CN101817091A - Method for preparing iron nano-magnetic particles by taking T4 phage as template - Google Patents
Method for preparing iron nano-magnetic particles by taking T4 phage as template Download PDFInfo
- Publication number
- CN101817091A CN101817091A CN 201010161190 CN201010161190A CN101817091A CN 101817091 A CN101817091 A CN 101817091A CN 201010161190 CN201010161190 CN 201010161190 CN 201010161190 A CN201010161190 A CN 201010161190A CN 101817091 A CN101817091 A CN 101817091A
- Authority
- CN
- China
- Prior art keywords
- phage
- template
- nanoparticles
- bacteriophage
- take
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 title claims abstract description 64
- 238000000034 method Methods 0.000 title claims abstract description 20
- 239000006249 magnetic particle Substances 0.000 title claims abstract description 14
- 229910052742 iron Inorganic materials 0.000 title claims abstract description 11
- 239000002105 nanoparticle Substances 0.000 claims abstract description 35
- 239000002245 particle Substances 0.000 claims abstract description 22
- 241001515965 unidentified phage Species 0.000 claims abstract description 17
- 238000002360 preparation method Methods 0.000 claims abstract description 14
- 210000000234 capsid Anatomy 0.000 claims abstract description 12
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims description 15
- 239000006228 supernatant Substances 0.000 claims description 15
- 239000007788 liquid Substances 0.000 claims description 14
- 241000588724 Escherichia coli Species 0.000 claims description 13
- 239000002244 precipitate Substances 0.000 claims description 11
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 11
- 239000008367 deionised water Substances 0.000 claims description 10
- 229910021641 deionized water Inorganic materials 0.000 claims description 10
- 239000000725 suspension Substances 0.000 claims description 10
- 230000005294 ferromagnetic effect Effects 0.000 claims description 9
- 230000003321 amplification Effects 0.000 claims description 5
- 239000003638 chemical reducing agent Substances 0.000 claims description 5
- 239000000203 mixture Substances 0.000 claims description 5
- 238000003199 nucleic acid amplification method Methods 0.000 claims description 5
- 238000000746 purification Methods 0.000 claims description 5
- 239000008188 pellet Substances 0.000 claims description 4
- 241000193830 Bacillus <bacterium> Species 0.000 claims 1
- 230000005291 magnetic effect Effects 0.000 abstract description 13
- 239000000463 material Substances 0.000 abstract description 13
- 230000005415 magnetization Effects 0.000 abstract description 4
- 239000006185 dispersion Substances 0.000 abstract description 3
- 230000002427 irreversible effect Effects 0.000 abstract description 3
- FBAFATDZDUQKNH-UHFFFAOYSA-M iron chloride Chemical compound [Cl-].[Fe] FBAFATDZDUQKNH-UHFFFAOYSA-M 0.000 abstract description 2
- 238000011031 large-scale manufacturing process Methods 0.000 abstract description 2
- 239000002086 nanomaterial Substances 0.000 abstract description 2
- 230000005307 ferromagnetism Effects 0.000 description 7
- 230000015572 biosynthetic process Effects 0.000 description 5
- 238000003786 synthesis reaction Methods 0.000 description 5
- 239000002243 precursor Substances 0.000 description 4
- -1 transition metal cations Chemical class 0.000 description 4
- 230000015556 catabolic process Effects 0.000 description 3
- 238000005119 centrifugation Methods 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 239000010949 copper Substances 0.000 description 3
- 238000006731 degradation reaction Methods 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 150000002902 organometallic compounds Chemical class 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 102000004169 proteins and genes Human genes 0.000 description 2
- 108090000623 proteins and genes Proteins 0.000 description 2
- 229910052723 transition metal Inorganic materials 0.000 description 2
- 241000894006 Bacteria Species 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 102000018697 Membrane Proteins Human genes 0.000 description 1
- 108010052285 Membrane Proteins Proteins 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- 238000003917 TEM image Methods 0.000 description 1
- 150000001413 amino acids Chemical class 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000029142 excretion Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 210000001035 gastrointestinal tract Anatomy 0.000 description 1
- 238000011534 incubation Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- HOIQWTMREPWSJY-GNOQXXQHSA-K iron(3+);(z)-octadec-9-enoate Chemical compound [Fe+3].CCCCCCCC\C=C/CCCCCCCC([O-])=O.CCCCCCCC\C=C/CCCCCCCC([O-])=O.CCCCCCCC\C=C/CCCCCCCC([O-])=O HOIQWTMREPWSJY-GNOQXXQHSA-K 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 230000005381 magnetic domain Effects 0.000 description 1
- 239000000696 magnetic material Substances 0.000 description 1
- 230000005389 magnetism Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000002082 metal nanoparticle Substances 0.000 description 1
- 239000002923 metal particle Substances 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 230000003389 potentiating effect Effects 0.000 description 1
- 238000000197 pyrolysis Methods 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
- 238000009827 uniform distribution Methods 0.000 description 1
Images
Landscapes
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Hard Magnetic Materials (AREA)
- Compounds Of Iron (AREA)
Abstract
本发明公开了一种磁记录材料领域的以T4噬菌体为模板制备铁纳米磁性粒子的方法。该方法利用生物体固有的结构特征及其分子识别功能,将富集得到的T4噬菌体与铁的氯化物溶液经过共孵化、离心、还原处理,即可获得粒径小、分散度高、在T4噬菌体衣壳表面排布规则的铁纳米粒子,且制备出的铁纳米粒子具有磁化过程不可逆、矫顽力高等铁磁性的特点,使得该方法制备得到的铁纳米粒子在高密度磁记录材料领域有着广阔的应用前景。而且该方法直接以自然界存在的生物纳米结构为模板,制备工艺简单,反应条件温和且对环境友好,又由于生物模板具备可自身繁殖,形貌重复性高等特点,易于实现大规模生产。
The invention discloses a method for preparing iron nanometer magnetic particles using T4 bacteriophage as a template in the field of magnetic recording materials. This method utilizes the inherent structural characteristics of organisms and its molecular recognition function, and the enriched T4 phage and iron chloride solution are co-incubated, centrifuged, and reduced to obtain small particle size, high dispersion, and T4 phage. Iron nanoparticles are regularly arranged on the surface of the phage capsid, and the prepared iron nanoparticles have the characteristics of irreversible magnetization process and high coercive force, which makes the iron nanoparticles prepared by this method have great potential in the field of high-density magnetic recording materials. Broad application prospects. Moreover, the method directly uses biological nanostructures existing in nature as templates, the preparation process is simple, the reaction conditions are mild and environmentally friendly, and because the biological templates have the characteristics of self-reproduction and high shape repeatability, it is easy to realize large-scale production.
Description
技术领域technical field
本发明属于磁记录材料领域,具体涉及一种以T4噬菌体为模板制备小粒径且同时具有铁磁性的铁纳米粒子的方法。The invention belongs to the field of magnetic recording materials, and in particular relates to a method for preparing iron nanoparticles with small diameter and ferromagnetism by using T4 bacteriophage as a template.
背景技术Background technique
过渡金属铁(Fe)纳米粒子具有尺寸小、单磁畴结构、矫顽力高等特性,用它制作的磁记录材料具有稳定性好、图象清晰、信噪比高、失真度小等优点,正是由于这些,使得纳米磁性材料在高密度磁记录材料领域有着广阔的应用前景。但随着信息技术的发展,需要记录的信息量也不断增加,因此,对磁记录材料的要求越来越高,要求记录材料高性能化,特别是记录高密度化。而作为磁记录单位的纳米磁性粒子,它的大小必须满足以下要求:①颗粒的长度应远小于记录波长;②粒子的宽度(如可能,长度也包括在内)应远小于记录深度;③一个单位的记录体积中,应尽可能有更多的磁性粒子。综上,作为磁记录材料的纳米粒子,要满足尺寸尽量小但仍保持铁磁性的要求。因此,探究一种能够制备出小尺寸且具有铁磁性的Fe纳米粒子的制备方法便成为人们的研究热点,也成为信息行业竞争的焦点。近年来,人们利用不同的方法制备了Fe纳米磁性粒子,最常用的是用有机金属化合物的热解法。该方法选用有机金属化合物作为前驱物,在高温下(通常在180~300℃范围内)热降解得到金属纳米颗粒。例如,Sheng Peng等发表在《JACS》(JACS,2006,128,10676~10677)和Dorothy Farrell等发表在《物理化学》(J.Phys.Chem.B,2005,109,13409~13419)的文章中都报道了用铁的有机化合物Fe(CO)5为前驱体,热降解制备了Fe纳米粒子,产品的粒径较小,粒子间距控制的也较好。但该方法所用原料大多为有毒害的有机溶剂,且合成条件需要高温环境,因此是一种环境不友好的合成路线。人们还采用铁的油酸盐作前驱体经热降解得到Fe纳米粒子,但制备的粒子形貌不规则,粒径相对较大,不具有铁磁性的特性,这就限制了Fe纳米粒子在磁记录材料领域中的应用。Transition metal iron (Fe) nanoparticles have the characteristics of small size, single magnetic domain structure, and high coercive force. The magnetic recording materials made with it have the advantages of good stability, clear image, high signal-to-noise ratio, and low distortion. It is because of these that nano-magnetic materials have broad application prospects in the field of high-density magnetic recording materials. However, with the development of information technology, the amount of information that needs to be recorded is also increasing. Therefore, the requirements for magnetic recording materials are getting higher and higher, and the high performance of recording materials is required, especially the high recording density. And as the magnetic recording unit of nano-magnetic particles, its size must meet the following requirements: ① the length of the particle should be much smaller than the recording wavelength; ② the width of the particle (including the length, if possible) should be much smaller than the recording depth; ③ a There should be as many magnetic particles as possible in a unit of recording volume. To sum up, nanoparticles as magnetic recording materials should meet the requirements of being as small as possible while still maintaining ferromagnetism. Therefore, exploring a preparation method capable of preparing small-sized and ferromagnetic Fe nanoparticles has become a research hotspot, and has also become the focus of competition in the information industry. In recent years, different methods have been used to prepare Fe nanomagnetic particles, the most commonly used is the pyrolysis of organometallic compounds. In this method, an organometallic compound is selected as a precursor, and is thermally degraded at a high temperature (usually in the range of 180-300° C.) to obtain metal nanoparticles. For example, articles published by Sheng Peng et al. in "JACS" (JACS, 2006, 128, 10676-10677) and Dorothy Farrell et al. in "Physical Chemistry" (J.Phys.Chem.B, 2005, 109, 13409-13419 Both have reported that Fe(CO) 5 , an organic compound of iron, was used as a precursor to prepare Fe nanoparticles by thermal degradation. The particle size of the product is small and the particle distance is well controlled. However, most of the raw materials used in this method are toxic organic solvents, and the synthesis conditions require a high temperature environment, so it is an environmentally unfriendly synthesis route. People also use iron oleate as a precursor to obtain Fe nanoparticles through thermal degradation, but the prepared particles have irregular morphology, relatively large particle size, and do not have ferromagnetic properties, which limits the magnetic properties of Fe nanoparticles. Applications in the field of documented materials.
发明内容Contents of the invention
为了克服常规制备方法的不足,本发明提供一种以T4噬菌体为模板制备Fe纳米磁性粒子的方法。该方法制备工艺简单、产率高,制备出的Fe纳米粒子具有粒径小、在T4噬菌体表面排布规则、分散度高等优点,同时制备出的Fe纳米粒子具有磁化过程不可逆、有磁滞现象、矫顽力高等铁磁性的特点,因此,所得产品满足高密度磁记录材料的要求。而且该方法直接采用自然界存在的生物纳米结构为模板,原料来源广泛,培育简单,从而大大降低了生产成本,所用原料也无毒害,是一种环境友好的制备方法。In order to overcome the shortcomings of conventional preparation methods, the present invention provides a method for preparing Fe nano magnetic particles using T4 phage as a template. The preparation process of this method is simple and the yield is high. The prepared Fe nanoparticles have the advantages of small particle size, regular arrangement on the surface of T4 bacteriophage, and high dispersion. At the same time, the prepared Fe nanoparticles have irreversible magnetization process and magnetic hysteresis. , High coercive force and other ferromagnetic characteristics, therefore, the obtained product meets the requirements of high-density magnetic recording materials. Moreover, the method directly uses biological nanostructures existing in nature as templates, has a wide range of sources of raw materials, and is easy to cultivate, thereby greatly reducing production costs. The raw materials used are also non-toxic, and are an environmentally friendly preparation method.
本发明采用高度对称的纳米级生物体为模板,利用其自身的结构特征,以及其表面蛋白质高度的分子识别能力,根据过渡金属正离子与氨基酸羧基负离子具有分子间作用力的原理,在其表面控制生长纳米粒子,由于生物体的空间限域作用及其结构特征,可以有效的对纳米粒子的合成进行精确调控,从而得到预期尺寸大小,单分散的Fe纳米磁性粒子。The present invention uses a highly symmetrical nano-scale organism as a template, utilizes its own structural characteristics, and the high molecular recognition ability of its surface protein, and according to the principle that transition metal cations and amino acid carboxyl anions have intermolecular forces, on its surface Controlling the growth of nanoparticles, due to the spatial confinement and structural characteristics of organisms, can effectively and accurately control the synthesis of nanoparticles, so as to obtain monodisperse Fe nanomagnetic particles of expected size.
为了获得粒径较小且具有铁磁性的Fe纳米粒子,本发明采用天然型的T4噬菌体为模板,在其表面控制合成Fe纳米粒子。T4噬菌体是一种浸染大肠杆菌的烈性噬菌体,以大肠杆菌为宿主细胞,十分便于培养。而大肠杆菌是人和许多动物肠道中最主要且数量最多的一种细菌,一般不致病,故采用T4噬菌体为模板,具有材料来源广泛,可重复性高等优点。本发明所用T4噬菌体呈二十面体对称结构,衣壳长约60nm,横径约50nm,由于在其表面含有多种氨基酸,为在其表面控制合成Fe纳米粒子提供了许多结合位点,且特定结合位点呈规则的重复性分布,故制备的纳米粒子具有很好的分散性。又因为其表面突起的蛋白质的空间限域作用,控制了合成的纳米粒子的大小,使制备的纳米粒子大小均匀且粒径很小。可见由于T4噬菌体其自身的结构特征,使其成为制备Fe纳米磁性粒子的良好模板。In order to obtain Fe nanoparticles with small particle size and ferromagnetism, the present invention uses natural T4 phage as a template to control the synthesis of Fe nanoparticles on its surface. T4 bacteriophage is a potent phage that infects Escherichia coli and uses Escherichia coli as the host cell, which is very convenient for cultivation. Escherichia coli is the most important and most abundant bacterium in the intestinal tract of humans and many animals, and generally does not cause disease. Therefore, T4 bacteriophage is used as a template, which has the advantages of wide material sources and high reproducibility. The T4 bacteriophage used in the present invention has an icosahedral symmetrical structure, the capsid length is about 60nm, and the transverse diameter is about 50nm. Because it contains a variety of amino acids on its surface, many binding sites are provided for controlling the synthesis of Fe nanoparticles on its surface, and specific The binding sites are distributed regularly and repeatedly, so the prepared nanoparticles have good dispersion. And because of the spatial confinement effect of the protruding protein on the surface, the size of the synthesized nanoparticles is controlled, so that the prepared nanoparticles are uniform in size and small in size. It can be seen that due to the structural characteristics of T4 bacteriophage itself, it is a good template for preparing Fe nano-magnetic particles.
本发明首先利用大肠杆菌培育T4噬菌体,经过多次离心,将纯净T4噬菌体富集起来,后与Fe的氯化物溶液共孵化,使得铁的正离子吸附到T4衣壳表面蛋白质氨基酸羧基负离子的活性位点上,然后通过离心,还原处理,在T4噬菌体衣壳表面就形成了排布规则、粒径较小、具有铁磁性的Fe纳米粒子。The present invention first utilizes Escherichia coli to cultivate T4 bacteriophages, after several times of centrifugation, the pure T4 phages are enriched, and then co-incubated with Fe chloride solution, so that iron positive ions are adsorbed to the activity of protein amino acid carboxyl anions on the surface of T4 capsid site, and then through centrifugation and reduction treatment, Fe nanoparticles with regular arrangement, small particle size and ferromagnetism were formed on the surface of T4 phage capsid.
本发明的技术方案包括如下步骤:Technical scheme of the present invention comprises the steps:
(1)T4噬菌体的扩增培养与提纯(1) Amplification culture and purification of T4 phage
首先在预先培育的50ml,浓度为10~15mg/ml的大肠杆菌悬浮液中接入T4噬菌体菌种,在37℃下,以100~150r/min的速度摇床培养8~15h。将含有大肠杆菌残壳和T4噬菌体的悬浮液在4~10℃下,以4000~6000r/min的速度分别离心三次,每次离心15~20min,均去掉沉淀,取上清液。最后将较纯的T4噬菌体液在4~10℃,40000~45000r/min下超速离心2.5~3h,去掉上清液,将T4噬菌体沉淀斑分散到2ml去离子水中。First, insert T4 bacteriophage strains into 50ml pre-cultivated Escherichia coli suspension with a concentration of 10-15mg/ml, and culture it on a shaking table at a speed of 100-150r/min for 8-15 hours at 37°C. Centrifuge the suspension containing Escherichia coli residual shells and T4 phage three times at 4-10°C at a speed of 4000-6000r/min for 15-20min each time to remove the precipitate and take the supernatant. Finally, ultracentrifuge the relatively pure T4 phage liquid at 4-10°C, 40,000-45,000 r/min for 2.5-3 hours, remove the supernatant, and disperse the T4 phage precipitates into 2ml of deionized water.
(2)以T4噬菌体为模板制备Fe纳米磁性粒子(2) Preparation of Fe nanomagnetic particles using T4 phage as a template
取300~500ul富集后的T4噬菌体液,用1mol/l的NaOH调节pH值到8.5~9.0,于4~10℃,60~110r/min下摇床孵化3~5h。取300~500ul浓度为5~10mM的FeCl3溶液加入到上述预处理的T4噬菌体液中,混合均匀,于4~10℃,60~110r/min下摇床孵化12~20h。然后于4~10℃,40000~45000r/min下超速离心2.5~3h,去掉上清液,将沉淀收集分散到300~500ul的去离子水中。然后逐滴加入新配制的75~120ul,浓度为5~10mM的NaBH4还原剂溶液,即得到规则排布于T4噬菌体衣壳表面、小粒径且具有铁磁性的Fe纳米粒子。Take 300-500 ul of the enriched T4 phage liquid, adjust the pH value to 8.5-9.0 with 1 mol/l NaOH, and incubate on a shaker at 4-10°C and 60-110 r/min for 3-5 hours. Add 300-500 ul of FeCl 3 solution with a concentration of 5-10 mM to the above pretreated T4 phage liquid, mix well, and incubate on a shaking table at 4-10°C, 60-110 r/min for 12-20 hours. Then ultracentrifuge at 4-10° C., 40000-45000 r/min for 2.5-3 hours, remove the supernatant, collect and disperse the precipitate into 300-500 ul of deionized water. Then add 75-120ul freshly prepared NaBH 4 reducing agent solution with a concentration of 5-10mM dropwise to obtain ferromagnetic Fe nanoparticles regularly arranged on the surface of the T4 phage capsid.
所述的Fe纳米磁性粒子具有以下结构特征:均匀的分布于T4噬菌体衣壳外表面,其排布规则,高度分散,粒径较小,尺寸为1.5~4.0nm。The Fe nano-magnetic particles have the following structural features: uniformly distributed on the outer surface of the T4 phage capsid, regularly arranged, highly dispersed, and small in size, with a size of 1.5-4.0nm.
本发明的有益效果是:直接采用天然的T4噬菌体为模板,培育简便,实验前不需进行任何特殊处理,经过与铁的氯化物溶液共孵化,然后经离心、还原处理,即可获得规则排布于T4噬菌体衣壳表面、小粒径且具有铁磁性的Fe纳米粒子。与常规的用铁的有机化合物作前驱体热降解制备出的Fe纳米粒子相比,本发明得到的Fe纳米粒子具有分布更加均匀、粒径较小等优点,关键是在小粒径下仍保持很好的铁磁性,满足磁记录材料对纳米磁性粒子的要求。该制备方法工艺简单,条件温和,环保高效,且模板来源广泛易得,成本低廉,易于实现大规模生产。The beneficial effects of the present invention are: the natural T4 phage is directly used as a template, the cultivation is simple and convenient, and no special treatment is required before the experiment. After co-incubation with iron chloride solution, and then centrifugation and reduction treatment, regular excretion can be obtained. Fe nanoparticles with small particle size and ferromagnetism distributed on the surface of T4 phage capsid. Compared with conventional Fe nanoparticles prepared by thermal degradation of precursors using iron organic compounds, the Fe nanoparticles obtained by the present invention have the advantages of more uniform distribution and smaller particle size. Very good ferromagnetism, which meets the requirements of magnetic recording materials for nano-magnetic particles. The preparation method has the advantages of simple process, mild conditions, environmental protection and high efficiency, wide and easy-to-obtain template sources, low cost, and easy realization of large-scale production.
附图说明Description of drawings
下面结合附图说明和实施方案对本发明作进一步阐述。The present invention will be further elaborated below in conjunction with the accompanying drawings and embodiments.
图1是以T4噬菌体为模板制备的Fe纳米磁性粒子的低倍数TEM图;Fig. 1 is the low magnification TEM figure of the Fe nano-magnetic particle prepared with T4 phage as a template;
图2是以T4噬菌体为模板制备的Fe纳米磁性粒子的高倍数TEM图;Fig. 2 is the high magnification TEM figure of the Fe nano-magnetic particles prepared with T4 phage as a template;
图3是以T4噬菌体为模板制备的Fe纳米磁性粒子的EDS图;Fig. 3 is the EDS figure of the Fe nano-magnetic particle prepared with T4 bacteriophage as template;
图4是以T4噬菌体为模板制备的Fe纳米磁性粒子的磁滞回线曲线。Fig. 4 is a hysteresis loop curve of Fe nano magnetic particles prepared with T4 phage as a template.
具体实施方式Detailed ways
实施例一Embodiment one
1.T4噬菌体的扩增培养与提纯1. Amplification and purification of T4 phage
首先在预先培育的50ml,浓度为10mg/ml的大肠杆菌悬浮液中接入T4噬菌体菌种,在37℃下,以100r/min的速度摇床培养8h。将含有大肠杆菌残壳和T4噬菌体的悬浮液在4℃下,分别以4000、5000、6000r/min的速度依次离心,每次离心15min,均去掉沉淀,取上清液。最后将较纯的T4噬菌体液在4℃,45000r/min下超速离心2.5h,去掉上清液,将T4噬菌体沉淀斑分散到2ml去离子水中。First, insert T4 bacteriophage strains into 50ml of pre-incubated Escherichia coli suspension with a concentration of 10mg/ml, and culture at 37°C on a shaking table at a speed of 100r/min for 8h. Centrifuge the suspension containing Escherichia coli residual shell and T4 phage at 4°C at speeds of 4,000, 5,000, and 6,000 r/min, respectively, for 15 minutes each time, remove the precipitate, and take the supernatant. Finally, ultracentrifuge the pure T4 phage liquid at 4°C, 45000r/min for 2.5h, remove the supernatant, and disperse the T4 phage pellets into 2ml of deionized water.
2.以T4噬菌体为模板制备Fe纳米磁性粒子2. Preparation of Fe nanomagnetic particles using T4 phage as template
取300ul富集后的T4噬菌体液,用1mol/l的NaOH调节pH值到8.5,于4℃,60r/min下摇床孵化3h。取300ul浓度为5mM的FeCl3溶液加入到上述预处理的T4噬菌体液中,混合均匀,于4℃,60r/min下摇床孵化20h。然后于4℃,45000r/min下超速离心2.5h,去掉上清液,将沉淀收集分散到300ul的去离子水中。然后逐滴加入新配制的75ul,浓度为5mM的NaBH4还原剂溶液,即得到规则排布于T4噬菌体衣壳表面、小粒径且具有铁磁性的Fe纳米粒子。其透射电镜图片见图1。Take 300 ul of the enriched T4 phage liquid, adjust the pH value to 8.5 with 1 mol/l NaOH, and incubate on a shaking table at 4°C and 60 r/min for 3 hours. Take 300 ul of FeCl 3 solution with a concentration of 5 mM and add it to the above pretreated T4 phage liquid, mix well, and incubate at 4° C., 60 r/min on a shaking table for 20 h. Then at 4°C, ultracentrifuge at 45000r/min for 2.5h, remove the supernatant, collect and disperse the precipitate into 300ul of deionized water. Then, 75ul of newly prepared NaBH 4 reducing agent solution with a concentration of 5mM was added dropwise to obtain ferromagnetic Fe nanoparticles regularly arranged on the surface of the T4 phage capsid. Its transmission electron microscope picture is shown in Figure 1.
实施例二Embodiment two
1.T4噬菌体的扩增培养与提纯1. Amplification and purification of T4 phage
首先在预先培育的50ml,浓度为12mg/ml的大肠杆菌悬浮液中接入T4噬菌体菌种,在37℃下,以130r/min的速度摇床培养12h。将含有大肠杆菌残壳和T4噬菌体的悬浮液在10℃下,分别以4000、5000、6000r/min的速度依次离心,每次离心17min,均去掉沉淀,取上清液。最后将较纯的T4噬菌体液在10℃,42100r/min下超速离心3h,去掉上清液,将T4噬菌体沉淀斑分散到2ml去离子水中。First, insert T4 phage strains into 50 ml of pre-incubated Escherichia coli suspension with a concentration of 12 mg/ml, and culture at 37° C. on a shaking table at a speed of 130 r/min for 12 hours. Centrifuge the suspension containing Escherichia coli residual shell and T4 phage at 10°C at speeds of 4,000, 5,000, and 6,000 r/min, respectively, for 17 minutes each time, remove the precipitate, and take the supernatant. Finally, ultracentrifuge the pure T4 phage liquid at 10°C, 42100r/min for 3h, remove the supernatant, and disperse the T4 phage pellets into 2ml of deionized water.
2.以T4噬菌体为模板制备Fe纳米磁性粒子2. Preparation of Fe nanomagnetic particles using T4 phage as template
取400ul富集后的T4噬菌体液,用1mol/l的NaOH调pH值到8.5,于10℃,90r/min下摇床孵化4h。取400ul浓度为10mM的FeCl3溶液加入到上述预处理的T4噬菌体液中,混合均匀,于10℃,90r/min下摇床孵化12h。然后于10℃,42100r/min下超速离心3h,去掉上清液,将沉淀收集分散到400ul的去离子水中。然后逐滴加入新配制的120ul,浓度为6mM的NaBH4还原剂溶液,即得到规则排布于T4噬菌体衣壳表面、小粒径且具有铁磁性的Fe纳米粒子。透射电镜下观察其形貌见图2。Take 400 ul of the enriched T4 phage liquid, adjust the pH value to 8.5 with 1 mol/l NaOH, and incubate at 10°C and 90 r/min on a shaking table for 4 hours. Take 400ul of FeCl 3 solution with a concentration of 10mM and add it to the above-mentioned pretreated T4 phage solution, mix well, and incubate on a shaking table at 10°C and 90r/min for 12h. Then, ultracentrifuge at 10°C and 42100r/min for 3h, remove the supernatant, and collect and disperse the precipitate into 400ul of deionized water. Then, 120ul of newly prepared NaBH 4 reducing agent solution with a concentration of 6mM was added dropwise to obtain ferromagnetic Fe nanoparticles regularly arranged on the surface of T4 phage capsid. The morphology observed under the transmission electron microscope is shown in Figure 2.
实施例三Embodiment three
1.T4噬菌体的扩增培养与提纯1. Amplification and purification of T4 phage
首先在预先培育的50ml,浓度为15mg/ml的大肠杆菌悬浮液中接入T4噬菌体菌种,在37℃下,以150r/min的速度摇床培养15h。将含有大肠杆菌残壳和T4噬菌体的悬浮液在6℃下,分别以4000、5000、6000r/min的的速度依次离心,每次离心20min,均去掉沉淀,取上清液。最后将较纯的T4噬菌体液在6℃,40000r/min下超速离心3h,去掉上清液,将T4噬菌体沉淀斑分散到2ml去离子水中。First, insert T4 bacteriophage strains into 50 ml of pre-incubated Escherichia coli suspension with a concentration of 15 mg/ml, and culture at 37° C. on a shaking table at a speed of 150 r/min for 15 hours. Centrifuge the suspension containing Escherichia coli residual shell and T4 phage at 6°C at speeds of 4,000, 5,000, and 6,000 r/min, respectively, for 20 minutes each time, remove the precipitate, and take the supernatant. Finally, ultracentrifuge the pure T4 phage liquid at 6°C and 40,000 r/min for 3 hours, remove the supernatant, and disperse the T4 phage pellets into 2 ml of deionized water.
2.以T4噬菌体为模板制备Fe纳米磁性粒子2. Preparation of Fe nanomagnetic particles using T4 phage as template
取500ul富集后的T4噬菌体液,用1mol/l的NaOH调节pH值到9.0,于6℃,110r/min下摇床孵化5h。取500ul浓度为10mM的FeCl3溶液加入到上述预处理的T4噬菌体液中,混合均匀,于6℃,110r/min下摇床孵化18h。然后于6℃,40000r/min下超速离心3h,去掉上清液,将沉淀收集分散到500ul的去离子水中。然后逐滴加入现配制的90ul,浓度为10mM的NaBH4还原剂溶液,即得到规则排布于T4噬菌体衣壳表面、小粒径且具有铁磁性的Fe纳米粒子。Take 500 ul of the enriched T4 phage liquid, adjust the pH value to 9.0 with 1 mol/l NaOH, and incubate at 6° C. for 5 h on a shaker at 110 r/min. Take 500 ul of FeCl 3 solution with a concentration of 10 mM and add it to the above pretreated T4 phage liquid, mix well, and incubate at 6° C. on a shaking table at 110 r/min for 18 h. Then, ultracentrifuge at 6°C and 40000r/min for 3h, remove the supernatant, collect and disperse the precipitate into 500ul deionized water. Then, the newly prepared 90 ul NaBH 4 reducing agent solution with a concentration of 10 mM was added dropwise to obtain ferromagnetic Fe nanoparticles regularly arranged on the surface of the T4 phage capsid.
图1、2为以T4噬菌体为模板制备的Fe纳米粒子的TEM图,从图中可以看到,底部类似球形的灰色暗影为T4噬菌体,在每个噬菌体衣壳外表面均匀分布了一层Fe纳米粒子,粒径较小,尺寸为1.5~4.0nm,粒子分布规则,证明了以T4噬菌体为模板对Fe纳米粒子的制备在形貌和大小上具有高度可控性,说明了该方法的高效性。Figures 1 and 2 are TEM images of Fe nanoparticles prepared with T4 phage as a template. It can be seen from the figure that the spherical gray shadow at the bottom is T4 phage, and a layer of Fe is evenly distributed on the outer surface of each phage capsid. Nanoparticles, small in size, 1.5-4.0nm in size, with regular particle distribution, proved that the preparation of Fe nanoparticles with T4 bacteriophage as a template is highly controllable in shape and size, and demonstrated the high efficiency of this method. sex.
图3为以T4噬菌体为模板制备Fe纳米磁性粒子的EDS图,是电子束打在如图1、2所呈现的T4噬菌体和金属粒子的组合结构上,从图中可以看到Cu、C、O、Fe的峰,其中Cu、C主要是来自制样时所用的铜网。O主要是来自T4噬菌体本身,还有一部分O是来自水。此外,从图中我们可以看到Fe的能谱峰的存在,说明以T4噬菌体为模板成功的制备出了Fe纳米粒子。Figure 3 is the EDS diagram of the preparation of Fe nanomagnetic particles using T4 phage as a template. The electron beam is shot on the combined structure of T4 phage and metal particles as shown in Figures 1 and 2. From the figure, it can be seen that Cu, C, The peaks of O and Fe, among which Cu and C mainly come from the copper mesh used in sample preparation. O mainly comes from T4 phage itself, and some O comes from water. In addition, we can see the existence of the energy spectrum peak of Fe from the figure, indicating that Fe nanoparticles were successfully prepared using T4 phage as a template.
图4为以T4噬菌体为模板制备得到的Fe纳米磁性粒子的磁滞回线曲线,检测温度为100K。从图中可以看出,以T4噬菌体为模板制备的Fe纳米粒子具有磁化过程不可逆、易磁化到饱和、有磁滞现象等铁磁性的特性。其矫顽力约564Oe,剩磁约34emu/g,饱和磁性约151emu/g。说明以T4噬菌体为模板制备的Fe纳米粒子具有铁磁性,这使得其在磁记录材料方面有着广阔的应用前景。Fig. 4 is a hysteresis loop curve of Fe nano-magnetic particles prepared with T4 phage as a template, and the detection temperature is 100K. It can be seen from the figure that the Fe nanoparticles prepared with T4 phage as a template have ferromagnetic properties such as irreversible magnetization process, easy magnetization to saturation, and hysteresis. Its coercivity is about 564Oe, remanence is about 34emu/g, and saturation magnetism is about 151emu/g. It shows that Fe nanoparticles prepared with T4 bacteriophage as a template have ferromagnetism, which makes it have broad application prospects in magnetic recording materials.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 201010161190 CN101817091A (en) | 2010-04-28 | 2010-04-28 | Method for preparing iron nano-magnetic particles by taking T4 phage as template |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 201010161190 CN101817091A (en) | 2010-04-28 | 2010-04-28 | Method for preparing iron nano-magnetic particles by taking T4 phage as template |
Publications (1)
Publication Number | Publication Date |
---|---|
CN101817091A true CN101817091A (en) | 2010-09-01 |
Family
ID=42652448
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN 201010161190 Pending CN101817091A (en) | 2010-04-28 | 2010-04-28 | Method for preparing iron nano-magnetic particles by taking T4 phage as template |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101817091A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102658371A (en) * | 2012-03-02 | 2012-09-12 | 燕山大学 | Preparation method of ultrafine platinum nano-wire |
CN103170641A (en) * | 2013-03-19 | 2013-06-26 | 燕山大学 | Method of preparing platinum nano particles by using cotton bollworm karyotype polyhedrin |
CN104001933A (en) * | 2014-05-12 | 2014-08-27 | 燕山大学 | Method for preparing gold nanowire by means of cotton bollworm karyotype polyhedrin extractive |
CN106362151A (en) * | 2016-10-26 | 2017-02-01 | 燕山大学 | Preparation method of Escherichia coli@magnetic particle magnetic-targeted drug carrier |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1480251A (en) * | 2003-07-21 | 2004-03-10 | 天津大学 | Ferromagnetic porous silica gel microspheres and preparation method thereof |
CN1753724A (en) * | 2002-09-18 | 2006-03-29 | 得克萨斯州立大学董事会 | Peptide-mediated synthesis of metal and magnetic materials |
US7374893B2 (en) * | 2002-09-18 | 2008-05-20 | Board Of Regents, University Of Texas System- | Peptide mediated synthesis of metallic and magnetic materials |
CN101619135A (en) * | 2008-07-02 | 2010-01-06 | 中国科学院研究生院 | Magnetic hollow compound microstructure preparation method |
CN101647077A (en) * | 2007-03-29 | 2010-02-10 | 瑞典树木科技公司 | Magnetic nanoparticle cellulose material |
-
2010
- 2010-04-28 CN CN 201010161190 patent/CN101817091A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1753724A (en) * | 2002-09-18 | 2006-03-29 | 得克萨斯州立大学董事会 | Peptide-mediated synthesis of metal and magnetic materials |
US7374893B2 (en) * | 2002-09-18 | 2008-05-20 | Board Of Regents, University Of Texas System- | Peptide mediated synthesis of metallic and magnetic materials |
CN1480251A (en) * | 2003-07-21 | 2004-03-10 | 天津大学 | Ferromagnetic porous silica gel microspheres and preparation method thereof |
CN101647077A (en) * | 2007-03-29 | 2010-02-10 | 瑞典树木科技公司 | Magnetic nanoparticle cellulose material |
CN101619135A (en) * | 2008-07-02 | 2010-01-06 | 中国科学院研究生院 | Magnetic hollow compound microstructure preparation method |
Non-Patent Citations (1)
Title |
---|
《化学进展》 20090131 樊希安等 一维铁磁金属纳米材料的制备、结构调控及其磁性能 第21卷, 第1期 2 * |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102658371A (en) * | 2012-03-02 | 2012-09-12 | 燕山大学 | Preparation method of ultrafine platinum nano-wire |
CN102658371B (en) * | 2012-03-02 | 2014-07-23 | 燕山大学 | Preparation method of ultrafine platinum nano-wire |
CN103170641A (en) * | 2013-03-19 | 2013-06-26 | 燕山大学 | Method of preparing platinum nano particles by using cotton bollworm karyotype polyhedrin |
CN103170641B (en) * | 2013-03-19 | 2014-12-24 | 燕山大学 | Method of preparing platinum nano particles by using cotton bollworm karyotype polyhedrin |
CN104001933A (en) * | 2014-05-12 | 2014-08-27 | 燕山大学 | Method for preparing gold nanowire by means of cotton bollworm karyotype polyhedrin extractive |
CN104001933B (en) * | 2014-05-12 | 2016-03-02 | 燕山大学 | Bollworm polyhedrosis protein extract is utilized to prepare the method for nanowires of gold |
CN106362151A (en) * | 2016-10-26 | 2017-02-01 | 燕山大学 | Preparation method of Escherichia coli@magnetic particle magnetic-targeted drug carrier |
CN106362151B (en) * | 2016-10-26 | 2019-05-28 | 燕山大学 | A kind of preparation method of Escherichia coli@magnetic particle magnetic target medicine carrier |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Zhu et al. | One‐Pot Solvothermal Synthesis of Highly Water‐Dispersible Size‐Tunable Functionalized Magnetite Nanocrystal Clusters for Lipase Immobilization | |
CN101794652A (en) | Method for preparing carbon-coated superparamagnetic ferroferric oxide gel | |
CN110075770A (en) | Magnetic order mesoporous carbon-based or polymer-based core-shell structure microballoon and preparation method thereof | |
CN105802579B (en) | A kind of high saturation and magnetic intensity nano ferriferrous oxide/graphene composite material and preparation method thereof with electro-magnetic screen function | |
CN102764617A (en) | Method for preparing silver-carried silica microsphere functional materials | |
CN106997799A (en) | A kind of preparation method and its SERS application of high-performance gold shell magnetic microballoon | |
CN114288990B (en) | A kind of preparation method of hydroxylated magnetic graphene oxide adsorbent | |
CN101256863A (en) | A surface-modified magnetic carrier and its preparation method | |
CN107418511B (en) | Preparation method of FeCo/reduced graphene oxide composite absorbing material | |
CN101817091A (en) | Method for preparing iron nano-magnetic particles by taking T4 phage as template | |
CN100487831C (en) | Method for making magnetic nano particle based on solution co-deposition | |
CN102373343A (en) | Small-size magnetic binary alloy nanometer material and preparation method thereof | |
CN111517372A (en) | A kind of fullerene-coated Fe3O4 composite nanomaterial and preparation method thereof | |
CN106710762A (en) | Method for using nanometer iron nitride composite material in DNA (deoxyribonucleic acid) extraction | |
CN104556245B (en) | A kind of hamburger-shaped nano-iron oxide material and its preparation method and application | |
CN102001712A (en) | Method for preparing superparamagnetic Fe3O4 nano particle based on thermal decomposition of template | |
CN101041470A (en) | Method for synthesizing block-shaped alpha-ferric oxide nanostructure | |
CN101993115B (en) | Preparation method of ferroferric oxide magnetic nanoparticles | |
CN102464358A (en) | Method for synthesizing water-soluble square ferrite magnetic nano material by ultrasonic-assisted hydrothermal method | |
CN103646744B (en) | A kind of preparation method of starch material carbon-coating nickel zinc-iron magnetic nanoparticle | |
CN102557151A (en) | Method for preparing nanometer ferroferric oxide powder by reducing at one step | |
JP5769228B2 (en) | Method for producing silver / magnetite composite wire | |
CN105062478B (en) | A kind of biological method for preparing ferrite bismuth ferrite composite fluorescent material | |
CN107774227A (en) | A kind of preparation method of ferro manganese composite oxides/ferroso-ferric oxide core-shell nano material | |
CN102531068A (en) | Method for synthesizing lot of mono-dispersed ferroferric oxide (Fe3O4) nano-crystals |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |
Open date: 20100901 |