[go: up one dir, main page]

CN101825976A - Ghost detection method of capacitive touch panel - Google Patents

Ghost detection method of capacitive touch panel Download PDF

Info

Publication number
CN101825976A
CN101825976A CN200910126627A CN200910126627A CN101825976A CN 101825976 A CN101825976 A CN 101825976A CN 200910126627 A CN200910126627 A CN 200910126627A CN 200910126627 A CN200910126627 A CN 200910126627A CN 101825976 A CN101825976 A CN 101825976A
Authority
CN
China
Prior art keywords
trace
ghost
capacitance
value
finger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN200910126627A
Other languages
Chinese (zh)
Other versions
CN101825976B (en
Inventor
郭泊灏
蔡欣学
林旻致
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Elan Microelectronics Corp
Original Assignee
Elan Microelectronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Elan Microelectronics Corp filed Critical Elan Microelectronics Corp
Priority to CN2009101266270A priority Critical patent/CN101825976B/en
Publication of CN101825976A publication Critical patent/CN101825976A/en
Application granted granted Critical
Publication of CN101825976B publication Critical patent/CN101825976B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Position Input By Displaying (AREA)

Abstract

A ghost detection method for a capacitive touch pad is provided, wherein a ghost phenomenon occurs at a first position and a second position on the capacitive touch pad, the detection method comprises driving X-direction traces and Y-direction traces at the first position and the second position in a staggered manner by in-phase or out-phase synchronous signals to obtain capacitance values at the first position and the second position, and preferably, the capacitance values are matched with cross calibration to accurately distinguish the actual position of a finger.

Description

电容式触控板的鬼影检测方法 Ghost detection method for capacitive touch panel

技术领域technical field

本发明是有关一种电容式触控板,特别是关于一种电容式触控板的鬼影检测方法。The invention relates to a capacitive touch panel, in particular to a ghost detection method of the capacitive touch panel.

背景技术Background technique

在众多触控技术中,双轴交错(Axis Intersect;AI)型阵列投影式电容(Projected Capacitance)感测技术,由于具有透光度(Optical clarity)高、耐用、成本低的特性,成为最受欢迎的技术,但其扫描方式在两指或两指以上的多指触控时,会有可能产生鬼影点(Ghost-Point),因而无法分辨每只手指的正确位置。Among many touch technologies, Axis Intersect (AI) array projected capacitance (Projected Capacitance) sensing technology has become the most popular due to its high optical clarity, durability and low cost. It is a welcome technology, but its scanning method may produce ghost-points (Ghost-Point) when two or more fingers are used for multi-finger touch, so it is impossible to distinguish the correct position of each finger.

图1为鬼影现象的示意图,当使用者的两根手指在电容式触控板上的位置为左上右下(A,D)或左下右上(C,B)时,在迹线Y1、Y2和迹线X1、X2上都造成电容变化,因此控制电路检测到的X方向电容值变化波形和Y方向电容值变化波形都是一样的,因此控制电路无法判断出真正的手指接触位置。Figure 1 is a schematic diagram of the ghost phenomenon. When the position of the user's two fingers on the capacitive touch panel is upper left and lower right (A, D) or lower left and upper right (C, B), the traces Y1 and Y2 Both traces X1 and X2 cause capacitance changes, so the waveforms of capacitance changes in the X direction and Y direction detected by the control circuit are the same, so the control circuit cannot determine the real finger contact position.

在双指输入状态下,发生鬼影现象时可能的坐标有两组,如图2所示。当鬼影现象发生时,X方向的电容值在迹线x1和x2处出现变化,而Y方向的电容值则在迹线y1和y2处增加,排除掉具有相同X或Y坐标的排列组合后,可能的手指坐标有(x1y1,x2y2)和(x1y2,x2y1)两组,其中一组为实际坐标,另一组则为鬼影坐标。在更多手指输入时,鬼影坐标的数量将迅速增加,例如图3所示,在三指输入时,可能的手指坐标有(x1y1,x2y2,x3y3)、(x1y1,x2y3,x3y2)、(x1y2,x2y1,x3y3)、(x1y2,x2y3,x3y1)、(x1y3,x2y2,x3y1)、(x1y3,x2y1,x3y2)六组,其中五组为鬼影坐标。In the two-finger input state, there are two possible coordinates when the ghost phenomenon occurs, as shown in FIG. 2 . When the ghost phenomenon occurs, the capacitance value in the X direction changes at the traces x1 and x2 , while the capacitance value in the Y direction increases at the traces y1 and y2 , excluding those with the same X or Y coordinates After the permutation and combination of , there are two groups of possible finger coordinates (x 1 y 1 , x 2 y 2 ) and (x 1 y 2 , x 2 y 1 ), one of which is the actual coordinate and the other is the ghost coordinate. When more fingers are input, the number of ghost coordinates will increase rapidly. For example, as shown in Figure 3, when three fingers are input, the possible finger coordinates are (x 1 y 1 , x 2 y 2 , x 3 y 3 ), (x 1 y 1 , x 2 y 3 , x 3 y 2 ), (x 1 y 2 , x 2 y 1 , x 3 y 3 ), (x 1 y 2 , x 2 y 3 , x 3 y 1 ) , (x 1 y 3 , x 2 y 2 , x 3 y 1 ), (x 1 y 3 , x 2 y 1 , x 3 y 2 ) six groups, five of which are ghost coordinates.

多指应用(Multi-touch)必然是未来触控技术的发展趋势之一,因此,希望提供一种改善已知AI型阵列投影式电容感测技术中鬼影点问题的鬼影检测方法。Multi-touch application (Multi-touch) is bound to be one of the development trends of touch technology in the future. Therefore, it is hoped to provide a ghost detection method to improve the ghost point problem in the known AI-type array projected capacitive sensing technology.

发明内容Contents of the invention

本发明的目的之一,在于提出一种鬼影位置的检测方法。One of the objectives of the present invention is to provide a method for detecting ghost positions.

根据本发明,一种鬼影位置的检测方法在所述电容式触控板上的第一位置及第二位置出现鬼影现象,且所述第一位置及所述第二位置具有相同的第一方向坐标时:According to the present invention, a ghost image detection method occurs in the first position and the second position on the capacitive touch panel, and the first position and the second position have the same first position When coordinates in one direction:

(A)以第一信号驱动所述第一位置的第一方向迹线,并以所述第一信号同步的第二信号驱动所述第一位置的第二方向迹线;(A) driving the first direction trace at the first position with a first signal, and driving the second direction trace at the first position with a second signal synchronized with the first signal;

(B)取得所述第一位置的第一或第二方向迹线电容值;(B) obtaining the first or second direction trace capacitance value of the first position;

(C)以所述第一信号驱动所述第二位置的第一方向迹线,并以所述第二信号驱动所述第一位置的第二方向迹线;(C) driving a first directional trace at the second location with the first signal, and driving a second directional trace at the first location with the second signal;

(D)取得所述第二位置的第一或第二方向迹线电容值;以及(D) obtaining the first or second direction trace capacitance value of the second position; and

(E)根据所述第一位置的第一或第二方向迹线电容值以及所述第二位置的第一或第二方向迹线电容值,判断实际接触位置。(E) Judging the actual contact position according to the capacitance value of the first or second direction trace at the first position and the first or second direction trace capacitance at the second position.

变化地,所述第一及第二信号互为同步同相或同步异相信号。Alternatively, the first and second signals are synchronous in-phase or synchronous out-of-phase signals.

较佳者,对所述电容式触控板上的迹线做交叉调校,以使各迹线获得相同的基本电容值。Preferably, cross-calibration is performed on the traces on the capacitive touch panel, so that each trace obtains the same basic capacitance value.

附图说明Description of drawings

图1是鬼影现象的示意图;FIG. 1 is a schematic diagram of a ghost phenomenon;

图2是双指触控造成的鬼影现象的示意图;FIG. 2 is a schematic diagram of a ghost phenomenon caused by two-finger touch;

图3是三指触控造成的鬼影现象的示意图;FIG. 3 is a schematic diagram of a ghost phenomenon caused by three-finger touch;

图4及图5是本发明一实施例的示意图;4 and 5 are schematic diagrams of an embodiment of the present invention;

图6及图7是本发明另一实施例的示意图;6 and 7 are schematic diagrams of another embodiment of the present invention;

图8是两相交迹线上电容的示意图;Fig. 8 is a schematic diagram of capacitance on two-phase intersecting traces;

图9及图10是检测两迹线间电容值一实施例的示意图;9 and 10 are schematic diagrams of an embodiment of detecting the capacitance value between two traces;

图11是应用本发明一实施例的流程图;Fig. 11 is a flow chart of applying an embodiment of the present invention;

图12是本发明提出的同相交错驱动的示意图;Fig. 12 is a schematic diagram of the in-phase interleaving drive proposed by the present invention;

图13是同相交错驱动造成的ADC读值差异的示意图;Fig. 13 is a schematic diagram of the difference in ADC reading value caused by in-phase interleaved driving;

图14是本发明提出的交叉调校的示意图;Fig. 14 is a schematic diagram of cross-calibration proposed by the present invention;

图15是不同粗细手指造成鬼影现象的示意图;Fig. 15 is a schematic diagram of ghost images caused by fingers of different thicknesses;

图16是应用本发明的电容式触控板一实施例的示意图;以及16 is a schematic diagram of an embodiment of a capacitive touch panel applying the present invention; and

图17是检测图15的鬼影现象一实施例的流程图。FIG. 17 is a flow chart of an embodiment of detecting the ghost phenomenon in FIG. 15 .

附图标号Reference number

12手指12 fingers

14手指14 fingers

16受测位置16 tested positions

200开始200 start

201X方向迹线检测201X direction trace detection

202Y方向迹线检测202 Y direction trace detection

203鬼影发生?203 ghosting happened?

204结束204 end

205产生鬼影候选列表205 Generate ghost candidate list

206自所述鬼影候选列表中取一点206 Take a point from the ghost candidate list

207所述点为鬼影候选列表的最后一点?207 said point is the last point of the ghost image candidate list?

208输出解答列表208 output answer list

209鬼影分析感测209 ghost analysis sensing

210所述点为鬼影点210 The points mentioned are ghost points

211自所述鬼影候选列表移除所述点211 Remove the point from the ghost candidate list

212将所述点加入解答列表212 Add the point to the answer list

213自所述鬼影候选列表移除与所述点具相同X或Y坐标的候选点213 Remove candidate points with the same X or Y coordinates as the point from the ghost candidate list

30电容式触控板30 capacitive touchpad

32感应器32 sensors

34模拟多工器34 analog multiplexers

36调变器36 modulators

38解调器38 demodulator

40电压处理电路40 voltage processing circuit

501一般调校501 General Adjustment

502交叉调校502 cross calibration

503触控板扫瞄503 touchpad scan

504在第一和第二方向上的手指数目大于2?504 The number of fingers in the first and second directions is greater than 2?

505判定为单指应用505 judged as a single-finger application

506找出出现电容变化的Y方向迹线Y1和Y2506 Find out the Y-direction traces Y1 and Y2 where capacitance changes occur

507找出X方向上具最大值的线迹Xmax507 Find the trace Xmax with the maximum value in the X direction

508以信号Mux2驱动迹线Y1,并以信号Mux1检测迹线X_max508 drives trace Y1 with signal Mux2, and detects trace X_max with signal Mux1

509取得并储存迹线Y1的ADC值ADC_Y1509 Obtain and store the ADC value ADC_Y1 of trace Y1

510以信号Mux2驱动迹线Y2并以信号Mux1检测迹线X_max510 drives trace Y2 with signal Mux2 and detects trace X_max with signal Mux1

511取得并储存迹线Y2的ADC值ADC_Y2511 obtains and stores the ADC value ADC_Y2 of trace Y2

512ADC_Y1>ADC_Y2?512 ADC_Y1>ADC_Y2?

513手指实际位置在(Xmax,Y1)及(Xmin,Y2)513 The actual position of the finger is at (Xmax, Y1) and (Xmin, Y2)

514手指实际位置在(Xmax,Y2)及(Xmin,Y1)514 The actual position of the finger is at (Xmax, Y2) and (Xmin, Y1)

515判定为多指应用515 judged as multi-finger application

具体实施方式Detailed ways

图4为本发明第一实施例的示意图,手指12的坐标以xmyk表示,手指14的坐标则以xny1表示,手指12和手指14造成电容式触控板上的电容变化值在位置xmy1、xmyk、xny1以及xnyk都出现峰值,产生鬼影现象,控制电路端无法分辨手指12是位于xmy1还是xmyk,亦无法判断手指14是位于xny1还是xnyk,此时出现两组鬼影候选坐标(xmy1,xnyk)和(xmyk,xny1),位置xmy1、xmyk、xny1以及xnyk为鬼影候选位置。本发明提出一种鬼影检测方法,在出现鬼影现象时,逐一对每个出现峰值的位置,即各鬼影候选位置上的X和Y方向迹线同时充电并进行电容值检测。当对受测位置16(xmyk)进行检测时,开关S1和S3关上,控制器(图中未示)同时对迹线xm和yk充电,取得迹线xm和yk的电容值。迹线xm上的电容值Cx为Cxm+Cxmy1+dCxm+Cxmyk,dCxm表示迹线xm因手指12接近产生的电容变化,Cxm表示其他接地迹线与接地和迹线xm间的电容值总合,Cxmy1表示迹线xm与迹线y1间的电容值,Cxmyk表示迹线xm与迹线yk间的电容值,其中,因为迹线xm和迹线yk等电位,Cxmyk的测量值为零。由于受测位置16是手指12实际接触的位置,从迹线xm上测量出的电容值总合Cx等于实际位置电容值Crx=Cxm+Cxmy1+dCxm。从迹线yk测得的Y方向迹线电容值Cy亦由于手指12的实际接触位置在xmyk,其测量出的电容值为实际位置电容值Cry=Cyk+Cxnyk+dCykFig. 4 is a schematic diagram of the first embodiment of the present invention, the coordinates of the finger 12 are represented by x m y k , and the coordinates of the finger 14 are represented by x n y 1 , the finger 12 and the finger 14 cause capacitance changes on the capacitive touch panel Values at positions x m y 1 , x m y k , x n y 1 and x n y k all have peak values, resulting in ghost images, and the control circuit cannot tell whether the finger 12 is located at x m y 1 or x m y k . It is also impossible to judge whether the finger 14 is located at x n y 1 or x n y k . At this time, two groups of ghost image candidate coordinates (x m y 1 , x n y k ) and (x m y k , x n y 1 ) appear, Positions x m y 1 , x m y k , x n y 1 and x n y k are ghost candidate positions. The present invention proposes a ghost detection method. When a ghost phenomenon occurs, each position where a peak value appears, that is, the X and Y direction traces on each ghost candidate position is simultaneously charged and the capacitance value is detected. When the tested position 16 (x m y k ) is detected, the switches S1 and S3 are turned off, and the controller (not shown in the figure) charges the traces x m and y k at the same time to obtain the traces x m and y k capacitance value. The capacitance value Cx on the track x m is Cx m +Cx m y 1 +dCx m +Cx m y k , dCx m represents the capacitance change of the track x m due to the proximity of the finger 12, and Cx m represents the contact between the other ground traces and The total capacitance value between ground and trace x m , Cx m y 1 represents the capacitance value between trace x m and trace y 1 , Cx m y k represents the capacitance value between trace x m and trace y k , where the measured value of Cx m y k is zero because trace x m and trace y k are equipotential. Since the measured position 16 is the position actually touched by the finger 12, the total capacitance value Cx measured from the trace x m is equal to the actual position capacitance value Cr x =Cx m +Cx m y 1 +dCx m . The trace capacitance value Cy in the Y direction measured from the trace y k is also due to the actual contact position of the finger 12 at x m y k , and the measured capacitance value is the actual position capacitance value Cr y =Cy k +Cx n y k +dCy k .

图5绘示当手指12实际接触位置在xmy1,受测位置16为鬼影位置时的示意图,控制器一样同时对迹线xm和迹线yk充电,迹线xm和yk等电位,因此Cxmyk的测量值为零,但位在xmy1的手指12使得迹线y1和迹线xm间产生电容变化dCxmy1,dCxmy1为负值,此时迹线xm上的电容值总合Cx等于鬼影位置电容值Cgx=Cxm+Cxmy1+dCxmy1+dCxm。从迹线yk测得的Y方向电容值Cy因为手指14位在xnyk,在迹线xn和yk之间造成负的电容变化dCxnyk,因此测得的电容值Cy为鬼影位置电容值Cgy=Cyk+Cxny1+dCxnyk+dCykFig. 5 shows a schematic diagram when the actual contact position of the finger 12 is x m y 1 and the measured position 16 is a ghost position, the controller also charges the trace x m and trace y k at the same time, and the trace x m and y k is equipotential, so the measured value of Cx m y k is zero, but finger 12 at x m y 1 causes a capacitance change dCx m y 1 between trace y 1 and trace x m , dCx m y 1 is negative value, the total capacitance Cx on the trace x m at this time is equal to the ghost position capacitance value Cg x =Cx m +Cx m y 1 +dCx m y 1 +dCx m . The Y-direction capacitance value Cy measured from the trace y k is because the 14-bit finger is at x n y k , causing a negative capacitance change dCx n y k between the traces x n and y k , so the measured capacitance value Cy It is the ghost position capacitance value Cg y =Cy k +Cx n y 1 +dCx n y k +dCy k .

将图4及图5获得的X方向电容值和Y方向电容值互相比较,由于dCxmy1为负值,实际位置测得的X方向电容值Crx=Cxm+Cxmy1+dCxm大于鬼影位置测得的X方向电容值为Cgx=Cxm+Cxmy1+dCxmy1+dCxm,相同地,因为dCxnyk为负值,实际位置测得的Y方向电容值Cry=Cyk+Cxnyk+dCyk亦大于鬼影位置测得的Y方向电容值Cgy=Cyk+Cxnyk+dCxnyk+dCyk。简言之,在完成所述对XY迹线同时充电并取得X及Y方向电容值后,将二点所得的电容值相比较,即可分辨何者为实际接触位置。Comparing the X-direction capacitance and Y-direction capacitance obtained in Figure 4 and Figure 5, since dCx m y 1 is a negative value, the X-direction capacitance Cr x measured at the actual position = Cx m + Cx m y 1 +dCx m is greater than the capacitance value in the X direction measured at the ghost position Cg x =Cx m +Cx m y 1 +dCx m y 1 +dCx m , similarly, because dCx n y k is a negative value, the Y measured at the actual position The directional capacitance Cr y =Cy k +Cx ny k +dCy k is also greater than the Y-directional capacitance Cg y =Cy k +Cx ny k +dCx ny k +dCy k measured at the ghost position. In short, after the simultaneous charging of the XY traces is completed and the capacitance values in the X and Y directions are obtained, the capacitance values obtained at the two points are compared to determine which is the actual contact position.

图6及图7是本发明的鬼影检测方法的另一实施例,将受测位置的X方向迹线和Y方向迹线连接,以直接取得受测位置的X方向迹线电容值和Y方向迹线电容值的总合。如图6所示,当受测位置16为手指12实际位置时,测得的电容值Cxy为实际位置电容值Crxy=Cxm+Cyk+Cxmy1+Cxnyk+dCxm+dCyk,参照图7,当受测位置16不是手指实际位置时,测得的电容值Cxy为鬼影位置电容值Cgxy=Cxm+Cyk+Cxmy1+Cxnyk+dCxm+dCyk+dCxmy1+dCxnyk,其中dCxmy1及dCxnyk为负值。两指触控造成的鬼影现象虽共有四个鬼影候选位置,但因为定出第一个实际位置后,与所述实际位置具有相同X或Y坐标的鬼影候选位置便不可能是第二个实际位置,因此在检测两指触控造成的鬼影现象时,仅需对两个具相同X或Y坐标的鬼影候选位置做一次比较,即可获知实际位置的坐标。Fig. 6 and Fig. 7 are another embodiment of the ghost detection method of the present invention, connect the trace of X direction and the trace of Y direction of the tested position, to directly obtain the capacitance value of the trace of X direction of the measured position and Y The sum of the direction trace capacitance values. As shown in Figure 6, when the measured position 16 is the actual position of the finger 12, the measured capacitance value Cx y is the actual position capacitance value Crx y = Cx m + Cyk + Cx m y 1 + Cx n y k + dCx m +dCy k , referring to Figure 7, when the measured position 16 is not the actual position of the finger, the measured capacitance value Cx y is the ghost position capacitance value Cgx y =Cx m +Cy k +Cx m y 1 +Cx n y k +dCx m +dCy k +dCx m y 1 +dCx n y k , where dCx m y 1 and dCx n y k are negative values. Although there are four ghost candidate positions for the ghost phenomenon caused by two-finger touch, after the first actual position is determined, the ghost candidate position having the same X or Y coordinates as the actual position cannot be the second candidate position. Two actual positions, so when detecting the ghost phenomenon caused by the two-finger touch, only need to compare two ghost candidate positions with the same X or Y coordinates to obtain the coordinates of the actual position.

以所述检测方法处理三指触控造成的鬼影现象时,鬼影候选位置共九点,参照图3,在所述这些鬼影候选位置中,具有相同X坐标的位置各有三点,以先测试具有相同X坐标的两点(x1,y1)和(x1,y2)为例,若测试得到的电容值相等,表示(x1,y1)和(x1,y2)二点皆为鬼影位置,剩余与所述二点具有相同X坐标的(x1,y3)即为实际位置;若测试得到的电容值不相等,电容值较大所述点即为实际位置,因此仅需检测一次即可定出第一个实际位置。在定出第一个实际位置,例如判定(x1,y3)为实际位置后,即可得知其他与(x1,y3)具有相同X坐标或Y坐标的鬼影候选位置(x1,y1)、(x1,y2)、(x2,y3)和(x3,y3)必然皆为鬼影位置,因此可直接排除所述些鬼影位置,接着再对鬼影候选位置(x2,y2)、(x2,y1)做鬼影检测,判断出第二个实际位置后,再删除与所述第二实际位置具相同X或Y坐标的鬼影候选位置,即可获得最后一个实际位置,换言之,即使在三指造成的鬼影现象中,本发明提出的检测方法仅需执行两次比较,即可定出实际手指坐标。在其他实施例中,亦可以逐一检测每个鬼影候选点,取得每一鬼影候选点的迹线电容值,再由固件根据所述这些迹线电容值做判断,以提升可靠度。When using the detection method to deal with the ghosting phenomenon caused by three-finger touch, there are nine ghosting candidate positions in total. Referring to FIG. First test two points (x 1 , y 1 ) and (x 1 , y 2 ) with the same X coordinate as an example, if the capacitance values obtained from the test are equal, it means (x 1 , y 1 ) and (x 1 , y 2 ) are ghost positions, and the remaining (x 1 , y 3 ) with the same X coordinates as the two points is the actual position; if the measured capacitance values are not equal, the point with the larger capacitance value is Actual position, so only one detection is required to determine the first actual position. After the first actual position is determined, for example, (x 1 , y 3 ) is determined to be the actual position, other ghost candidate positions (x 1 , y 3 ) having the same X or Y coordinates as (x1, y3 ) can be known. y 1 ), (x 1 , y 2 ), (x 2 , y 3 ) and (x 3 , y 3 ) must all be ghost positions, so these ghost positions can be directly excluded, and then the ghost Candidate positions (x 2 , y 2 ) and (x 2 , y 1 ) are used for ghost detection, and after the second actual position is determined, ghost candidate positions with the same X or Y coordinates as the second actual position are deleted , the last actual position can be obtained. In other words, even in the ghost phenomenon caused by three fingers, the detection method proposed by the present invention only needs to perform two comparisons to determine the actual finger coordinates. In other embodiments, each ghost candidate point can also be detected one by one to obtain the trace capacitance value of each ghost candidate point, and then the firmware makes a judgment based on the trace capacitance values, so as to improve reliability.

图8是两相交迹线上电容的示意图,此处的Cxm表示迹线xm对地的电容值,Cyn表示迹线yn对地的电容值,Cxmyn表示迹线xm和迹线yn之间的耦合电容值,当手指接触迹线xm和yn交界处时,电容值Cxmyn将下降,本发明提出一种直接检测迹线xm和迹线yn之间的电容值Cxmyn的方法,以分辨鬼影位置和实际接触位置。首先,同时对迹线xm和yn充电,并检测迹线xm上的电容值,此时迹线xm和yn等电位,Cxmyn的测量值为零,测得的电容值为迹线xm对地的电容值Cxm接着再对迹线xm充电并将迹线yn接地,此时迹线xm和yn不等电位,因此检测迹线xm所得的电容值为Cxm+Cxmyn,两者相减即可得到迹线xm和yn间的耦合电容值CxmynFigure 8 is a schematic diagram of capacitance on two-phase intersecting traces, where Cx m represents the capacitance value of trace x m to ground, Cy n represents the capacitance value of trace y n to ground, and Cx m y n represents trace x m and the coupling capacitance value between the traces y n , when the finger touches the junction of the traces x m and y n , the capacitance value Cx m y n will drop, and the present invention proposes a method for directly detecting the traces x m and the traces y The capacitance value Cx m y n between n is used to distinguish the ghost position and the actual contact position. First, the traces x m and y n are charged at the same time, and the capacitance value on the trace x m is detected. At this time, the traces x m and y n are equipotential, the measured value of Cx m y n is zero, and the measured capacitance The value is the capacitance Cx m of the trace x m to the ground, and then the trace x m is charged and the trace y n is grounded. The capacitance value is Cx m +Cx my n , and the coupling capacitance value Cx my n between the traces x m and y n can be obtained by subtracting the two.

图9及图10为检测两迹线间电容值一实施例的示意图,图9绘示当受测位置16为手指12实际位置时的状况,图10绘示当受测位置16为鬼影位置时的状况。如图9所示,当受测位置16为手指12实际位置时,首先在phase1同时对迹线xm和yk充电,此时检测迹线xm取得的电容值Cx=Cxm;接着,于phase 2中对迹线xm充电并将迹线yk接地,取得迹线xm上的电容值Cx=Cxm+Cxmyk+dCxmyk;将phase 2取得的电容值与phase 1取得的电容值相减得到的电容差值ΔCx为实际位置电容差值ΔCrx=Cxmyk+dCxmyk。当受测位置16为鬼影位置时,如图10所示,对受测位置16进行所述检测,取得的电容差值ΔCx为鬼影位置电容差值ΔCgx=Cxmyk,其中,dCxmyk小于零,因此实际手指位置的判定可通过比较电容差值ΔCx达成。本发明提出的各实施例以固件实现所述运算,在其他实施例中,可以将手指及迹线等造成的误差加入运算。9 and 10 are schematic diagrams of an embodiment of detecting the capacitance between two traces. FIG. 9 shows the situation when the tested position 16 is the actual position of the finger 12. FIG. 10 shows the situation when the tested position 16 is a ghost position. situation at the time. As shown in Figure 9, when the measured position 16 is the actual position of the finger 12, at first the traces x m and y k are charged simultaneously in phase1, and the capacitance value Cx=Cx m obtained by detecting the trace x m at this time; then, Charge the trace x m in phase 2 and ground the trace y k to obtain the capacitance value Cx=Cx m +Cx m y k +dCx m y k on the trace x m ; combine the capacitance value obtained in phase 2 with The capacitance difference ΔCx obtained by subtracting the capacitance values obtained in phase 1 is the actual position capacitance difference ΔCr x =Cx m y k +dCx m y k . When the tested position 16 is a ghost position, as shown in FIG. 10 , the detected position 16 is detected, and the obtained capacitance difference ΔCx is the ghost position capacitance difference ΔCg x =Cx m y k , wherein, dCx m y k is less than zero, so the determination of the actual finger position can be achieved by comparing the capacitance difference ΔCx. The various embodiments proposed by the present invention implement the calculation with firmware, and in other embodiments, errors caused by fingers and traces can be added to the calculation.

图11是应用本发明的触控板控制方法一实施例的流程图,开始200后,先进行X方向迹线检测201,接着进行Y方向迹线检测202,判断是否有鬼影发生203,若否,输出检测结果并结束204。在步骤203中,若发现有鬼影发生,则进入鬼影处理程序,首先产生鬼影候选列表205,将所有鬼影候选点加入所述鬼影候选列表中,然后于步骤206中从所述鬼影候选列表中取一鬼影候选点,并判断所述点是否为所述鬼影候选列表的最后一点207,若是,输出解答列表208,若否,进行鬼影分析感测209。鬼影分析感测209的步骤如前所述,取得受测点的X方向迹线电容值、Y方向迹线电容值、两者加总后的电容值或受测点的X、Y方向间电容值,再与从其他候选点取得的电容值相比较,以判断所述受测点是否为鬼影点210,若是,便自所述鬼影候选列表移除所述受测点211,并回到步骤206,继续对其他候选点做检测及判断,若否,表示所述受测点为实际位置,便将所述受测点加入解答列表212,并从所述鬼影候选列表移除所述点以及与所述点具相同X或Y坐标的候选点231,再回到步骤206继续对鬼影候选列表中的其他候选点进行检测,最后输出解答列表208,结束204。在本实施例中,每一鬼影候选点的位置皆以XY坐标表示,因此最后输出的解答列表已包含解答点的XY坐标,可以提供精确的接触点定位能力。Fig. 11 is a flow chart of an embodiment of the touch panel control method of the present invention. After starting 200, the X-direction trace detection 201 is performed first, and then the Y-direction trace detection 202 is performed to determine whether there is a ghost image 203. If No, output the detection result and end 204. In step 203, if it is found that there is a ghost image, then enter the ghost image processing program, first generate a ghost image candidate list 205, add all ghost image candidate points in the described ghost image candidate list, then in step 206 from the described ghost image candidate list Take a ghost candidate point from the ghost candidate list, and judge whether the point is the last point in the ghost candidate list 207 , if yes, output the answer list 208 , if not, perform ghost analysis and sensing 209 . The steps of ghost image analysis and sensing 209 are as mentioned above, obtain the capacitance value of the X-direction trace of the measured point, the capacitance value of the Y-direction trace, the capacitance value after the sum of the two or the distance between the X-direction and Y-direction of the measured point. The capacitance value is compared with the capacitance values obtained from other candidate points to determine whether the measured point is a ghost point 210, if so, remove the measured point 211 from the ghost candidate list, and Go back to step 206, continue to detect and judge other candidate points, if not, it means that the measured point is the actual position, then add the measured point to the answer list 212, and remove it from the ghost candidate list The point and the candidate point 231 having the same X or Y coordinates as the point return to step 206 to continue detecting other candidate points in the ghost candidate list, and finally output the answer list 208 and end 204 . In this embodiment, the position of each ghost candidate point is represented by XY coordinates, so the final output answer list already includes the XY coordinates of the answer points, which can provide accurate contact point positioning capability.

本发明还提出一种同相交错(In-Phase Crisscross)驱动的方法,以使交错点(受测点)上的基本电容值变小,如此一来,受测点电容值的高低变化更为明显,利于实际的电路控制,如图12所示,在要检测(XN,YN)上的电容值以进行所述的交错驱动判断时,控制电路以信号Mux1驱动迹线XN,同时以与信号Mux1同相的信号Mux 2驱动迹线YN,检测迹线XN以取得其上的电容值。图13是同相交错驱动造成的ADC读值差异的示意图,以信号Mux1驱动迹线X1,并以同相信号Mux2分别驱动迹线Y1和Y2,受测点A是手指实际接触位置,因此在同相交错驱动迹线X1和Y2时,检测迹线X1获得的ADC(Analog-to-Digital Converter,模数转换)读值高,判断为逻辑High(1),受测点C为鬼影位置,因此在同相交错驱动迹线X1和Y1时,检测迹线X1获得的ADC读值低,判断为逻辑Low(0)。The present invention also proposes an in-phase interleaved (In-Phase Crisscross) driving method, so that the basic capacitance value on the interleaved point (measured point) becomes smaller, so that the high and low changes in the capacitance value of the measured point are more obvious , which is beneficial to the actual circuit control, as shown in Figure 12, when the capacitance value on (XN, YN) is to be detected to perform the interleaved driving judgment, the control circuit drives the trace XN with the signal Mux1, and at the same time uses the signal Mux1 The in-phase signal Mux 2 drives the trace YN and senses the trace XN to obtain the capacitance value on it. Figure 13 is a schematic diagram of the difference in ADC reading values caused by in-phase interleaved driving. The signal Mux1 is used to drive the trace X1, and the in-phase signal Mux2 is used to drive the traces Y1 and Y2 respectively. The measured point A is the actual contact position of the finger, so in the same phase When traces X1 and Y2 are driven alternately, the ADC (Analog-to-Digital Converter, analog-to-digital conversion) reading value obtained by detecting trace X1 is high, which is judged to be logic High (1), and the measured point C is a ghost position, so When the traces X1 and Y1 are driven alternately in phase, the ADC reading value obtained by detecting the trace X1 is low, which is judged as logic Low (0).

由于所述的交错驱动检测到实际位置与鬼影位置间的电容值差异小,本发明提出一种调校(Calibration)方法,在原本的调校流程中增加一单轴的交叉调校(Intersectional Calibration)步骤,以更进一步提升检测的准确性,图14为其示意图。以信号Mux2驱动Y轴的其中一条迹线YM,并以信号Mux1驱动并扫瞄所有X轴方向迹线,取得每一条迹线的ADC值,提供给调变器(Modulator)做为后续调校的参数,供校正迹线上的调变值和DAC值,使每条迹线的ADC(Analog-to-Digital Converter)读值处于相同准位。Since the capacitance value difference between the actual position and the ghost position detected by the interleaving drive is small, the present invention proposes a calibration (Calibration) method, which adds a single-axis cross-calibration (Intersectional Calibration) step, to further improve the accuracy of detection, Figure 14 is its schematic diagram. Use the signal Mux2 to drive one of the traces YM of the Y-axis, and use the signal Mux1 to drive and scan all the X-axis direction traces, obtain the ADC value of each trace, and provide it to the modulator (Modulator) for subsequent adjustments The parameter is used to correct the modulation value and DAC value on the trace, so that the ADC (Analog-to-Digital Converter) reading value of each trace is at the same level.

由于本发明是先判断出一只手指的实际位置,再导出另一只手指的位置,为降低因手指粗细差距太大产生的错误率,参照图15,本发明选择以X轴感应量较大(X_max)的手指做为判断的第一根手指。Since the present invention judges the actual position of one finger first, and then derives the position of the other finger, in order to reduce the error rate caused by the large difference in finger thickness, referring to Fig. The finger of (X_max) is used as the first finger for judgment.

图16是应用本发明的电容式触控板一实施例的示意图,电容式触控板30上具有多个感应器32,纵向的感应器32间有导线相连,组成迹线(trace)X1、X2......XM,横向的感应器32同样分别组成迹线Y1、Y2......YM,调变器36产生的电流信号通过模拟多工器34选择要接至的迹线,调变成信号mux1及mux2,由于本实施例在原本的调校流程中增加所述的交叉调校步骤,因此在产生出已知的1st调变参数和1st DAC参数后,交叉调校步骤提供的2nd调变参数和2nd DAC参数亦提供给调变器36,辅助调校每条迹线的ADC读值,而由于使用同相交错驱动,本实施例的解调器38需以额外提供的参考信号Mux_Vref解调信号mux1,产生信号ppeak和npeak给电压处理电路40,电压处理电路40再将信号ppeak和npeak间的电压差加以转换,以获得电容式触控板10上的电容变化资讯。调变器以调变参数和DAC参数调整迹线的基本电容值为已知技术,熟习本发明所属的技术领域者当知。16 is a schematic diagram of an embodiment of a capacitive touch panel applying the present invention. There are multiple sensors 32 on the capacitive touch panel 30, and the longitudinal sensors 32 are connected by wires to form a trace (trace) X1, X2...XM, the horizontal inductors 32 also form traces Y1, Y2...YM respectively, and the current signal generated by the modulator 36 selects the trace to be connected to through the analog multiplexer 34 line, modulated into signals mux1 and mux2, since this embodiment adds the cross-calibration step in the original calibration process, after the known 1st modulation parameters and 1st DAC parameters are generated, the cross-calibration The 2nd modulation parameter and the 2nd DAC parameter provided in the step are also provided to the modulator 36 to assist in adjusting the ADC reading value of each trace, and due to the use of in-phase interleaved driving, the demodulator 38 of this embodiment needs to provide an additional The reference signal Mux_Vref demodulates the signal mux1 to generate the signals ppeak and npeak to the voltage processing circuit 40, and the voltage processing circuit 40 converts the voltage difference between the signals ppeak and npeak to obtain the capacitance change information on the capacitive touch panel 10 . It is a known technology for the modulator to adjust the basic capacitance value of the trace by the modulation parameter and the DAC parameter, and those skilled in the technical field of the present invention should know it.

在其他实施例中,亦可以使用同步但异相的信号做为Mux1和Mux2,进行所述的交错驱动及交叉调校以分辨鬼影位置和实际位置。In other embodiments, synchronous but out-of-phase signals can also be used as Mux1 and Mux2 to perform the interleaved driving and interleaved calibration to distinguish the ghost position from the actual position.

图17是检测图15的鬼影现象一实施例的流程图,在图15中,A点的手指较D点手指粗,因此A点的电容值较D点大。首先,以已知的一般调校501取得电容式触控板上各迹线的1st调变参数和1st DAC参数,接着以交叉调校502取得2nd调变参数和2nd DAC参数提供给调变器,使电容式触控板上各迹线具有相同的ADC读值后,对触控板扫瞄503,判断在X和Y轴上的手指数目是否大于2504,若否,判定此时为单指应用505,回到步骤503;若否,进入交错驱动程序。在交错驱动程序中,先找出出现电容变化的Y方向迹线Y1和Y2506,接着找出X方向上具最大值的迹线Xmax(X1)507,接着在步骤508中以信号Mux2驱动迹线Y1,并以信号Mux1检测迹线Xmax,于步骤509取得并储存迹线Y1的ADC值ADC_Y1,接着,再于步骤510以信号Mux2驱动迹线Y2并以信号Mux1检测迹线X_max,取得并储存迹线Y2的ADC值ADC_Y2511,判断ADC_Y1是否大于ADC_Y2512;若是,判断手指位置在(Xmax,Y1),(Xmin,Y2)513;若否,判断手指位置在(Xmax,Y2),(Xmin,Y1)514,判断出手指位置后,判定当前为多指应用515,回到步骤503继续扫瞄触控板。FIG. 17 is a flowchart of an embodiment of detecting the ghost phenomenon in FIG. 15 . In FIG. 15 , the finger at point A is thicker than that at point D, so the capacitance at point A is larger than that at point D. Firstly, the 1st modulation parameter and 1st DAC parameter of each trace on the capacitive touch panel are obtained by known general calibration 501, and then the 2nd modulation parameter and 2nd DAC parameter are obtained by cross calibration 502 and provided to the modulator , after each trace on the capacitive touch panel has the same ADC reading value, scan 503 the touch panel to determine whether the number of fingers on the X and Y axes is greater than 2504, if not, determine that it is a single finger at this time Apply 505, return to step 503; if not, enter the interleave driver. In the interleaved driving program, first find the traces Y1 and Y2 506 in the Y direction where the capacitance changes, and then find the trace Xmax(X1) 507 with the maximum value in the X direction, and then drive the trace with the signal Mux2 in step 508 Y1, and use the signal Mux1 to detect the trace Xmax, obtain and store the ADC value ADC_Y1 of the trace Y1 in step 509, then, in step 510, use the signal Mux2 to drive the trace Y2 and use the signal Mux1 to detect the trace X_max, obtain and store The ADC value ADC_Y2511 of trace Y2, judge whether ADC_Y1 is greater than ADC_Y2512; if yes, judge that the finger position is at (Xmax, Y1), (Xmin, Y2) 513; if not, judge that the finger position is at (Xmax, Y2), (Xmin, Y1 ) 514, after judging the position of the fingers, it is judged that it is a multi-finger application 515, and returning to step 503 to continue scanning the touchpad.

以上对于本发明的较佳实施例所作的叙述是为阐明的目的,而无意限定本发明精确地为所揭露的形式,基于以上的教导或从本发明的实施例模仿而作修改或变化是可能的,实施例是为解说本发明的原理以及让熟悉本领域的技术人员以各种实施例利用本发明在实际应用上而选择及叙述,本发明的技术思想企图由权利要求及其均等来决定。The above description of the preferred embodiments of the present invention is for the purpose of illustration, and is not intended to limit the present invention to the disclosed form. It is possible to modify or change based on the above teachings or imitate from the embodiments of the present invention. Yes, the embodiments are selected and described for explaining the principles of the present invention and allowing those skilled in the art to use the present invention in practical applications with various embodiments, and the technical ideas of the present invention are intended to be determined by the claims and their equivalents .

Claims (5)

1. the ghost detecting method of a capacitive touch control plate, it is characterized in that, the ghost phenomenon appears in the primary importance on the described capacitive touch control plate and the second place, and the described primary importance and the described second place have identical first direction coordinate, and described detection method comprises the following steps:
(A) drive the first direction trace of described primary importance with first signal, and drive the second direction trace of described primary importance with secondary signal with described first signal Synchronization;
(B) obtain first or second direction trace capacitances value of described primary importance;
(C) drive the first direction trace of the described second place with described first signal, and drive the second direction trace of described primary importance with described secondary signal;
(D) obtain first or second direction trace capacitances value of the described second place; And
(E) according to first or second direction trace capacitances value of first or the second direction trace capacitances value and the described second place of described primary importance, judge the actual contact position.
2. ghost detecting method as claimed in claim 1 is characterized in that, described secondary signal and described first signal Synchronization and homophase.
3. ghost detecting method as claimed in claim 1 is characterized in that, described secondary signal and described first signal Synchronization but out-phase.
4. ghost detecting method as claimed in claim 1 is characterized in that, step (E) comprising:
First or second direction trace capacitances value of first or the second direction trace capacitances value and the described second place of more described primary importance;
If first or second direction trace capacitances value of described primary importance judge that greater than first or second direction trace capacitances value of the described second place described primary importance is the actual contact position; And
If the first direction trace capacitances value of described primary importance judges that less than the first direction trace capacitances value of the described second place the described second place is the actual contact position.
5. ghost detecting method as claimed in claim 1 is characterized in that described method more comprises the following steps:
Drive arbitrary second direction trace on the described capacitive touch control plate with described secondary signal;
Drive and scan first direction traces all on the described capacitive touch control plate with described first signal; And
Obtain the capacitance of each described first direction trace, for the basic capacitance of each trace on the described capacitive touch control plate of adjustment.
CN2009101266270A 2009-03-05 2009-03-05 Ghost detection method of capacitive touch panel Expired - Fee Related CN101825976B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2009101266270A CN101825976B (en) 2009-03-05 2009-03-05 Ghost detection method of capacitive touch panel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2009101266270A CN101825976B (en) 2009-03-05 2009-03-05 Ghost detection method of capacitive touch panel

Publications (2)

Publication Number Publication Date
CN101825976A true CN101825976A (en) 2010-09-08
CN101825976B CN101825976B (en) 2012-08-15

Family

ID=42689914

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2009101266270A Expired - Fee Related CN101825976B (en) 2009-03-05 2009-03-05 Ghost detection method of capacitive touch panel

Country Status (1)

Country Link
CN (1) CN101825976B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102541372A (en) * 2010-12-30 2012-07-04 禾瑞亚科技股份有限公司 Mutual capacitive multi-touch screen and detection method thereof
CN104750330A (en) * 2013-12-31 2015-07-01 乐金显示有限公司 Touch sensing system
CN105739795A (en) * 2014-12-12 2016-07-06 宸鸿科技(厦门)有限公司 Capacitive touch control panel and touch control sensing method thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008026927A (en) * 2004-10-29 2008-02-07 Sharp Corp Coordinate detection device, display device, and coordinate detection method
JP2008146654A (en) * 2006-12-11 2008-06-26 Elan Microelectronics Corp Touch panel, and position detection method for use in the same
CN100594475C (en) * 2008-08-26 2010-03-17 友达光电股份有限公司 Projection type capacitive touch device and method for identifying different contact positions

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102541372A (en) * 2010-12-30 2012-07-04 禾瑞亚科技股份有限公司 Mutual capacitive multi-touch screen and detection method thereof
CN102541372B (en) * 2010-12-30 2015-03-25 禾瑞亚科技股份有限公司 Mutual capacitance type multi-point touch screen and detection method thereof
CN104750330A (en) * 2013-12-31 2015-07-01 乐金显示有限公司 Touch sensing system
CN104750330B (en) * 2013-12-31 2018-01-23 乐金显示有限公司 Touch-sensing system
CN105739795A (en) * 2014-12-12 2016-07-06 宸鸿科技(厦门)有限公司 Capacitive touch control panel and touch control sensing method thereof
CN105739795B (en) * 2014-12-12 2018-09-21 宸鸿科技(厦门)有限公司 Capacitance type touch-control panel and its sensing method of touch control

Also Published As

Publication number Publication date
CN101825976B (en) 2012-08-15

Similar Documents

Publication Publication Date Title
TWI571788B (en) Touch sensing device and scanning method thereof
US8619056B2 (en) Ghost resolution for a capacitive touch panel
TWI463382B (en) Touch sensing apparatus and touch sensing method
TWI459250B (en) Method for detecting multiple touch positions on touch panel
TWI407355B (en) Detection and Correction of Capacitive Touchpad
JP2010118038A (en) Touch panel and touch detection method
CN101414236A (en) On-screen input image display system
TWI417778B (en) Capacitance offset compensation for electronic device
TW201126395A (en) System and method of driving a touch screen
TWI428809B (en) Two - dimensional structure of the capacitive touchpad positioning method
TWI427518B (en) Touch sensing circuit and touch sensing method
CN101950228B (en) Touch point detection method
TWI412983B (en) Detecting method of performing multi-touch on a capacitive touch panel
US20100328233A1 (en) Touch panel with unbalanced conductive patterns, and touch-controlled apparatus and method for determining multi-touch thereof
CN101825976B (en) Ghost detection method of capacitive touch panel
CN102156562A (en) Object sensing device, touch sensing system and touch sensing method
CN101887332B (en) Positioning method and device for touch panel
CN102023765B (en) Positioning method of capacitive touch panel with two-dimensional structure
CN102193694A (en) Electronics for Compensating Capacitance Deviations
TWI536231B (en) Multi-touch detection method and device thereof
CN101996009B (en) Touch sensing circuit and touch sensing method
JP2009181453A (en) Method of detecting and measuring multiple finger touches on touch pad
TWI377499B (en)
CN104516569B (en) Touch device, multi-point touch detection method thereof and coordinate calculation method thereof
CN101788874B (en) Ghost detection method for capacitive touch panel

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20120815

Termination date: 20180305