CN101820571B - Speaker system - Google Patents
Speaker system Download PDFInfo
- Publication number
- CN101820571B CN101820571B CN2009101058085A CN200910105808A CN101820571B CN 101820571 B CN101820571 B CN 101820571B CN 2009101058085 A CN2009101058085 A CN 2009101058085A CN 200910105808 A CN200910105808 A CN 200910105808A CN 101820571 B CN101820571 B CN 101820571B
- Authority
- CN
- China
- Prior art keywords
- carbon nanotube
- power amplifier
- speaker system
- speaker
- carbon nano
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Carbon And Carbon Compounds (AREA)
- Electrostatic, Electromagnetic, Magneto- Strictive, And Variable-Resistance Transducers (AREA)
Abstract
本发明涉及一种扬声器系统,其包括:一扬声器;以及一功率放大器,该功率放大器将接收的音频电信号功率放大为放大电压信号,并驱动该扬声器发声;其中:该扬声器包括一热致发声元件以及至少两个电极间隔设置并与该热致发声元件电连接,该至少两个电极将放大电压信号输入至该热致发声元件中。该扬声器系统应用于电声转换领域,结构简单,可在无磁的条件下工作,并具有较宽的发声频率范围及较高的发声强度。
The present invention relates to a loudspeaker system, which includes: a loudspeaker; and a power amplifier, the power amplifier amplifies the power of the received audio electric signal into an amplified voltage signal, and drives the loudspeaker to sound; wherein: the loudspeaker includes a thermophonic The element and at least two electrodes are arranged at intervals and electrically connected with the thermoacoustic element, and the at least two electrodes input the amplified voltage signal into the thermoacoustic element. The loudspeaker system is applied in the field of electroacoustic conversion, has a simple structure, can work under the condition of no magnetism, and has a wide range of sounding frequency and high sounding intensity.
Description
技术领域 technical field
本发明涉及一种扬声器系统,尤其涉及一种基于热致发声的扬声器系统。 The invention relates to a loudspeaker system, in particular to a loudspeaker system based on thermal sound generation. the
背景技术 Background technique
现有技术中的扬声器系统包括一扬声器以及一功率放大器,该功率放大器用于接收一音频电信号,并将该音频电信号功率放大,从而驱动该扬声器发声。现有的扬声器的种类很多,根据其工作原理,分为:电动式扬声器、静电式扬声器及压电式扬声器。虽然它们的工作方式不同,但一般均为通过产生机械振动推动周围的空气,使空气介质产生波动从而实现“电-力-声”之转换。其中,电动式扬声器的应用最为广泛。 A loudspeaker system in the prior art includes a loudspeaker and a power amplifier, the power amplifier is used to receive an electrical audio signal and amplify the power of the electrical audio signal to drive the loudspeaker to produce sound. There are many types of existing loudspeakers, which can be divided into electrodynamic loudspeakers, electrostatic loudspeakers and piezoelectric loudspeakers according to their working principles. Although they work in different ways, they generally push the surrounding air by generating mechanical vibrations, causing the air medium to fluctuate so as to realize the conversion of "electricity-force-acoustic". Among them, the dynamic speaker is the most widely used. the
现有的电动式扬声器中一音圈被置于一变化的磁场中,并随磁场变化产生振动,音圈的震动带动与之相连的振膜振动并发出声音。然而,该电动式扬声器必须在有磁的条件下工作,进一步地,现有技术中无论电动式扬声器、静电式扬声器或压电式扬声器,其结构均较为复杂,难于轻薄化且小型化。 In the existing electrodynamic loudspeaker, a voice coil is placed in a changing magnetic field, and vibrates with the change of the magnetic field, and the vibration of the voice coil drives the vibrating diaphragm connected with it to produce sound. However, the dynamic loudspeaker must work under the condition of magnetism. Furthermore, no matter the dynamic loudspeaker, electrostatic loudspeaker or piezoelectric loudspeaker in the prior art, its structure is relatively complicated, and it is difficult to make it thinner and smaller. the
自九十年代初以来,以碳纳米管(请参见Helical microtubules of graphitic carbon,Nature,Sumio Iijima,vol 354,p56(1991))为代表的纳米材料以其独特的结构和性质引起了人们极大的关注。然而,单根碳纳米管为纳米级,大量碳纳米管易团聚,不易分散形成均匀的碳纳米管膜,从而限制了碳纳米管在宏观领域的应用。姜开利等人于2002年9月16日申请并于2008年8月20日公告的专利号为02134760.3的中国专利中揭示了一种碳纳米管绳,该碳纳米管绳包括通过范德华力首尾相连的碳纳米管束片段,并且,该碳纳米管绳中的碳纳米管基本沿同一方向排列。这种碳纳米管绳可以方便的将碳纳米管用于宏观领域。 Since the early 1990s, nanomaterials represented by carbon nanotubes (see Helical microtubules of graphitic carbon, Nature, Sumio Iijima, vol 354, p56 (1991)) have attracted great attention for their unique structures and properties. s concern. However, a single carbon nanotube is nanoscale, and a large number of carbon nanotubes are easy to aggregate and difficult to disperse to form a uniform carbon nanotube film, which limits the application of carbon nanotubes in the macroscopic field. The Chinese patent No. 02134760.3 filed by Jiang Kaili and others on September 16, 2002 and announced on August 20, 2008 discloses a carbon nanotube rope. carbon nanotube bundle segments, and the carbon nanotubes in the carbon nanotube rope are basically arranged along the same direction. The carbon nanotube rope can conveniently use the carbon nanotube in the macro field. the
近几年来,随着碳纳米管及纳米材料研究的不断深入,其广阔的应用前景不断显现出来。例如,由于碳纳米管所具有的独特的电磁学、光学、力学、化学等性能,大量有关其在场发射电子源、传感器、新型光学材料、软铁磁 材料等领域的应用研究不断被报道。然而,现有技术中却尚未发现碳纳米管用于声学领域。 In recent years, with the continuous deepening of research on carbon nanotubes and nanomaterials, their broad application prospects continue to emerge. For example, due to the unique electromagnetic, optical, mechanical, and chemical properties of carbon nanotubes, a large number of researches on their application in fields such as field emission electron sources, sensors, new optical materials, and soft ferromagnetic materials have been continuously reported. However, carbon nanotubes have not been found to be used in the acoustic field in the prior art. the
发明内容 Contents of the invention
有鉴于此,确有必要提供一种扬声器系统,该扬声器系统结构简单,可在无磁的条件下工作,并具有较宽的发声频率范围及较高的发声强度。 In view of this, it is necessary to provide a loudspeaker system, which has a simple structure, can work under non-magnetic conditions, and has a wide range of sounding frequency and high sounding intensity. the
一种扬声器系统,其包括:一扬声器;以及一功率放大器,该功率放大器将接收的音频电信号功率放大为放大电压信号,并驱动该扬声器发声;其中:该扬声器包括一热致发声元件以及至少两个电极间隔设置并与该热致发声元件电连接,该至少两个电极将放大电压信号输入至该热致发声元件中。该扬声器系统应用于电声转换领域,结构简单,可在无磁的条件下工作,并具有较宽的发声频率范围及较高的发声强度。 A loudspeaker system, which includes: a loudspeaker; and a power amplifier, the power amplifier amplifies the power of the received audio electric signal into an amplified voltage signal, and drives the loudspeaker to sound; wherein: the loudspeaker includes a thermal sound-generating element and at least Two electrodes are arranged at intervals and electrically connected with the thermoacoustic element, and the at least two electrodes input the amplified voltage signal into the thermoacoustic element. The loudspeaker system is applied in the field of electroacoustic conversion, has a simple structure, can work under the condition of no magnetism, and has a wide range of sounding frequency and high sounding intensity. the
与现有技术相比较,所述扬声器系统具有以下优点:其一,所述扬声器系统将热致发声元件作为一换能装置,将电能通过热能转换为声能,无需磁铁等其它复杂结构,故该扬声器系统的结构较为简单,有利于降低该扬声器系统的成本,并可应用于较宽领域。其二,该扬声器系统利用外部输入的音频电信号造成该热致发声元件温度变化,从而使其周围介质迅速膨胀和收缩,进而发出声波,无需振膜,故该扬声器系统可在无磁的条件下工作。 Compared with the prior art, the loudspeaker system has the following advantages: first, the loudspeaker system uses the thermoacoustic element as an energy conversion device to convert electric energy into sound energy through thermal energy, without requiring other complicated structures such as magnets, so The structure of the loudspeaker system is relatively simple, which is beneficial to reduce the cost of the loudspeaker system and can be applied in a wider field. Second, the loudspeaker system uses an externally input audio signal to cause the temperature of the thermoacoustic element to change, so that the surrounding medium expands and contracts rapidly, and then emits sound waves without a diaphragm, so the loudspeaker system can be used under non-magnetic conditions. down to work. the
附图说明 Description of drawings
图1是本发明实施例扬声器系统的连接关系示意图。 Fig. 1 is a schematic diagram of the connection relationship of the speaker system according to the embodiment of the present invention. the
图2是本发明实施例扬声器系统的工作电路示意图。 Fig. 2 is a schematic diagram of the working circuit of the loudspeaker system according to the embodiment of the present invention. the
图3是本发明实施例扬声器系统的电压偏置方式示意图。 FIG. 3 is a schematic diagram of a voltage biasing manner of a speaker system according to an embodiment of the present invention. the
图4是本发明实施例扬声器系统中碳纳米管结构的碳纳米管片段的结构示意图。 Fig. 4 is a schematic structural diagram of a carbon nanotube segment of a carbon nanotube structure in a loudspeaker system according to an embodiment of the present invention. the
图5是本发明实施例扬声器系统中碳纳米管膜的扫描电镜照片。 Fig. 5 is a scanning electron micrograph of the carbon nanotube film in the speaker system of the embodiment of the present invention. the
图6是本发明实施例扬声器系统中碳纳米管线的扫描电镜照片。 Fig. 6 is a scanning electron micrograph of carbon nanotube wires in the speaker system of the embodiment of the present invention. the
图7是本发明实施例扬声器系统中碳纳米管绞线的扫描电镜照片。 Fig. 7 is a scanning electron micrograph of carbon nanotube strands in the speaker system of the embodiment of the present invention. the
图8是本发明实施例扬声器系统中扬声器的频率响应特性曲线。 Fig. 8 is a frequency response characteristic curve of the speaker in the speaker system of the embodiment of the present invention. the
具体实施方式 Detailed ways
以下将结合附图详细说明本发明实施例扬声器系统。 The loudspeaker system of the embodiment of the present invention will be described in detail below with reference to the accompanying drawings. the
请参阅图1,本发明实施例提供一种扬声器系统10,该扬声器系统10包括一扬声器12、一功率放大器14以及一音频信号源20。该功率放大器14与该扬声器12电连接。该音频信号源20与该功率放大器14电连接。
Referring to FIG. 1 , an embodiment of the present invention provides a
该音频信号源20提供一音频电信号。本实施例中,该音频电信号为一模拟信号。该音频电信号的变化频率根据声音频率的变化而变化。该音频信号源20可以为收音机、录音机、播放器或电脑等。
The
该功率放大器14与该音频信号源20电连接。具体地,该音频信号源20具有一音频电信号输出端。该功率放大器14与该音频电信号输出端电连接。该功率放大器14将音频电信号功率放大,并输出一放大电压信号。具体地,该功率放大器14具有两输出端114与一输入端112,该输入端112与一音频信号源20电连接,该输出端114与所述扬声器12电连接,并根据输入端112输入的音频电信号向扬声器12传输放大电压信号。
The
为使该扬声器12能发出正常频率的声音,该功率放大器14可以输出一具有偏置电压的放大电压信号。请参阅图2,本实施例中,所述功率放大器14为A类功率放大器,其包括至少一第一电阻R1、一第二电阻R2、一第三电阻R3,一电容以及一三极管。该三极管具有一基极B,一发射极E以及一集电极C。该电容的一端与音频信号源20的输出端电连接,另一端与该三极管的基极B电连接。一直流电压源Vcc与第一电阻R1串联后连接至该三极管的基极B。该三极管的基极B与第二电阻R2串联后接地。该发射极E连接至该功率放大器14的一输出端114,该直流电压源Vcc连接至该功率放大器的另一输出端114。该集电极C与第三电阻R3串联后接地。
In order to enable the
可以理解,该功率放大器14不限于上述A类功率放大器,只要能够根据音频信号源20向所述热致发声元件12传导一偏置的放大电压信号,使该放大电压信号的电压均为正值或均为负值的功率放大器14,如D类功放,均在本发明保护范围内。请参阅图3,该偏置后的电压信号均为正电压。
It can be understood that the
该扬声器12包括一热致发声元件122以及至少两个电极124。该至少两个电极124间隔设置并与该热致发声元件122电连接。所述功率放大器14的两个输出端114分别连接至该热致发声元件122的两个电极124。本实施 例中,该功率放大器14的发射极E直接与该扬声器12的一个电极124电连接,该直流电压源Vcc直接与扬声器12的另一个电极124电连接,从而使该直流电压源Vcc与该扬声器12串联后连接至该功率放大器14的发射极E。
The
可以理解,当该扬声器12包括多个电极124时,任意相邻的两个电极124分别与所述功率放大器14的两个输出端114电连接,使该功率放大器14向该两个相邻的电极124之间的热致发声元件122中输入一放大电压信号,从而使相邻的两个电极124之间的发声元件122通过该两个电极124并联。
It can be understood that when the
本实施例中,所述热致发声元件122为一碳纳米管结构。所述碳纳米管结构包括多个碳纳米管,该多个碳纳米管相互接触,从而形成一均匀的导电网络。优选地,所述碳纳米管结构包括有序排列的碳纳米管,碳纳米管沿一固定方向择优取向排列。
In this embodiment, the
所述碳纳米管结构为一自支撑结构,所谓“自支撑结构”即该碳纳米管结构无需通过一支撑体支撑,也能保持自身特定的形状。该自支撑结构的碳纳米管结构中多个碳纳米管间通过范德华力相互吸引,从而使碳纳米管结构具有特定的形状。故该碳纳米管结构的两端可通过支撑体支撑,并使碳纳米管结构其它部分悬空设置,从而充分与周围气体或液体介质接触。另外,该碳纳米管结构也可直接设置于一基底表面。 The carbon nanotube structure is a self-supporting structure. The so-called "self-supporting structure" means that the carbon nanotube structure can maintain its own specific shape without being supported by a support. In the carbon nanotube structure of the self-supporting structure, multiple carbon nanotubes attract each other through van der Waals force, so that the carbon nanotube structure has a specific shape. Therefore, the two ends of the carbon nanotube structure can be supported by the support body, and the other parts of the carbon nanotube structure are suspended, so as to fully contact with the surrounding gas or liquid medium. In addition, the carbon nanotube structure can also be directly disposed on the surface of a substrate. the
所述碳纳米管结构具有较大的比表面积,从而具有与外部气体或液体介质接触的较大表面积。优选地,碳纳米管结构为层状、线状或其它形状,且具有较大的比表面积。 The carbon nanotube structure has a large specific surface area, and thus has a large surface area in contact with external gas or liquid medium. Preferably, the carbon nanotube structure is layered, linear or other shapes, and has a relatively large specific surface area. the
该碳纳米管结构为层状结构时,厚度优选为0.5纳米~1毫米。所述碳纳米管结构的厚度太大,则比表面积减小,热容增大;所述碳纳米管结构的厚度太小,则机械强度较差,耐用性不够好。当该碳纳米管结构厚度比较小时,例如小于10微米,该碳纳米管结构有很好的光透过率。该碳纳米管结构中的碳纳米管包括单壁碳纳米管、双壁碳纳米管及多壁碳纳米管中的一种或多种。所述单壁碳纳米管的直径为0.5纳米~50纳米,所述双壁碳纳米管的直径为1.0纳米~50纳米,所述多壁碳纳米管的直径为1.5纳米~50纳米。 When the carbon nanotube structure is a layered structure, the thickness is preferably 0.5 nanometers to 1 millimeter. If the thickness of the carbon nanotube structure is too large, the specific surface area will decrease and the heat capacity will increase; if the thickness of the carbon nanotube structure is too small, the mechanical strength will be poor and the durability will not be good enough. When the thickness of the carbon nanotube structure is relatively small, such as less than 10 microns, the carbon nanotube structure has good light transmittance. The carbon nanotubes in the carbon nanotube structure include one or more of single-wall carbon nanotubes, double-wall carbon nanotubes and multi-wall carbon nanotubes. The single-walled carbon nanotubes have a diameter of 0.5 nm to 50 nm, the double-walled carbon nanotubes have a diameter of 1.0 nm to 50 nm, and the multi-walled carbon nanotubes have a diameter of 1.5 nm to 50 nm. the
可以理解,所述碳纳米管结构的具体结构不限,优选地,该碳纳米管结构满足下述条件,即:具有较大的比表面积及较小的单位面积热容(小于 2×10-4焦耳每平方厘米开尔文,优选地,小于1×10-6焦耳每平方厘米开尔文)。 It can be understood that the specific structure of the carbon nanotube structure is not limited. Preferably, the carbon nanotube structure satisfies the following conditions: it has a relatively large specific surface area and a small heat capacity per unit area (less than 2×10 - 4 joules per square centimeter Kelvin, preferably less than 1 x 10 -6 joules per square centimeter Kelvin).
所述碳纳米管结构包括至少一碳纳米管膜、至少一碳纳米管线状结构或所述碳纳米管膜和碳纳米管线状结构组成的复合结构。 The carbon nanotube structure includes at least one carbon nanotube film, at least one carbon nanotube linear structure or a composite structure composed of the carbon nanotube film and the carbon nanotube linear structure. the
所述碳纳米管膜中的碳纳米管均匀分布,并过范德华力紧密结合。该碳纳米管膜中的碳纳米管为无序或有序排列。这里的无序指碳纳米管的排列方向无规则;有序指至少多数碳纳米管的排列方向具有一定规律,如基本沿一个固定方向择优取向或基本沿几个固定方向择优取向。具体地,当碳纳米管膜包括无序排列的碳纳米管时,碳纳米管相互缠绕或者各向同性排列;当碳纳米管膜包括有序排列的碳纳米管时,碳纳米管沿一个方向或者多个方向择优取向排列。 The carbon nanotubes in the carbon nanotube film are uniformly distributed and closely combined by van der Waals force. The carbon nanotubes in the carbon nanotube film are arranged in disorder or order. The disorder here means that the arrangement direction of carbon nanotubes is irregular; the order means that the arrangement direction of at least most carbon nanotubes has certain rules, such as the preferred orientation along one fixed direction or the preferred orientation along several fixed directions. Specifically, when the carbon nanotube film includes carbon nanotubes arranged in disorder, the carbon nanotubes are intertwined or arranged isotropically; Or multiple directions are preferentially aligned. the
优选地,所述碳纳米管膜为一从超顺排碳纳米管阵列中直接拉取获得的有序碳纳米管膜。该碳纳米管膜的厚度为0.5纳米~100微米,该碳纳米管膜长度不限,宽度为碳纳米管阵列的宽度。请参阅图4及图5,进一步地,所述碳纳米管结构中碳纳米管膜包括多个碳纳米管沿拉取方向首尾相连并择优取向排列且均匀分布。具体地,所述碳纳米管膜包括多个首尾相连且定向排列的碳纳米管片段143,每个碳纳米管片段143具有大致相等的长度,且碳纳米管片段143两端通过范德华力相互连接。该碳纳米管片段143包括多个长度基本相等且相互平行排列的碳纳米管145。当所述碳纳米管结构包括多层碳纳米管膜相互层叠设置时,相邻两层碳纳米管膜中的碳纳米管之间具有一交叉角度α,α大于等于0度且小于等于90度。所述单层碳纳米管膜的光透过率为67%~95%。所述碳纳米管膜的结构及其制备方法请参见范守善等人于2007年2月9日申请的,于2008年8月13日公开的中国专利申请第200710073265.4号。为节省篇幅,仅引用于此,但上述申请所有技术揭露也应视为本发明申请技术揭露的一部分。
Preferably, the carbon nanotube film is an ordered carbon nanotube film obtained by directly pulling from a super-aligned carbon nanotube array. The thickness of the carbon nanotube film is 0.5 nanometers to 100 microns, the length of the carbon nanotube film is not limited, and the width is the width of the carbon nanotube array. Please refer to FIG. 4 and FIG. 5 , further, the carbon nanotube film in the carbon nanotube structure includes a plurality of carbon nanotubes connected end to end along the pulling direction, arranged in a preferred orientation and evenly distributed. Specifically, the carbon nanotube film includes a plurality of
所述碳纳米管线状结构包括至少一碳纳米管线、多个碳纳米管线相互平行排列组成的束状结构或多个碳纳米管线相互扭转排列组成的绞线结构。该碳纳米管线为扭转的碳纳米管线或非扭转的碳纳米管线。所述碳纳米管结构可包括一碳纳米管线状结构或多个碳纳米管线状结构并排设置、相互交叉或相互编织形成的层状结构,从而使该碳纳米管结构具有较大的比表面积。 The carbon nanotube wire structure includes at least one carbon nanotube wire, a bundle structure formed by a plurality of carbon nanotube wires arranged in parallel with each other, or a stranded wire structure formed by a plurality of carbon nanotube wires arranged in a twisted manner with each other. The carbon nanotube wire is a twisted carbon nanotube wire or a non-twisted carbon nanotube wire. The carbon nanotube structure may include a carbon nanotube linear structure or a layered structure formed by a plurality of carbon nanotube linear structures arranged side by side, intersecting or interweaving, so that the carbon nanotube structure has a larger specific surface area. the
请参阅图6,该非扭转的碳纳米管线为将上述从超顺排碳纳米管阵列中 拉取获得的碳纳米管膜经过有机溶剂处理获得。具体地,将有机溶剂浸润所述碳纳米管膜的整个表面,在挥发性有机溶剂挥发时产生的表面张力的作用下,碳纳米管膜中的相互平行的多个碳纳米管通过范德华力紧密结合,从而使碳纳米管膜收缩为一非扭转的碳纳米管线。该有机溶剂为挥发性有机溶剂,如乙醇、甲醇、丙酮、二氯乙烷或氯仿。通过有机溶剂处理的非扭转的碳纳米管线与未经有机溶剂处理的碳纳米管膜相比,比表面积减小,粘性降低。该非扭转的碳纳米管线包括多个沿碳纳米管线长度方向排列并首尾相连的碳纳米管。具体地,该非扭转的碳纳米管线包括多个碳纳米管片段,该多个碳纳米管片段通过范德华力首尾相连,每一碳纳米管片段包括多个相互平行并通过范德华力紧密结合的碳纳米管。该碳纳米管片段具有任意的长度、厚度、均匀性及形状。该碳纳米管线长度不限,直径为0.5纳米-100微米。所述碳纳米管线及其制备方法请参见范守善等人于2005年12月16日申请的,于2007年6月20日公开的中国专利申请第200510120716.6号。为节省篇幅,仅引用于此,但上述申请所有技术揭露也应视为本发明申请技术揭露的一部分。 Please refer to FIG. 6 , the non-twisted carbon nanotube wire is obtained by treating the above-mentioned carbon nanotube film obtained from the super-aligned carbon nanotube array through organic solvent treatment. Specifically, the entire surface of the carbon nanotube film is infiltrated with an organic solvent, and under the action of the surface tension generated when the volatile organic solvent volatilizes, multiple carbon nanotubes in the carbon nanotube film that are parallel to each other are tightly bound together by van der Waals force. Combined, so that the carbon nanotube film shrinks into a non-twisted carbon nanotube wire. The organic solvent is a volatile organic solvent, such as ethanol, methanol, acetone, dichloroethane or chloroform. Compared with the carbon nanotube film without organic solvent treatment, the non-twisted carbon nanotube wire treated by organic solvent has a smaller specific surface area and lower viscosity. The non-twisted carbon nanotube wire includes a plurality of carbon nanotubes arranged along the length direction of the carbon nanotube wire and connected end to end. Specifically, the non-twisted carbon nanotube wire includes a plurality of carbon nanotube segments connected end-to-end by van der Waals force, and each carbon nanotube segment includes a plurality of carbon nanotube segments that are parallel to each other and closely combined by van der Waals force. nanotube. The carbon nanotube segment has any length, thickness, uniformity and shape. The length of the carbon nanotube wire is not limited, and the diameter is 0.5 nanometers to 100 microns. For the carbon nanotube wire and its preparation method, please refer to Chinese Patent Application No. 200510120716.6 filed by Fan Shoushan et al. on December 16, 2005 and published on June 20, 2007. To save space, it is only cited here, but all the technical disclosures of the above applications should also be regarded as a part of the technical disclosures of the present application. the
请参阅图7,该扭转的碳纳米管线为将上述从超顺排碳纳米管阵列中拉取获得的碳纳米管膜经过一机械力扭转获得。该扭转的碳纳米管线包括多个绕碳纳米管线轴向螺旋排列的碳纳米管。具体地,该扭转的碳纳米管线包括多个碳纳米管片段,该多个碳纳米管片段通过范德华力首尾相连,每一碳纳米管片段包括多个相互平行并通过范德华力紧密结合的碳纳米管。该碳纳米管片段具有任意的长度、厚度、均匀性及形状。该扭转的碳纳米管线长度不限,直径为0.5纳米-100微米。进一步地,可采用一挥发性有机溶剂处理该扭转的碳纳米管线。在挥发性有机溶剂挥发时产生的表面张力的作用下,处理后的扭转的碳纳米管线中相邻的碳纳米管通过范德华力紧密结合,使扭转的碳纳米管线的比表面积减小,密度及强度增大。 Please refer to FIG. 7 , the twisted carbon nanotube wire is obtained by mechanically twisting the above-mentioned carbon nanotube film drawn from the superparallel carbon nanotube array. The twisted carbon nanotube wire includes a plurality of carbon nanotubes arranged helically around the carbon nanotube wire axially. Specifically, the twisted carbon nanotube wire includes a plurality of carbon nanotube segments, the plurality of carbon nanotube segments are connected end to end by van der Waals force, and each carbon nanotube segment includes a plurality of carbon nanotubes that are parallel to each other and closely combined by van der Waals force. Tube. The carbon nanotube segment has any length, thickness, uniformity and shape. The length of the twisted carbon nanotubes is not limited, and the diameter is 0.5 nanometers to 100 microns. Further, the twisted carbon nanotubes can be treated with a volatile organic solvent. Under the action of the surface tension generated when the volatile organic solvent volatilizes, the adjacent carbon nanotubes in the treated twisted carbon nanotubes are closely combined by van der Waals force, so that the specific surface area of the twisted carbon nanotubes is reduced, and the density and Increased strength. the
所述碳纳米管结构可包括碳纳米管线状结构与碳纳米管膜组成的复合结构,该至少一碳纳米管线状结构设置于一碳纳米管膜表面或两个重叠的碳纳米管膜之间,从而使该碳纳米管结构具有较高的强度。 The carbon nanotube structure may include a composite structure composed of a carbon nanotube linear structure and a carbon nanotube film, and the at least one carbon nanotube linear structure is arranged on the surface of a carbon nanotube film or between two overlapping carbon nanotube films , so that the carbon nanotube structure has a higher strength. the
所述电极124间隔设置并与所述碳纳米管结构电连接。该放大电压信号通过电极124施加于碳纳米管结构,从而使碳纳米管结构内部产生对应于该 放大电压信号的交变电流,从而使该碳纳米管结构发出热量,并加热周围介质,进而发出人耳可以感知的声音。所述电极124由导电材料形成,其具体形状结构不限。具体地,所述电极124可选择为层状、棒状、块状或其它形状。所述电极124的材料可选择为金属、导电聚合物、导电胶、金属性碳纳米管、铟锡氧化物(ITO)等。本发明实施例中,所述至少两个电极124为间隔设置于所述碳纳米管结构表面的金属棒。
The
由于碳纳米管具有极大的比表面积,在范德华力的作用下,该碳纳米管结构本身有很好的粘附性,故所述电极124与所述碳纳米管结构之间可以直接接触并粘附固定,并形成很好的电接触,另外,可以采用导电粘结层将电极124粘附固定于碳纳米管结构表面。
Since carbon nanotubes have a large specific surface area, under the action of van der Waals force, the carbon nanotube structure itself has good adhesion, so the
当碳纳米管结构中的碳纳米管为沿一定方向有序排列时,优选地,所述碳纳米管的排列方向沿一个电极124至另一个电极124的方向延伸,两电极124之间应具有一基本相等的间距,从而使两电极124之间的碳纳米管能够具有一基本相等的电阻值。本实施例中,所述碳纳米管沿基本垂直该棒状电极124长度方向排列。
When the carbon nanotubes in the carbon nanotube structure are arranged in an orderly manner along a certain direction, preferably, the arrangement direction of the carbon nanotubes extends from one
优选地,所述电极124的长度大于等于碳纳米管结构的宽度,从而可以使整个碳纳米管结构均得到利用。所述电极124使放大后的电压信号均匀地导入碳纳米管结构中,碳纳米管结构中的碳纳米管将电能转换成热能,加热周围介质,改变周围介质的密度发出声音。该介质可以是气体或液体。
Preferably, the length of the
可以理解,所述电极124为可选择的结构。所述功率放大器14的输出端114可直接通过导线或电极引线等方式与所述碳纳米管结构电连接。另外,任何可实现所述功率放大器14的输出端114与所述碳纳米管结构之间电连接,使碳纳米管结构中输入一放大电压信号的连接方式都在本发明的保护范围之内。
It can be understood that the
可以理解,所述热致发声元件122不限于上述碳纳米管结构。任何能够通过“电-热-声”之转换热致发声的结构均在本发明的保护范围内。具体地,该热致发声元件122应具有较小的单位面积热容(如小于2×10-4焦耳每平方厘米开尔文),且为一具有较大比表面积及较小厚度的导电结构,从而使该热致发声元件122可以将输入的电能转换为热能,并与周围介质充分快速的进行热交换。优选地,该热致发声元件122应为自支撑结构。该自支撑结构 的热致发声元件122可充分的与周围介质接触并进行热交换。
It can be understood that the
进一步地,当该功率放大器14不能将其输出的放大电压信号附加偏置电压时,为使该扬声器12能够更好的发出正常频率的声音,该扬声器系统10可包括一降频电路16,该降频电路16将该音频信号源20发出的音频电信号的频率降低,例如降低一倍,并输入至该功率放大器14。可以理解的是,该降频电路16的功能也可以集成于功率放大器14之电路之内。
Furthermore, when the
所述扬声器系统10可进一步包括多个扬声器12及一分频器,该分频器与功率放大器14的输出端114或输入端112电连接。当该分频器与功率放大器14的输出端114连接时,将放大电压信号分成不同频段的多个信号,并分别传输至多个扬声器12。当该分频器与功率放大器14的输入端112连接时,该分频器先将音频电信号分成不同频段的多个信号,再通过多个功率放大器14放大。
The
由于该驱动热致发声元件122发声的原理为“电-热-声”的转换,该音频电信号无论在能量变化的正半周期或负半周期均能等效的加热该热致发声元件122,故该热致发声元件122产生热量的频率是音频电信号频率的一倍,即该热致发声元件122的发声频率为倍频。因此,为正确的还原该音频电信号的频率,使该热致发声元件122发出正常频率的声音,需要将该音频电信号降频或将该放大电压信号偏置,即该扬声器系统10需包括一降频电路16或一能够输出偏置的放大电压信号的功率放大器14。如果该音频电信号本身已经过降频处理,如在电脑中利用软件将数字信号降频,该音频电信号可直接通过一普通的功率放大器14放大,并驱动该热致发声元件122发声。
Since the principle of driving the
上述扬声器系统10在使用时,所述放大电压信号传导至热致发声元件122内部。由于热致发声元件122具有一定的电阻,当电流流过该热致发声元件122时,该热致发声元件122将电能转换为热能。由于热致发声元件122具有较小的单位面积热容(小于2×10-4焦耳每平方厘米开尔文,优选地,小于1×10-6焦耳每平方厘米开尔文),在输入信号后,根据信号强度(如电压强度)的变化,该热致发声元件122在音频电信号的作用下与周围介质进行快速的热交换,按照音频电信号的频率加热周围的介质、迅速升降温、产生周期性的温度变化,并和周围介质进行快速热交换,围介质由于热致发声元件122的加热,其密度按照音频电信号的频率改变而改变,使周围介质迅速膨胀和收缩,从而 发出声音。该热致发声元件122所发出的声音的频率范围较宽(1Hz~100kHz)、发声效果较好。如图8所示,本发明实施例采用一层A4纸大小的碳纳米管膜作为热致发声元件122的扬声器系统10,在输入电压为50伏条件下,将一麦克风设置于正对该碳纳米管结构,并间隔5厘米处,测得该碳纳米管膜的发声强度可达105分贝声压级(dBSPL),发声频率范围为100赫兹至10万赫兹(即100Hz~100kHz)。
When the
本发明实施例提供的扬声器系统10具有以下优点:其一,所述扬声器系统将热致发声元件作为一换能装置,将电能为声能,该扬声器系统简单,且当该热致发声元件为一碳纳米管结构时,具有重量轻、体积小、机械强度高及耐高温等优异性能,故该扬声器系统可应用于较宽领域。其二,所述扬声器系统无需磁铁等其它复杂结构,故该扬声器系统的结构较为简单,有利于降低该扬声器系统的成本。其三,该扬声器系统利用外部输入的音频电信号造成该热致发声元件温度变化,从而使其周围介质迅速膨胀和收缩,进而发出声波,发声原理为“电-热-声”的转换,故该扬声器系统可在无磁的条件下工作,具有广泛的应用范围。其四,由于热致发声元件具有较小的单位面积热容和大的比表面积,在输入信号后,根据信号强度(如电流强度)的变化,均匀地加热周围的气体介质、迅速升降温、产生周期性的温度变化,并和周围气体介质进行快速热交换,使周围气体介质迅速膨胀和收缩,发出人耳可感知的声音,且所发出的声音的频率范围较宽(1Hz~100kHz)、发声效果较好。其五,由于碳纳米管结构具有较好的机械强度和韧性,耐用性较好,从而有利于制备由碳纳米管结构组成的各种形状、尺寸的扬声器系统,进而方便地应用于各种领域。其六,由于碳纳米管结构具有较好的透明度,因此可以作为一透明扬声器应用于扬声器系统中。
The
另外,本领域技术人员还可在本发明精神内做其他变化,当然,这些依据本发明精神所做的变化,都应包含在本发明所要求保护的范围之内。 In addition, those skilled in the art can also make other changes within the spirit of the present invention. Of course, these changes made according to the spirit of the present invention should be included within the scope of protection claimed by the present invention. the
Claims (9)
Priority Applications (23)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2009101058085A CN101820571B (en) | 2009-02-27 | 2009-02-27 | Speaker system |
US12/387,089 US8068624B2 (en) | 2008-04-28 | 2009-04-28 | Thermoacoustic device |
US12/387,100 US8199938B2 (en) | 2008-04-28 | 2009-04-28 | Method of causing the thermoacoustic effect |
US12/455,606 US8249279B2 (en) | 2008-04-28 | 2009-06-04 | Thermoacoustic device |
US12/459,053 US8073165B2 (en) | 2008-04-28 | 2009-06-25 | Thermoacoustic device |
US12/459,052 US8073164B2 (en) | 2008-04-28 | 2009-06-25 | Thermoacoustic device |
US12/459,054 US8068625B2 (en) | 2008-04-28 | 2009-06-25 | Thermoacoustic device |
US12/459,039 US8019098B2 (en) | 2008-04-28 | 2009-06-25 | Thermoacoustic device |
US12/459,041 US8019099B2 (en) | 2008-04-28 | 2009-06-25 | Thermoacoustic device |
US12/459,038 US8019097B2 (en) | 2008-04-28 | 2009-06-25 | Thermoacoustic device |
US12/459,051 US8019100B2 (en) | 2008-04-28 | 2009-06-25 | Thermoacoustic device |
US12/459,040 US8073163B2 (en) | 2008-04-28 | 2009-06-25 | Thermoacoustic device |
US12/459,046 US8050430B2 (en) | 2008-04-28 | 2009-06-25 | Thermoacoustic device |
US12/459,564 US8068626B2 (en) | 2008-04-28 | 2009-07-02 | Thermoacoustic device |
US12/459,565 US8259966B2 (en) | 2008-04-28 | 2009-07-02 | Acoustic system |
US12/459,543 US8050431B2 (en) | 2008-04-28 | 2009-07-02 | Thermoacoustic device |
US12/459,495 US8059841B2 (en) | 2008-04-28 | 2009-07-02 | Thermoacoustic device |
US12/589,462 US8259967B2 (en) | 2008-04-28 | 2009-10-22 | Thermoacoustic device |
US12/590,258 US8452031B2 (en) | 2008-04-28 | 2009-11-05 | Ultrasonic thermoacoustic device |
US12/590,291 US8259968B2 (en) | 2008-04-28 | 2009-11-05 | Thermoacoustic device |
US12/655,502 US8270639B2 (en) | 2008-04-28 | 2009-12-31 | Thermoacoustic device |
JP2010020346A JP2010206785A (en) | 2009-02-27 | 2010-02-01 | Thermoacoustic device |
JP2013033226A JP5685612B2 (en) | 2009-02-27 | 2013-02-22 | Thermoacoustic device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2009101058085A CN101820571B (en) | 2009-02-27 | 2009-02-27 | Speaker system |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101820571A CN101820571A (en) | 2010-09-01 |
CN101820571B true CN101820571B (en) | 2013-12-11 |
Family
ID=42655472
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2009101058085A Active CN101820571B (en) | 2008-04-28 | 2009-02-27 | Speaker system |
Country Status (2)
Country | Link |
---|---|
JP (2) | JP2010206785A (en) |
CN (1) | CN101820571B (en) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103841479B (en) * | 2012-11-20 | 2017-08-08 | 清华大学 | Earphone set |
CN103841506B (en) | 2012-11-20 | 2017-09-01 | 清华大学 | Preparation method of thermosounder array |
CN103841482B (en) * | 2012-11-20 | 2017-01-25 | 清华大学 | Earphone set |
CN103841507B (en) | 2012-11-20 | 2017-05-17 | 清华大学 | Preparation method for thermotropic sound-making device |
CN103905964B (en) * | 2012-12-29 | 2017-11-14 | 清华大学 | Thermo-acoustic device |
WO2015111603A1 (en) * | 2014-01-24 | 2015-07-30 | 国立大学法人東京大学 | Ultrasound generation element |
TWI640470B (en) | 2016-06-10 | 2018-11-11 | 美國琳得科股份有限公司 | Nanofiber sheet |
US10590539B2 (en) | 2017-02-24 | 2020-03-17 | Lintec Of America, Inc. | Nanofiber thermal interface material |
CN112055295B (en) * | 2020-08-24 | 2021-11-09 | 清华大学 | Method and system for driving thermoacoustic device by using digitized real-time audio signal |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1483667A (en) * | 2002-09-16 | 2004-03-24 | �廪��ѧ | A carbon nanotube rope and its manufacturing method |
CN1821048A (en) * | 2005-02-18 | 2006-08-23 | 中国科学院理化技术研究所 | Micro/nano thermoacoustic vibration exciter based on thermoacoustic conversion |
Family Cites Families (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61262305A (en) * | 1985-05-16 | 1986-11-20 | Pioneer Electronic Corp | Amplifier having noise rejection circuit |
JPH03140100A (en) * | 1989-10-26 | 1991-06-14 | Fuji Xerox Co Ltd | Electroacoustic transducing method and apparatus therefor |
JPH03175799A (en) * | 1989-12-04 | 1991-07-30 | Murata Mfg Co Ltd | Support jig for piezoelectric speaker |
JPH07138838A (en) * | 1993-11-17 | 1995-05-30 | Nec Corp | Woven fabric and sheet produced by using carbon nano-tube |
GB2314474B (en) * | 1996-06-21 | 2001-03-07 | Univ Bristol | Low power audio device |
AUPP976499A0 (en) * | 1999-04-16 | 1999-05-06 | Commonwealth Scientific And Industrial Research Organisation | Multilayer carbon nanotube films |
JP2002186097A (en) * | 2000-12-15 | 2002-06-28 | Pioneer Electronic Corp | Speaker |
JP2003319490A (en) * | 2002-04-19 | 2003-11-07 | Sony Corp | Diaphragm and manufacturing method thereof, and speaker |
JP4269867B2 (en) * | 2002-09-30 | 2009-05-27 | パナソニック電工株式会社 | lighting equipment |
JP2006147801A (en) * | 2004-11-18 | 2006-06-08 | Seiko Precision Inc | Heat dissipating sheet, interface, electronic parts, and manufacturing method of heat dissipating sheet |
JP4931389B2 (en) * | 2005-09-12 | 2012-05-16 | 株式会社山武 | Pressure wave generator and driving method of pressure wave generator |
JP5221864B2 (en) * | 2005-10-26 | 2013-06-26 | パナソニック株式会社 | Pressure wave generator and manufacturing method thereof |
JP4687446B2 (en) * | 2005-12-22 | 2011-05-25 | パナソニック電工株式会社 | Data transmission device |
JP4817296B2 (en) * | 2006-01-06 | 2011-11-16 | 独立行政法人産業技術総合研究所 | Aligned carbon nanotube bulk aggregate and method for producing the same |
KR100749886B1 (en) * | 2006-02-03 | 2007-08-21 | (주) 나노텍 | Heating element using carbon nanotube |
JP2007290908A (en) * | 2006-04-25 | 2007-11-08 | National Institute For Materials Science | LONG FIBER FORMED FROM SINGLE NANOBE, METHOD FOR MANUFACTURING THE SAME, AND PRODUCTION DEVICE |
CN101497436B (en) * | 2008-02-01 | 2015-06-03 | 清华大学 | Carbon nano-tube thin-film structure and preparation method thereof |
CN101591015B (en) * | 2008-05-28 | 2013-02-13 | 清华大学 | Preparation method of banded carbon nano tube film |
-
2009
- 2009-02-27 CN CN2009101058085A patent/CN101820571B/en active Active
-
2010
- 2010-02-01 JP JP2010020346A patent/JP2010206785A/en active Pending
-
2013
- 2013-02-22 JP JP2013033226A patent/JP5685612B2/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1483667A (en) * | 2002-09-16 | 2004-03-24 | �廪��ѧ | A carbon nanotube rope and its manufacturing method |
CN1821048A (en) * | 2005-02-18 | 2006-08-23 | 中国科学院理化技术研究所 | Micro/nano thermoacoustic vibration exciter based on thermoacoustic conversion |
Non-Patent Citations (1)
Title |
---|
A.H.塞德曼等.功率放大器.《器件、分立和集成电路》.人民邮电出版社,1983,201-202. * |
Also Published As
Publication number | Publication date |
---|---|
JP2013128323A (en) | 2013-06-27 |
JP2010206785A (en) | 2010-09-16 |
CN101820571A (en) | 2010-09-01 |
JP5685612B2 (en) | 2015-03-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101820571B (en) | Speaker system | |
CN101715160B (en) | Flexible sound producing device and sound producing flag | |
CN106131761B (en) | Thermoacoustic device | |
CN101656907A (en) | Sound box | |
JP5069345B2 (en) | Thermoacoustic device | |
CN101600140B (en) | Sound producing device | |
CN101715155A (en) | Earphone | |
TWI500331B (en) | Thermal sounding device | |
JP5270646B2 (en) | Thermoacoustic device | |
JP5107965B2 (en) | Thermoacoustic device | |
JP5356992B2 (en) | Thermoacoustic device | |
JP5107969B2 (en) | Thermoacoustic device | |
JP5107970B2 (en) | Thermoacoustic device | |
JP5270466B2 (en) | Thermoacoustic device | |
JP5107968B2 (en) | Thermoacoustic device | |
TWI397324B (en) | Loudspeaker system | |
TWI403180B (en) | Speaker | |
TWI351681B (en) | Acoustic device | |
TWI353580B (en) | Acoustic device | |
TWI353581B (en) | Acoustic device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |