718265
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN 201010184894 Expired - Fee Related CN101834275B (en) | 2010-05-27 | 2010-05-27 | Intermediate electrode layer used in inversed laminated organic solar cell and preparation method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101834275B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104241529A (en) * | 2013-06-17 | 2014-12-24 | 宁波大学 | Laminated organic solar battery and manufacturing method thereof |
CN109545869A (en) * | 2018-10-24 | 2019-03-29 | 四川大学 | A kind of flexible cadmium telluride solar cell of two-sided three terminal |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101179115A (en) * | 2007-12-17 | 2008-05-14 | 中国科学院长春应用化学研究所 | White light organic electroluminescent device based on fluorescent dye and its preparation method |
JP2010103460A (en) * | 2008-03-26 | 2010-05-06 | Toppan Printing Co Ltd | Organic electroluminescence element, method for manufacturing organic electroluminescence element, and display unit |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006344774A (en) * | 2005-06-09 | 2006-12-21 | Rohm Co Ltd | ORGANIC EL ELEMENT, ORGANIC EL DISPLAY DEVICE USING SAME, AND METHOD FOR PRODUCING ORGANIC EL ELEMENT |
WO2007108390A1 (en) * | 2006-03-21 | 2007-09-27 | Semiconductor Energy Laboratory Co., Ltd. | Light-emitting element, display device, and electronic appliance |
-
2010
- 2010-05-27 CN CN 201010184894 patent/CN101834275B/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101179115A (en) * | 2007-12-17 | 2008-05-14 | 中国科学院长春应用化学研究所 | White light organic electroluminescent device based on fluorescent dye and its preparation method |
JP2010103460A (en) * | 2008-03-26 | 2010-05-06 | Toppan Printing Co Ltd | Organic electroluminescence element, method for manufacturing organic electroluminescence element, and display unit |
Also Published As
Publication number | Publication date |
---|---|
CN101834275A (en) | 2010-09-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Zheng et al. | Simultaneous bottom‐up interfacial and bulk defect passivation in highly efficient planar perovskite solar cells using nonconjugated small‐molecule electrolytes | |
Yang et al. | All-solution processed semi-transparent perovskite solar cells with silver nanowires electrode | |
Yang et al. | Interface engineering in planar perovskite solar cells: energy level alignment, perovskite morphology control and high performance achievement | |
Liu et al. | Recoverable flexible perovskite solar cells for next‐generation portable power sources | |
Lu et al. | Identifying the optimum thickness of electron transport layers for highly efficient perovskite planar solar cells | |
Zhang et al. | Effects of TiO2 film thickness on photovoltaic properties of dye-sensitized solar cell and its enhanced performance by graphene combination | |
CN105576150B (en) | The Ca-Ti ore type solar cell and preparation method of a kind of quantum dot size graded | |
WO2017073472A1 (en) | Highly reliable perovskite solar cell | |
Alberti et al. | Nanostructured TiO2 grown by low-temperature reactive sputtering for planar perovskite solar cells | |
CN103594627A (en) | Inversed organic thin-film solar cell and manufacturing method of inversed organic thin-film solar cell | |
Yang et al. | An annealing-free aqueous-processed anatase TiO 2 compact layer for efficient planar heterojunction perovskite solar cells | |
Jiang et al. | Influences of deposition and post-annealing temperatures on properties of TiO2 blocking layer prepared by spray pyrolysis for solid-state dye-sensitized solar cells | |
CN109326715A (en) | A p-i-n type perovskite solar cell and its manufacturing method | |
Abdullah et al. | Improved performance of dye-sensitized solar cell with a specially tailored TiO2 compact layer prepared by RF magnetron sputtering | |
CN105070843A (en) | Perovskite solar energy battery and preparation method | |
Atabaev | Stable HTM-free organohalide perovskite-based solar cells | |
Guo et al. | Recent progresses on transparent electrodes and active layers toward neutral, color semitransparent perovskite solar cells | |
Singh et al. | Perspective on predominant metal oxide charge transporting materials for high-performance perovskite solar cells | |
Chen et al. | TiO2 nanoparticle-based electron transport layer with improved wettability for efficient planar-heterojunction perovskite solar cell | |
CN114914365A (en) | A perovskite/perovskite tandem solar cell with an inverted structure | |
CN101834275B (en) | Intermediate electrode layer used in inversed laminated organic solar cell and preparation method | |
CN102751096B (en) | A kind of transparent two sides dye-sensitized solar cell anode | |
JP2008077924A (en) | Photoelectric converter | |
Lou et al. | Designed multi-layer buffer for high-performance semitransparent wide-bandgap perovskite solar cells | |
CN111244210A (en) | Flexible perovskite/microcrystalline silicon laminated solar cell and manufacturing method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C17 | Cessation of patent right | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20120111 Termination date: 20120527 |