[go: up one dir, main page]

CN101834275B - Intermediate electrode layer used in inversed laminated organic solar cell and preparation method - Google Patents

Intermediate electrode layer used in inversed laminated organic solar cell and preparation method Download PDF

Info

Publication number
CN101834275B
CN101834275B CN 201010184894 CN201010184894A CN101834275B CN 101834275 B CN101834275 B CN 101834275B CN 201010184894 CN201010184894 CN 201010184894 CN 201010184894 A CN201010184894 A CN 201010184894A CN 101834275 B CN101834275 B CN 101834275B
Authority
CN
China
Prior art keywords
layer
metal
preparation
calcium
gold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN 201010184894
Other languages
Chinese (zh)
Other versions
CN101834275A (en
Inventor
孙小卫
赵德威
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin University
Original Assignee
Tianjin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin University filed Critical Tianjin University
Priority to CN 201010184894 priority Critical patent/CN101834275B/en
Publication of CN101834275A publication Critical patent/CN101834275A/en
Application granted granted Critical
Publication of CN101834275B publication Critical patent/CN101834275B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Photovoltaic Devices (AREA)
  • Hybrid Cells (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

一种用于倒置叠层有机太阳能电池中的中间电极层及制备方法,电极层是由下至上依次沉积的设置有:三氧化钼层,金属银或金或铂层,金属铝层和金属钙或镁层。方法是:将镀有氧化铟锡的玻璃衬底用洗涤剂擦洗,依次再用洗涤剂、去离子水、丙酮和酒精超声清洗;将烘干后的衬底,放于臭氧环境中进行等离子体处理,通过手套箱,将衬底转送到高真空腔中,蒸镀1纳米的金属钙,腔体真空度为9.0×10-5Pa,再将沉积有1纳米钙的衬底转移到手套箱中,进行共轭聚合物吸光层的制备;将沉积有1纳米钙和设定厚度的共轭聚合物吸光层的样品送入高真空腔中,依次沉积三氧化钼层,金属银或金或铂层,金属铝层和金属钙或镁层。本发明能够有效地保护已制备的下层吸光层。

Figure 201010184894

An intermediate electrode layer used in an inverted laminated organic solar cell and its preparation method. The electrode layer is deposited sequentially from bottom to top and includes: molybdenum trioxide layer, metal silver or gold or platinum layer, metal aluminum layer and metal calcium or magnesium layer. The method is: scrub the glass substrate coated with indium tin oxide with detergent, and then ultrasonically clean it with detergent, deionized water, acetone and alcohol in sequence; place the dried substrate in an ozone environment for plasma Processing, through the glove box, the substrate is transferred to a high vacuum chamber, 1 nanometer calcium metal is evaporated, the vacuum degree of the chamber is 9.0×10 -5 Pa, and then the substrate deposited with 1 nanometer calcium is transferred to the glove box In , the preparation of the conjugated polymer light-absorbing layer is carried out; the sample deposited with 1 nanometer calcium and the conjugated polymer light-absorbing layer with a set thickness is sent into a high vacuum chamber, and the molybdenum trioxide layer, metal silver or gold or Platinum layer, metallic aluminum layer and metallic calcium or magnesium layer. The invention can effectively protect the prepared lower light-absorbing layer.

Figure 201010184894

Description

用于倒置叠层有机太阳能电池中的中间电极层及制备方法Intermediate electrode layer used in inverted tandem organic solar cells and preparation method

技术领域 technical field

本发明涉及一种倒置叠层有机太阳能电池的中间电极层,特别是一种采用金属氧化物层和超薄多金属纳米层结构薄膜组合的用于倒置叠层有机太阳能电池中的中间电极层及制备方法。The invention relates to an intermediate electrode layer of an inverted laminated organic solar cell, in particular to an intermediate electrode layer used in an inverted laminated organic solar cell which uses a combination of a metal oxide layer and an ultra-thin multi-metal nanolayer structure film and Preparation.

背景技术 Background technique

太阳能是一种绿色环保、可再生能源。有机材料具备一定独特的优点,比如低成本、便携式、柔性以及易于大规模生产。这使得有机太阳能电池逐渐成为将太阳光能转化成电能的最具潜力的技术。然而,常规结构的有机太阳能电池受到有机材料本身诸多的限制,如:相对于整个太阳光谱吸收范围窄、激子扩散距离短、电荷载流子的迁移率低、寿命短等。为了克服这些弊病,叠层结构被应用于有机太阳能电池,即由两个或多个具有光谱互补的吸光层作为子电池组成。因此,能够有效地连接子电池的中间电极层对器件的整体性能起到极其重要的作用。Solar energy is a green and renewable energy. Organic materials have certain unique advantages, such as low cost, portability, flexibility, and ease of mass production. This makes organic solar cells gradually become the most potential technology for converting sunlight energy into electricity. However, organic solar cells with conventional structures are limited by organic materials, such as narrow absorption range relative to the entire solar spectrum, short exciton diffusion distance, low mobility of charge carriers, and short lifetime. In order to overcome these drawbacks, stacked structures are applied to organic solar cells, which consist of two or more light-absorbing layers with complementary spectra as sub-cells. Therefore, being able to effectively connect the intermediate electrode layers of the subcells plays an extremely important role in the overall performance of the device.

目前的中间电极层主要用于常规叠层有机太阳能电池。现有的中间电极层主要由真空蒸镀法和液态成膜法制备而成,其中的组合有:金属银纳米团簇,超薄金属金,金属铝/氧化钨,氧化铟锡/3,4-乙烯基二氧噻吩掺杂聚苯乙烯磺酸,铝/金/3,4-乙烯基二氧噻吩掺杂聚苯乙烯磺酸,氧化锌/3,4-乙烯基二氧噻吩掺杂聚苯乙烯磺酸,氧化钛/3,4-乙烯基二氧噻吩掺杂聚苯乙烯磺酸,金属铝/三氧化钼,金属铝/掺杂铯的氧化钛/3,4-乙烯基二氧噻吩掺杂聚苯乙烯磺酸。然而,至今尚未有用于倒置叠层有机太阳能电池的中间电极层。这种中间电极层除了要具有高的光透过率和有效地连接子电池,还需要起到保护已制备的下层吸光层的不被洗刷掉的作用。Current intermediate electrode layers are mainly used in conventional tandem organic solar cells. The existing intermediate electrode layer is mainly prepared by vacuum evaporation method and liquid film-forming method. The combinations include: metallic silver nanoclusters, ultra-thin metallic gold, metallic aluminum/tungsten oxide, indium tin oxide/3,4 -Ethylenedioxythiophene doped polystyrene sulfonic acid, aluminum/gold/3,4-ethylenedioxythiophene doped polystyrene sulfonic acid, zinc oxide/3,4-ethylenedioxythiophene doped polystyrene sulfonic acid Styrenesulfonic acid, titanium oxide/3,4-vinyldioxythiophene doped polystyrenesulfonic acid, metallic aluminum/molybdenum trioxide, metallic aluminum/cesium-doped titanium oxide/3,4-vinyldioxy Thiophene doped polystyrene sulfonic acid. However, to date there is no intermediate electrode layer for inverted tandem organic solar cells. In addition to having high light transmittance and effectively connecting sub-cells, this intermediate electrode layer also needs to protect the prepared lower light-absorbing layer from being washed off.

发明内容 Contents of the invention

本发明所要解决的技术问题是,提供一种可以应用于具有不同吸收光谱范围的有机/共轭聚合物材料作为吸光层的倒置叠层电池中,能够有效地保护已制备的下层吸光层,来实现倒置叠层有机太阳能电池的用于倒置叠层有机太阳能电池中的中间电极层及制备方法。The technical problem to be solved by the present invention is to provide an inverted laminate battery that can be applied to organic/conjugated polymer materials with different absorption spectrum ranges as the light-absorbing layer, which can effectively protect the prepared lower light-absorbing layer to An intermediate electrode layer used in an inverted stacked organic solar cell for realizing an inverted stacked organic solar cell and a preparation method thereof.

本发明所采用的技术方案是:一种用于倒置叠层有机太阳能电池中的中间电极层及制备方法,其中,用于倒置叠层有机太阳能电池中的中间电极层是设置于下层子电池和上层子电池之间,由下层子电池至上层子电池依次沉积的设置有:三氧化钼层,金属银或金或铂层,金属铝层和金属钙或镁层,所述的三氧化钼层的厚度为7~8纳米,金属银或金或铂层的厚度为0.5~1.5纳米,金属铝层的厚度为0.5~1.5纳米,金属钙或镁层的厚度为2.5~3.5纳米。The technical solution adopted in the present invention is: an intermediate electrode layer used in an inverted stacked organic solar cell and a preparation method thereof, wherein the intermediate electrode layer used in an inverted stacked organic solar cell is arranged between the lower sub-cell and the Between the upper sub-batteries, from the lower sub-battery to the upper sub-battery are sequentially deposited: molybdenum trioxide layer, metal silver or gold or platinum layer, metal aluminum layer and metal calcium or magnesium layer, the molybdenum trioxide layer The thickness of the metal silver or gold or platinum layer is 0.5-1.5 nanometers, the thickness of the metal aluminum layer is 0.5-1.5 nanometers, and the thickness of the metal calcium or magnesium layer is 2.5-3.5 nanometers.

用于倒置叠层有机太阳能电池中的中间电极层的制备方法,包括如下步骤:A method for preparing an intermediate electrode layer in an inverted stacked organic solar cell, comprising the steps of:

1)衬底的选择和处理:1) Selection and processing of the substrate:

首先将镀有氧化铟锡的玻璃衬底用洗涤剂擦洗,随后依次再用洗涤剂、去离子水、丙酮和酒精超声清洗;First, the glass substrate coated with indium tin oxide was scrubbed with detergent, and then ultrasonically cleaned with detergent, deionized water, acetone and alcohol in sequence;

2)衬底修饰的制备:2) Preparation of substrate modification:

将烘干后的衬底,放于臭氧环境中进行等离子体处理,之后通过手套箱,将衬底转送到高真空腔中,蒸镀1纳米的金属钙,腔体真空度为9.0×10-5Pa,再将沉积有1纳米钙的衬底转移到手套箱中,进行共轭聚合物吸光层的制备;Place the dried substrate in an ozone environment for plasma treatment, then transfer the substrate to a high-vacuum chamber through a glove box, and vapor-deposit 1 nanometer calcium metal. The vacuum degree of the chamber is 9.0×10 - 5 Pa, and then transfer the substrate deposited with 1 nanometer calcium to the glove box to prepare the conjugated polymer light-absorbing layer;

3)中间电极层的制备:3) Preparation of the middle electrode layer:

将沉积有1纳米钙和设定厚度的共轭聚合物吸光层的样品送入高真空腔中,依次沉积三氧化钼层,金属银或金或铂层,金属铝层和金属钙或镁层。The sample deposited with 1 nanometer calcium and a conjugated polymer light-absorbing layer with a set thickness is sent into a high vacuum chamber, and a molybdenum trioxide layer, a metal silver or gold or platinum layer, a metal aluminum layer and a metal calcium or magnesium layer are sequentially deposited .

步骤3所述的三氧化钼层、金属银或金或铂层和金属钙或镁层均采用热蒸发蒸镀,所述的金属铝层采用热蒸发或者电子束蒸镀。The molybdenum trioxide layer, metal silver or gold or platinum layer, and metal calcium or magnesium layer described in step 3 are all deposited by thermal evaporation, and the metal aluminum layer is deposited by thermal evaporation or electron beam evaporation.

步骤3所述的三氧化钼层的沉积速率为0.02~0.05纳米/秒,所述的金属银或金或铂层的沉积速率为0.01~0.02纳米/秒,所述的金属铝层的沉积速率为0.02~0.05纳米/秒,所述的金属钙或镁层的沉积速率为0.04~0.08纳米/秒。The deposition rate of the molybdenum trioxide layer described in step 3 is 0.02~0.05 nanometers/second, the deposition rate of the described metal silver or gold or platinum layer is 0.01~0.02 nanometers/second, the deposition rate of the described metal aluminum layer The deposition rate of the metal calcium or magnesium layer is 0.04-0.08 nm/s.

本发明的用于倒置叠层有机太阳能电池中的中间电极层及制备方法,具有如下特点。The intermediate electrode layer used in the inverted stacked organic solar cell and the preparation method of the present invention have the following characteristics.

1.只采用了一系列的金属和金属氧化物的新组合来实现有效地连接子电池的目的。此方案易于用在各种类型的倒置叠层有机太阳能电池中,因而为提高器件的性能提供保障。其制备方法和流程简单、重复性强。1. Only a series of new combinations of metals and metal oxides are used to achieve the purpose of effectively connecting sub-cells. This scheme is easy to be used in various types of inverted tandem organic solar cells, thus guaranteeing the improvement of device performance. The preparation method and flow are simple and repeatable.

2.本发明的光学特性是高透过率,降低了由于多层结构而引起的光损失。它的电学特性是能够使得来自于子电池的电荷载流子对在此层中有效地复合,达到相应的倒置叠层电池的开路电压之和的目的。因此,此发明有利于用于具有光谱互补的吸光层作为子电池组成的倒置叠层有机太阳能电池中。2. The optical characteristic of the present invention is high transmittance, which reduces the light loss caused by the multilayer structure. Its electrical characteristic is that it can effectively recombine the charge carrier pairs from the sub-batteries in this layer to achieve the purpose of the sum of the open circuit voltages of the corresponding inverted laminated batteries. Therefore, this invention is advantageous for use in inverted tandem organic solar cells with spectrally complementary light-absorbing layers as sub-cell components.

3.此发明能够有效地保护已制备的下层吸光层,来实现倒置叠层有机太阳能电池。3. This invention can effectively protect the prepared lower light-absorbing layer to realize an inverted stacked organic solar cell.

附图说明 Description of drawings

图1是本发明的结构示意图;Fig. 1 is a structural representation of the present invention;

图2是本发明所得到的中间电极层的光透过率图谱;Fig. 2 is the optical transmittance spectrum of the intermediate electrode layer that the present invention obtains;

图3是本发明所得到的两个倒置子电池和倒置叠层有机太阳能电池电流密度-电压曲线的对比。Fig. 3 is a comparison of the current density-voltage curves of two inverted sub-cells and an inverted stacked organic solar cell obtained in the present invention.

其中:in:

1:下层子电池        2:三氧化钼层1: Lower sub-battery 2: Molybdenum trioxide layer

3:金属银或金或铂层  4:金属铝层3: Metal silver or gold or platinum layer 4: Metal aluminum layer

5:金属钙或镁层    6:上层子电池5: metal calcium or magnesium layer 6: upper sub-battery

7:入射太阳光7: Incident sunlight

具体实施方式 Detailed ways

下面结合附图给出具体实施例,进一步说明本发明的用于倒置叠层有机太阳能电池中的中间电极层及制备方法是如何实现的。Specific examples are given below in conjunction with the accompanying drawings to further illustrate how to realize the intermediate electrode layer used in the inverted stacked organic solar cell and the preparation method of the present invention.

如图1所示,本发明的用于倒置叠层有机太阳能电池中的中间电极层,是设置于下层子电池1和上层子电池6之间,由下层子电池1至上层子电池6依次沉积的设置有:三氧化钼层2,金属银或金或铂层3,金属铝层4和金属钙或镁层5。As shown in Figure 1, the intermediate electrode layer used in the inverted stacked organic solar cell of the present invention is arranged between the lower sub-cell 1 and the upper sub-cell 6, and is sequentially deposited from the lower sub-cell 1 to the upper sub-cell 6 The arrangement includes: molybdenum trioxide layer 2, metal silver or gold or platinum layer 3, metal aluminum layer 4 and metal calcium or magnesium layer 5.

所述的三氧化钼层2的厚度为7~8纳米,金属银或金或铂层3的厚度为0.5~1.5纳米,金属铝层4的厚度为0.5~1.5纳米,金属钙或镁层5的厚度为2.5~3.5纳米。The thickness of the molybdenum trioxide layer 2 is 7-8 nanometers, the thickness of the metal silver or gold or platinum layer 3 is 0.5-1.5 nanometers, the thickness of the metal aluminum layer 4 is 0.5-1.5 nanometers, and the metal calcium or magnesium layer 5 The thickness is 2.5-3.5 nanometers.

本发明实施例中选用:三氧化钼层2的厚度为7.5纳米,金属银或金或铂层3的厚度为1纳米,金属铝层4的厚度为1纳米,金属钙或镁层5的厚度为3纳米。Select in the embodiment of the present invention: the thickness of molybdenum trioxide layer 2 is 7.5 nanometers, the thickness of metallic silver or gold or platinum layer 3 is 1 nanometer, the thickness of metallic aluminum layer 4 is 1 nanometer, the thickness of metallic calcium or magnesium layer 5 is 3 nanometers.

本发明的用于倒置叠层有机太阳能电池中的中间电极层的制备方法,包括如下步骤:The preparation method for the intermediate electrode layer in the inverted laminated organic solar cell of the present invention comprises the following steps:

1)衬底的选择和处理:1) Selection and processing of the substrate:

首先将镀有氧化铟锡的玻璃衬底用洗涤剂擦洗,随后依次再用洗涤剂、去离子水、丙酮和酒精超声清洗;First, the glass substrate coated with indium tin oxide was scrubbed with detergent, and then ultrasonically cleaned with detergent, deionized water, acetone and alcohol in sequence;

2)衬底修饰的制备:2) Preparation of substrate modification:

将烘干后的衬底,放于臭氧环境中进行等离子体处理,之后通过手套箱,将衬底转送到高真空腔中,蒸镀1纳米的金属钙,腔体真空度为9.0×10-5Pa,再将沉积有1纳米钙的衬底转移到手套箱中,进行共轭聚合物吸光层的制备;Place the dried substrate in an ozone environment for plasma treatment, then transfer the substrate to a high-vacuum chamber through a glove box, and vapor-deposit 1 nanometer calcium metal. The vacuum degree of the chamber is 9.0×10 - 5 Pa, and then transfer the substrate deposited with 1 nanometer calcium to the glove box to prepare the conjugated polymer light-absorbing layer;

3)中间电极层的制备:3) Preparation of the middle electrode layer:

将沉积有1纳米钙和设定厚度的共轭聚合物吸光层的样品送入高真空腔中,依次沉积三氧化钼层2,金属银或金或铂层3,金属铝层4和金属钙或镁层5。Send the sample deposited with 1 nanometer calcium and a conjugated polymer light-absorbing layer with a set thickness into a high vacuum chamber, and sequentially deposit molybdenum trioxide layer 2, metal silver or gold or platinum layer 3, metal aluminum layer 4 and metal calcium or magnesium layer 5.

步骤3所述的三氧化钼层2的厚度为7~8纳米纳米,金属银或金或铂层3的厚度为0.5~1.5纳米,金属铝层4的厚度为0.5~1.5纳米,金属钙或镁层5的厚度为2.5~3.5纳米。The thickness of the molybdenum trioxide layer 2 described in step 3 is 7-8 nanometers, the thickness of the metal silver or gold or platinum layer 3 is 0.5-1.5 nanometers, the thickness of the metal aluminum layer 4 is 0.5-1.5 nanometers, and the metal calcium or The thickness of the magnesium layer 5 is 2.5-3.5 nanometers.

本发明实施例中选用:三氧化钼层2的厚度为7.5纳米,金属银或金或铂层3的厚度为1纳米,金属铝层4的厚度为1纳米,金属钙或镁层5的厚度为3纳米。Select in the embodiment of the present invention: the thickness of molybdenum trioxide layer 2 is 7.5 nanometers, the thickness of metallic silver or gold or platinum layer 3 is 1 nanometer, the thickness of metallic aluminum layer 4 is 1 nanometer, the thickness of metallic calcium or magnesium layer 5 is 3 nanometers.

步骤3所述的三氧化钼层2、金属银或金或铂层3和金属钙或镁层5均采用热蒸发蒸镀,所述的金属铝层4采用热蒸发或者电子束蒸镀。The molybdenum trioxide layer 2, metal silver or gold or platinum layer 3 and metal calcium or magnesium layer 5 described in step 3 are all deposited by thermal evaporation, and the metal aluminum layer 4 is deposited by thermal evaporation or electron beam evaporation.

步骤3所述的三氧化钼层2的沉积速率为0.02~0.05纳米/秒,所述的金属银或金或铂层3的沉积速率为0.01~0.02纳米/秒,所述的金属铝层4的沉积速率为0.02~0.05纳米/秒,所述的金属钙或镁层5的沉积速率为0.04~0.08纳米/秒。The deposition rate of the molybdenum trioxide layer 2 described in step 3 is 0.02-0.05 nanometers/second, the deposition rate of the described metal silver or gold or platinum layer 3 is 0.01-0.02 nanometers/second, and the deposition rate of the described metal aluminum layer 4 The deposition rate is 0.02-0.05 nanometers/second, and the deposition rate of the metal calcium or magnesium layer 5 is 0.04-0.08 nanometers/second.

本发明实施例中选用:三氧化钼层2的沉积速率为0.05纳米/秒,金属银或金或铂层3的沉积速率为0.01纳米/秒,金属铝层4的沉积速率为0.03纳米/秒,金属钙或镁层5的沉积速率为0.06纳米/秒。Selected in the embodiment of the present invention: the deposition rate of molybdenum trioxide layer 2 is 0.05 nm/s, the deposition rate of metal silver or gold or platinum layer 3 is 0.01 nm/s, the deposition rate of metal aluminum layer 4 is 0.03 nm/s , the deposition rate of the metallic calcium or magnesium layer 5 is 0.06 nm/sec.

图2是本发明所得到的中间电极层的光透过率图谱;图3是本发明所得到的两个倒置子电池和倒置叠层有机太阳能电池电流密度-电压曲线的对比。Figure 2 is the light transmittance spectrum of the intermediate electrode layer obtained in the present invention; Figure 3 is the comparison of the current density-voltage curves of the two inverted sub-cells and the inverted stacked organic solar cell obtained in the present invention.

表1本发明所得到的两个倒置子电池和倒置叠层有机太阳能电池的性能对比Table 1 Performance comparison of two inverted sub-cells obtained in the present invention and an inverted stacked organic solar cell

Figure GDA0000075813530000041
Figure GDA0000075813530000041

Claims (4)

1. intermediate electrode layer that is used for the inverted stack organic solar batteries; Be arranged at down between straton battery (1) and the last straton battery (6), it is characterized in that, be provided with by what the following supreme straton battery of straton battery (1) (6) deposited successively: molybdenum trioxide layer (2); Argent or gold or platinum layer (3); Metal aluminium lamination (4) and calcium metal or magnesium layer (5), the thickness of described molybdenum trioxide layer (2) is 7~8 nanometers, the thickness of argent or gold or platinum layer (3) is 0.5~1.5 nanometer; The thickness of metal aluminium lamination (4) is 0.5~1.5 nanometer, and the thickness of calcium metal or magnesium layer (5) is 2.5~3.5 nanometers.
2. the described preparation method who is used for the intermediate electrode layer of inverted stack organic solar batteries of claim 1 is characterized in that, comprises the steps:
1) selection of substrate and processing:
The glass substrate that at first will be coated with tin indium oxide is cleaned with washing agent, uses washing agent, deionized water, acetone and alcohol ultrasonic cleaning subsequently successively again;
2) preparation of substrate modification:
With dried substrate, be put in and carry out Cement Composite Treated by Plasma in the ozone environment, through glove box, in the high vacuum chamber, the calcium metal of vapor deposition 1 nanometer, chamber vacuum degree are 9.0 * 10 with transfer substrates afterwards -5Pa, the substrate-transfer that will deposit 1 nanometer calcium is again carried out the preparation of conjugated polymer light-absorption layer in glove box;
3) preparation of intermediate electrode layer:
Send in the high vacuum chamber with the sample of the conjugated polymer light-absorption layer of setting thickness depositing 1 nanometer calcium, deposit molybdenum trioxide layer (2) successively, argent or gold or platinum layer (3), metal aluminium lamination (4) and calcium metal or magnesium layer (5).
3. the preparation method who is used for the intermediate electrode layer of inverted stack organic solar batteries according to claim 2; It is characterized in that; The described molybdenum trioxide layer of step 3 (2), argent or gold or platinum layer (3) and calcium metal or magnesium layer (5) all adopt the thermal evaporation vapor deposition, and described metal aluminium lamination (4) adopts thermal evaporation or electron beam evaporation plating.
4. the preparation method who is used for the intermediate electrode layer of inverted stack organic solar batteries according to claim 2; It is characterized in that; The deposition rate of the described molybdenum trioxide layer of step 3 (2) is 0.02~0.05 nm/sec; The deposition rate of described argent or gold or platinum layer (3) is 0.01~0.02 nm/sec, and the deposition rate of described metal aluminium lamination (4) is 0.02~0.05 nm/sec, and the deposition rate of described calcium metal or magnesium layer (5) is 0.04~0.08 nm/sec.
CN 201010184894 2010-05-27 2010-05-27 Intermediate electrode layer used in inversed laminated organic solar cell and preparation method Expired - Fee Related CN101834275B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201010184894 CN101834275B (en) 2010-05-27 2010-05-27 Intermediate electrode layer used in inversed laminated organic solar cell and preparation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201010184894 CN101834275B (en) 2010-05-27 2010-05-27 Intermediate electrode layer used in inversed laminated organic solar cell and preparation method

Publications (2)

Publication Number Publication Date
CN101834275A CN101834275A (en) 2010-09-15
CN101834275B true CN101834275B (en) 2012-01-11

Family

ID=42718265

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201010184894 Expired - Fee Related CN101834275B (en) 2010-05-27 2010-05-27 Intermediate electrode layer used in inversed laminated organic solar cell and preparation method

Country Status (1)

Country Link
CN (1) CN101834275B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104241529A (en) * 2013-06-17 2014-12-24 宁波大学 Laminated organic solar battery and manufacturing method thereof
CN109545869A (en) * 2018-10-24 2019-03-29 四川大学 A kind of flexible cadmium telluride solar cell of two-sided three terminal

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101179115A (en) * 2007-12-17 2008-05-14 中国科学院长春应用化学研究所 White light organic electroluminescent device based on fluorescent dye and its preparation method
JP2010103460A (en) * 2008-03-26 2010-05-06 Toppan Printing Co Ltd Organic electroluminescence element, method for manufacturing organic electroluminescence element, and display unit

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006344774A (en) * 2005-06-09 2006-12-21 Rohm Co Ltd ORGANIC EL ELEMENT, ORGANIC EL DISPLAY DEVICE USING SAME, AND METHOD FOR PRODUCING ORGANIC EL ELEMENT
WO2007108390A1 (en) * 2006-03-21 2007-09-27 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, display device, and electronic appliance

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101179115A (en) * 2007-12-17 2008-05-14 中国科学院长春应用化学研究所 White light organic electroluminescent device based on fluorescent dye and its preparation method
JP2010103460A (en) * 2008-03-26 2010-05-06 Toppan Printing Co Ltd Organic electroluminescence element, method for manufacturing organic electroluminescence element, and display unit

Also Published As

Publication number Publication date
CN101834275A (en) 2010-09-15

Similar Documents

Publication Publication Date Title
Zheng et al. Simultaneous bottom‐up interfacial and bulk defect passivation in highly efficient planar perovskite solar cells using nonconjugated small‐molecule electrolytes
Yang et al. All-solution processed semi-transparent perovskite solar cells with silver nanowires electrode
Yang et al. Interface engineering in planar perovskite solar cells: energy level alignment, perovskite morphology control and high performance achievement
Liu et al. Recoverable flexible perovskite solar cells for next‐generation portable power sources
Lu et al. Identifying the optimum thickness of electron transport layers for highly efficient perovskite planar solar cells
Zhang et al. Effects of TiO2 film thickness on photovoltaic properties of dye-sensitized solar cell and its enhanced performance by graphene combination
CN105576150B (en) The Ca-Ti ore type solar cell and preparation method of a kind of quantum dot size graded
WO2017073472A1 (en) Highly reliable perovskite solar cell
Alberti et al. Nanostructured TiO2 grown by low-temperature reactive sputtering for planar perovskite solar cells
CN103594627A (en) Inversed organic thin-film solar cell and manufacturing method of inversed organic thin-film solar cell
Yang et al. An annealing-free aqueous-processed anatase TiO 2 compact layer for efficient planar heterojunction perovskite solar cells
Jiang et al. Influences of deposition and post-annealing temperatures on properties of TiO2 blocking layer prepared by spray pyrolysis for solid-state dye-sensitized solar cells
CN109326715A (en) A p-i-n type perovskite solar cell and its manufacturing method
Abdullah et al. Improved performance of dye-sensitized solar cell with a specially tailored TiO2 compact layer prepared by RF magnetron sputtering
CN105070843A (en) Perovskite solar energy battery and preparation method
Atabaev Stable HTM-free organohalide perovskite-based solar cells
Guo et al. Recent progresses on transparent electrodes and active layers toward neutral, color semitransparent perovskite solar cells
Singh et al. Perspective on predominant metal oxide charge transporting materials for high-performance perovskite solar cells
Chen et al. TiO2 nanoparticle-based electron transport layer with improved wettability for efficient planar-heterojunction perovskite solar cell
CN114914365A (en) A perovskite/perovskite tandem solar cell with an inverted structure
CN101834275B (en) Intermediate electrode layer used in inversed laminated organic solar cell and preparation method
CN102751096B (en) A kind of transparent two sides dye-sensitized solar cell anode
JP2008077924A (en) Photoelectric converter
Lou et al. Designed multi-layer buffer for high-performance semitransparent wide-bandgap perovskite solar cells
CN111244210A (en) Flexible perovskite/microcrystalline silicon laminated solar cell and manufacturing method thereof

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20120111

Termination date: 20120527