CN101818640A - Fully distributed device and method for monitoring underground working temperature of oil-water well based on Raman scattered light time-domain reflectometer - Google Patents
Fully distributed device and method for monitoring underground working temperature of oil-water well based on Raman scattered light time-domain reflectometer Download PDFInfo
- Publication number
- CN101818640A CN101818640A CN201010103586A CN201010103586A CN101818640A CN 101818640 A CN101818640 A CN 101818640A CN 201010103586 A CN201010103586 A CN 201010103586A CN 201010103586 A CN201010103586 A CN 201010103586A CN 101818640 A CN101818640 A CN 101818640A
- Authority
- CN
- China
- Prior art keywords
- raman
- stokes
- oil
- outputs
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Measuring Temperature Or Quantity Of Heat (AREA)
Abstract
一种基于拉曼散射光时域反射计的油水井井下工况温度的全分布式监测装置及监测方法,它涉及激光监测技术领域。它解决了现有油水井井下温度监测只能进行单点温度监测和无法实时在线监测的问题,本发明的装置包括拉曼散射光时域反射计、放大电路、数据采集器和计算机处理系统,本发明的方法为:激光器输出光信号并通过波分复用器耦合到布设在油管上的拉曼光纤中,同时返回反向散射光经波分复用器后输出信号至光电探测器,光电探测器探测反向散射光功率并输出至放大电路进行放大后输出至数据采集器和计算机处理系统,获得油管下油水井的距离和相应绝对温度值,并显示在计算机屏幕上,实现分布式、实时在线监测温度。本发明适用于油水井井下工况温度的监测。
The invention discloses a fully distributed monitoring device and monitoring method for the downhole operating temperature of oil and water wells based on a Raman scattered light time domain reflectometer, and relates to the technical field of laser monitoring. It solves the problem that the existing downhole temperature monitoring of oil and water wells can only be monitored at a single point and cannot be monitored on-line in real time. The device of the present invention includes a Raman scattered light time domain reflectometer, an amplifier circuit, a data collector and a computer processing system. The method of the present invention is as follows: the laser outputs an optical signal and couples it to the Raman optical fiber arranged on the oil pipe through a wavelength division multiplexer, and at the same time returns the backscattered light through the wavelength division multiplexer and then outputs the signal to the photodetector, the photoelectric The detector detects the backscattered light power and outputs it to the amplifier circuit for amplification, and then outputs it to the data collector and computer processing system to obtain the distance of the oil and water well under the tubing and the corresponding absolute temperature value, and display it on the computer screen to realize distributed, Real-time online monitoring of temperature. The invention is suitable for monitoring the temperature of the downhole working condition of the oil-water well.
Description
技术领域technical field
本发明涉及激光监测技术领域,具体涉及一种基于拉曼散射光时域反射计的油水井井下工况温度的全分布式监测装置及监测方法。The invention relates to the technical field of laser monitoring, in particular to a fully distributed monitoring device and monitoring method for the downhole operating temperature of an oil-water well based on a Raman scattered light time-domain reflectometer.
背景技术Background technique
目前,油田井下温度监测技术长期以来采用单点的温度传感器,在油水井停产的情况下,通过将传感器伸入油套环空内检测某一层段温度,首先这种方法只能检测单点温度,即温度传感器伸入到某一位置,才可得到这一位置的温度;其次检测时须停产,不但影响产量,且检测温度数据并不能如实反映真实生产时的温度信息;再次单点温度监测的传统方法检测温度不能做到实时永久,只能检测某一时刻的温度,无法跟踪油水井井下温度变化的趋势,同时这种方法无法针对洗井等特殊工况温度进行监测At present, the downhole temperature monitoring technology in oilfields has long used single-point temperature sensors. When the oil and water wells are shut down, the sensor is inserted into the oil casing annulus to detect the temperature of a certain layer. First, this method can only detect a single point. Temperature, that is, the temperature sensor can only be obtained when the temperature sensor is inserted into a certain position; secondly, the production must be stopped during the detection, which not only affects the output, but also the detected temperature data cannot truthfully reflect the temperature information during real production; once again, the single-point temperature The traditional method of monitoring cannot detect the temperature in real time and permanently. It can only detect the temperature at a certain moment, and cannot track the trend of downhole temperature changes in oil and water wells. At the same time, this method cannot monitor the temperature of special working conditions such as well washing.
发明内容Contents of the invention
为了解决现有油水井井下温度监测只能进行单点温度监测和无法实时在线监测的问题,本发明提供了一种基于拉曼散射光时域反射计的油水井井下工况温度的全分布式监测装置及监测方法。In order to solve the problem that the existing downhole temperature monitoring of oil and water wells can only be monitored at a single point and cannot be monitored on-line in real time, the present invention provides a fully distributed temperature monitoring method based on Raman scattered light time domain reflectometer Monitoring device and monitoring method.
本发明的一种基于拉曼散射光时域反射计的油水井井下工况温度的全分布式监测装置,它包括拉曼散射光时域反射计、放大电路、数据采集器和计算机处理系统,所述拉曼散射光时域反射计包括激光器、波分复用器、拉曼光纤、第一探测器和第二探测器,激光器输出光束至波分复用器信号输入端,所述波分复用器的输出/输入端连接拉曼光纤的一端,所述波分复用器的斯托克斯光信号输出端输出斯托克斯光信号至第一探测器的光信号接收端,所述波分复用器的反斯托克斯光信号输出端输出反斯托克斯光信号至第二探测器的光信号接收端,第一探测器的数据输出端连接放大电路的一个信号输入端,第二探测器的数据输出端连接放大电路的另一个信号输入端,放大电路的信号输出端连接数据采集器的数据输入端,所述数据采集器的数据输出端连接计算机处理系统的数据输入端。A fully distributed monitoring device of the downhole operating temperature of oil and water wells based on a Raman scattered light time domain reflectometer of the present invention, which includes a Raman scattered light time domain reflectometer, an amplifier circuit, a data collector and a computer processing system, The Raman scattered light time domain reflectometer includes a laser, a wavelength division multiplexer, a Raman optical fiber, a first detector and a second detector, the output beam of the laser is sent to the signal input end of the wavelength division multiplexer, and the wavelength division multiplexer The output/input end of the multiplexer is connected to one end of the Raman fiber, and the Stokes optical signal output end of the wavelength division multiplexer outputs the Stokes optical signal to the optical signal receiving end of the first detector, so The anti-Stokes optical signal output end of the wavelength division multiplexer outputs the anti-Stokes optical signal to the optical signal receiving end of the second detector, and the data output end of the first detector is connected to a signal input of the amplifier circuit end, the data output end of the second detector is connected to the other signal input end of the amplifying circuit, the signal output end of the amplifying circuit is connected to the data input end of the data collector, and the data output end of the data collector is connected to the data of the computer processing system input.
基于上述装置的一种基于拉曼散射光时域反射计的油水井井下工况温度的全分布式监测方法,其特征在于它的监测过程为:A fully distributed monitoring method based on the Raman scattered optical time domain reflectometer based on the above-mentioned device for downhole working temperature of oil and water wells, characterized in that its monitoring process is:
步骤一:拉曼散射光时域反射计开始工作,输出反向散射光功率数据,具体过程为:激光器输出的光信号经波分复用器后被耦合到拉曼光纤中,所述拉曼光纤紧贴油管布设,且所述拉曼光纤的另一端布设在油管底端的外表面,被耦合到拉曼光纤中的光信号在拉曼光纤中传输时产生反向散射光并输入至波分复用器,波分复用器同时输出斯托克斯光信号和反斯托克斯光信号,第一探测器探测斯托克斯光功率并输出斯托克斯光功率数据至放大电路的一个信号输入端,第二探测器探测反斯托克斯光功率并输出反斯托克斯光功率数据至放大电路的另一个信号输入端;Step 1: The Raman scattered light time domain reflectometer starts to work, and outputs backscattered light power data. The specific process is: the optical signal output by the laser is coupled into the Raman fiber after passing through the wavelength division multiplexer, and the Raman The optical fiber is laid close to the oil pipe, and the other end of the Raman optical fiber is arranged on the outer surface of the bottom end of the oil pipe. The optical signal coupled into the Raman optical fiber generates backscattered light when it is transmitted in the Raman optical fiber and is input to the WDM The multiplexer, the wavelength division multiplexer simultaneously outputs the Stokes optical signal and the anti-Stokes optical signal, the first detector detects the Stokes optical power and outputs the Stokes optical power data to the amplifier circuit One signal input end, the second detector detects the anti-Stokes optical power and outputs the anti-Stokes optical power data to the other signal input end of the amplifying circuit;
步骤二:放大电路接收反向散射光功率数据并放大输出至数据采集器,所述数据采集器采集数据并输出至计算机处理系统,所述计算机处理系统依据反向散射光的传输速度和反向散射光的光功率与探测位置处的绝对温度的关系公式一进行处理,获得油管井下距离和相应绝对温度值,同时计算机处理系统将温度随距离的变化曲线显示在计算机屏幕上,完成对油水井下温度的实时在线监测,Step 2: The amplifying circuit receives the backscattered light power data and amplifies and outputs it to the data collector, and the data collector collects the data and outputs it to the computer processing system, and the computer processing system is based on the transmission speed of the backscattered light and the The
公式一:T=-hcΔγ/k{ln[Pa(T)/Ps(T)]-ln(λs/λa)},其中,c为光在真空中的传播速度,Δγ为偏移波数,k为波尔兹曼常数,Pa(T)为反斯托克斯光功率,Ps(T)为斯托克斯光功率,λs为斯托克斯光波长,λa为反斯托克斯光波长。Formula 1: T=-hcΔγ/k{ln[P a (T)/P s (T)]-ln(λ s /λ a )}, where c is the propagation speed of light in vacuum, Δγ is the partial shifted wave number, k is the Boltzmann constant, P a (T) is the power of anti-Stokes light, P s (T) is the power of Stokes light, λ s is the wavelength of Stokes light, λ a is the wavelength of anti-Stokes light.
本发明的有益效果为:本发明结构简单,拉曼光纤实现了全分布式连续传感温度,进而使本发明实现了全分布式温度监测,解决了传统的单点温度监测的问题,大大降低了成本,另外本发明测试精度较高,其测试精度可以达到1℃,空间分辨率能达到0.5m,量程可达4公里,并根据用户需求通过改变光纤封装方式和光纤在测量深度方向的结构尺寸改变测试精度和监测量程;本发明实现了油水井下工况温度的实时在线监测。The beneficial effects of the present invention are: the structure of the present invention is simple, the Raman optical fiber realizes the fully distributed continuous temperature sensing, and further enables the present invention to realize the fully distributed temperature monitoring, which solves the problem of traditional single-point temperature monitoring and greatly reduces the In addition, the test accuracy of the present invention is high, the test accuracy can reach 1°C, the spatial resolution can reach 0.5m, and the range can reach 4 kilometers. The size changes the test accuracy and monitoring range; the invention realizes the real-time online monitoring of the oil-water downhole working condition temperature.
附图说明Description of drawings
图1是本发明的一种基于拉曼散射光时域反射计的油水井井下工况温度的全分布式监测装置的结构示意图;图2是本发明的拉曼散射光纤1-3封装后的横截面的结构示意图,其中,不锈钢无缝管a的直径为1.5mm,双层钢丝b的内层钢丝直径为1.1mm,外层钢丝直径为1.2mm,图3是本发明的拉曼光纤1-3布设于油管H外表面示意图。Fig. 1 is a kind of structure schematic diagram of the fully distributed monitoring device of oil-water well downhole operating condition temperature based on Raman scattered optical time domain reflectometer of the present invention; Fig. 2 is the Raman scattered optical fiber 1-3 of the present invention after encapsulation The structural schematic diagram of the cross section, wherein the diameter of the stainless steel seamless pipe a is 1.5mm, the diameter of the inner steel wire of the double-layer steel wire b is 1.1mm, and the diameter of the outer steel wire is 1.2mm. Fig. 3 is the Raman
具体实施方式Detailed ways
具体实施方式一:根据说明书附图1具体说明本实施方式,本实施方式所述的一种基于拉曼散射光时域反射计的油水井井下工况温度的全分布式监测装置,它包括拉曼散射光时域反射计1、放大电路2、数据采集器3和计算机处理系统4,所述拉曼散射光时域反射计1包括激光器1-1、波分复用器1-2、拉曼光纤1-3、第一探测器1-4和第二探测器1-5,激光器1-1输出光束至波分复用器1-2信号输入端,所述波分复用器1-2的输出/输入端连接拉曼光纤1-3的一端,所述波分复用器1-2的斯托克斯光信号输出端输出斯托克斯光信号至第一探测器1-4的光信号接收端,所述波分复用器1-2的反斯托克斯光信号输出端输出反斯托克斯光信号至第二探测器1-5的光信号接收端,第一探测器1-4的数据输出端连接放大电路2的一个信号输入端,第二探测器1-5的数据输出端连接放大电路2的另一个信号输入端,放大电路2的信号输出端连接数据采集器3的数据输入端,所述数据采集器3的数据输出端连接计算机处理系统4的数据输入端,拉曼光纤1-3用于将输入光信号的反向散射光返回波分复用器1-2,所述波分复用器1-2用于将激光器发出信号输入至拉曼光纤1-3,还用于接收拉曼光纤1-3输出的反向散射光并将反向散射光中的斯托克斯光束和反斯托克斯光束分别输出,所述计算机处理系统4用于根据反向散射光的传输速度和强度计算油管H下油水井的距离和相应绝对温度值,还用于将所述距离和相应绝对温度值显示在计算机处理系统4的屏幕上。Specific embodiment 1: According to the accompanying
具体实施方式二:根据说明书附图1、2和3具体说明本实施方式,本实施方式是基于具体实施方式一所述装置的一种基于拉曼散射光时域反射计的油水井井下工况温度的全分布式监测方法,它的监测过程为:Specific embodiment 2: According to the accompanying
步骤一:拉曼散射光时域反射计1开始工作,输出反向散射光功率数据,具体过程为:激光器1-1输出的光信号经波分复用器1-2后被耦合到拉曼光纤1-3中,所述拉曼光纤1-3紧贴油管H布设,且所述拉曼光纤1-3的另一端布设在油管H底端的外表面,被耦合到拉曼光纤1-3中的光信号在拉曼光纤1-3中传输时产生反向散射光并输入至波分复用器1-2,波分复用器1-2同时输出斯托克斯光信号和反斯托克斯光信号,第一探测器1-4探测斯托克斯光功率并输出斯托克斯光功率数据至放大电路2的一个信号输入端,第二探测器1-5探测反斯托克斯光功率并输出反斯托克斯光功率数据至放大电路2的另一个信号输入端;Step 1: The Raman scattered light
步骤二:放大电路2接收反向散射光功率数据并放大输出至数据采集器3,所述数据采集器3采集数据并输出至计算机处理系统4,所述计算机处理系统依据反向散射光的传输速度和反向散射光的光功率与探测位置处的绝对温度的关系公式一进行处理,获得油管H井下距离h和相应绝对温度值T,同时计算机处理系统4将温度随距离的变化曲线显示在计算机屏幕上,完成对油水井下温度的实时在线监测,Step 2: the amplifying
公式一:T=-hcΔγ/k{ln[Pa(T)/Ps(T)]-ln(λs/λa)},其中,c为光在真空中的传播速度,Δγ为偏移波数,k为波尔兹曼常数,Pa(T)为反斯托克斯光功率,Ps(T)为斯托克斯光功率,λs为斯托克斯光波长,λa为反斯托克斯光波长。Formula 1: T=-hcΔγ/k{ln[P a (T)/P s (T)]-ln(λ s /λ a )}, where c is the propagation speed of light in vacuum, Δγ is the partial shifted wave number, k is the Boltzmann constant, P a (T) is the power of anti-Stokes light, P s (T) is the power of Stokes light, λ s is the wavelength of Stokes light, λ a is the wavelength of anti-Stokes light.
本实施方式排除了油管H的油套环空中随深度变化的压力的影响,而能够直接测出油套环空内的温度。This embodiment eliminates the influence of the pressure in the oil jacket annulus of the tubing H that changes with depth, and can directly measure the temperature in the oil jacket annulus.
本实施方式利用了拉曼散射原理,光电探测器(第一探测器1-4和第二探测器1-5)探测自发的反向拉曼散射光功率来实现信号采集。光探测器探测到的自发的反向拉曼散射光功率公式为公式(1),即:This embodiment utilizes the principle of Raman scattering, and the photodetectors (the first detectors 1-4 and the second detectors 1-5) detect the spontaneous back Raman scattering optical power to realize signal acquisition. The spontaneous back Raman scattered light power formula detected by the photodetector is formula (1), namely:
斯托克斯拉曼散射光功率公式(2):Stokes Raman scattered optical power formula (2):
反斯托克斯拉曼散射光功率公式(3):Anti-Stokes Raman scattering optical power formula (3):
式中,PRM、PS和PAS分别表示光探测器探测到的拉曼散射光、斯托克斯拉曼散射光和反斯托克斯拉曼散射光功率;E0表示入射泵浦光脉冲的能量;pR、ps、pAS分别表示拉曼散射光、斯托克斯拉曼散射光、反斯托克斯拉曼散射光在光纤中的后向散射因子;ΓR、ΓS、ΓAS分别表示拉曼散射光、斯托克斯拉曼散射光和反斯托克斯拉曼散射光在光纤中单位长度上的后向散射系数;α0、αR和αAS分别表示入射泵浦光、斯托克斯拉曼散射光和反斯托克斯拉曼散射光在光纤中单位长度上的损耗系数;L表示光纤的长度。In the formula, P RM , PS and P AS respectively represent the Raman scattered light, Stokes Raman scattered light and anti-Stokes Raman scattered light power detected by the photodetector; E 0 represents the incident pump The energy of the light pulse; p R , p s , and p AS respectively represent the backscattering factors of Raman scattered light, Stokes Raman scattered light, and anti-Stokes Raman scattered light in the fiber; Γ R , Γ S , Γ AS respectively represent the backscattering coefficients of Raman scattered light, Stokes Raman scattered light and anti-Stokes Raman scattered light per unit length in the fiber; α 0 , α R and α AS Respectively represent the loss coefficient of the incident pump light, Stokes Raman scattered light and anti-Stokes Raman scattered light per unit length in the fiber; L represents the length of the fiber.
拉曼散射光功率在入射泵浦光、光纤光路、探测位置一定的情况下,拉曼散射光功率只受该探测位置处的温度T影响。进一步分析发现,斯托克斯拉曼散射光虽然也受温度影响,但受影响幅度非常小,而反斯托克斯拉曼散射光则受温度影响的幅度非常大,因此在测量中,反斯托克斯拉曼散射光才是有效的信号光。在反斯克斯拉曼散射光在传感光纤中传播的过程中温度信号便对其进行调制。经计算可得其温度分布曲线,即Raman scattered light power is only affected by the temperature T at the detection position when the incident pump light, optical fiber optical path, and detection position are fixed. Further analysis found that although the Stokes Raman scattered light is also affected by temperature, but the affected range is very small, while the anti-Stokes Raman scattered light is greatly affected by the temperature, so in the measurement, the reflection The Stokes Raman scattered light is the effective signal light. The temperature signal modulates the anti-Skers Raman scattered light as it propagates in the sensing fiber. The temperature distribution curve can be obtained by calculation, namely
为了方便对公式的使用,对上式进行简化整理得到公式一:In order to facilitate the use of the formula, the above formula is simplified and sorted to get formula 1:
公式一:T=-hcΔγ/k{ln[Pa(T)/Ps(T)]-ln(λs/λa)}Formula 1: T=-hcΔγ/k{ln[P a (T)/P s (T)]-ln(λ s /λ a )}
由公式一可以看出探测反斯托克斯光与斯托斯光强度之比就可得到测量温度。同时由目前已经很成熟的光时域反射原理(OTDR)可以得知温度点的位置信息,实现空间定位。就可以求出相应距离处的温度,并将温度的变化曲线在屏幕上显示,实现对井下温度的实时在线监测。It can be seen from
根据拉曼散射光时域反射计(ROTDR)的光学传感理可知,其只对温度的变化敏感,因此十分适合井下复杂环境应变未知环境的温度测量。According to the optical sensing principle of the Raman optical time domain reflectometer (ROTDR), it is only sensitive to temperature changes, so it is very suitable for temperature measurement in complex underground environments with unknown strains.
本实施方式中,从图2可以看出拉曼光纤1-3封装在不锈钢无缝管a中保护后,并在拉曼光纤1-3与不锈钢无缝管a之间填充阻水油膏,以保证光纤在不锈钢管内的余长。此外用双层钢丝b绞合形成保护外层,使得该结构具有极高的抗拉,抗压强度;高强度绞合可以抵抗各种恶劣条件,保证传输;该结构采用密封设计,具有耐电化学腐蚀性和阻水阻油性。最后在外部还可以用PE护套封装起来。以上结构使得拉曼光纤1-3得到多重保护,从而使拉曼光纤1-3在井下复杂环境中具有优良的耐久性。In this embodiment, it can be seen from FIG. 2 that after the Raman optical fiber 1-3 is packaged in the stainless steel seamless tube a for protection, and water-blocking ointment is filled between the Raman optical fiber 1-3 and the stainless steel seamless tube a, To ensure the excess length of the optical fiber in the stainless steel tube. In addition, the protective outer layer is formed by double-layer steel wire b twisting, which makes the structure have extremely high tensile and compressive strength; high-strength twisting can resist various harsh conditions and ensure transmission; the structure adopts a sealed design and has electric resistance Chemically corrosive and water and oil repellent. Finally, it can also be encapsulated with a PE sheath on the outside. The above structure enables the Raman optical fiber 1-3 to be protected multiple times, so that the Raman optical fiber 1-3 has excellent durability in complex downhole environments.
本实施方式中,从图3可以看出需要注意的是拉曼光纤1-3必须紧贴着油管H进行布设,以适应套管M间的狭小空间,同时需要在在两根油管H接箍N处采用保护罩O对拉曼光纤1-3进行保护。为实现分布式测温,需要将拉曼光纤1-3的一端布设在最深处油管H的外表面。在每一根油管H下井前,地面需预留15m左右长度的冗余,以保证拉曼光纤1-3不受到过大的拉力。In this embodiment, it can be seen from Figure 3 that it should be noted that the Raman optical fibers 1-3 must be laid close to the oil pipe H to accommodate the narrow space between the casings M, and at the same time, the two oil pipes H need to be connected Protective cover O is used at N to protect the Raman optical fibers 1-3. In order to realize distributed temperature measurement, one end of the Raman optical fiber 1-3 needs to be laid on the outer surface of the deepest oil pipe H. Before each tubing H goes downhole, a redundancy of about 15m is required on the ground to ensure that the Raman optical fibers 1-3 are not subjected to excessive tension.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201010103586A CN101818640A (en) | 2010-02-01 | 2010-02-01 | Fully distributed device and method for monitoring underground working temperature of oil-water well based on Raman scattered light time-domain reflectometer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201010103586A CN101818640A (en) | 2010-02-01 | 2010-02-01 | Fully distributed device and method for monitoring underground working temperature of oil-water well based on Raman scattered light time-domain reflectometer |
Publications (1)
Publication Number | Publication Date |
---|---|
CN101818640A true CN101818640A (en) | 2010-09-01 |
Family
ID=42653893
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201010103586A Pending CN101818640A (en) | 2010-02-01 | 2010-02-01 | Fully distributed device and method for monitoring underground working temperature of oil-water well based on Raman scattered light time-domain reflectometer |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101818640A (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102072980A (en) * | 2010-11-29 | 2011-05-25 | 浙江工业大学 | Optical fiber temperature compensator of electronic current transformer |
WO2014204473A1 (en) * | 2013-06-20 | 2014-12-24 | Halliburton Energy Services Inc. | Device and method for temperature detection and measurement using integrated computational elements |
CN106121635A (en) * | 2016-08-29 | 2016-11-16 | 中国地质调查局水文地质环境地质调查中心 | Distributed temperature for hot dry rock deep-well tests system and method |
CN106197491A (en) * | 2016-06-24 | 2016-12-07 | 黑龙江科技大学 | Down-hole disturbing signal monitoring and positioner and method with temperature self-compensation |
CN106460502A (en) * | 2014-05-08 | 2017-02-22 | 光学感应器控股有限公司 | Fluid inflow |
CN109812264A (en) * | 2019-03-19 | 2019-05-28 | 辽宁石油化工大学 | A logging equipment for real-time detection downhole and its application |
CN110501304A (en) * | 2018-05-16 | 2019-11-26 | 淄博祥龙测控技术有限公司 | Underground spectrum Tube Bundle Monitoring System |
CN111757973A (en) * | 2018-01-08 | 2020-10-09 | 沙特阿拉伯石油公司 | Orientation sensitive fiber optic cable wellbore system |
CN118687654A (en) * | 2024-06-19 | 2024-09-24 | 中石化江苏石油工程设计有限公司 | Liquid level monitoring device and monitoring method |
-
2010
- 2010-02-01 CN CN201010103586A patent/CN101818640A/en active Pending
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102072980A (en) * | 2010-11-29 | 2011-05-25 | 浙江工业大学 | Optical fiber temperature compensator of electronic current transformer |
WO2014204473A1 (en) * | 2013-06-20 | 2014-12-24 | Halliburton Energy Services Inc. | Device and method for temperature detection and measurement using integrated computational elements |
GB2530429A (en) * | 2013-06-20 | 2016-03-23 | Halliburton Energy Services Inc | Device and method for temperature detection and measurement using integrated computational elements |
GB2530429B (en) * | 2013-06-20 | 2017-04-05 | Halliburton Energy Services Inc | Device and method for temperature detection and measurement |
US10422677B2 (en) | 2014-05-08 | 2019-09-24 | Optasense Holdings Limited | Fluid inflow |
CN106460502A (en) * | 2014-05-08 | 2017-02-22 | 光学感应器控股有限公司 | Fluid inflow |
CN106460502B (en) * | 2014-05-08 | 2019-12-17 | 光学感应器控股有限公司 | Inflow of fluid |
CN106197491A (en) * | 2016-06-24 | 2016-12-07 | 黑龙江科技大学 | Down-hole disturbing signal monitoring and positioner and method with temperature self-compensation |
CN106121635A (en) * | 2016-08-29 | 2016-11-16 | 中国地质调查局水文地质环境地质调查中心 | Distributed temperature for hot dry rock deep-well tests system and method |
CN106121635B (en) * | 2016-08-29 | 2019-10-08 | 中国地质调查局水文地质环境地质调查中心 | Distributed temperature test macro and method for hot dry rock deep-well |
CN111757973A (en) * | 2018-01-08 | 2020-10-09 | 沙特阿拉伯石油公司 | Orientation sensitive fiber optic cable wellbore system |
CN110501304A (en) * | 2018-05-16 | 2019-11-26 | 淄博祥龙测控技术有限公司 | Underground spectrum Tube Bundle Monitoring System |
CN109812264A (en) * | 2019-03-19 | 2019-05-28 | 辽宁石油化工大学 | A logging equipment for real-time detection downhole and its application |
CN118687654A (en) * | 2024-06-19 | 2024-09-24 | 中石化江苏石油工程设计有限公司 | Liquid level monitoring device and monitoring method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101818640A (en) | Fully distributed device and method for monitoring underground working temperature of oil-water well based on Raman scattered light time-domain reflectometer | |
CN101592475B (en) | Fully Distributed Optical Fiber Rayleigh and Raman Scattering Photon Strain and Temperature Sensors | |
CN109595470B (en) | Distributed pipeline detection method | |
EP2977738B1 (en) | Systems and methods for distributed pressure sensing | |
CN108415067B (en) | Earthquake wave measuring system based on microstructure optical fiber distributed acoustic wave sensing | |
CN201974251U (en) | Distributed optical fiber online temperature monitoring system for electric power cable | |
CN102080954B (en) | Ultra-long range 100km decentralized optical fiber Rayleigh and Raman scattering sensor | |
CN201885733U (en) | Ultra-long-range fully-distributed optical fiber Rayleigh and Raman scattering sensor fused with optical fiber Raman frequency shifter | |
CN1527028A (en) | A Fiber Bragg Grating Sensing Test System for Oil and Gas Pipeline Detection | |
CN111456716A (en) | Downhole strain distribution monitoring system and monitoring method based on distributed optical fiber sensing | |
CN202197280U (en) | System integrating optical time domain reflectometer and distributed optical fiber Raman temperature sensor | |
CN101280690A (en) | Pressure Sensor | |
CN102322811B (en) | Chaotic laser relevant full-distribution fiber Raman and Rayleigh photon sensor | |
CN104121946A (en) | Intelligent casing pipe monitor system based on optical fiber sensing technology | |
CN102589459A (en) | Fully-distributed optical fiber sensor in combination of optical fiber Raman frequency shifter and Raman amplifier | |
CN102080953A (en) | Ultra-long-range (ULR) full-distributed optical Rayleigh and Raman scattering sensor fused with optical Raman frequency shifter | |
CN102680138B (en) | Double-direction four-channel coupled distribution-type optical-fiber Raman temperature measuring system | |
CN201935670U (en) | Ultra long-range 100km full-distributed optical fiber Rayleigh and Raman scattering sensor | |
WO2013020286A1 (en) | Chaotic laser-related fully distributed optical fiber raman and rayleigh photon sensor | |
CN111536892A (en) | Underground pipeline monitoring system and monitoring method based on distributed optical fiber sensing | |
CN101894438A (en) | Positioning optical fiber vibration intrusion-detection system capable of measuring pressure | |
CN102901583A (en) | Distributed temperature measurement system based on optical fiber radiation attenuation temperature dependency | |
CN104316217A (en) | On-line monitoring system based on brillouin scattering self-temperature-measurement optical fiber composite guide wire | |
CN206974448U (en) | The joint Raman of both-end detection and the distribution type optical fiber sensing equipment of Brillouin scattering | |
CN104062363A (en) | Double fiber bragg grating sensor for rock bolt anchoring quality test |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20100901 |