CN101832993B - Half-mold test box for foundation model test by dynamic tamping method - Google Patents
Half-mold test box for foundation model test by dynamic tamping method Download PDFInfo
- Publication number
- CN101832993B CN101832993B CN 201010179323 CN201010179323A CN101832993B CN 101832993 B CN101832993 B CN 101832993B CN 201010179323 CN201010179323 CN 201010179323 CN 201010179323 A CN201010179323 A CN 201010179323A CN 101832993 B CN101832993 B CN 101832993B
- Authority
- CN
- China
- Prior art keywords
- model
- box
- fixed
- rod
- guide rod
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
Abstract
Description
技术领域 technical field
本发明属岩土工程技术领域,具体涉及一种强夯法加固地基模型试验半模试验箱。The invention belongs to the technical field of geotechnical engineering, and in particular relates to a half-mold test box for foundation model tests reinforced by a dynamic compaction method.
背景技术 Background technique
强夯法是法国梅纳(Menard)技术公司于1969年首创的一种地基加固方法,通过夯锤夯击土体,使得土体变得更加密实,土体强度和承载能力得到较大提高,近年来强夯法在国内外地基处理工程中得到了广泛应用,已成为大面积地基处理的主要方法之一。但是,目前对于强夯法的加固机理,以及各种夯击参数对强夯加固效果的影响规律研究还较少。虽然,强夯法发展较快,但强夯法的设计和施工还处于半理论半经验状态,现场施工参数仍然需要通过大量的现场试验确定,缺乏必要的理论依据,存在较大的盲目性和不确定性。通过室内模型试验可以深入研究强夯法的加固机理,并提出强夯的优化设计方法,但由于缺乏合理的强夯室内模型试验装置,使得强夯法的室内模型试验难以进行,制约了强夯法的进一步发展和完善。The dynamic compaction method is a ground reinforcement method pioneered by the French Menard technology company in 1969. The soil is rammed with a rammer to make the soil more compact, and the strength and bearing capacity of the soil are greatly improved. In recent years, the dynamic compaction method has been widely used in foundation treatment projects at home and abroad, and has become one of the main methods for large-area foundation treatment. However, there are still few studies on the reinforcement mechanism of dynamic compaction and the influence of various tamping parameters on the effect of dynamic compaction. Although the dynamic compaction method has developed rapidly, the design and construction of the dynamic compaction method are still in a semi-theoretical and semi-empirical state, and the construction parameters on site still need to be determined through a large number of field tests, lacking the necessary theoretical basis, and there are large blindness and Uncertainty. Through the indoor model test, the reinforcement mechanism of the dynamic compaction method can be studied in depth, and the optimal design method of the dynamic compaction method can be proposed. However, due to the lack of a reasonable dynamic compaction indoor model test device, it is difficult to carry out the indoor model test of the dynamic compaction method, which restricts the dynamic compaction method. The further development and improvement of the law.
发明内容 Contents of the invention
本发明的目的在于提供一种强夯法加固地基模型试验半模试验箱。The object of the present invention is to provide a half-form test box for foundation model test reinforced by dynamic tamping method.
本发明提出的强夯法加固地基模型试验半模试验箱,由固定螺栓1、滑动槽2、固定横梁3、支架4、滑动螺栓5、导向杆6、半圆模型锤7、限位杆8、固定角架9、模型箱10、土压力盒11和加速度传感器12组成,其结构如图1、图2和图3所示。其中,固定螺栓1、滑动槽2、固定横梁3、支架4、滑动螺栓5、导向杆6、半圆模型锤7、限位杆8、固定角架9组成加载系统。支架4是由竖杆13和横杆14焊接而成的框架结构,固定横梁3固定于横杆14上方;支架4中的竖杆13位于模型箱10上方,通过螺栓与位于模型箱10上方的角钢15连接,并由固定角架9焊接固定;滑动槽2通过固定螺栓1固定在横梁3上;滑动螺栓5嵌入滑动槽2中,滑动螺栓5可沿滑动槽2滑动,能够方便安装不同直径的半圆模型锤7,能将半圆模型锤7提升到不同的起始高度;导向杆6上端与滑动螺栓5连接,下端悬空放置;导向杆6穿过半圆模型锤7的中心孔,限制半圆模型锤7下落过程中的摇摆,导向杆6直径可根据半圆模型锤7的中心孔直径进行调整。限位杆8位于模型箱10的上方,限位杆8上端与支架4中的横杆14焊接,下端与模型箱10上的角钢15焊接;模型箱10由角钢15、有机玻璃板16、侧面板17、背面板18和底板19组成,有机玻璃板16、两块侧面板17、背面板18和底板19连接组成模型箱框架,模型箱框架的四周嵌入角钢15中;土压力盒11埋设于土样21中,土压力盒11的数量视具体情况而定;加速度传感器12放置于土样21顶部。The half-form test box for strengthening the foundation model test proposed by the present invention consists of a
本发明中,支架4中的竖杆13和横杆14分别为4根,形成一个框架结构,放置在模型箱10上部。In the present invention, there are four
本发明中,模型箱10中的角钢15共12根,分别位于模型箱框架顶部、底部和中间,各为4根。In the present invention, there are 12
本发明中,半圆模型锤7沿导向杆6自由下落,并由限位杆8保证半圆模型锤7的竖直下落,避免碰撞到有机玻璃板16。In the present invention, the semicircle model hammer 7 falls freely along the
本发明中,模型箱10的正面是有机玻璃板16,上面刻画刻度线20,可直接观测土样21的内部变形,刻度线的稀疏程度可根据具体试验制定。In the present invention, the front of the
本发明中,滑动螺栓5嵌入滑动槽2中,以便适应不同直径的半圆模型锤7。In the present invention, the
本发明的工作过程如下:Working process of the present invention is as follows:
在模型箱10中装入土样21,根据实际试验需要,分层填埋土样21,并在填埋土层间设置带有颜色的土样作为标记线。试样中埋设若干数量的土压力盒11,试样上部安装放置加速度传感器12。土压力盒11和加速度传感器12通过导线与外部数据采集系统连接,采集数据。将导向杆6穿入半圆模型锤7中,半圆模型锤7沿导向杆6提升至试验所需高度,然后让半圆模型锤7自由下落夯击土体,并可进行多次夯击。在整个试验过程中,土样21内部的应力可通过土压力盒11测试;土样21的内部变形,可通过刻画有刻度线20的有机玻璃板16直接读取。得到强夯作用下土样21内部的受力与变形,就可以分析强夯法的加固机理,研究各种夯击参数对强夯加固效果的影响规律,提出强夯加固的优化设计方法。The
本发明的有益效果:Beneficial effects of the present invention:
本发明装置的最大优点是可直接方便的观测强夯作用下土体内部变形,并可测得动应力等相关数据,解决了现有的强夯法室内模型试验装置存在的较多不足。The greatest advantage of the device of the present invention is that it can directly and conveniently observe the internal deformation of the soil under the action of dynamic compaction, and can measure relevant data such as dynamic stress, which solves the many shortcomings of the existing dynamic compaction method indoor model test device.
附图说明 Description of drawings
图1为本发明的前视图。Figure 1 is a front view of the present invention.
图2为本发明的俯视图。Figure 2 is a top view of the present invention.
图3为本发明的侧视图。Figure 3 is a side view of the present invention.
图中标号:1为固定螺栓,2为滑动槽,3为固定横梁,4为支架,5为滑动螺栓,6为导向杆,7为半圆模型锤,8为限位杆,9为固定角架,10为模型箱,11为土压力盒,12为加速度传感器,13为竖杆,14为横杆,15为角钢,16为有机玻璃板,17为侧面板,18为背面板,19为底板,20为刻度线,21为土样。Numbers in the figure: 1 is the fixing bolt, 2 is the sliding groove, 3 is the fixed beam, 4 is the bracket, 5 is the sliding bolt, 6 is the guide rod, 7 is the semicircle model hammer, 8 is the limit rod, 9 is the fixed angle bracket , 10 is the model box, 11 is the earth pressure box, 12 is the acceleration sensor, 13 is the vertical bar, 14 is the horizontal bar, 15 is the angle steel, 16 is the plexiglass plate, 17 is the side panel, 18 is the back panel, 19 is the bottom plate , 20 is the scale line, and 21 is the soil sample.
具体实施方式 Detailed ways
下面通过实施例进一步描述本发明。The present invention is further described below by way of examples.
实施例1,模型箱10中角钢15的长度为1000毫米,宽度为25毫米,厚度为4毫米。模型箱10的侧面板17、背面板18和底板19均为厚度30毫米的木板,模型箱10的正面为厚度10毫米的有机玻璃板16,各块面板、底板的长度和宽度为1000毫米,模型箱框架的四周嵌入角钢15中,并通过螺栓与角钢15相连。有机玻璃板16上刻画刻度线20,刻度线每个方格尺寸为10毫米×10毫米。支架4由4根竖杆13和4根横杆14焊接而成,竖杆13和横杆14都为长度1000毫米,外径20毫米,壁厚2毫米的钢管。支架4中的4根竖杆13位于模型箱10的上方,通过螺栓与位于模型箱10上方的角钢15连接,并通过固定角架9焊接固定,固定角架9为长度300毫米,宽度20毫米,厚度5毫米的钢条。固定横梁3的两端焊接在支架4中横杆14的中部。固定横梁3为厚度10毫米,宽度20毫米,长度为1000毫米的钢材。滑动槽2厚度为20毫米,宽度为30毫米,长度为1000毫米;在滑动槽2内部,沿长度方向开凿一宽度为20毫米,深度为5毫米的槽,整个滑动槽2横截面为凹字型;在滑动槽2的凹字型开口处宽度缩小,滑动螺栓5的顶部可嵌入滑动槽2中,并可沿滑动槽2滑动和固定。限位杆8上端与支架4中的横杆14焊接,下端与模型箱10上的角钢15焊接,4根限位杆8都为直径5毫米、长度为1000毫米的光滑钢杆。导向杆6为光滑的钢杆,直径为6毫米,长度为950毫米,导向杆6的顶部与滑动螺栓5焊接,下部为自由端。半圆模型锤7为半圆柱形,直径为120毫米、厚度30毫米,半圆模型锤7的重心位置钻有直径为6毫米的孔洞,以便导向杆6的穿入。通过移动滑动螺栓5控制导向杆6与限位杆8的间距,使得半圆模型锤7的侧面与限位杆8相切。模型箱中装满土样21,在土样21内部埋置13个土压力盒11,并在土样21顶部放置3个加速度传感器12。参照图1~图3,本领域的技术人员均能顺利实施。
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 201010179323 CN101832993B (en) | 2010-05-20 | 2010-05-20 | Half-mold test box for foundation model test by dynamic tamping method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 201010179323 CN101832993B (en) | 2010-05-20 | 2010-05-20 | Half-mold test box for foundation model test by dynamic tamping method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101832993A CN101832993A (en) | 2010-09-15 |
CN101832993B true CN101832993B (en) | 2013-06-26 |
Family
ID=42717135
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN 201010179323 Expired - Fee Related CN101832993B (en) | 2010-05-20 | 2010-05-20 | Half-mold test box for foundation model test by dynamic tamping method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101832993B (en) |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102032896B (en) * | 2010-10-19 | 2012-04-25 | 电子科技大学 | Dynamic compaction engineering automatic monitoring method based on laser ranging and image recognition |
CN102493499A (en) * | 2011-11-16 | 2012-06-13 | 中南大学 | Model test device for measuring composite foundation lateral deformation and layered sedimentation |
CN102704459B (en) * | 2012-03-30 | 2014-06-04 | 温州大学 | Test device of indoor model for reinforcing soft soil foundation by dynamic compaction |
CN103374931B (en) * | 2012-04-25 | 2015-06-03 | 同济大学 | Test device for simulating wind power base affected by three-way coupling loads |
CN105986582B (en) * | 2015-01-29 | 2018-11-13 | 山东大学 | Forced ramming reinforcing difference level of ground water ground indoor model device and test method |
CN104749054B (en) * | 2015-03-13 | 2017-05-03 | 同济大学 | Three-dimensional controllable dynamic compaction simulated centrifuge testing mechanical arm device |
CN105783975A (en) * | 2016-03-03 | 2016-07-20 | 同济大学 | Centrifuge test forced tamping simulation auxiliary test device |
CN106836317B (en) * | 2017-02-24 | 2018-07-03 | 同济大学 | A kind of pile sinking model test apparatus for considering soil plug effect and its application |
CN108037267B (en) * | 2017-12-06 | 2020-08-11 | 湖南大学 | An experimental device for simulating road collapse induced by water leakage, erosion and scouring of pipelines |
CN112832226B (en) * | 2021-01-11 | 2022-02-18 | 长沙理工大学 | Method and device for determining evaluation index of effective reinforcement range |
CN113431102A (en) * | 2021-06-23 | 2021-09-24 | 长安大学 | In-hole dynamic compaction device in physical model test and construction method thereof |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2635546A1 (en) * | 1988-08-16 | 1990-02-23 | Menard Soltraitement | Method and machine for the dynamic compacting of ground. |
CN201436323U (en) * | 2009-06-12 | 2010-04-07 | 广东省第一建筑工程有限公司 | Drainage structure of dynamic compaction foundation |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0678610B2 (en) * | 1987-09-14 | 1994-10-05 | 大末建設株式会社 | Dynamic compaction method and dynamic compaction device |
EP0819385B1 (en) * | 1996-07-16 | 2002-09-18 | Societe Des Produits Nestle S.A. | Process for extracting terpenes from spent coffee grounds |
-
2010
- 2010-05-20 CN CN 201010179323 patent/CN101832993B/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2635546A1 (en) * | 1988-08-16 | 1990-02-23 | Menard Soltraitement | Method and machine for the dynamic compacting of ground. |
CN201436323U (en) * | 2009-06-12 | 2010-04-07 | 广东省第一建筑工程有限公司 | Drainage structure of dynamic compaction foundation |
Non-Patent Citations (4)
Title |
---|
干砂强夯动力特性的细观颗粒流分析;贾敏才 等;《岩土力学》;20090430;第30卷(第4期);871-878 * |
砂性土宏细观强夯加固机制的试验研究;贾敏才 等;《岩石力学与工程学报》;20090531;第28卷(第增1期);3282-3290 * |
贾敏才 等.干砂强夯动力特性的细观颗粒流分析.《岩土力学》.2009,第30卷(第4期),871-878. |
贾敏才 等.砂性土宏细观强夯加固机制的试验研究.《岩石力学与工程学报》.2009,第28卷(第增1期),3282-3290. |
Also Published As
Publication number | Publication date |
---|---|
CN101832993A (en) | 2010-09-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101832993B (en) | Half-mold test box for foundation model test by dynamic tamping method | |
CN107179396B (en) | Multifunctional assembled geotechnical engineering physical similarity test system | |
CN104374648B (en) | A kind of experimental rig and method for testing dynamic shear characteristic between pile tube and the slip casting soil body | |
CN102704459B (en) | Test device of indoor model for reinforcing soft soil foundation by dynamic compaction | |
CN107100210B (en) | The pile-soil interaction mechanical behavior of controllable ambient stress tests system | |
CN103234830B (en) | Anchoring property experiment platform of anchor rod | |
CN105986582B (en) | Forced ramming reinforcing difference level of ground water ground indoor model device and test method | |
CN110805076B (en) | Test device and method for simulating reinforcement of passive area of foundation pit | |
CN106596268B (en) | A kind of multi-water immersion working condition simulation test model box and test method | |
CN110940571B (en) | Test device for simulating dynamic soil arch effect of shed frame structure | |
CN108797660A (en) | The experimental rig and test method of Collapsible Loess District Long-short Pile Group model | |
CN203795485U (en) | Horizontal bearing characteristics test model of prestressed concrete pipe pile | |
CN104374650A (en) | Testing device and method for testing static force shear property between tubular pile and grouting soil body | |
CN111733903A (en) | Semi-modular model test device and test method for impact of hammering pile group | |
CN211571804U (en) | Test device for simulating reinforcement of passive zone of foundation pit | |
CN104034306A (en) | Experimental box for testing local subsidence of underlying soil as well as liner deformation of refuse landfill | |
CN101736761A (en) | Indoor model test device by dynamic replacement method | |
CN105241648A (en) | Loading device simulating loess tunnel lock foot anchor pipe end stress and use method thereof | |
CN106400857B (en) | For the model equipment and method of the inaccessible degree of soil plug in in-site measurement opening pile | |
CN105842094A (en) | Pile box foundation level cyclic load shear deformation testing device | |
CN107268690A (en) | A kind of detection method of carrier pile bearing capacity | |
CN103835319B (en) | On-site observable real pile test method under compression state of concrete expanded half-face pile | |
CN205749172U (en) | Piled-box foundaton horizontal whirl-sprayed pile detrusion assay device | |
CN107460862B (en) | Combined testing device for substrate bearing capacity and frictional resistance | |
CN107190788A (en) | A kind of pile foundation self-balanced static-load testing displacement observation device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20130626 Termination date: 20160520 |