[go: up one dir, main page]

CN101814720B - Electric vehicle inverter apparatus and protection method therefor - Google Patents

Electric vehicle inverter apparatus and protection method therefor Download PDF

Info

Publication number
CN101814720B
CN101814720B CN201010114364.4A CN201010114364A CN101814720B CN 101814720 B CN101814720 B CN 101814720B CN 201010114364 A CN201010114364 A CN 201010114364A CN 101814720 B CN101814720 B CN 101814720B
Authority
CN
China
Prior art keywords
discharge
signal
circuit part
voltage
electric vehicle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201010114364.4A
Other languages
Chinese (zh)
Other versions
CN101814720A (en
Inventor
藤清高
原英则
山田健二
田中快典
古川晶博
胡本博史
米盛敬
濑尾宣英
天野龙一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Yaskawa Electric Corp
Original Assignee
Mazda Motor Corp
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp, Yaskawa Electric Corp filed Critical Mazda Motor Corp
Publication of CN101814720A publication Critical patent/CN101814720A/en
Application granted granted Critical
Publication of CN101814720B publication Critical patent/CN101814720B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/04Cutting off the power supply under fault conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H9/00Emergency protective circuit arrangements for limiting excess current or voltage without disconnection
    • H02H9/001Emergency protective circuit arrangements for limiting excess current or voltage without disconnection limiting speed of change of electric quantities, e.g. soft switching on or off
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • H02M1/322Means for rapidly discharging a capacitor of the converter for protecting electrical components or for preventing electrical shock
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Inverter Devices (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

本发明涉及电动车辆逆变器设备及其保护方法。在电动车辆逆变器设备(100)中,当通过电动车辆之间的碰撞使碰撞检测器(16)进行操作时车辆控制控制器(15)检测从碰撞检测器(16)输出的开关断开信号。然后,高压电池单元(8)的逆变器主电路连接开关(10)进入断开状态。因此,从高压电池(12)到直流总线部件的直流电源被中断。另外,通过强制放电电路部件(22b)放电被充电在主电路电容器(7)中的电荷。

Figure 201010114364

The invention relates to an electric vehicle inverter device and a protection method thereof. In the electric vehicle inverter device (100), when the collision detector (16) is operated by a collision between electric vehicles, the vehicle control controller (15) detects that a switch output from the collision detector (16) is turned off Signal. Then, the inverter main circuit connection switch (10) of the high-voltage battery unit (8) enters an off state. Consequently, the DC power supply from the high voltage battery (12) to the DC bus components is interrupted. In addition, the charge charged in the main circuit capacitor (7) is discharged by the forced discharge circuit part (22b).

Figure 201010114364

Description

电动车辆逆变器设备及其保护方法Electric vehicle inverter device and protection method thereof

相关申请的交叉引用Cross References to Related Applications

本申请基于并且根据35U.S.Cζ119要求2009年2月20日提交的日本专利申请No.2009-038271的优先权。This application is based on and claims priority under 35 U.S.Cζ119 to Japanese Patent Application No. 2009-038271 filed on February 20, 2009.

技术领域 technical field

本发明涉及用于作为被安装在电动汽车、混合汽车等等中的电动车辆半导体功率转换设备的逆变器设备的保护电路和方法。The present invention relates to a protection circuit and method for an inverter device which is an electric vehicle semiconductor power conversion device installed in an electric car, a hybrid car, and the like.

背景技术 Background technique

电动车辆逆变器设备被连接至高压电池单元,该高压电池单元集成了高压中断功能和涌入电流抑制功能并且具有数百伏特(V)的电压。即使当高压电池单元被从逆变器设备断开时,高压保留在主电路电容器中。从增强安全的观点,用于防止维护期间和碰撞事故中的电击的出现的对策是重要的。作为对策之一,放电电阻或者放电电路迄今已经被安装在逆变器设备的高压部件中。The electric vehicle inverter device is connected to a high voltage battery unit which integrates a high voltage interruption function and an inrush current suppression function and has a voltage of several hundred volts (V). Even when the high voltage battery unit is disconnected from the inverter device, high voltage remains in the main circuit capacitor. From the viewpoint of enhancing safety, countermeasures for preventing the occurrence of electric shocks during maintenance and in collision accidents are important. As one of the countermeasures, discharge resistors or discharge circuits have hitherto been installed in high-voltage components of inverter devices.

图11示出根据在专利文献1中公布的电动机驱动设备的传统示例1的放电电路。FIG. 11 shows a discharge circuit according to Conventional Example 1 of the motor drive apparatus disclosed in Patent Document 1. As shown in FIG.

<专利文献1中公布的放电电路的操作><Operation of Discharge Circuit Disclosed in Patent Document 1>

<在电机的启动时><At the start of the motor>

如图11中所示,当直流(DC)无刷电机M启动(即,电源电路处于导通状态)时,控制器62分别使电源继电器Ry1的接触进入断开状态(截止状态),并且使充电继电器Ry2的接触进入闭合状态(导通状态)。另外,控制器62使常闭合型的继电器Ry3的接触进入断开状态(截止状态)。在此条件下,通过常闭合型的继电器Ry3的接触来中断在放电电阻器R1中流动的电流。因此,通过充电电阻器R2将电荷存储在平滑电容器C中。即,平滑电容器C被充电。这时,充电电阻器R2被插入在电源和平滑电容器C之间。因此,防止涌入电流流入平滑电容器C中。As shown in FIG. 11, when the direct current (DC) brushless motor M starts (that is, the power supply circuit is in the on state), the controller 62 respectively makes the contacts of the power supply relay Ry1 into the off state (off state), and makes the The contacts of the charging relay Ry2 enter a closed state (conduction state). In addition, the controller 62 puts the contact of the normally closed relay Ry3 into an open state (off state). Under this condition, the current flowing in the discharge resistor R1 is interrupted by the contact of the normally closed relay Ry3. Therefore, charge is stored in the smoothing capacitor C through the charging resistor R2. That is, the smoothing capacitor C is charged. At this time, the charging resistor R2 is inserted between the power supply and the smoothing capacitor C. Therefore, an inrush current is prevented from flowing into the smoothing capacitor C.

《在电机的操作期间》"During operation of the motor"

控制器62使电源继电器Ry1的接触进入闭合状态(导通状态)并且使充电继电器Ry2的接触进入断开状态(截止状态)。因此,在稳定的操作状态中以预定的旋转速度通过电源电路的逆变器61操作DC无刷电机M。The controller 62 brings the contacts of the power supply relay Ry1 into a closed state (conducting state) and brings the contacts of the charging relay Ry2 into an open state (off state). Therefore, the DC brushless motor M is operated at a predetermined rotation speed by the inverter 61 of the power supply circuit in a stable operation state.

《在电机的停止时》"At the stop of the motor"

另一方面,当DC无刷电机M停止(即,电源电路处于截止状态)时,控制器62使电源继电器Ry1的接触和充电继电器Ry2的接触进入断开状态(截止状态)。另外,控制器62使常闭合型继电器Ry3进入闭合状态(导通状态)。在此状态中,被存储在平滑电容器C中的电荷流过充电电阻器R1和常闭合型继电器Ry3。因此,平滑电容器C被放电。On the other hand, when the DC brushless motor M is stopped (ie, the power circuit is in an off state), the controller 62 brings the contact of the power relay Ry1 and the contact of the charging relay Ry2 into an open state (off state). In addition, the controller 62 brings the normally closed type relay Ry3 into a closed state (conductive state). In this state, the charge stored in the smoothing capacitor C flows through the charging resistor R1 and the normally closed relay Ry3. Therefore, the smoothing capacitor C is discharged.

图12示出根据在专利文献2中公布的用于DC-DC转换器等等的电源设备的传统示例2的放电电路。FIG. 12 shows a discharge circuit according to Conventional Example 2 of a power supply device for a DC-DC converter or the like disclosed in Patent Document 2. As shown in FIG.

<专利文献2中公布的放电电路的构造><Structure of Discharge Circuit Disclosed in Patent Document 2>

《放电电流控制部件DL》"Discharge current control part DL"

如图12中所示,通过放电电阻器R1和切换元件Q1的串联电路组成放电电流控制部件DL。通过导通和截止切换元件Q1来执行接地点切换元件Q1和输出端子Out之间的电流路径的导通/截止控制。因此,能够执行流入放电电阻器R1的电流的导通/截止控制。As shown in FIG. 12, the discharge current control section DL is constituted by a series circuit of the discharge resistor R1 and the switching element Q1. On/off control of the current path between the ground point switching element Q1 and the output terminal Out is performed by turning the switching element Q1 on and off. Therefore, ON/OFF control of the current flowing in the discharge resistor R1 can be performed.

《电荷存储部件CS》"Charge Storage Unit CS"

通过用作整流元件的二极管D11和用作电荷存储装置的电容器C11组成电荷存储部件CS。二极管D11的阳极被连接至输出端子Out,而二极管D11的阴极被连接至电容器C11的电极中的一个从而电容器C11的另一个电极被连接至接地点。作为电荷存储部件输出端子CST,二极管D11和电容器C11之间的连接点被连接至放电控制部件DC。通过此电路构造,与输出电压基本相同的电压能够被保持在是电容器C11的端子中的一个的电荷存储部件输出端子CST处。因此,此电压被提供给放电控制部件DC作为控制部件电源电压。The charge storage section CS is constituted by a diode D11 serving as a rectifying element and a capacitor C11 serving as a charge storage means. The anode of the diode D11 is connected to the output terminal Out, and the cathode of the diode D11 is connected to one of the electrodes of the capacitor C11 such that the other electrode of the capacitor C11 is connected to a ground point. As the charge storage part output terminal CST, the connection point between the diode D11 and the capacitor C11 is connected to the discharge control part DC. With this circuit configuration, substantially the same voltage as the output voltage can be held at the charge storage section output terminal CST which is one of the terminals of the capacitor C11. Therefore, this voltage is supplied to the discharge control part DC as the control part power supply voltage.

《放电控制部件DC》"Discharge Control Part DC"

通过被连接在电荷存储部件输出端子CST与接地点之间的晶体管Q12、电阻器R16和R17的串联电路、以及用于通过将偏置施加给晶体管Q12的输入端子(在此情况下基电极)来执行晶体管Q12的导通/截止控制的电阻器R18和R19组成放电控制部件DC。电阻器R18的端子中的一个被连接至电荷存储部件输出端子CST。电阻器R18和R19之间的连接点被连接至晶体管Q12的输入端子。电阻器R19被连接至输入电压检测部件ID。从输入电压检测部件ID输出的输入检测信号被作为输入信号施加给晶体管Q12的输入端子。A series circuit of transistor Q12, resistors R16 and R17 connected between the charge storage part output terminal CST and ground, and an input terminal for applying a bias to transistor Q12 (base electrode in this case) Resistors R18 and R19 to perform on/off control of the transistor Q12 constitute a discharge control section DC. One of the terminals of the resistor R18 is connected to the charge storage unit output terminal CST. The connection point between the resistors R18 and R19 is connected to the input terminal of the transistor Q12. The resistor R19 is connected to the input voltage detection part ID. The input detection signal output from the input voltage detection part ID is applied as an input signal to the input terminal of the transistor Q12.

《输入电压检测部件ID》"Input voltage detection part ID"

图13是示出在图12中所示的输入电压检测部件ID的电路图。如图13中所示,电阻器R21和R22的串联电路、电阻器R23和齐纳二极管ZD21的串联电路、运算放大器AMP的电源端子、以及电阻器R25和晶体管Q21的串联电路被连接在输入端子In与接地点之间。另外,在另一端子处被连接至输入端子In的电阻器R24的端子中的一个和运算放大器AMP的输出端子被连接晶体管Q21的输入端子。电阻器R21和R22之间的连接点被连接至运算放大器AMP的负输入端子,而电阻器R23和齐纳二极管ZD21之间的连接点被连接至运算放大器AMP的正输入端子。FIG. 13 is a circuit diagram showing the input voltage detecting part ID shown in FIG. 12 . As shown in FIG. 13, a series circuit of resistors R21 and R22, a series circuit of resistor R23 and Zener diode ZD21, a power supply terminal of operational amplifier AMP, and a series circuit of resistor R25 and transistor Q21 are connected at the input terminal Between In and ground. In addition, one of the terminals of the resistor R24 connected to the input terminal In at the other terminal and the output terminal of the operational amplifier AMP are connected to the input terminal of the transistor Q21. The connection point between the resistors R21 and R22 is connected to the negative input terminal of the operational amplifier AMP, and the connection point between the resistor R23 and the Zener diode ZD21 is connected to the positive input terminal of the operational amplifier AMP.

《输入电压检测部件ID的操作1:稳态下的逻辑H信号的输出》"Operation 1 of Input Voltage Detection Part ID: Output of Logic H Signal in Steady State"

在稳态下,输入端子In的电压是输入电压本身并且具有逻辑高电平。这时,齐纳二极管ZD21被导通。运算放大器AMP的正输入端子处的电压是齐纳二极管ZD21的齐纳电压。另一方面,通过使用电阻器R21和R22的分压获得的电压被施加给运算放大器AMP的负输入端子。此电压被设置为高于齐纳电压。当运算放大器AMP的负输入端子处的电势高于正输入端子处的电势时,运算放大器AMP的输出处于逻辑低电平。因此,晶体管Q21被截止。因为晶体管Q21被截止所以在电阻器R25中没有电流流动。输入电压检测部件ID将其电平是逻辑高电平的信号作为输入检测信号输出至放电控制部件DC。即,在稳态下,从输入电压检测部件ID输出其电平是逻辑高电平的信号。In a steady state, the voltage of the input terminal In is the input voltage itself and has a logic high level. At this time, Zener diode ZD21 is turned on. The voltage at the positive input terminal of the operational amplifier AMP is the Zener voltage of the Zener diode ZD21. On the other hand, a voltage obtained by voltage division using the resistors R21 and R22 is applied to the negative input terminal of the operational amplifier AMP. This voltage is set higher than the Zener voltage. When the potential at the negative input terminal of the operational amplifier AMP is higher than the potential at the positive input terminal, the output of the operational amplifier AMP is at a logic low level. Therefore, the transistor Q21 is turned off. No current flows in resistor R25 because transistor Q21 is turned off. The input voltage detection part ID outputs a signal whose level is a logic high level as an input detection signal to the discharge control part DC. That is, in a steady state, a signal whose level is a logic high level is output from the input voltage detection part ID.

《输入电压检测部件ID的操作2:在后沿时间的逻辑L信号的输出》"Operation 2 of input voltage detection part ID: output of logic L signal at trailing edge time"

在后沿时间,在输入端子In处的电压被降低到等于或者低于齐纳二极管ZD21的齐纳电压的情况下,运算放大器AMP的正输入端子处的电势是输入端子In处的电压。另一方面,因为输入端子In处的电压通过电阻器R21和R22进行分压所以运算放大器AMP的负输入端子处的电势低于输入端子In处的电压。当运算放大器AMP的正输入端子处的电势高于负输入端子处的电势时,运算放大器AMP的输出具有逻辑高电平。因此,晶体管Q21被导通。因为晶体管Q21被导通,所以电流在电阻器R25中流动。输入电压检测部件ID将其电平是逻辑低电平的信号作为输入检测信号输出至放电控制部件DC。即,在后沿时间,从输入电压检测部件ID输出其电平是逻辑低电平的信号。At the trailing time, with the voltage at the input terminal In being lowered to be equal to or lower than the Zener voltage of the Zener diode ZD21 , the potential at the positive input terminal of the operational amplifier AMP is the voltage at the input terminal In. On the other hand, the potential at the negative input terminal of the operational amplifier AMP is lower than the voltage at the input terminal In because the voltage at the input terminal In is divided by the resistors R21 and R22 . When the potential at the positive input terminal of the operational amplifier AMP is higher than the potential at the negative input terminal, the output of the operational amplifier AMP has a logic high level. Therefore, the transistor Q21 is turned on. Since the transistor Q21 is turned on, current flows in the resistor R25. The input voltage detection part ID outputs a signal whose level is a logic low level as an input detection signal to the discharge control part DC. That is, at the trailing porch timing, a signal whose level is a logic low level is output from the input voltage detection part ID.

《专利文献2中公布的放电电路的操作》"Operation of Discharge Circuit Disclosed in Patent Document 2"

在其中输出端子Out处的输出电压被保持在额定电压的稳态下,到输入端子In的输入电压基本上等于额定电压。因此,输入电压检测部件ID将其电平是逻辑高电平(或者截止信号(在下文中通过逻辑电平来表示))的信号作为输入检测信号输出至是放电控制部件DC的输入端子的电阻器R19的端子。因为通过将逻辑高电平信号输入至放电控制部件DC截止晶体管Q12,所以放电控制部件DC的输出是逻辑低电平信号(具有等于接地电势的电平的信号,或者无信号)。因此,切换元件Q1的输入端子处于接地电平。因此,切换元件Q1被截止。没有放电电流在放电电阻器R1中流动。即,在稳态下,放电电流控制部件DL没有馈送任何放电电流。In a steady state in which the output voltage at the output terminal Out is maintained at the rated voltage, the input voltage to the input terminal In is substantially equal to the rated voltage. Therefore, the input voltage detection part ID outputs a signal whose level is a logic high level (or an off signal (hereinafter expressed by a logic level)) as an input detection signal to a resistor which is an input terminal of the discharge control part DC R19 terminal. Since the transistor Q12 is turned off by inputting a logic high level signal to the discharge control part DC, the output of the discharge control part DC is a logic low level signal (a signal having a level equal to the ground potential, or no signal). Therefore, the input terminal of the switching element Q1 is at ground level. Therefore, switching element Q1 is turned off. No discharge current flows in discharge resistor R1. That is, in a steady state, the discharge current control part DL does not feed any discharge current.

即,图12和图13中的根据传统的示例2的放电电路通过使用被连接至输入端子的输入电压检测部件ID检测输入电压,并且通过将根据输入电压的输入检测信号输出至放电控制部件DC,基于控制部件电源电压和输入检测信号执行经由放电电阻器R1的放电控制和放电电流控制部件DL的切换元件Q1的导通/截止控制。That is, the discharge circuit according to the conventional example 2 in FIGS. 12 and 13 detects the input voltage by using the input voltage detection part ID connected to the input terminal, and outputs the input detection signal according to the input voltage to the discharge control part DC , discharge control via the discharge resistor R1 and on/off control of the switching element Q1 of the discharge current control part DL are performed based on the control part power supply voltage and the input detection signal.

接下来参考图14,示出根据传统示例3的放电电路。Referring next to FIG. 14 , a discharge circuit according to Conventional Example 3 is shown.

《根据传统示例3的放电电路》"Discharging Circuit According to Conventional Example 3"

如图14中所示,放电电路被构造为当放电命令信号FD1被输入至绝缘电路的光耦合器36时,栅极驱动PNP晶体管42被导通,栅极驱动电压Vc1经由电阻器43和41被施加给功率金属氧化物半导体场效应晶体管(MOSFET)40的栅极,因此,功率MOSFET 40被导通,并且经由放电电阻器39执行放电操作。栅极电源电路部件30具有电阻器31,该电阻器31被连接至高压电容器的正端子P;齐纳二极管33,该齐纳二极管33生成栅极驱动电压Vc1并且被连接至高压电容器的负端子N;以及电解电容器34,该电解电容器34存储与齐纳二极管33上生成的电压相对应的电荷并且提供栅极驱动电源电压。As shown in FIG. 14, the discharge circuit is constructed such that when the discharge command signal FD1 is input to the photocoupler 36 of the isolation circuit, the gate drive PNP transistor 42 is turned on, and the gate drive voltage Vc1 is passed through the resistors 43 and 41. is applied to the gate of a power metal oxide semiconductor field effect transistor (MOSFET) 40, and thus, the power MOSFET 40 is turned on, and a discharge operation is performed via a discharge resistor 39. The gate power supply circuit part 30 has a resistor 31 connected to the positive terminal P of the high voltage capacitor; a Zener diode 33 which generates the gate drive voltage Vc1 and connected to the negative terminal of the high voltage capacitor N; and an electrolytic capacitor 34 that stores charges corresponding to the voltage generated across the Zener diode 33 and supplies a gate drive power supply voltage.

《根据传统示例4的放电电路》"Discharging Circuit According to Conventional Example 4"

图15示出在用于放电电路的过热保护电路被添加至图14中所示的放电电路的情况下的根据传统示例4的放电电路。FIG. 15 shows a discharge circuit according to Conventional Example 4 in a case where an overheat protection circuit for the discharge circuit is added to the discharge circuit shown in FIG. 14 .

如图15中所示,放电电路15其特征在于强制放电电路部件22a被提供有用于保护放电电阻器39避免过热的过热保护部件28,从而过热保护部件28被布置在功率MOSFET 40的栅极电阻器41和栅极驱动PNP晶体管42的集电极的连接点与高压电容器的负端子N之间。通过检测电阻器51上生成的电压来检测放电电流。当通过将电压施加给NPN晶体管47的基极导通NPN晶体管47时,PNP晶体管46的基极被连接至栅极电源电路部件30的0V的电压。这时,PNP晶体管46的发射极-集电极结导电以将基极驱动电压施加给NPN晶体管47的基极。因此,NPN晶体管47保持导通状态。另外,功率MOSFET 40的栅极电压下降到0V。因此,功率MOSFET 40被导通,并且放电电流被中断。As shown in FIG. 15, the discharge circuit 15 is characterized in that the forced discharge circuit part 22a is provided with an overheat protection part 28 for protecting the discharge resistor 39 from overheating, so that the overheat protection part 28 is arranged at the gate resistor of the power MOSFET 40 Between the connection point of the transistor 41 and the collector of the gate drive PNP transistor 42 and the negative terminal N of the high voltage capacitor. The discharge current is detected by detecting the voltage generated across the resistor 51 . When the NPN transistor 47 is turned on by applying a voltage to the base of the NPN transistor 47 , the base of the PNP transistor 46 is connected to the voltage of 0V of the gate power supply circuit part 30 . At this time, the emitter-collector junction of PNP transistor 46 conducts to apply a base drive voltage to the base of NPN transistor 47 . Therefore, the NPN transistor 47 maintains the on state. In addition, the gate voltage of the power MOSFET 40 drops to 0V. Therefore, the power MOSFET 40 is turned on, and the discharge current is interrupted.

以前述的方式继续截止栅极电压的操作。因此,通过在高压施加状态下执行放电操作来保护放电电阻器39避免过热。The operation of cutting off the gate voltage is continued in the aforementioned manner. Therefore, the discharge resistor 39 is protected from overheating by performing a discharge operation in a high voltage applied state.

[专利文献1]JP-A-6-276610(第4页,和图1)[Patent Document 1] JP-A-6-276610 (page 4, and Fig. 1 )

[专利文献2]JP-A-2003-235241(第6页至第7页,以及图2和图4)[Patent Document 2] JP-A-2003-235241 (pages 6 to 7, and Figs. 2 and 4)

<传统的放电电路的缺点><Disadvantages of conventional discharge circuits>

然而,前述的传统的电动车辆逆变器设备的高压放电电路被构造为经常地执行放电。因此,放电电阻器在尺寸上很大。由于所要求的空间和重量的增加导致车辆的逆变器设备的可安装性变差并且增加制造成本。However, the aforementioned high-voltage discharge circuit of the conventional electric vehicle inverter device is configured to frequently perform discharge. Therefore, the discharge resistor is large in size. The mountability of the inverter device of the vehicle deteriorates and the manufacturing cost increases due to the required space and the increase in weight.

在通过放大电阻器的空气冷却执行冷却逆变器设备的方法的情况下,电动车辆低速运行时,冷却性能被降低。因此,在最坏的情况下,放电电阻器可能进入烧坏状态。因此,绝对有必要将逆变器设备安装在车辆的水冷却部件上。然而,传统的放电电路具有下述问题,即因此到车辆的逆变器设备的可安装性变得更差。In the case where the method of cooling the inverter device is performed by air cooling of the amplifying resistor, the cooling performance is lowered when the electric vehicle is running at a low speed. Therefore, in the worst case, the discharge resistor may go into a burnout state. Therefore, it is absolutely necessary to install the inverter device on the water cooling part of the vehicle. However, the conventional discharge circuit has a problem that the mountability to the inverter device of the vehicle becomes worse accordingly.

《根据专利文献1的放电电路的缺点>"Disadvantages of the Discharge Circuit According to Patent Document 1"

在专利文献1中公布的根据图11中示出的传统示例1的构造的放电电路中,在电源继电器Ry1和充电继电器Ry2被断开之后常闭合型继电器Ry3被导通。因此,通过放电电阻器R1放电平滑电容器C的高压。这时,在充电继电器Ry2或者电源继电器Ry1的励磁操作晶体管中出现导通故障的情况下,保持电源继电器Ry1或者Ry2的励磁状态。因此,高压电源Vdc保持被连接至放电电阻器R1。因此,根据专利文献1的放电电路具有下述问题,即引起放电电阻器R1的过热毁坏。根据专利文献1的放电电路具有其它的问题,即在电源继电器Ry1或者充电继电器Ry2正常断开的情况下,即使当DC无刷电机M执行重新生成操作或者继续旋转时,电流也继续不断地在放电电阻器R1中流动,从而放电电阻器R1过热。In the discharging circuit according to the configuration of Conventional Example 1 shown in FIG. 11 disclosed in Patent Document 1, normally closed relay Ry3 is turned on after power supply relay Ry1 and charging relay Ry2 are turned off. Therefore, the high voltage of the smoothing capacitor C is discharged through the discharge resistor R1. At this time, in the case where a conduction failure occurs in the excitation operation transistor of the charging relay Ry2 or the power supply relay Ry1 , the excitation state of the power supply relay Ry1 or Ry2 is maintained. Therefore, the high voltage power supply Vdc remains connected to the discharge resistor R1. Therefore, the discharge circuit according to Patent Document 1 has a problem of causing overheating destruction of the discharge resistor R1. The discharge circuit according to Patent Document 1 has another problem that, in the case where the power supply relay Ry1 or the charging relay Ry2 is normally off, even when the DC brushless motor M performs a regeneration operation or continues to rotate, the current continues to flow continuously. The flow in the discharge resistor R1 causes the discharge resistor R1 to overheat.

《根据专利文献2的放电电路的缺点》"Disadvantages of the Discharge Circuit According to Patent Document 2"

在专利文献2中公布的根据图12和图13中所示的根据传统的示例2的构造的放电电路中,没有相互绝缘输入电压和输出电压。输入端侧和输出端侧共享0伏特线。因此,使用输入电压检测信息在输出侧执行放电控制。另一方面,在具有高压部件的逆变器设备中,通过使用低压电池的电源电路操作电路控制部件和检测控制部件,并且因此电路控制部件和检测控制部件不能够被构造为具有与高压部件相同的电势。因此,根据专利文献2的被提供有使用放电电路的高压部件的逆变器设备具有必须要求绝缘电路的问题。In the discharge circuit disclosed in Patent Document 2 according to the configuration according to the conventional example 2 shown in FIGS. 12 and 13 , the input voltage and the output voltage are not insulated from each other. The input side and the output side share the 0 volt line. Therefore, discharge control is performed on the output side using input voltage detection information. On the other hand, in an inverter device having a high-voltage part, the circuit control part and the detection control part are operated by a power supply circuit using a low-voltage battery, and therefore the circuit control part and the detection control part cannot be configured to have the same potential. Therefore, the inverter device provided with the high-voltage components using the discharge circuit according to Patent Document 2 has a problem that an insulating circuit must be required.

《根据传统示例3的放电电路的缺点》"Disadvantages of the Discharging Circuit According to Conventional Example 3"

根据图14中所示的传统示例3的构造的放电电路具有下述问题。即,担心发生下述状态,其中由于例如低压电池的中断或者切跳(chattering),没有根据放电命令信号FD1的信号状态完成放电操作。The discharge circuit according to the configuration of Conventional Example 3 shown in FIG. 14 has the following problems. That is, there is fear of a state in which the discharge operation is not completed according to the signal state of the discharge command signal FD1 due to, for example, interruption or chattering of the low-voltage battery.

另外,当在高压施加状态输入放电信号时,电流持续地在放电电阻器中流动,从而放电电阻器过热。In addition, when a discharge signal is input in a high voltage application state, current continues to flow in the discharge resistor, whereby the discharge resistor overheats.

另外,在图14中的强制放电电路部件22的栅极电源电路部件30中,电阻器31的电阻值被设置为高值,因为栅极电源电压低。因此,当逆变器设备启动时,设备到达能够执行放电操作的栅极电源电压之前耗费很长时间。In addition, in the gate power supply circuit part 30 of the forced discharge circuit part 22 in FIG. 14, the resistance value of the resistor 31 is set to a high value because the gate power supply voltage is low. Therefore, when the inverter device is started, it takes a long time until the device reaches the gate power supply voltage capable of performing the discharge operation.

《根据传统的示例4的放电电路的缺点》"Disadvantages of the Discharging Circuit According to Conventional Example 4"

在根据图15中所示的传统示例4的构造的放电电路中,为了防止图14中所示的放电电阻器39的过热的问题的发生,过热保护电路部件28被添加至图14中所示的电路。尽管当过热保护电路部件28被布置在此安装位置时栅极驱动电势能够被设置为0V并且放电操作能够被停止,但是可能发生下面的缺点。In the discharge circuit according to the configuration of Conventional Example 4 shown in FIG. 15 , in order to prevent the occurrence of the problem of overheating of the discharge resistor 39 shown in FIG. 14 , an overheat protection circuit part 28 is added to the circuit. Although the gate drive potential can be set to 0 V and the discharge operation can be stopped when the overheat protection circuit part 28 is arranged at this mounting position, the following disadvantages may occur.

即,因为栅极电源电路部件30的电源阻抗高,所以存储电解电容器34的电压立即下降到0V。在此期间,栅极驱动PNP晶体管42会被截止。因此,流过PNP晶体管46的发射极-集电极结的电流的量是0。NPN晶体管47的基极电流为0,从而NPN晶体管47被截止,并且锁存状态被取消。在主电路电容器7的端子电压Vpn保持在高压状态,并且在放电命令信号FD1被输入的情况下,当经由电阻器31通过二极管38将存储电解电容器34充电到接近于齐纳二极管33的齐纳电压的电平以生成栅极电源电压时,PNP晶体管42被再次导通。因此,功率MOSFET 40被导通。因此,放电操作被再次开始。放电电流经由放电电阻器38从其流动。然而,在高压施加状态被继续的同时,过热状态再次出现。放电操作和用于过热保护的停止放电的操作被间歇地重复。因此,担心的是,放电电阻器39会最终达到过热状态和烧坏状态。That is, since the power supply impedance of the gate power supply circuit part 30 is high, the voltage of the storage electrolytic capacitor 34 immediately drops to 0V. During this time, the gate drive PNP transistor 42 is turned off. Therefore, the amount of current flowing through the emitter-collector junction of PNP transistor 46 is zero. The base current of the NPN transistor 47 is 0, so the NPN transistor 47 is turned off, and the latch state is canceled. In the case where the terminal voltage Vpn of the main circuit capacitor 7 is kept in a high-voltage state and the discharge command signal FD1 is input, when the storage electrolytic capacitor 34 is charged to a Zener voltage close to the Zener diode 33 via the resistor 31 through the diode 38 The PNP transistor 42 is turned on again when the level of the gate supply voltage is generated. Therefore, the power MOSFET 40 is turned on. Therefore, the discharging operation is started again. A discharge current flows therefrom via the discharge resistor 38 . However, while the high voltage application state is continued, the overheated state reappears. The discharge operation and the operation of stopping the discharge for overheat protection are intermittently repeated. Therefore, there is a fear that the discharge resistor 39 will eventually reach an overheated state and a burned out state.

发明内容 Contents of the invention

鉴于此问题完成本发明。本发明的目的是提供一种逆变器设备,其能够在维护时,尤其在电动车辆碰撞事故中能够防止电击等等的发生,并且其具有高的可靠性并且在尺寸和重量上小并且到车辆的可安装性良好并且经济效益良好,并且本发明的目的还在于提供一种保护方法。The present invention has been accomplished in view of this problem. An object of the present invention is to provide an inverter device which can prevent electric shock or the like from occurring at the time of maintenance, especially in an electric vehicle collision accident, and which has high reliability and is small in size and weight and The installability of the vehicle is good and the economical benefit is good, and the object of the present invention is also to provide a protection method.

为了解决问题,通过下述构造和方法实施本发明。In order to solve the problems, the present invention is implemented by the following configurations and methods.

根据本发明的第一方面,提供了一种电动车辆逆变器设备,其包括:According to a first aspect of the present invention, there is provided an electric vehicle inverter device comprising:

逆变器部件,所述逆变器部件被构造为驱动被机械地连接至电动车辆的车辆驱动部件的交流(AC)电动机;an inverter component configured to drive an alternating current (AC) electric motor mechanically connected to a vehicle drive component of the electric vehicle;

转换器部件,所述转换器部件被构造为将通过电动车辆的引擎驱动力生成电功率的AC发电机生成的电功率转换为预定的电压范围内的DC电压;a converter part configured to convert electric power generated by an AC generator that generates electric power by an engine driving force of the electric vehicle into a DC voltage within a predetermined voltage range;

逆变器控制器,所述逆变器控制器被构造为控制所述逆变器部件和所述转换器部件;an inverter controller configured to control the inverter component and the converter component;

主电路电容器,所述主电路电容器被连接在所述逆变器与所述转换器的DC总线的正极线和负极线(以下称之为DC总线)之间;以及a main circuit capacitor connected between positive and negative lines of a DC bus (hereinafter referred to as DC bus) of the inverter and the converter; and

强制放电电路部件,所述强制放电电路部件被构造为响应于放电命令信号放电被充电在所述主电路电容器中的电荷,a forced discharge circuit part configured to discharge the charge charged in the main circuit capacitor in response to a discharge command signal,

从高压电池单元提供用于所述逆变器部件的直流电源,所述高压电池单元包括逆变器主电路连接开关、高压电池以及涌入电流抑制电路,所述涌入电流抑制电路被构造为当所述逆变器主电路连接开关被接通时抑制来自于高压电池的涌入电流并且被连接至DC总线,DC power for the inverter part is supplied from a high-voltage battery unit comprising an inverter main circuit connection switch, a high-voltage battery, and an inrush current suppression circuit configured to suppressing inrush current from a high voltage battery and connected to a DC bus when the inverter main circuit connection switch is turned on,

从低压电池单元提供控制电源,所述低压电池单元包括低压电池和开关,所述开关被构造为断开和闭合所述低压电池,providing control power from a low voltage battery unit comprising a low voltage battery and a switch configured to open and close the low voltage battery,

电动车辆逆变器设备接收来自于车辆控制控制器的控制信号以及来自于碰撞检测器的控制信号并且根据上述信号对电动车辆逆变器设备进行控制,所述车辆控制控制器被构造为监督地控制电动车辆,并且所述碰撞检测器被连接在所述车辆控制控制器和所述低压电池之间并且包括开关,所述开关被构造为当检测到由于电动车辆的碰撞导致的冲击时进入断开状态,其中An electric vehicle inverter device receives a control signal from a vehicle control controller and a control signal from a crash detector and controls the electric vehicle inverter device in accordance with the above signals, the vehicle control controller being configured to supervise An electric vehicle is controlled, and the collision detector is connected between the vehicle control controller and the low-voltage battery and includes a switch configured to enter off when an impact due to a collision of the electric vehicle is detected. open state, where

所述车辆控制控制器检测表示当通过电动车辆的碰撞操作碰撞检测器时碰撞检测器的开关被断开的断开信号;The vehicle control controller detects an off signal indicating that a switch of the collision detector is turned off when the collision detector is operated by a collision of the electric vehicle;

所述车辆控制控制器使所述高压电池单元的所述逆变器主电路连接开关进入断开状态,中断对DC总线部件的高压电池的直流电源的供给并且将放电命令信号输出至所述强制放电电路部件;以及The vehicle control controller puts the inverter main circuit connection switch of the high voltage battery unit into an off state, interrupts the supply of DC power to the high voltage battery of the DC bus section and outputs a discharge command signal to the forced discharge circuit components; and

所述强制放电电路部件放电被充电在所述主电路电容器中的电荷。The forced discharge circuit part discharges the charge charged in the main circuit capacitor.

根据本发明的第二方面,提供了如第一方面中的电动车辆逆变器设备,其中According to a second aspect of the present invention there is provided an electric vehicle inverter device as in the first aspect, wherein

所述强制放电电路部件包括:The forced discharge circuit components include:

放电电路部件,所述放电电路部件包括被串联地连接在所述DC总线之间的放电电阻器、功率半导体元件、以及放电电流检测电阻器;a discharge circuit part including a discharge resistor, a power semiconductor element, and a discharge current detection resistor connected in series between the DC buses;

放电电阻器过热保护电路部件,所述放电电阻器过热保护电路部件被构造为通过接收由于流过所述放电电流检测电阻器的放电电流导致的压降生成的电压作为到其的输入而进行操作;a discharge resistor overheat protection circuit part configured to operate by receiving, as an input thereto, a voltage generated by a voltage drop due to a discharge current flowing through the discharge current detection resistor ;

栅极电源电路部件,所述栅极电源电路部件被构造为从所述DC总线之间的直流电压生成用于所述功率半导体元件的驱动电源;a gate power circuit part configured to generate drive power for the power semiconductor elements from a DC voltage between the DC buses;

驱动电路部件,所述驱动电路部件被构造为将驱动信号给予所述功率半导体元件的控制端子;以及a driving circuit part configured to give a driving signal to a control terminal of the power semiconductor element; and

放电信号锁存电路部件,所述放电信号锁存电路部件被构造为接收根据来自于所述碰撞检测器的检测信号的放电命令信号并且将驱动信号给予所述驱动电路部件;a discharge signal latch circuit part configured to receive a discharge command signal according to a detection signal from the collision detector and to give a drive signal to the drive circuit part;

当接收根据来自于所述碰撞检测器的检测信号的放电命令信号时,所述放电信号锁存电路部件保持到所述驱动电路部件的导通信号从而所述放电电路部件能够继续保持放电操作导通状态;并且When receiving a discharge command signal based on a detection signal from the collision detector, the discharge signal latch circuit part maintains the conduction signal to the drive circuit part so that the discharge circuit part can continue to maintain the discharge operation conduction status; and

当所述主电路电容器的端子电压通过放电操作被降低到接近于0伏特的值时,并且当所述栅极电源电路部件的电源电压被降低到等于或者低于所述驱动电路部件的可操作电压的值时,所述放电操作导通状态被取消。When the terminal voltage of the main circuit capacitor is lowered to a value close to 0 volts by a discharging operation, and when the power supply voltage of the gate power supply circuit part is lowered to be equal to or lower than the operable voltage value, the discharge operation conduction state is canceled.

根据本发明的第三方面,提供了如第一方面的电动车辆逆变器设备,其中According to a third aspect of the present invention, there is provided an electric vehicle inverter device as in the first aspect, wherein

所述强制放电电路部件包括:The forced discharge circuit components include:

DC-DC转换器,所述DC-DC转换器被构造为将从所述低压电池提供的电池电压转换为控制电路部件的操作电压;a DC-DC converter configured to convert a battery voltage supplied from the low-voltage battery into an operating voltage of a control circuit component;

存储部件,所述存储部件被构造为存储所述DC-DC转换器的输出电压;a storage unit configured to store an output voltage of the DC-DC converter;

放电操作命令输入部件,所述放电操作命令输入部件被构造为输入来自于所述碰撞检测器的检测信号和来自于所述车辆控制控制器的放电信号;a discharge operation command input part configured to input a detection signal from the collision detector and a discharge signal from the vehicle control controller;

放电命令延迟部件,所述放电命令延迟部件被构造为防止被输入到所述放电操作命令输入部件的信号的切跳的发生;a discharge command delay part configured to prevent occurrence of skipping of a signal input to the discharge operation command input part;

放电信号绝缘部件,所述放电信号绝缘部件被构造为电气地绝缘来自于所述放电命令延迟部件的输出信号;并且a discharge signal isolation part configured to electrically insulate an output signal from the discharge command delay part; and

所述存储部件具有充分的存储容量使得在电动车辆的碰撞时能够稍微地延迟由于从所述低压电池单元提供的电压的中断导致的压降,并且能够保持在控制电路部件可操作的电源电压直到所述强制放电电路部件的放电操作被启动。The storage part has a sufficient storage capacity to slightly delay a voltage drop due to an interruption of voltage supplied from the low-voltage battery unit at the time of a collision of the electric vehicle, and to maintain a power supply voltage at which the control circuit part is operable until A discharge operation of the forced discharge circuit part is started.

根据本发明的第四方面,提供如第二方面中的电动车辆逆变器设备,其中According to a fourth aspect of the present invention, there is provided an electric vehicle inverter device as in the second aspect, wherein

所述栅极电源电路部件包括在DC总线之间经由二极管串联地连接的电阻器和齐纳二极管,以及相互串联地连接并且分别并行地连接至所述电阻器和所述齐纳二极管的电解电容器;并且The gate power supply circuit part includes a resistor and a Zener diode connected in series between DC buses via a diode, and electrolytic capacitors connected in series with each other and in parallel to the resistor and the Zener diode, respectively. ;and

所述齐纳二极管的齐纳电压高于所述驱动电路部件的可操作电压,并且等于并且低于所述功率半导体元件的容许栅极电压。A Zener voltage of the Zener diode is higher than an operable voltage of the driving circuit part and equal to and lower than an allowable gate voltage of the power semiconductor element.

根据本发明的第五方面,提供了如第二方面的电动车辆逆变器设备,其中According to a fifth aspect of the present invention, there is provided an electric vehicle inverter device as in the second aspect, wherein

放电电路部件的功率半导体元件包括MOSFET或者IGBT。The power semiconductor elements of the discharge circuit part include MOSFETs or IGBTs.

根据本发明的第六方面,提供了如第二方面的电动车辆逆变器设备,其中According to a sixth aspect of the present invention, there is provided an electric vehicle inverter device as in the second aspect, wherein

所述驱动电路部件包括:The drive circuit components include:

第一栅极电阻器,所述第一栅极电阻器被连接至包括MOSFET或者IGBT的所述功率半导体元件的栅极;a first gate resistor connected to the gate of the power semiconductor element comprising a MOSFET or an IGBT;

第一PNP晶体管和第二栅极电阻器,所述第一PNP晶体管和第二栅极电阻器被串联地连接至所述第一栅极电阻器;以及a first PNP transistor and a second gate resistor connected in series to the first gate resistor; and

第三电阻器和齐纳二极管,所述第三电阻器和齐纳二极管被串联地连接至所述第一PNP晶体管的基极;a third resistor and a Zener diode connected in series to the base of the first PNP transistor;

所述放电信号锁存电路部件被提供在所述齐纳二极管的阳极一侧;并且the discharge signal latch circuit part is provided on the anode side of the zener diode; and

所述放电信号锁存电路部件包括被连接在一起作为闸流管的NPN晶体管和PNP晶体管。The discharge signal latch circuit part includes an NPN transistor and a PNP transistor connected together as a thyristor.

根据本发明的第七方面,提供了如第二方面的电动车辆逆变器设备,其中According to a seventh aspect of the present invention, there is provided an electric vehicle inverter device as in the second aspect, wherein

所述放电电阻器过热保护电路部件经由电阻器将所述放电电路部件的放电电流检测电阻器的端子电压引入NPN晶体管的基极;The discharge resistor overheat protection circuit part introduces the terminal voltage of the discharge current detection resistor of the discharge circuit part into the base of the NPN transistor via a resistor;

电容器和电阻器彼此并联地连接在所述NPN晶体管的基极-发射极结之间;a capacitor and a resistor are connected in parallel with each other between the base-emitter junction of the NPN transistor;

PNP晶体管的基极被连接至所述NPN晶体管的集电极;the base of the PNP transistor is connected to the collector of the NPN transistor;

所述PNP晶体管的集电极被连接至所述NPN晶体管的基极;并且the collector of the PNP transistor is connected to the base of the NPN transistor; and

所述PNP晶体管的发射极被连接至所述驱动电路部件的第二栅极电阻器和所述第一PNP晶体管的发射极之间的连接点。The emitter of the PNP transistor is connected to a connection point between the second gate resistor of the driving circuit part and the emitter of the first PNP transistor.

根据本发明的第八方面,提供了如第三方面的电动车辆逆变器设备,其中According to an eighth aspect of the present invention, there is provided the electric vehicle inverter device of the third aspect, wherein

所述强制放电电路部件被构造为放电命令锁存部件被提供在所述放电命令延迟部件和所述放电信号绝缘部件之间并且保持放电命令信号;并且The forced discharge circuit part is configured such that a discharge command latch part is provided between the discharge command delay part and the discharge signal isolation part and holds a discharge command signal; and

所述强制放电电路部件将放电状态监测信号输出至车辆控制控制器。The forced discharge circuit part outputs a discharge state monitoring signal to a vehicle control controller.

根据本发明的第九方面,提供如第六方面的电动车辆逆变器设备,其中According to a ninth aspect of the present invention, there is provided the electric vehicle inverter device as in the sixth aspect, wherein

所述放电信号锁存电路部件被构造为单PNP晶体管的发射极被连接至所述驱动电路部件的齐纳二极管的阳极;The discharge signal latch circuit part is configured such that the emitter of a single PNP transistor is connected to the anode of the Zener diode of the drive circuit part;

所述放电信号锁存电路部件不具有锁存放电命令信号的功能;并且The discharge signal latching circuit part does not have the function of latching the power storage command signal; and

所述放电信号锁存电路部件被构造为接收预先锁存的放电命令信号并且使所述驱动电路部件进行操作。The discharge signal latch circuit part is configured to receive a pre-latched discharge command signal and cause the drive circuit part to operate.

根据本发明的第十方面,提供如第四方面的电动车辆逆变器设备,其中According to a tenth aspect of the present invention, there is provided the electric vehicle inverter device of the fourth aspect, wherein

所述栅极电源电路部件被构造为相互串联地连接的放电重启晶体管和放电重启电阻器被并联地连接至彼此并联地连接的所述齐纳二极管和电解电容器;并且The gate power supply circuit part is configured such that a discharge restart transistor and a discharge restart resistor connected in series to each other are connected in parallel to the Zener diode and an electrolytic capacitor connected in parallel to each other; and

当就在完成放电操作时接收来自于所述车辆控制控制器的重启命令部件的放电重启信号时,所述栅极电源电路部件导通所述放电重启晶体管并且放电被充电在所述电解电容器中的电荷。When receiving a discharge restart signal from a restart command part of the vehicle control controller upon completion of a discharge operation, the gate power supply circuit part turns on the discharge restart transistor and discharge is charged in the electrolytic capacitor charge.

根据本发明的第十一方面,提供了如第二方面的电动车辆逆变器设备,其中According to an eleventh aspect of the present invention, there is provided the electric vehicle inverter device as in the second aspect, wherein

所述放电电路部件的功率半导体元件被替换为放电继电器;The power semiconductor elements of the discharge circuit part are replaced by discharge relays;

通过所述驱动电路部件励磁所述放电继电器的励磁绕组;exciting the field winding of the discharge relay through the drive circuit part;

所述放电继电器的接触中的一个被连接至所述放电电阻器;并且one of the contacts of the discharge relay is connected to the discharge resistor; and

所述放电继电器的另一个接触被连接至所述放电电流检测电阻器。The other contact of the discharge relay is connected to the discharge current sense resistor.

根据本发明的第十二方面,提供了用于电动车辆逆变器设备的保护方法,According to a twelfth aspect of the present invention, a protection method for an electric vehicle inverter device is provided,

所述电动车辆逆变器设备包括:The electric vehicle inverter device includes:

逆变器部件,所述逆变器部件被构造为驱动被机械地连接至电动车辆的车辆驱动部件的AC电动机;an inverter component configured to drive an AC electric motor mechanically connected to a vehicle drive component of the electric vehicle;

转换器部件,所述转换器部件被构造为将通过电动车辆的引擎驱动力生成电功率的AC发电机生成的电功率转换为预定的电压范围内的直流电压;a converter part configured to convert electric power generated by an AC generator generating electric power by an engine driving force of the electric vehicle into a direct current voltage within a predetermined voltage range;

逆变器控制器,所述逆变器控制器被构造为控制所述逆变器部件和所述转换器部件;an inverter controller configured to control the inverter component and the converter component;

主电路电容器,所述主电路电容器被连接在所述逆变器与所述转换器的DC总线之间;以及a main circuit capacitor connected between the inverter and the DC bus of the converter; and

强制放电电路部件,所述强制放电电路部件被构造为响应于放电命令信号放电被充电在所述主电路电容器中的电荷,a forced discharge circuit part configured to discharge the charge charged in the main circuit capacitor in response to a discharge command signal,

从高压电池单元提供用于所述逆变器部件的直流电源,所述高压电池单元包括逆变器主电路连接开关、高压电池以及涌入电流抑制电路,所述涌入电流抑制电路被构造为当所述逆变器主电路连接开关被接通时抑制来自于高压电池的涌入电流并且被连接至DC总线,DC power for the inverter part is supplied from a high-voltage battery unit comprising an inverter main circuit connection switch, a high-voltage battery, and an inrush current suppression circuit configured to suppressing inrush current from a high voltage battery and connected to a DC bus when the inverter main circuit connection switch is turned on,

从低压电池单元提供控制电源,所述低压电池单元包括低压电池和开关,所述开关被构造为断开并且闭合所述低压电池,providing control power from a low voltage battery unit comprising a low voltage battery and a switch configured to open and close the low voltage battery,

所述电动车辆逆变器设备接收来自于车辆控制控制器的控制信号以及来自于碰撞检测器的控制信号并且根据上述信号对电动车辆逆变器设备进行控制,所述车辆控制控制器被构造为监督地控制电动车辆,并且所述碰撞检测器被连接在所述车辆控制控制器和所述低压电池之间并且包括开关,所述开关被构造为当检测到由于电动车辆的碰撞导致的冲击时进入断开状态,The electric vehicle inverter device receives a control signal from a vehicle control controller and a control signal from a collision detector and controls the electric vehicle inverter device according to the above signals, and the vehicle control controller is configured to an electric vehicle is supervisedly controlled, and the crash detector is connected between the vehicle control controller and the low voltage battery and includes a switch configured to when an impact due to a collision of the electric vehicle is detected into the disconnected state,

所述保护方法包括:The protection methods include:

通过所述车辆控制控制器检测表示当通过电动车辆的碰撞操作碰撞检测器时碰撞检测器的开关被断开的断开信号;detecting, by the vehicle control controller, an off signal indicating that a switch of the collision detector is turned off when the collision detector is operated by a collision of the electric vehicle;

通过所述车辆控制控制器使所述高压电池单元的所述逆变器主电路连接开关进入断开状态,bringing the inverter main circuit connection switch of the high voltage battery unit into an off state by the vehicle control controller,

通过所述车辆控制控制器中断对DC总线部件的高压电池的直流电源的供给,interrupting the supply of DC power to the high voltage battery of the DC bus component by the vehicle control controller,

通过所述车辆控制控制器将放电命令信号输出至所述强制放电电路部件;以及outputting a discharge command signal to the forced discharge circuit part through the vehicle control controller; and

通过所述强制放电电路部件放电被充电在所述主电路电容器中的电荷。The charge charged in the main circuit capacitor is discharged by the forced discharge circuit part.

根据本发明的第十三方面,提供了如第十二方面的用于电动车辆逆变器设备的保护方法,其中,According to the thirteenth aspect of the present invention, there is provided the protection method for the inverter device of the electric vehicle according to the twelfth aspect, wherein,

所述强制放电电路部件包括:The forced discharge circuit components include:

放电电路部件,所述放电电路部件包括被串联地连接在所述DC总线之间的放电电阻器、功率半导体元件、以及放电电流检测电阻器;a discharge circuit part including a discharge resistor, a power semiconductor element, and a discharge current detection resistor connected in series between the DC buses;

放电电阻器过热保护电路部件,所述放电电阻器过热保护电路部件被构造为通过接收由于流过所述放电电流检测电阻器的放电电流导致的压降生成的电压作为到其的输入而进行操作;a discharge resistor overheat protection circuit part configured to operate by receiving, as an input thereto, a voltage generated by a voltage drop due to a discharge current flowing through the discharge current detection resistor ;

栅极电源电路部件,所述栅极电源电路部件被构造为从所述DC总线之间的直流电压生成用于所述功率半导体元件的驱动电源;a gate power circuit part configured to generate drive power for the power semiconductor elements from a DC voltage between the DC buses;

驱动电路部件,所述驱动电路部件被构造为将驱动信号给予所述功率半导体元件的控制端子;以及a driving circuit part configured to give a driving signal to a control terminal of the power semiconductor element; and

放电信号锁存电路部件,所述放电信号锁存电路部件被构造为接收根据来自于所述碰撞检测器的检测信号的放电命令信号并且将驱动信号给予所述驱动电路部件;a discharge signal latch circuit part configured to receive a discharge command signal according to a detection signal from the collision detector and to give a drive signal to the drive circuit part;

当接收根据来自于所述碰撞检测器的检测信号的放电命令信号时,所述放电信号锁存电路部件保持到所述驱动电路部件的导通信号从而所述放电电路部件能够继续保持放电操作导通状态;并且When receiving a discharge command signal based on a detection signal from the collision detector, the discharge signal latch circuit part maintains the conduction signal to the drive circuit part so that the discharge circuit part can continue to maintain the discharge operation conduction status; and

当所述主电路电容器的端子电压通过放电操作被降低到接近于0伏特的值时,并且当所述栅极电源电路部件的电源电压被降低到等于或者低于所述驱动电路部件的可操作电压的值时,所述放电操作导通状态被取消。When the terminal voltage of the main circuit capacitor is lowered to a value close to 0 volts by a discharging operation, and when the power supply voltage of the gate power supply circuit part is lowered to be equal to or lower than the operable voltage value, the discharge operation conduction state is canceled.

根据本发明的第十四方面,提供了如第十二方面的用于电动车辆逆变器设备的保护方法,其中According to the fourteenth aspect of the present invention, there is provided the protection method for the inverter device of the electric vehicle as in the twelfth aspect, wherein

所述强制放电电路部件包括:The forced discharge circuit components include:

DC-DC转换器,所述DC-DC转换器被构造为将从所述低压电池提供的电池电压转换为控制电路部件的操作电压;a DC-DC converter configured to convert a battery voltage supplied from the low-voltage battery into an operating voltage of a control circuit component;

存储部件,所述存储部件被构造为存储所述DC-DC转换器的输出电压;a storage unit configured to store an output voltage of the DC-DC converter;

放电操作命令输入部件,所述放电操作命令输入部件被构造为输入来自于所述碰撞检测器的检测信号和来自于所述车辆控制控制器的放电信号;a discharge operation command input part configured to input a detection signal from the collision detector and a discharge signal from the vehicle control controller;

放电命令延迟部件,所述放电命令延迟部件被构造为防止被输入到所述放电操作命令输入部件的信号的切跳的发生;a discharge command delay part configured to prevent occurrence of skipping of a signal input to the discharge operation command input part;

放电信号绝缘部件,所述放电信号绝缘部件被构造为电气地绝缘来自于所述放电命令延迟部件的输出信号;并且a discharge signal isolation part configured to electrically insulate an output signal from the discharge command delay part; and

所述存储部件具有充分的存储容量使得在电动车辆的碰撞时能够稍微地延迟由于从所述低压电池单元提供的电压的中断导致的压降,并且能够保持在控制电路部件可操作的电源电压直到所述强制放电电路部件的放电操作被启动。The storage part has a sufficient storage capacity to slightly delay a voltage drop due to an interruption of voltage supplied from the low-voltage battery unit at the time of a collision of the electric vehicle, and to maintain a power supply voltage at which the control circuit part is operable until A discharge operation of the forced discharge circuit part is started.

根据本发明的第十五方面,提供如第十三方面中的用于电动车辆逆变器设备的保护方法,其中According to a fifteenth aspect of the present invention, there is provided a protection method for an electric vehicle inverter device as in the thirteenth aspect, wherein

所述栅极电源电路部件包括在DC总线之间经由二极管串联地连接的电阻器和齐纳二极管,以及相互串联地连接并且分别并行地连接至所述电阻器和所述齐纳二极管的电解电容器;并且The gate power supply circuit part includes a resistor and a Zener diode connected in series between DC buses via a diode, and electrolytic capacitors connected in series with each other and in parallel to the resistor and the Zener diode, respectively. ;and

所述齐纳二极管的齐纳电压高于所述驱动电路部件的可操作电压,并且等于并且低于所述功率半导体元件的容许栅极电压。A Zener voltage of the Zener diode is higher than an operable voltage of the driving circuit part and equal to and lower than an allowable gate voltage of the power semiconductor element.

根据本发明的第十六方面,提供如第十四方面中的用于电动车辆逆变器设备的保护方法,其中According to a sixteenth aspect of the present invention, there is provided a protection method for an electric vehicle inverter device as in the fourteenth aspect, wherein

所述强制放电电路部件被构造为放电命令锁存部件被提供在所述放电命令延迟部件和所述放电信号绝缘部件之间并且保持放电命令信号;并且The forced discharge circuit part is configured such that a discharge command latch part is provided between the discharge command delay part and the discharge signal isolation part and holds a discharge command signal; and

所述强制放电电路部件将放电状态监测信号输出至车辆控制控制器。The forced discharge circuit part outputs a discharge state monitoring signal to a vehicle control controller.

根据本发明的第十七方面,提供如第十五方面中的用于电动车辆逆变器设备的保护方法,其中According to a seventeenth aspect of the present invention, there is provided the protection method for an electric vehicle inverter device as in the fifteenth aspect, wherein

所述栅极电源电路部件被构造为相互串联地连接的放电重启晶体管和放电重启电阻器被并联地连接至彼此并联地连接的所述齐纳二极管和电解电容器;并且The gate power supply circuit part is configured such that a discharge restart transistor and a discharge restart resistor connected in series to each other are connected in parallel to the Zener diode and an electrolytic capacitor connected in parallel to each other; and

当就在完成放电操作时接收来自于所述车辆控制控制器的重启命令部件的放电重启信号时,所述栅极电源电路部件导通所述放电重启晶体管并且放电被充电在所述电解电容器中的电荷。When receiving a discharge restart signal from a restart command part of the vehicle control controller upon completion of a discharge operation, the gate power supply circuit part turns on the discharge restart transistor and discharge is charged in the electrolytic capacitor charge.

<本发明的第一和第十二方面的优点><Advantages of the first and twelfth aspects of the present invention>

根据本发明的第一和第十二方面,当电动车辆的碰撞事故等等发生时,根据从碰撞检测器输出的碰撞检测信号立即释放高压电池单元的逆变器主电路连接开关。同时,碰撞检测信号作为放电命令信号被输入至逆变器设备的强制放电电路部件。然后,通过放电电阻器放电被充电有电荷的主电路电容器上生成的高压。因此,本发明具有下述优点,能够防止发生由于损坏的电源线或者车辆主体与高压部件的接触导致的短路电流引起的高压电池的过热,并且能够提供改进了安全的电动车辆逆变器设备。According to the first and twelfth aspects of the present invention, when a collision accident or the like of the electric vehicle occurs, the inverter main circuit connection switch of the high voltage battery unit is released immediately based on the collision detection signal output from the collision detector. At the same time, the collision detection signal is input as a discharge command signal to the forced discharge circuit part of the inverter device. Then, the high voltage generated on the charged main circuit capacitor is discharged through the discharge resistor. Accordingly, the present invention has the advantage of being able to prevent overheating of a high voltage battery caused by a short circuit current due to a damaged power line or contact of a vehicle body with a high voltage component and to provide an electric vehicle inverter device with improved safety.

<本发明的第二和第十三方面的优点><Advantages of the Second and Thirteenth Aspects of the Invention>

根据本发明的第二和第十三方面,通过放电信号锁存电路部件锁存在发生车辆的碰撞时生成的放电命令信号。因此,即使当从低压电池到逆变器设备的电源被中断使得放电命令信号无法使用时,根据从主电路电容器提供的高压生成强制放电电路部件的操作功率。因此,设备能够继续执行放电操作直到主电路电容器的端子电压被降低到低电压。According to the second and thirteenth aspects of the present invention, the discharge command signal generated when the collision of the vehicle occurs is latched by the discharge signal latch circuit part. Therefore, even when the power supply from the low voltage battery to the inverter device is interrupted so that the discharge command signal cannot be used, the operating power of the forced discharge circuit part is generated from the high voltage supplied from the main circuit capacitor. Therefore, the device can continue to perform the discharge operation until the terminal voltage of the main circuit capacitor is lowered to a low voltage.

<本发明的第三和第十四方面的优点><Advantages of the Third and Fourteenth Aspects of the Invention>

根据本发明的第三和第十四方面,能够防止发生放电命令信号的切跳。即使当低电压电池被中断时,能够在一段时间内防止电压下降。因此,能够启动强制放电电路部件的放电操作。According to the third and fourteenth aspects of the present invention, it is possible to prevent the skipping of the discharge command signal from occurring. Even when a low-voltage battery is interrupted, it is possible to prevent a voltage drop for a period of time. Therefore, it is possible to start the discharge operation of the forced discharge circuit part.

<本发明的第四和第十五方面的优点><Advantages of the Fourth and Fifteenth Aspects of the Invention>

根据本发明的第四和第十五方面,在强制放电电路部件的栅极电源电路部件中提供了启动改进电解电容器。因此,能够在其中立刻存储栅极电源电压。因此,即使当与设备的启动同时输入放电命令信号时,能够进行放电操作。According to the fourth and fifteenth aspects of the present invention, a start-up improving electrolytic capacitor is provided in the gate power supply circuit part of the forced discharge circuit part. Therefore, the gate power supply voltage can be stored therein at once. Therefore, even when a discharge command signal is input simultaneously with the activation of the device, a discharge operation can be performed.

<本发明的第五方面的优点><Advantages of the fifth aspect of the present invention>

根据本发明的第五方面,能够利用诸如MOSFET或者绝缘栅双极晶体管(IGBT)的多种类型的功率半导体元件。尤其地,当使用栅极驱动型功率半导体元件时,仅当栅极驱动型功率半导体元件被导通时消耗栅极电流。因此,能够最小化栅极驱动电源。能够增强设计的灵活性。According to the fifth aspect of the present invention, various types of power semiconductor elements such as MOSFETs or insulated gate bipolar transistors (IGBTs) can be utilized. In particular, when a gate drive type power semiconductor element is used, gate current is consumed only when the gate drive type power semiconductor element is turned on. Therefore, gate drive power can be minimized. Design flexibility can be enhanced.

<本发明的第六方面的优点><Advantages of the sixth aspect of the present invention>

根据本发明的第六方面,通过放电信号锁存电路部件锁存放电命令信号。因此,即使当从低压电池到逆变器设备的电源被中断使得放电命令信号“失灵(down)”时,设备能够继续将栅极电压施加给放电电路部件的功率半导体元件。因此,设备能够维持放电操作直到栅极电源电路部件的输出电压被降低到等于或者小于预定电压的值。According to the sixth aspect of the present invention, the power storage command signal is latched by the discharge signal latch circuit part. Therefore, even when the power supply from the low-voltage battery to the inverter device is interrupted so that the discharge command signal is "down", the device can continue to apply the gate voltage to the power semiconductor elements of the discharge circuit part. Therefore, the device can maintain the discharge operation until the output voltage of the gate power supply circuit part is lowered to a value equal to or lower than the predetermined voltage.

<本发明的第七方面的优点><Advantages of the seventh aspect of the present invention>

根据本发明的第七方面,即使在放电电阻器达到过热条件同时逆变器设备保持其中高压被施加给其主电路电容器的状态的情况下,设备执行根据放电电流检测信号截止放电电路部件的功率MOSFET的栅极电压的操作。因此,设备停止放电操作。另外,即使当不存在放电电流检测信号时,通过保持放电操作停止状态同时继续将高压施加给主电路电容器能够防止放电电阻器过热。According to the seventh aspect of the present invention, even in the case where the discharge resistor reaches an overheating condition while the inverter device maintains a state in which a high voltage is applied to its main circuit capacitor, the device performs power cutoff of the discharge circuit part according to the discharge current detection signal. MOSFET gate voltage operation. Therefore, the device stops the discharge operation. In addition, even when there is no discharge current detection signal, overheating of the discharge resistor can be prevented by maintaining the discharge operation stop state while continuing to apply high voltage to the main circuit capacitor.

<本发明的第八、第九以及第十六方面的优点><Advantages of the Eighth, Ninth and Sixteenth Aspects of the Present Invention>

根据本发明的第八、第九以及第十六方面,在高压端子侧强制放电电路部件中没有提供放电信号锁存电路部件,而放电信号锁存电路部件被提供在低压端子侧。另外,放电命令锁存信号作为放电状态信号被输出至车辆控制控制器。然后,监测放电操作。因此,在放电操作期间通过控制高压使得没有被施加给逆变器设备能够防止放电电阻器过热。According to the eighth, ninth and sixteenth aspects of the present invention, no discharge signal latch circuit part is provided in the high voltage terminal side forced discharge circuit part, and the discharge signal latch circuit part is provided on the low voltage terminal side. In addition, the discharge command latch signal is output to the vehicle control controller as a discharge state signal. Then, the discharge operation is monitored. Therefore, overheating of the discharge resistor can be prevented by controlling the high voltage so as not to be applied to the inverter device during the discharge operation.

通过碰撞检测器的操作中断来自于低压电池的电源。因此,通过存储部件在一段时间内保持控制电源电压。然而,当控制电源电压被降低到接近于0V的值时,自动地取消放电命令锁存信号。因此,能够停止放电操作。Power from the low voltage battery is interrupted by the operation of the crash detector. Therefore, the control supply voltage is maintained for a period of time by the storage means. However, when the control power supply voltage is lowered to a value close to 0V, the discharge command latch signal is automatically canceled. Therefore, the discharging operation can be stopped.

<本发明的第十和第十七方面的优点><Advantages of the Tenth and Seventeenth Aspects of the Invention>

根据本发明的第十和第十七方面,将放电重启信号从车辆控制控制器的重启命令部件输出至强制放电电路部件的放电重启晶体管。因此,栅极电源电路部件的输出电压被降低到0V。因此,即使当在完成放电操作时将高压再次施加给强制放电电路部件时,能够在短时间内执行重启操作。According to the tenth and seventeenth aspects of the invention, the discharge restart signal is output from the restart command section of the vehicle control controller to the discharge restart transistor of the forced discharge circuit section. Therefore, the output voltage of the gate power supply circuit part is lowered to 0V. Therefore, even when a high voltage is applied again to the forced discharge circuit part upon completion of the discharge operation, the restart operation can be performed in a short time.

<本发明的第十一方面的优点><Advantages of the eleventh aspect of the present invention>

根据本发明的第十一方面,继电器能够被用作放电电路部件的功率半导体元件的替代。当噪声等等损坏栅极部件时,在功率半导体元件中可能出现故障使得电路进入恒定导电状态。另一方面,继电器具有下述结构,其中,相互绝缘励磁绕组和接触点部件,从而继电器抵抗噪声的影响。因此,不用担心电路可能进入其中使用功率半导体元件的电路可能进入的故障模式。According to the eleventh aspect of the present invention, the relay can be used as a substitute for the power semiconductor element of the discharge circuit part. When noise or the like damages the gate member, a malfunction may occur in the power semiconductor element so that the circuit enters a constant conduction state. On the other hand, the relay has a structure in which the field winding and the contact point parts are insulated from each other so that the relay resists the influence of noise. Therefore, there is no concern that the circuit may enter a failure mode that a circuit in which a power semiconductor element is used may enter.

附图说明 Description of drawings

基于下面的附图将会详细地描述本发明的实施例,其中:Embodiments of the present invention will be described in detail based on the following drawings, in which:

图1是示出根据本发明的实施例1的电动车辆逆变器设备和外围设备的整体构造的图;1 is a diagram showing the overall configuration of an electric vehicle inverter device and peripheral devices according to Embodiment 1 of the present invention;

图2是示出根据本发明的实施例2的强制放电电路部件22b的详细情况的图;FIG. 2 is a diagram showing details of a forced discharge circuit part 22b according to Embodiment 2 of the present invention;

图3A至图3C是示出根据本发明的实施例2的强制放电电路部件22b的放电操作的波形图;3A to 3C are waveform diagrams showing a discharge operation of the forced discharge circuit part 22b according to Embodiment 2 of the present invention;

图4是示出根据本发明的实施例2的到强制放电电路部件22b的栅极电源电路部件30a的启动电流路径的图;4 is a diagram showing a start-up current path to the gate power supply circuit part 30a of the forced discharge circuit part 22b according to Embodiment 2 of the present invention;

图5A至图5D是示出在存在图4中所示的启动改进电解电容器32以及不存在启动改进电解电容器32的情况下的电源电路部件30a的输出电压的上升特性的波形图;5A to 5D are waveform diagrams showing rise characteristics of the output voltage of the power supply circuit part 30a in the presence of the start-up improving electrolytic capacitor 32 shown in FIG. 4 and in the absence of the start-up improving electrolytic capacitor 32;

图6是示出保护根据本发明的实施例2的强制放电电路部件22b的放电电阻器39避免过热的操作的图;6 is a diagram showing the operation of protecting the discharge resistor 39 of the forced discharge circuit part 22b according to Embodiment 2 of the present invention from overheating;

图7A至图7E是示出图6中的放电电阻器过热保护电路部件28a的操作的波形图,其分别示出电路部件28a的组件处的信号的波形;7A to 7E are waveform diagrams illustrating the operation of the discharge resistor overheating protection circuit part 28a in FIG. 6, which respectively show waveforms of signals at components of the circuit part 28a;

图8是示出根据本发明的实施例3的强制放电电路部件22c的详细情况的图;FIG. 8 is a diagram showing details of a forced discharge circuit part 22c according to Embodiment 3 of the present invention;

图9是示出根据本发明的实施例4的强制放电电路部件22d的详细情况的图;FIG. 9 is a diagram showing details of a forced discharge circuit part 22d according to Embodiment 4 of the present invention;

图10是示出根据本发明的实施例5的强制放电电路部件22e的详细情况的图;FIG. 10 is a diagram showing details of a forced discharge circuit part 22e according to Embodiment 5 of the present invention;

图11是示出根据传统的示例1的电动机驱动设备中的放电电路的图;11 is a diagram showing a discharge circuit in a motor drive device according to Conventional Example 1;

图12是示出根据传统的示例2的电源电路中的放电电路的图;12 is a diagram showing a discharge circuit in a power supply circuit according to Conventional Example 2;

图13是示出在图12中所示的输入电压检测电路ID的电路图;FIG. 13 is a circuit diagram showing the input voltage detection circuit ID shown in FIG. 12;

图14是示出被提供有从高压生成栅极驱动电压的栅极电源电路部件30的根据传统示例3的放电电路的电路图;以及14 is a circuit diagram showing a discharge circuit according to Conventional Example 3 supplied with a gate power supply circuit part 30 generating a gate drive voltage from a high voltage; and

图15是示出通过将放电电阻器过热保护电路部件28添加至图14中所示的放电电路而构造的根据传统示例4的放电电路的图。FIG. 15 is a diagram showing a discharge circuit according to Conventional Example 4 constructed by adding a discharge resistor overheat protection circuit part 28 to the discharge circuit shown in FIG. 14 .

具体实施方式 Detailed ways

在下文中,参考图1至图10描述本发明的实施例。Hereinafter, embodiments of the present invention are described with reference to FIGS. 1 to 10 .

尽管被安装在电动车辆中的实际逆变器设备集成各种功能和装置,但是通过在附图中仅示出与本发明有关的功能和装置来描述实施例。通过使用相同的附图标记指定相同的功能或者装置省略装置和功能的重复的描述。Although an actual inverter device installed in an electric vehicle integrates various functions and devices, the embodiments are described by showing only functions and devices related to the present invention in the drawings. Duplicated descriptions of devices and functions are omitted by designating the same functions or devices using the same reference numerals.

[实施例1][Example 1]

图1示出根据本发明的实施例1的电动车辆逆变器设备和外围设备的整体构造的图。FIG. 1 is a diagram showing the overall configuration of an electric vehicle inverter device and peripheral devices according to Embodiment 1 of the present invention.

<实施例1的电路构造><Circuit Configuration of Embodiment 1>

参考图1,附图标记1指定诸如轮胎和车轮的车辆驱动部件。附图标记2表示电动车辆电源生成引擎部件。附图标记3指定被机械地连接至车辆驱动部件1的三相AC电动机。附图标记4表示用于通过引擎的驱动力生成电功率的三相AC发电机。附图标记100指定逆变器设备。附图标记8表示车载高压电池单元。附图标记15指定用于监督地控制整个车辆的车辆控制控制器。附图标记16表示碰撞检测器,当检测到由电动车辆之间的碰撞引起的冲击时该碰撞检测器进行操作从而断开内部开关。附图标记17指定低压电池单元。Referring to FIG. 1 , reference numeral 1 designates vehicle drive components such as tires and wheels. Reference numeral 2 denotes an electric vehicle power generation engine part. Reference numeral 3 designates a three-phase AC electric motor mechanically connected to the vehicle drive part 1 . Reference numeral 4 denotes a three-phase AC generator for generating electric power by the driving force of the engine. Reference numeral 100 designates an inverter device. Reference numeral 8 denotes an on-vehicle high-voltage battery unit. Reference numeral 15 designates a vehicle control controller for supervisory control of the entire vehicle. Reference numeral 16 denotes a collision detector which operates to turn off an internal switch when an impact caused by a collision between electric vehicles is detected. Reference numeral 17 designates a low-voltage battery unit.

《逆变器设备100的构造》"Structure of Inverter Device 100"

逆变器设备100包括逆变器部件5,该逆变器部件5用于驱动三相AC电动机3;转换器部件6,该转换器部件6用于将由三相AC发电机生成的电功率转换为预定的电压范围内的DC电压;主电路电容器7,该主电路电容器7被连接在逆变器部件5与转换器部件6的公共DC总线之间;电压检测器13,该电压检测器13用于检测主电路DC电压;逆变器控制器14,该逆变器控制器14用于控制逆变器部件5和逆变器部件6;以及强制放电电路部件22b,该强制放电电路部件22b用于根据由放电信号20或者21表示的命令放电存储在被充电到高压的主电路电容器7中的电荷。The inverter device 100 includes an inverter section 5 for driving the three-phase AC motor 3; a converter section 6 for converting electric power generated by the three-phase AC generator into a DC voltage within a predetermined voltage range; a main circuit capacitor 7 connected between the inverter part 5 and the common DC bus of the converter part 6; a voltage detector 13 used for For detecting the DC voltage of the main circuit; the inverter controller 14, the inverter controller 14 is used to control the inverter part 5 and the inverter part 6; and the forced discharge circuit part 22b, the forced discharge circuit part 22b is used The charge stored in the main circuit capacitor 7 charged to a high voltage is discharged according to a command indicated by a discharge signal 20 or 21 .

逆变器部件5是已知的三相逆变器电路,该三相逆变器电路包括六个IGBT和分别反向(inversely)并联地连接至IGBT的续流二极管。The inverter section 5 is a known three-phase inverter circuit including six IGBTs and freewheeling diodes respectively connected inversely in parallel to the IGBTs.

转换器部件6由下述电路构成,该电路包括六个IGBT和分别反向并联地连接至IGBT的续流二极管。The converter section 6 is constituted by a circuit including six IGBTs and freewheeling diodes respectively connected to the IGBTs in antiparallel.

《车载高压电池单元8的构造》"Structure of Vehicle High Voltage Battery Unit 8"

附图标记8指定车载高压电池单元,该车载高压电池单元包括高压电池涌入电路9、逆变器主电路连接开关10、涌入电流抑制电阻器11、以及诸如锂电池的车载高压电池12。Reference numeral 8 designates an on-vehicle high-voltage battery unit including a high-voltage battery inrush circuit 9 , an inverter main circuit connection switch 10 , an inrush current suppression resistor 11 , and an on-vehicle high-voltage battery 12 such as a lithium battery.

《车辆控制控制器15的功能》"Functions of the Vehicle Control Controller 15"

车辆控制控制器15控制逆变器设备的逆变器控制器14、强制放电电路部件22b、高压电池单元8、其它的外围设备等等。从车辆控制控制器15输出的信号20表示与从碰撞检测器16输出的检测信号同步的放电信号(FD1)。信号21表示从车辆控制控制器15输出的放电信号(FD2)。The vehicle control controller 15 controls the inverter controller 14 of the inverter device, the forced discharge circuit part 22b, the high-voltage battery unit 8, other peripheral devices, and the like. A signal 20 output from the vehicle control controller 15 represents a discharge signal ( FD1 ) synchronized with a detection signal output from the collision detector 16 . A signal 21 represents a discharge signal ( FD2 ) output from the vehicle control controller 15 .

《低压电池单元17的构造》"Structure of Low-Voltage Battery Unit 17"

低压电池单元17包括低压电池18和通过车辆控制控制器15执行其导通/截止控制的开关19。The low-voltage battery unit 17 includes a low-voltage battery 18 and a switch 19 whose on/off control is performed by the vehicle control controller 15 .

接下来,在下文中参考图1描述实施例1的操作。Next, the operation of Embodiment 1 is described hereinafter with reference to FIG. 1 .

<碰撞时的问题1:可能生成高压电池12的短路电流><Problem 1 at the time of collision: Short-circuit current of high-voltage battery 12 may be generated>

在由于某些事故等等导致电动车辆相互碰撞的情况下,当由于例如车辆主体碰撞和接触的冲击导致逆变器设备100的高压部件连接电缆损坏,短路电流流过高压电池12。因此,担心高压电池12可能过热。In a case where electric vehicles collide with each other due to some accident or the like, short-circuit current flows through the high-voltage battery 12 when the high-voltage component connection cables of the inverter device 100 are damaged due to impact such as vehicle body collision and contact. Therefore, there is a concern that the high-voltage battery 12 may overheat.

<碰撞时的问题2:可能生成主电路电容器7的短路电流><Problem 2 at the time of collision: Short-circuit current of main circuit capacitor 7 may be generated>

担心在损坏的电缆和车辆主体之间的接触可能短路逆变器设备100的主电路电容器7的两个端子,并且由于高压导致的短路电流可能流过。There is a concern that contact between the damaged cable and the vehicle body may short both terminals of the main circuit capacitor 7 of the inverter device 100 and a short circuit current due to high voltage may flow.

<用于解决问题1的操作><Operation for solving problem 1>

当碰撞检测器16检测到由电动车辆的碰撞引起的冲击时,碰撞检测器16的内部开关被断开。碰撞检测器16被连接在低压电池单元17和车辆控制控制器15之间。因此,当碰撞检测器16的开关被断开时,来自于低压电池18的电压没有被供给车辆控制控制器15。响应于电压截止信号,高压电池单元8的逆变器主电路连接开关10被同时断开,从而高压电池单元8与逆变器设备100的主电路部件之间的连接被强制性地断开。通过执行此操作能够避免由于短路电流导致过热高压电池12的风险。When the collision detector 16 detects an impact caused by a collision of the electric vehicle, an internal switch of the collision detector 16 is turned off. The collision detector 16 is connected between the low-voltage battery unit 17 and the vehicle control controller 15 . Therefore, when the switch of the collision detector 16 is turned off, the voltage from the low-voltage battery 18 is not supplied to the vehicle control controller 15 . In response to the voltage cutoff signal, the inverter main circuit connection switches 10 of the high voltage battery unit 8 are simultaneously turned off, so that the connection between the high voltage battery unit 8 and the main circuit components of the inverter device 100 is forcibly disconnected. By doing this it is possible to avoid the risk of overheating the high voltage battery 12 due to the short circuit current.

<用于解决问题2的操作1><Operation 1 for solving problem 2>

使用在断开状态下进行操作的放电信号(FD1)20,或者从车辆控制控制器15输出的放电信号(FD2)21,使强制放电电路部件22b执行放电操作。因此,逆变器设备100的主电路电容器7上生成的高压被强制地放电。因此,能够防止由于损坏的电缆到车辆主体的接触导致生成短路电流等等。Using the discharge signal ( FD1 ) 20 operating in the OFF state, or the discharge signal ( FD2 ) 21 output from the vehicle control controller 15 , the forced discharge circuit part 22 b is made to perform a discharge operation. Therefore, the high voltage generated on the main circuit capacitor 7 of the inverter device 100 is forcibly discharged. Therefore, it is possible to prevent short-circuit current and the like from being generated due to contact of the damaged cable to the vehicle body.

<用于解决问题2的操作2><Operation 2 for solving problem 2>

当电动车辆的车辆驱动键的状态被从导通装置变成截止状态时,低压电池单元17的开关19被断开。因此,从前述的碰撞检测器16断开低压电池18。因此,设备能够获得与在碰撞检测器16进行操作的前述情况下相类似的优点。因此,通过强制放电电路部件22b能够放电逆变器设备100的主电路电容器7上生成的高压。When the state of the vehicle drive key of the electric vehicle is changed from the conduction device to the off state, the switch 19 of the low voltage battery unit 17 is turned off. Accordingly, the low voltage battery 18 is disconnected from the aforementioned crash detector 16 . Therefore, the apparatus can obtain advantages similar to those in the foregoing case where the collision detector 16 operates. Therefore, the high voltage generated on the main circuit capacitor 7 of the inverter device 100 can be discharged by the forced discharge circuit part 22b.

[实施例2][Example 2]

<实施例2的电路构造><Circuit Configuration of Embodiment 2>

图2是示出根据本发明的实施例2的图1中示出的强制放电电路部件22b的详细情况的图。如图2中所示,根据实施例2的电路包括碰撞检测器16、车辆控制控制器15、强制放电电路部件22b、以及逆变器设备100的主电路电容器7。在“断开”状态下被连接至低压电池单元17的碰撞检测器16(参见图1)经由车辆控制控制器15将放电信号(FD1)20输出至强制放电电路部件22b作为碰撞检测信号。FIG. 2 is a diagram showing details of the forced discharge circuit part 22b shown in FIG. 1 according to Embodiment 2 of the present invention. As shown in FIG. 2 , the circuit according to Embodiment 2 includes a collision detector 16 , a vehicle control controller 15 , a forced discharge circuit part 22 b , and a main circuit capacitor 7 of an inverter device 100 . Collision detector 16 (see FIG. 1 ) connected to low-voltage battery unit 17 in the "OFF" state outputs discharge signal (FD1) 20 to forced discharge circuit part 22b via vehicle control controller 15 as a collision detection signal.

另外,车辆控制控制器15将发射极接地晶体管52的集电极连接至放电信号(FD1)20。车辆控制控制器15响应于发射极接地晶体管52的导通操作将放电信号(FD2)21输出至强制放电电路部件22b。强制放电电路部件22b被连接至主电路电容器7的端子P和N并且包括功能块部件221和由功能块部件221控制的强制放电电路222。In addition, the vehicle control controller 15 connects the collector of the emitter-grounded transistor 52 to the discharge signal ( FD1 ) 20 . The vehicle control controller 15 outputs the discharge signal ( FD2 ) 21 to the forced discharge circuit part 22 b in response to the conduction operation of the emitter grounded transistor 52 . The forced discharge circuit part 22b is connected to the terminals P and N of the main circuit capacitor 7 and includes a functional block part 221 and a forced discharge circuit 222 controlled by the functional block part 221 .

首先,在下文中参考图2描述功能块部件221。First, the function block part 221 is described below with reference to FIG. 2 .

<功能块部件221的电路构造><Circuit Configuration of Functional Block Part 221 >

功能块部件221包括低压电池18、12V-5V电压转换DC-DC转换器37、+5V存储部件23、用于接收并且输入前述的放电信号(FD1)20和放电信号(FD2)21的放电操作命令输入部件24、放电命令延迟部件25、以及放电信号绝缘部件26。The functional block part 221 includes a low-voltage battery 18, a 12V-5V voltage conversion DC-DC converter 37, a +5V storage part 23, a discharge operation for receiving and inputting the aforementioned discharge signal (FD1) 20 and discharge signal (FD2) 21 A command input part 24 , a discharge command delay part 25 , and a discharge signal insulation part 26 .

接下来,在下文中描述强制放电电路222。Next, the forced discharge circuit 222 is described below.

<强制放电电路222的电路构造><Circuit Configuration of Forced Discharge Circuit 222 >

强制放电电路222包括放电信号锁存电路部件27、放电电阻器过热保护电路部件28a、PNP晶体管驱动电路部件29、栅极电源电路部件30a、放电电路部件40H、以及用于驱动功率MOSFET 40的驱动电路部件40K。The forced discharge circuit 222 includes a discharge signal latch circuit part 27, a discharge resistor overheating protection circuit part 28a, a PNP transistor drive circuit part 29, a gate power supply circuit part 30a, a discharge circuit part 40H, and a drive for driving the power MOSFET 40 Circuit part 40K.

1)放电信号锁存电路部件27包括连接在一起作为晶闸管的PNP晶体管46a和NPN晶体管47a。1) The discharge signal latch circuit section 27 includes a PNP transistor 46a and an NPN transistor 47a connected together as a thyristor.

2)放电电阻器过热保护电路部件28a包括放电电流检测电阻器51,该放电电流检测电阻器51用于检测放电电流;延迟电阻器50,该延迟电阻器50用于延迟检测到的电压;用于其的检测电压延迟电容器48;电阻器49,该电阻器49用于并联地连接至电容器48;以及组成锁存电路的PNP晶体管46和NPN晶体管47。2) The discharge resistor overheat protection circuit part 28a includes a discharge current detection resistor 51, which is used to detect the discharge current; a delay resistor 50, which is used to delay the detected voltage; A detection voltage delay capacitor 48 therein; a resistor 49 for connecting in parallel to the capacitor 48 ; and a PNP transistor 46 and an NPN transistor 47 constituting a latch circuit.

3)放电电路部件40H包括放电晶体管39和功率MOSFET 40。3) The discharge circuit part 40H includes a discharge transistor 39 and a power MOSFET 40.

4)用于驱动功率MOSFET 40的驱动电路40K包括栅极驱动晶体管41,该栅极驱动晶体管41用于驱动功率MOSFET 40的栅极;功率MOSFET栅极驱动PNP晶体管42;以及电阻器43,该电阻器43还用作功率MOSFET栅极驱动电阻器并且用于当放电电阻器过热保护电路部件28a被驱动时减少涌入电流。4) The drive circuit 40K for driving the power MOSFET 40 includes a gate drive transistor 41, which is used to drive the gate of the power MOSFET 40; a power MOSFET gate drive PNP transistor 42; and a resistor 43, the The resistor 43 is also used as a power MOSFET gate drive resistor and for reducing inrush current when the discharge resistor overheat protection circuit part 28a is driven.

5)PNP晶体管驱动电路部件29包括电阻器44,该电阻器44用于PNP晶体管42的基极;和齐纳二极管45,该齐纳二极管45用作用于PNP晶体管42的基极的基准电源。5) The PNP transistor drive circuit section 29 includes a resistor 44 used for the base of the PNP transistor 42 , and a Zener diode 45 used as a reference power supply for the base of the PNP transistor 42 .

6)栅极电源电路部件30a包括电阻器31,该电阻器31用于当提供电功率时限制电流;齐纳二极管33,该齐纳二极管33用于生成栅极电源电压;电解电容器34,该电解电容器34用作用于存储栅极电源电压的存储部件;以及启动改进电解电容器32,该启动改进电解电容器32能够在启动时快速地执行启动功率的供给。栅极电源电路部件30a从主电路电容器7上生成的高压生成电功率并且将电功率提供给用于功率MOSFET 40的栅极电路部件,并且提供给放电电阻器过热保护电路部件28a。可施加给齐纳二极管33的齐纳电压的电压等于或者高于齐纳二极管45的齐纳电压并且等于或者小于功率MOSFET 40的容许栅极电压。6) The gate power supply circuit part 30a includes a resistor 31 for limiting current when electric power is supplied; a Zener diode 33 for generating a gate power supply voltage; an electrolytic capacitor 34 for electrolytically The capacitor 34 serves as a storage means for storing the gate power supply voltage; and the start-up improving electrolytic capacitor 32 capable of rapidly performing supply of start-up power at start-up. The gate power supply circuit part 30a generates electric power from the high voltage generated on the main circuit capacitor 7 and supplies the electric power to the gate circuit part for the power MOSFET 40, and to the discharge resistor overheat protection circuit part 28a. A voltage that can be applied to the Zener voltage of the Zener diode 33 is equal to or higher than the Zener voltage of the Zener diode 45 and equal to or lower than the allowable gate voltage of the power MOSFET 40.

接下来,在下文中参考图2描述强制放电电路部件22b的强制放电电路222和功能块部件221的放电操作。Next, the discharge operation of the forced discharge circuit 222 and the functional block part 221 of the forced discharge circuit part 22b is described hereinafter with reference to FIG. 2 .

<在碰撞时即使当截止电池单元时也能够在一段时间内进行放电电路的操作><The operation of the discharge circuit can be performed for a period of time even when the battery cell is turned off at the time of collision>

当碰撞检测器16检测到冲击时,低压电池单元17的开关19被断开。与此同时,强制放电电路部件22b的低压电池18被断开。因此,从低压电池18没有提供电功率。对于强制放电电路部件22b的放电操作命令输入部件24、放电命令延迟部件25、以及放电信号绝缘部件26来说必须进行用于电路操作的控制电源。当没有将用于控制的电源提供到其时,不能够执行放电操作。因此,通过在强制放电电路部件22b中提供+5V存储部件23能够执行放电电路的操作,其中该+5V存储部件23即使当来自低压电池单元17的用于控制的电源(从低压电池18提供的电源)被中断时能够在一段时间内保持用于控制的电源。When the impact detector 16 detects an impact, the switch 19 of the low-voltage battery unit 17 is opened. At the same time, the low-voltage battery 18 of the forced discharge circuit part 22b is disconnected. Therefore, no electrical power is provided from the low voltage battery 18 . Control power supply for circuit operation is necessary for the discharge operation command input section 24, the discharge command delay section 25, and the discharge signal insulation section 26 of the forced discharge circuit section 22b. When the power for control is not supplied thereto, the discharge operation cannot be performed. Therefore, the operation of the discharge circuit can be performed by providing the +5V storage part 23 in the forced discharge circuit part 22b, wherein the +5V storage part 23 even when the power supply for control from the low-voltage battery unit 17 (supplied from the low-voltage battery 18 power) is capable of maintaining power for control for a period of time when it is interrupted.

担心切跳信号和噪声可能被叠加在用作在碰撞检测器16操作时要使用的断开信号的放电信号(FD1)20上。然而,为了防止此故障的发生,在放电操作命令输入部件24接收信号之后在放电命令延迟部件25处执行滤波。因此,防止了故障。因为通过放电信号绝缘部件26绝缘高压电路部件和低压电路部件。因此,能够执行高压电路部件的放电信号锁存电路部件27的操作。There is concern that a skip signal and noise may be superimposed on the discharge signal ( FD1 ) 20 serving as a disconnection signal to be used when the collision detector 16 operates. However, in order to prevent the occurrence of this failure, filtering is performed at the discharge command delay section 25 after the discharge operation command input section 24 receives the signal. Therefore, malfunction is prevented. Because the high-voltage circuit part and the low-voltage circuit part are insulated by the discharge signal insulating part 26 . Therefore, the operation of the discharge signal latch circuit part 27 of the high voltage circuit part can be performed.

<放电电路的放电操作><Discharging operation of the discharging circuit>

接下来,在下文中简要地描述放电操作。Next, the discharge operation is briefly described below.

当通过电动车辆的碰撞来操作碰撞检测器16时,放电信号(FD1)20被从其发送,从而放电信号锁存电路部件27被导通。因此,栅极驱动PNP晶体管42被导通。因此,功率MOSFET 40的栅极被驱动,从而功率MOSFET 40被导通。When the collision detector 16 is operated by a collision of the electric vehicle, the discharge signal ( FD1 ) 20 is transmitted therefrom, so that the discharge signal latch circuit part 27 is turned on. Accordingly, the gate drive PNP transistor 42 is turned on. Accordingly, the gate of the power MOSFET 40 is driven, so that the power MOSFET 40 is turned on.

经由放电电阻器39通过功率MOSFET 40短路主电路电容器7的端子电压Vpn。因此,执行放电操作从而设置表示放电电流Id的放电曲线,如图3B中所示。端子电压Vpn被降低到0V,如图3A中所示。替代使用前述的功率MOSFET 40,IGBT和双极晶体管能够组成放电电路部件40H。The terminal voltage Vpn of the main circuit capacitor 7 is short-circuited through the power MOSFET 40 via the discharge resistor 39 . Accordingly, a discharge operation is performed to set a discharge curve representing the discharge current Id, as shown in FIG. 3B . The terminal voltage Vpn is lowered to 0V as shown in FIG. 3A. Instead of using the aforementioned power MOSFET 40, an IGBT and a bipolar transistor can constitute the discharge circuit part 40H.

栅极电源电路部件30a被连接至主电路的高压部件。因此,栅极电源电路部件30a能够提供栅极电源电压直到完成放电。因此,当车辆之间的碰撞出现时,从碰撞检测器16发送放电信号(FD1)20。在放电信号锁存电路部件27被导通之后,放电信号被维持直到栅极电源电路部件30a的输出电压被降低到齐纳二极管45的齐纳电压附近。The gate power supply circuit part 30a is connected to the high voltage part of the main circuit. Therefore, the gate power supply circuit part 30a can supply the gate power supply voltage until the discharge is completed. Therefore, when a collision between vehicles occurs, a discharge signal ( FD1 ) 20 is sent from the collision detector 16 . After the discharge signal latch circuit part 27 is turned on, the discharge signal is maintained until the output voltage of the gate power supply circuit part 30 a is lowered to around the Zener voltage of the Zener diode 45 .

因此,放电电路被构造为甚至在低压电池18被中断之后长时间没有输入放电信号的情况下,通过其中的每一个被提供有来自于独立的电源的电功率的栅极电源电路部件30a和放电信号锁存电路部件27能够执行放电操作。Therefore, the discharge circuit is constructed so that even in the case where no discharge signal is input for a long time after the low-voltage battery 18 is interrupted, the discharge signal and the gate power supply circuit part 30a each supplied with electric power from an independent power supply are passed through each of them. The latch circuit section 27 is capable of performing a discharge operation.

甚至在通过放电操作中途取消放电信号(FD1)20的情况下,如图3C中所示,能够继续进行放电操作同时通过放电信号锁存电路部件27保持主电路电容器7的端子电压Vpn。Even in the case where the discharge signal ( FD1 ) 20 is canceled midway through the discharge operation, as shown in FIG.

在主电路电容器7的端子电压Vpn等于0V的情况下,当通过放电操作将用于功率MOSFET 40的栅极的栅极电源电路部件30a的输出电压减小为低于确定栅极驱动PNP晶体管42的基极基准电压的齐纳二极管45的齐纳电压时取消放电信号锁存电路部件27的放电信号。In the case where the terminal voltage Vpn of the main circuit capacitor 7 is equal to 0 V, when the output voltage of the gate power supply circuit part 30a for the gate of the power MOSFET 40 is reduced below the determined gate drive PNP transistor 42 by the discharge operation The discharge signal of the discharge signal latch circuit part 27 is canceled when the Zener voltage of the base reference voltage of the Zener diode 45 is reached.

<栅极电源电路部件的输出电压的改进上升特性的操作><Operation of Improved Rising Characteristics of Output Voltage of Gate Power Supply Circuit Part>

接下来,描述用于在启动时改进栅极电源电路部件30a的输出电压的上升特性的操作。Next, an operation for improving the rise characteristic of the output voltage of the gate power supply circuit part 30a at the time of startup is described.

当电动车辆逆变器设备100启动时,电流I1从高压电池单元8流过启动改进电解电容器32和栅极电源电路部件30a的栅极电源电解电容器34。通过充电电容器34,栅极电源电解电容器34的内端子电压Vc1上升到齐纳二极管33的齐纳电压。在充电电容器34之后降低栅极电源电解电容器34的电压Vc1的情况下,电流I1从高压电池单元8流动,从而保持栅极电源电路部件30a的输出电压。When the electric vehicle inverter device 100 is started, the current I1 flows from the high-voltage battery unit 8 through the start-improving electrolytic capacitor 32 and the gate power supply electrolytic capacitor 34 of the gate power supply circuit part 30a. The internal terminal voltage Vc1 of the gate power supply electrolytic capacitor 34 rises to the Zener voltage of the Zener diode 33 by the charge capacitor 34 . In the case where the voltage Vc1 of the gate power supply electrolytic capacitor 34 is lowered after charging the capacitor 34, the current I1 flows from the high voltage battery unit 8, thereby maintaining the output voltage of the gate power supply circuit part 30a.

在没有在其中提供启动改进电解电容器32的情况下,在启动时电流I1流过电流I1’的路径。因此,栅极电源电解电容器34的电压Vc1的上升时间增加,如图5中所示。在栅极电源电解电容器34的电压Vc1达到能够进行放电操作的电源电压值(下文中称为“可放电电压”)所花费的时间Ts2太长的情况下,例如,当就在电动车辆启动之后发生电动车辆之间的碰撞时,并且当栅极电源电路部件30a的输出电压没有达到可放电电压时,尽管发送了放电信号(FD1)20但是不进行放电操作。In the case where the start-improving electrolytic capacitor 32 is not provided, the current I1 flows through the path of the current I1' at start-up. Therefore, the rise time of the voltage Vc1 of the gate power supply electrolytic capacitor 34 increases, as shown in FIG. 5 . In the case where the time Ts2 taken for the voltage Vc1 of the gate power supply electrolytic capacitor 34 to reach a power supply voltage value capable of discharging operation (hereinafter referred to as “dischargeable voltage”) is too long, for example, when the electric vehicle is started immediately after When a collision between electric vehicles occurs, and when the output voltage of the gate power supply circuit part 30a does not reach the dischargeable voltage, the discharging operation is not performed although the discharging signal ( FD1 ) 20 is transmitted.

当在启动时启动电源时,选择启动改进电解电容器32的容量从而在安全的启动时间Ts1中栅极电源电解电容器34的电压Vc1达到可放电电压。因此,如图5B和图5C中所示,启动改进电解电容器32的电压Vc2使得栅极电源电路部件30a的输出电压能够立即上升。When the power supply is activated at startup, the capacity of the startup improvement electrolytic capacitor 32 is selected so that the voltage Vc1 of the gate power supply electrolytic capacitor 34 reaches a dischargeable voltage in a safe startup time Ts1. Therefore, as shown in FIG. 5B and FIG. 5C , starting the voltage Vc2 of the improved electrolytic capacitor 32 enables the output voltage of the gate power supply circuit part 30 a to rise immediately.

<保护放电电阻器避免过热的操作><Operation to protect the discharge resistor from overheating>

接下来,在下文中参考图6描述保护放电电阻器39避免过热的操作。Next, the operation of protecting the discharge resistor 39 from overheating is described hereinafter with reference to FIG. 6 .

当高压电池单元8处于断开状态下,并且放电命令FD1被输入至放电信号锁存电路部件27时,用于驱动功率MOSFET 40的栅极的栅极驱动PNP晶体管42被导通。然后,电压被施加给功率MOSFET 40的栅极,从而功率MOSFET 40被导通。这时,由于主电路电容器7的高压导致放电电流Id流过放电电阻器39。放电电流Id具有由衰减曲线表示的图3B中所示的波形,并且通过流过由编号(1)所指定的路径而减少到0。When the high-voltage battery cell 8 is in the OFF state, and the discharge command FD1 is input to the discharge signal latch circuit part 27, the gate drive PNP transistor 42 for driving the gate of the power MOSFET 40 is turned on. Then, a voltage is applied to the gate of the power MOSFET 40, so that the power MOSFET 40 is turned on. At this time, the discharge current Id flows through the discharge resistor 39 due to the high voltage of the main circuit capacitor 7 . The discharge current Id has a waveform shown in FIG. 3B represented by a decay curve, and decreases to 0 by flowing through a path designated by number (1).

然后,当高压电池单元8发生故障并且保持被连接至逆变器设备的主电路时,电流Id继续在放电电阻器39中流动。因此,放电电阻器39过热并且进入高温状态。最后,放电电阻器39被损坏。在逆变器设备的某些操作条件下,高温继续应用状态持续很长时间。在这样的情况下,当放电命令FD1被输入时,放电电阻器39在高温时可能损坏。因此,必须通过在放电电阻器39没有过热并且没有损坏的通电时间内截止功率MOSFET 40来保护放电电阻器39。Then, when the high-voltage battery unit 8 fails and remains connected to the main circuit of the inverter device, the current Id continues to flow in the discharge resistor 39 . Therefore, the discharge resistor 39 overheats and enters a high temperature state. Finally, the discharge resistor 39 is damaged. Under certain operating conditions of the inverter device, the high temperature continues to be applied for a long time. In such a case, when the discharge command FD1 is input, the discharge resistor 39 may be damaged at high temperature. Therefore, the discharge resistor 39 must be protected by turning off the power MOSFET 40 during the conduction time during which the discharge resistor 39 is not overheated and is not damaged.

参考图6,包括电阻器50和电容器48的延迟电路的时间常数被设置为下面将会描述的如图7C中所示的放电容许时间Ts。当从放电电流检测电阻器51的端子电压通过由编号(2)所指定的路径经由电阻器50和电容器48获得的输出电压超过V2,通过由编号(3)所指定的路径导通NPN晶体管。当NPN晶体管47被导通时,基极电流从PNP晶体管46的发射极流过由编号(4)所指定的路径。然后,PNP晶体管46的发射极-集电极结被导通,从而电流在NPN晶体管47的基极中流动。这时,电阻器43被安装在栅极电源电解电容器34和PNP晶体管46之间。因此,本实施例具有下述功能,即当晶体管被导通时抑制通过由编号(5)所指定的路径的涌入电流,从而防止晶体管被损坏。Referring to FIG. 6, the time constant of the delay circuit including the resistor 50 and the capacitor 48 is set to a discharge allowable time Ts as shown in FIG. 7C which will be described below. When the output voltage obtained from the terminal voltage of the discharge current detection resistor 51 via the resistor 50 and the capacitor 48 through the path designated by number (2) exceeds V2, the NPN transistor is turned on through the route designated by number (3). When the NPN transistor 47 is turned on, base current flows from the emitter of the PNP transistor 46 through the path designated by number (4). Then, the emitter-collector junction of the PNP transistor 46 is turned on, so that current flows in the base of the NPN transistor 47 . At this time, a resistor 43 is installed between the gate power supply electrolytic capacitor 34 and the PNP transistor 46 . Therefore, the present embodiment has a function of suppressing the inrush current through the path designated by number (5) when the transistor is turned on, thereby preventing the transistor from being damaged.

当高压继续被施加给主电路电容器7时,电流继续经由二极管38和电阻器31流过图6中所示的由编号(4)所指定的路径。栅极驱动PNP晶体管42的输入电压保持被中断的状态。因此,功率MOSFET 40的栅极电压变成0V。只要继续施加高压,功率MOSFET保持截止状态以防止放电电阻器39过热和被损害。When the high voltage continues to be applied to the main circuit capacitor 7 , current continues to flow through the path indicated by the number ( 4 ) shown in FIG. 6 via the diode 38 and the resistor 31 . The input voltage to the gate drive PNP transistor 42 remains interrupted. Therefore, the gate voltage of the power MOSFET 40 becomes 0V. As long as the high voltage continues to be applied, the power MOSFET remains off to prevent the discharge resistor 39 from overheating and being damaged.

当高压电池单元8处于断开状态,并且主电路电容器7的电压Vpn是0V,并且栅极电源电路部件30a的输出电压被降低到0V时,PNP晶体管46和NPN晶体管47的通电状态被取消并且变成截止状态。因此,放电停止状态(保护锁存状态)被取消。设备被返回到其中所有的电路没有被毁坏并且能够被重新启动的状态。When the high-voltage battery cell 8 is in the disconnected state, and the voltage Vpn of the main circuit capacitor 7 is 0V, and the output voltage of the gate power supply circuit part 30a is lowered to 0V, the energized state of the PNP transistor 46 and the NPN transistor 47 is canceled and becomes cut off. Therefore, the discharge stop state (protection latch state) is canceled. The device is returned to a state in which all circuits are not damaged and can be restarted.

图7A至图7E是示出图6中的放电电阻器过热保护电路部件28a的操作的波形图,其分别示出电路部件28a的组件处的信号的波形。在下文中,通过参考图7A至图7E描述保护放电电阻器39的操作。FIGS. 7A to 7E are waveform diagrams showing the operation of the discharge resistor overheat protection circuit part 28a in FIG. 6, which respectively show waveforms of signals at components of the circuit part 28a. Hereinafter, the operation of the protection discharge resistor 39 is described by referring to FIGS. 7A to 7E .

如图7A中所示,当高压电池单元8的逆变器主电路连接开关10处于导通状态时,主电路电容器7的端子电压Vpn处于高压状态。当在此状态下放电信号(FD1)20(参见图6)被输入至形成的放电电路部件22b时,功率MOSFET 40被导通,从而放电电流Id流过放电电阻器39。然而,高压电池12(参见图1)保持被连接至逆变器主电路。因此,端子电压Vpn保持恒压,如图7B中所示的电压Vpn的波形所示。因此,放电电流Id进入其中放电电流Id作为恒流保持流动的状态中。因此,担心放电电阻器39可能过热并且可能烧坏。As shown in FIG. 7A , when the inverter main circuit connection switch 10 of the high voltage battery unit 8 is in the on state, the terminal voltage Vpn of the main circuit capacitor 7 is in a high voltage state. When a discharge signal (FD1) 20 (see FIG. 6 ) is input to the formed discharge circuit part 22b in this state, the power MOSFET 40 is turned on so that a discharge current Id flows through the discharge resistor 39. However, the high voltage battery 12 (see FIG. 1 ) remains connected to the inverter main circuit. Therefore, the terminal voltage Vpn is maintained at a constant voltage, as shown by the waveform of the voltage Vpn shown in FIG. 7B. Accordingly, the discharge current Id enters a state in which the discharge current Id keeps flowing as a constant current. Therefore, there is a fear that the discharge resistor 39 may overheat and may burn out.

因此,在通过包括电阻器50和电容器48的延迟电路的时间常数设置的放电容许时间Ts内,图6中所示的放电电阻器过热保护电路部件28a中断栅极驱动PNP晶体管42的输入电压。另外,放电电阻器过热保护电路部件28a保持被中断的状态并且截止功率MOSFET 40(参见图7C)。当高压电池12保持被连接至逆变器主电路时,放电电阻器过热保护电路部件28a的保护锁存状态被取消。因此,功率MOSFET 40保持截止状态,从而放电电阻器39没有通电并且没有过热。Therefore, the discharge resistor overheat protection circuit part 28a shown in FIG. In addition, the discharge resistor overheat protection circuit part 28a remains interrupted and turns off the power MOSFET 40 (see FIG. 7C ). When the high-voltage battery 12 remains connected to the inverter main circuit, the protection latch state of the discharge resistor overheat protection circuit part 28a is canceled. Therefore, the power MOSFET 40 remains off, so that the discharge resistor 39 is not energized and is not overheated.

接下来,当高压电池单元8的逆变器主电路连接开关10被截止时,因为高压电池12没有被连接至逆变器主电路所以如图7B中所示逐渐地降低电压Vpn。当Vpn=0V时,栅极电源电路部件30a的输出电压是0V。因此,包括PNP晶体管46和NPN晶体管47的锁存电路的保护锁存状态被取消。Next, when the inverter main circuit connection switch 10 of the high voltage battery unit 8 is turned off, the voltage Vpn is gradually lowered as shown in FIG. 7B because the high voltage battery 12 is not connected to the inverter main circuit. When Vpn=0V, the output voltage of the gate power supply circuit part 30a is 0V. Therefore, the protection latch state of the latch circuit including the PNP transistor 46 and the NPN transistor 47 is canceled.

[实施例3][Example 3]

<根据实施例3的强制放电电路部件与根据实施例2的强制放电电路部件之间的不同><Difference Between Forced Discharge Circuit Part According to Embodiment 3 and Forced Discharge Circuit Part According to Embodiment 2>

图8是示出根据本发明的实施例3的强制放电电路部件22c的详细情况的图。FIG. 8 is a diagram showing details of a forced discharge circuit part 22c according to Embodiment 3 of the present invention.

图2中所示的强制放电电路部件22b与根据实施例3的强制放电电路部件22c之间的不同如下。1)如图8中所示,增加了放电命令锁存部件。从放电命令锁存部件55输出的放电状态信号(FD3)54被连接至发射极接地晶体管53以监测车辆控制控制器15的放电状态。2)图2中所示的放电信号锁存电路部件27被替换为PNP晶体管46b。图2中所示的电阻器35和NPN晶体管52被省略。The difference between the forced discharge circuit part 22b shown in FIG. 2 and the forced discharge circuit part 22c according to Embodiment 3 is as follows. 1) As shown in FIG. 8, a discharge command latch component is added. The discharge state signal ( FD3 ) 54 output from the discharge command latch unit 55 is connected to the emitter ground transistor 53 to monitor the discharge state of the vehicle control controller 15 . 2) The discharge signal latch circuit part 27 shown in FIG. 2 is replaced with a PNP transistor 46b. The resistor 35 and the NPN transistor 52 shown in FIG. 2 are omitted.

在下文中,描述与其前述的不同有关的功能块部件及其电路构造。In the following, functional block components and their circuit configurations related to their aforementioned differences are described.

参考图8,当用作碰撞检测信号的放电信号(FD1)20通过放电操作命令输入部件24和放电命令延迟部件25被输入至放电命令锁存部件55时,放电命令锁存部件55将放电信号输出至放电信号绝缘部件26作为放电锁存信号。另外,放电状态信号(FD3)54被输出。本实施例被构造为图2中所示的放电信号锁存电路部件27的锁存功能被转移到放电命令锁存部件55,并且通过放电信号绝缘部件24的输出驱动PNP晶体管46b。8, when the discharge signal (FD1) 20 used as a collision detection signal is input to the discharge command latch part 55 through the discharge operation command input part 24 and the discharge command delay part 25, the discharge command latch part 55 will discharge the signal It is output to the discharge signal insulating part 26 as a discharge latch signal. In addition, a discharge state signal (FD3) 54 is output. The present embodiment is configured such that the latch function of the discharge signal latch circuit section 27 shown in FIG.

接下来,参考图8在下文中描述由强制放电电路部件22c执行的监测放电的操作。Next, the operation of monitoring discharge performed by the forced discharge circuit section 22c is described hereinafter with reference to FIG. 8 .

<由强制放电电路部件22c执行的放电监测操作><Discharge monitoring operation performed by forced discharge circuit part 22c>

<放电操作的开始><Start of discharge operation>

通过放电命令锁存部件55保持来自于放电操作命令输入部件24和放电命令延迟部件25的放电操作信号(执行锁存操作)。通过放电信号绝缘部件26将放电锁存信号转换为具有低电平的绝缘信号。因此,PNP晶体管46b被导通。作为该操作的结果,用于驱动功率MOSFET 40的栅极的栅极驱动PNP晶体管42被导通。然后,功率MOSFET 40被导通。因此,经由放电电阻器39执行放电主电路电容器7的操作。The discharge operation signal from the discharge operation command input section 24 and the discharge command delay section 25 is held by the discharge command latch section 55 (latch operation is performed). The discharge latch signal is converted into an isolation signal having a low level by the discharge signal isolation part 26 . Therefore, the PNP transistor 46b is turned on. As a result of this operation, the gate drive PNP transistor 42 for driving the gate of the power MOSFET 40 is turned on. Then, the power MOSFET 40 is turned on. Therefore, an operation of discharging the main circuit capacitor 7 is performed via the discharging resistor 39 .

《放电操作的停止》《Stop of discharge operation》

与放电命令锁存部件55的锁存操作同时地,低电压电池18被断开。+5V存储部件23的电势被逐渐地减低到0V。因此,锁存状态被取消。当锁存状态被取消,并且放电命令信号被消除时,PNP晶体管46b被截止以中断功率MOSFET 40的栅极电压。因此,放电操作停止。Simultaneously with the latch operation of the discharge command latch section 55, the low-voltage battery 18 is disconnected. The potential of the +5V storage unit 23 is gradually lowered to 0V. Therefore, the latch state is canceled. When the latch state is removed and the discharge command signal is removed, the PNP transistor 46b is turned off to interrupt the gate voltage of the power MOSFET 40. Therefore, the discharging operation is stopped.

《放电操作的监测》"Monitoring of discharge operation"

由放电命令锁存部件55锁存的信号与强制放电电路部件22c的放电操作同步。放电命令锁存部件55的锁存信号被输出至用于监测车辆控制控制器15的放电状态的发射极接地晶体管53作为放电状态信号(FD3)54。因此,能够监测放电状态。The signal latched by the discharge command latch section 55 is synchronized with the discharge operation of the forced discharge circuit section 22c. The latch signal of the discharge command latch section 55 is output to the emitter grounded transistor 53 for monitoring the discharge state of the vehicle control controller 15 as a discharge state signal ( FD3 ) 54 . Therefore, the discharge state can be monitored.

[实施例4][Example 4]

图9是示出根据本发明的实施例4的强制放电电路部件22d的详细情况的图。FIG. 9 is a diagram showing details of a forced discharge circuit part 22d according to Embodiment 4 of the present invention.

<根据实施例4的强制放电电流部件与根据实施例2的强制放电电流部件之间的不同><Difference Between Forced Discharge Current Part According to Embodiment 4 and Forced Discharge Current Part According to Embodiment 2>

根据实施例4的强制放电电路部件22d与根据实施例2的图2中所示的强制放电电路部件22b之间的不同如下。The difference between the forced discharge circuit part 22d according to Embodiment 4 and the forced discharge circuit part 22b shown in FIG. 2 according to Embodiment 2 is as follows.

参考图9,放电重启晶体管57的集电极被连接至栅极电源电解电容器34的高压侧电极。放电重启晶体管57的发射极经由放电重启晶体管56连接至栅极电源电解电容器34的低压侧电极。从车辆控制控制器15的重启命令部件58输出的放电重启信号60被输入至放电重启晶体管57的基极。Referring to FIG. 9 , the collector of the discharge restart transistor 57 is connected to the high-voltage side electrode of the gate power supply electrolytic capacitor 34 . The emitter of the discharge restart transistor 57 is connected to the low voltage side electrode of the gate power supply electrolytic capacitor 34 via the discharge restart transistor 56 . The discharge restart signal 60 output from the restart command section 58 of the vehicle control controller 15 is input to the base of the discharge restart transistor 57 .

<根据实施例4的强制放电电路部件22d的放电重启操作><Discharge Restart Operation of Forced Discharge Circuit Part 22d According to Embodiment 4>

接下来,在下文中参考图9描述强制放电电路部件22d的放电重启操作。Next, the discharge restart operation of the forced discharge circuit part 22d is described hereinafter with reference to FIG. 9 .

在就在放电操作完成时再次施加高压的情况下,栅极电源电路部件30b的电解电容器34的电压被设置为等于或者高于提供栅极驱动PNP晶体管42的基极基准电压的齐纳二极管45的齐纳电压。因此,放电信号锁存电路部件27的放电信号的保持状态没有被取消。当在此状态下高压被再次施加给强制放电电路部件22d时,放电操作继续,因为功率MOSFET 40进入导通状态。当继续放电操作同时保持高压施加状态时,放电电阻器过热保护电路部件28a进行操作并且进入放电停止状态(保护锁存状态)。In the case where the high voltage is applied again just when the discharge operation is completed, the voltage of the electrolytic capacitor 34 of the gate power supply circuit part 30b is set equal to or higher than the Zener diode 45 which supplies the base reference voltage of the gate drive PNP transistor 42 the zener voltage. Therefore, the hold state of the discharge signal of the discharge signal latch circuit section 27 is not canceled. When a high voltage is applied to the forced discharge circuit part 22d again in this state, the discharge operation continues because the power MOSFET 40 enters the conduction state. When the discharge operation is continued while maintaining the high voltage application state, the discharge resistor overheat protection circuit part 28a operates and enters a discharge stop state (protection latch state).

在完成放电操作时,就在高压被施加给强制放电电路部件22d之前栅极电源电路部件30b的电解电容器34上生成的电压被设置为0V,电解电容器34上生成的电压等于或者低于齐纳二极管45的齐纳电压,其是PNP晶体管42的基极电压。因此,没有电流被提供给放电信号锁存电路部件27。因此,放电信号锁存状态被取消。因此,当高压被再次施加给强制放电电路部件22d时,放电电路部件不处于放电操作状态中。因此,放电电阻器过热保护电路部件28不进行操作。正常地执行启动操作。When the discharge operation is completed, the voltage generated on the electrolytic capacitor 34 of the gate power supply circuit part 30b is set to 0V just before the high voltage is applied to the forced discharge circuit part 22d, the voltage generated on the electrolytic capacitor 34 is equal to or lower than Zener Zener voltage of diode 45 , which is the base voltage of PNP transistor 42 . Therefore, no current is supplied to the discharge signal latch circuit part 27 . Therefore, the discharge signal latch state is canceled. Therefore, when the high voltage is applied to the forced discharge circuit part 22d again, the discharge circuit part is not in the discharge operation state. Therefore, the discharge resistor overheat protection circuit part 28 does not operate. Perform the startup operation normally.

就在完成放电操作时从车辆控制控制器15的重启命令部件58输出的放电重启信号60被输入至强制放电电路部件22d的放电重启晶体管57。因此,放电重启晶体管57被导通。然后,通过放电重启电阻器56放电栅极电源电解电容器34的电压并且将其减少到0V。通过此操作消除被提供给放电信号锁存电路部件27的电流。因此,放电信号锁存状态被取消。然后,放电操作停止。接下来,放电重启信号60被从其取消。然后,对其施加高压,从而正常地执行启动操作。就在完成放电操作时,能够执行通过就在完成放电操作时施加高压来正常地执行重启的操作。The discharge restart signal 60 output from the restart command section 58 of the vehicle control controller 15 upon completion of the discharge operation is input to the discharge restart transistor 57 of the forced discharge circuit section 22d. Therefore, the discharge restart transistor 57 is turned on. Then, the voltage of the gate supply electrolytic capacitor 34 is discharged and reduced to 0V through the discharge restart resistor 56 . The current supplied to the discharge signal latch circuit section 27 is eliminated by this operation. Therefore, the discharge signal latch state is canceled. Then, the discharging operation is stopped. Next, the discharge restart signal 60 is canceled therefrom. Then, high voltage is applied thereto, thereby normally performing the starting operation. Just at the completion of the discharge operation, it is possible to perform an operation of normally performing restart by applying a high voltage just at the completion of the discharge operation.

[实施例5][Example 5]

<根据实施例5的强制放电电路部件与根据实施例4的强制放电电路部件的不同><Differences between the forced discharge circuit component according to Embodiment 5 and the forced discharge circuit component according to Embodiment 4>

图10是示出根据本发明的实施例5的强制放电电路部件22e的详细情况的图。根据实施例5的强制放电电路部件22e与根据实施例4的图9中所示的强制放电电路部件22d之间的不同在于图9中所示的功率MOSFET 40被替换为放电继电器59。栅极驱动PNP晶体管42的集电极被连接至放电继电器59的励磁绕组输入端子。其另一励磁绕组输入端子被连接至强制放电电路部件22e中的端子N侧的线。FIG. 10 is a diagram showing details of a forced discharge circuit part 22e according to Embodiment 5 of the present invention. The difference between the forced discharge circuit part 22e according to Embodiment 5 and the forced discharge circuit part 22d shown in FIG. 9 according to Embodiment 4 is that the power MOSFET 40 shown in FIG. 9 is replaced by a discharge relay 59. The collector of gate drive PNP transistor 42 is connected to the field winding input terminal of discharge relay 59 . The other field winding input terminal thereof is connected to a line on the terminal N side in the forced discharge circuit part 22e.

放电电阻器39被连接至放电继电器59的接触部件中的一个。放电电阻器过热保护电路部件28a的放电电流检测电阻器51被连接至放电继电器59的另一接触部件。The discharge resistor 39 is connected to one of the contact parts of the discharge relay 59 . Discharge Resistor The discharge current detection resistor 51 of the overheat protection circuit part 28 a is connected to the other contact part of the discharge relay 59 .

<根据实施例5的强制放电电路部件22e的操作><Operation of Forced Discharge Circuit Part 22e According to Embodiment 5>

在下文中参考图10描述强制放电电路部件22e的操作。The operation of the forced discharge circuit part 22e is described hereinafter with reference to FIG. 10 .

栅极驱动PNP晶体管42被用作用于放电继电器59的励磁绕组驱动晶体管。是PNP晶体管42的基极电压的齐纳二极管45a的齐纳电压被设置为等于或者高于放电继电器59的工作电压的电压。即使当功率MOSFET 40(参见图9)被替换为放电继电器59时,通过安装放电电阻器过热保护电路部件28a能够保护放电电阻器39避免过热,与前述的实施例相类似。The gate drive PNP transistor 42 is used as a field winding drive transistor for the discharge relay 59 . The Zener voltage of the Zener diode 45 a which is the base voltage of the PNP transistor 42 is set to a voltage equal to or higher than the operating voltage of the discharge relay 59 . Even when the power MOSFET 40 (see FIG. 9) is replaced with the discharge relay 59, the discharge resistor 39 can be protected from overheating by installing the discharge resistor overheat protection circuit part 28a, similarly to the foregoing embodiment.

类似地,通过安装栅极电源电路部件30b能够立即启动设备。在完成放电操作时,即使当高压被再次施加给强制放电电路部件22e时,栅极驱动电路部件30b的电解电容器34的电压被设置为等于或者高于提供栅极驱动PNP晶体管42的基极基准电压的齐纳二极管45a的齐纳电压的值,以保持放电。因此,放电信号锁存电路部件27的放电信号保持状态没有被取消。当在此状态下高压被再次施加给强制放电电路部件22e时,因为放电继电器59处于导通状态,因此继续放电操作。当继续放电操作同时保持高压施加状态时,放电电阻器过热保护电路部件28a进行操作并且进入放电停止状态(保护锁存状态)。Similarly, the device can be started immediately by installing the gate power supply circuit part 30b. Upon completion of the discharge operation, even when the high voltage is applied to the forced discharge circuit part 22e again, the voltage of the electrolytic capacitor 34 of the gate drive circuit part 30b is set equal to or higher than the base reference of the PNP transistor 42 providing the gate drive voltage to the value of the Zener voltage of the Zener diode 45a to maintain the discharge. Therefore, the discharge signal holding state of the discharge signal latch circuit section 27 is not canceled. When the high voltage is applied to the forced discharge circuit part 22e again in this state, the discharge operation is continued because the discharge relay 59 is in the ON state. When the discharge operation is continued while maintaining the high voltage application state, the discharge resistor overheat protection circuit part 28a operates and enters a discharge stop state (protection latch state).

在完成放电操作时,就在高压被再次施加给强制放电电路部件22e之前栅极电源电路部件30b的电解电容器34的电压被设置为0V。因此,栅极电源电路部件30b的电压等于或者低于是PNP晶体管42的基极电压的齐纳二极管45a的电压,从而被提供给放电信号锁存电路部件27的电流被消除,并且放电信号锁存状态被取消。Upon completion of the discharge operation, the voltage of the electrolytic capacitor 34 of the gate power supply circuit part 30b is set to 0V just before the high voltage is applied again to the forced discharge circuit part 22e. Therefore, the voltage of the gate power supply circuit part 30b is equal to or lower than the voltage of the Zener diode 45a which is the base voltage of the PNP transistor 42, so that the current supplied to the discharge signal latch circuit part 27 is eliminated, and the discharge signal is latched. Status is canceled.

当高压被再次施加给强制放电电路部件22e时,放电电阻器过热保护电路部件28a没有进行操作,因为设备不处于放电操作状态中。因此,正常地执行启动操作。When the high voltage is applied to the forced discharge circuit part 22e again, the discharge resistor overheat protection circuit part 28a does not operate because the device is not in the discharge operation state. Therefore, the startup operation is normally performed.

就在完成放电操作时从车辆控制控制器15的重启命令部件58输出的放电重启信号60被输入至强制放电电路部件22e的放电重启晶体管57。然后,放电重启晶体管57被导通。因此,通过放电重启电阻器56放电栅极电源电解电容器34的电压并且将其减少到0V。通过此操作消除被提供给放电信号锁存电路部件27的电流。然后,放电信号锁存状态被取消。放电操作被停止。The discharge restart signal 60 output from the restart command section 58 of the vehicle control controller 15 upon completion of the discharge operation is input to the discharge restart transistor 57 of the forced discharge circuit section 22e. Then, the discharge restart transistor 57 is turned on. Thus, the voltage of the gate supply electrolytic capacitor 34 is discharged and reduced to 0V through the discharge restart resistor 56 . The current supplied to the discharge signal latch circuit section 27 is eliminated by this operation. Then, the discharge signal latch state is canceled. The discharge operation is stopped.

接下来,放电重启信号60被取消,并且高压被施加。然后,正常地执行启动操作。与前述实施例相类似,通过就在完成放电操作时施加高压能够执行正常的重启操作。Next, the discharge restart signal 60 is canceled, and a high voltage is applied. Then, perform the startup operation normally. Similar to the foregoing embodiments, a normal restart operation can be performed by applying a high voltage just when the discharge operation is completed.

通过假定被应用于被安装在电动车辆中的逆变器设备完成本发明。尤其地,根据本发明的逆变器设备能够应用于电动汽车、混合汽车等等作为具有强制放电电路部件的逆变器设备,用于防止当碰撞事故发生时由于高压部件与损坏的电源线或者金属件之间的接触导致的短路、过热等等的发生。The present invention is accomplished by assuming application to an inverter device installed in an electric vehicle. In particular, the inverter device according to the present invention can be applied to electric vehicles, hybrid vehicles, etc. as an inverter device having a forced discharge circuit part for preventing damage caused by high-voltage parts and damaged power lines or power lines when a collision accident occurs. Occurrence of short circuits, overheating, etc. caused by contact between metal parts.

Claims (15)

1.一种电动车辆逆变器设备,包括:1. An electric vehicle inverter device, comprising: 逆变器部件,所述逆变器部件被构造为驱动被机械地连接至电动车辆的车辆驱动部件的AC电动机;an inverter component configured to drive an AC electric motor mechanically connected to a vehicle drive component of the electric vehicle; 转换器部件,所述转换器部件被构造为将通过电动车辆的引擎驱动力生成电功率的AC发电机生成的电功率转换为预定的电压范围内的直流电压;a converter part configured to convert electric power generated by an AC generator generating electric power by an engine driving force of the electric vehicle into a direct current voltage within a predetermined voltage range; 逆变器控制器,所述逆变器控制器被构造为控制所述逆变器部件和所述转换器部件;an inverter controller configured to control the inverter component and the converter component; 主电路电容器,所述主电路电容器被连接在所述逆变器与所述转换器的DC总线之间;以及a main circuit capacitor connected between the inverter and the DC bus of the converter; and 强制放电电路部件,所述强制放电电路部件被构造为响应于放电命令信号对被充电在所述主电路电容器中的电荷进行放电,a forced discharge circuit part configured to discharge the charge charged in the main circuit capacitor in response to a discharge command signal, 从高压电池单元提供用于所述逆变器部件的直流电源,所述高压电池单元包括逆变器主电路连接开关、高压电池以及涌入电流抑制电路,所述涌入电流抑制电路被构造为当所述逆变器主电路连接开关被接通时抑制来自于高压电池的涌入电流并且被连接至DC总线,DC power for the inverter part is supplied from a high-voltage battery unit comprising an inverter main circuit connection switch, a high-voltage battery, and an inrush current suppression circuit configured to suppressing inrush current from a high voltage battery and connected to a DC bus when the inverter main circuit connection switch is turned on, 从低压电池单元提供控制电源,所述低压电池单元包括低压电池和低压电池开关,所述低压电池开关被构造为断开和闭合所述低压电池,providing control power from a low voltage battery unit comprising a low voltage battery and a low voltage battery switch configured to open and close the low voltage battery, 电动车辆逆变器设备接收来自于车辆控制控制器的控制信号以及来自于碰撞检测器的控制信号并且根据上述信号对电动车辆逆变器设备进行控制,所述车辆控制控制器被构造为监督地控制电动车辆,并且所述碰撞检测器被连接在所述车辆控制控制器和所述低压电池之间并且包括碰撞检测器开关,所述碰撞检测器开关被构造为当检测到由于电动车辆的碰撞导致的冲击时进入断开状态,其中An electric vehicle inverter device receives a control signal from a vehicle control controller and a control signal from a crash detector and controls the electric vehicle inverter device in accordance with the above signals, the vehicle control controller being configured to supervise An electric vehicle is controlled, and the collision detector is connected between the vehicle control controller and the low voltage battery and includes a collision detector switch configured to detect a collision due to the electric vehicle cause the shock to go into the disconnected state, where the 所述车辆控制控制器检测表示当通过电动车辆的碰撞操作碰撞检测器时碰撞检测器开关被断开的断开信号;The vehicle control controller detects an off signal indicating that the crash detector switch is turned off when the crash detector is operated by a collision of the electric vehicle; 所述车辆控制控制器使所述高压电池单元的所述逆变器主电路连接开关进入断开状态,中断对DC总线部件的高压电池的直流电源的供给并且将放电命令信号输出至所述强制放电电路部件;以及The vehicle control controller puts the inverter main circuit connection switch of the high voltage battery unit into an off state, interrupts the supply of DC power to the high voltage battery of the DC bus section and outputs a discharge command signal to the forced discharge circuit components; and 所述强制放电电路部件对被充电在所述主电路电容器中的电荷进行放电,the forced discharge circuit part discharges the charge charged in the main circuit capacitor, 其中,所述强制放电电路部件包括:Wherein, the forced discharge circuit components include: 放电电路部件,所述放电电路部件包括被串联地连接在所述DC总线之间的放电电阻器、功率半导体元件、以及放电电流检测电阻器;a discharge circuit part including a discharge resistor, a power semiconductor element, and a discharge current detection resistor connected in series between the DC buses; 放电电阻器过热保护电路部件,所述放电电阻器过热保护电路部件被构造为通过接收由于流过所述放电电流检测电阻器的放电电流导致的压降生成的电压作为到其的输入而进行操作;a discharge resistor overheat protection circuit part configured to operate by receiving, as an input thereto, a voltage generated by a voltage drop due to a discharge current flowing through the discharge current detection resistor ; 栅极电源电路部件,所述栅极电源电路部件被构造为从所述DC总线之间的直流电压生成用于所述功率半导体元件的驱动电源;a gate power circuit part configured to generate drive power for the power semiconductor elements from a DC voltage between the DC buses; 驱动电路部件,所述驱动电路部件被构造为将驱动信号给予所述功率半导体元件的控制端子;以及a driving circuit part configured to give a driving signal to a control terminal of the power semiconductor element; and 放电信号锁存电路部件,所述放电信号锁存电路部件被构造为接收根据来自于所述碰撞检测器的检测信号的放电命令信号并且将驱动信号给予所述驱动电路部件;a discharge signal latch circuit part configured to receive a discharge command signal according to a detection signal from the collision detector and to give a drive signal to the drive circuit part; 当接收根据来自于所述碰撞检测器的检测信号的放电命令信号时,所述放电信号锁存电路部件保持到所述驱动电路部件的导通信号从而所述放电电路部件能够继续保持放电操作导通状态;并且When receiving a discharge command signal based on a detection signal from the collision detector, the discharge signal latch circuit part maintains the conduction signal to the drive circuit part so that the discharge circuit part can continue to maintain the discharge operation conduction status; and 当所述主电路电容器的端子电压通过放电操作被降低到接近于0伏特的值时,并且当所述栅极电源电路部件的电源电压被降低到等于或者低于所述驱动电路部件的可操作电压的值时,所述放电操作导通状态被取消。When the terminal voltage of the main circuit capacitor is lowered to a value close to 0 volts by a discharging operation, and when the power supply voltage of the gate power supply circuit part is lowered to be equal to or lower than the operable voltage value, the discharge operation conduction state is canceled. 2.根据权利要求1所述的电动车辆逆变器设备,其中2. The electric vehicle inverter device according to claim 1, wherein 所述栅极电源电路部件包括在DC总线之间经由二极管串联地连接的电阻器和齐纳二极管,以及相互串联地连接并且分别并行地连接至所述电阻器和所述齐纳二极管的电解电容器;并且The gate power supply circuit part includes a resistor and a Zener diode connected in series between DC buses via a diode, and electrolytic capacitors connected in series with each other and in parallel to the resistor and the Zener diode, respectively. ;and 所述齐纳二极管的齐纳电压高于所述驱动电路部件的可操作电压,并且小于或等于所述功率半导体元件的容许栅极电压。A Zener voltage of the Zener diode is higher than an operable voltage of the driving circuit part and less than or equal to an allowable gate voltage of the power semiconductor element. 3.根据权利要求1所述的电动车辆逆变器设备,其中3. The electric vehicle inverter device according to claim 1, wherein 所述放电电路部件的功率半导体元件包括MOSFET或者IGBT。The power semiconductor elements of the discharge circuit part include MOSFETs or IGBTs. 4.根据权利要求1所述的电动车辆逆变器设备,其中4. The electric vehicle inverter device according to claim 1, wherein 所述驱动电路部件包括:The drive circuit components include: 第一栅极电阻器,所述第一栅极电阻器被连接至包括MOSFET或者IGBT的所述功率半导体元件的栅极;a first gate resistor connected to the gate of the power semiconductor element comprising a MOSFET or an IGBT; 第一PNP晶体管和第二栅极电阻器,所述第一PNP晶体管和第二栅极电阻器被串联地连接至所述第一栅极电阻器;以及a first PNP transistor and a second gate resistor connected in series to the first gate resistor; and 第三电阻器和齐纳二极管,所述第三电阻器和齐纳二极管被串联地连接至所述第一PNP晶体管的基极;a third resistor and a Zener diode connected in series to the base of the first PNP transistor; 所述放电信号锁存电路部件被提供在所述齐纳二极管的阳极一侧;并且the discharge signal latch circuit part is provided on the anode side of the zener diode; and 所述放电信号锁存电路部件包括被连接在一起作为闸流管的NPN晶体管和PNP晶体管。The discharge signal latch circuit part includes an NPN transistor and a PNP transistor connected together as a thyristor. 5.根据权利要求1所述的电动车辆逆变器设备,其中5. The electric vehicle inverter device according to claim 1, wherein 所述放电电阻器过热保护电路部件经由电阻器将所述放电电路部件的放电电流检测电阻器的端子电压引入NPN晶体管的基极;The discharge resistor overheat protection circuit part introduces the terminal voltage of the discharge current detection resistor of the discharge circuit part into the base of the NPN transistor via a resistor; 电容器和电阻器彼此并联地连接在所述NPN晶体管的基极-发射极结之间;a capacitor and a resistor are connected in parallel with each other between the base-emitter junction of the NPN transistor; PNP晶体管的基极被连接至所述NPN晶体管的集电极;the base of the PNP transistor is connected to the collector of the NPN transistor; 所述PNP晶体管的集电极被连接至所述NPN晶体管的基极;并且the collector of the PNP transistor is connected to the base of the NPN transistor; and 所述PNP晶体管的发射极被连接至所述驱动电路部件的第二栅极电阻器和第一PNP晶体管的发射极之间的连接点。The emitter of the PNP transistor is connected to a connection point between the second gate resistor of the driving circuit part and the emitter of the first PNP transistor. 6.根据权利要求4所述的电动车辆逆变器设备,其中6. The electric vehicle inverter device according to claim 4, wherein 所述放电信号锁存电路部件被构造为单PNP晶体管的发射极被连接至所述驱动电路部件的齐纳二极管的阳极;The discharge signal latch circuit part is configured such that the emitter of a single PNP transistor is connected to the anode of the Zener diode of the drive circuit part; 所述放电信号锁存电路部件不具有锁存放电命令信号的功能;并且The discharge signal latching circuit part does not have the function of latching the power storage command signal; and 所述放电信号锁存电路部件被构造为接收预先锁存的放电命令信号并且使所述驱动电路部件进行操作。The discharge signal latch circuit part is configured to receive a pre-latched discharge command signal and cause the drive circuit part to operate. 7.根据权利要求2所述的电动车辆逆变器设备,其中7. The electric vehicle inverter device according to claim 2, wherein 所述栅极电源电路部件被构造为相互串联地连接的放电重启晶体管和放电重启电阻器被并联地连接至彼此并联地连接的所述齐纳二极管和电解电容器;并且The gate power supply circuit part is configured such that a discharge restart transistor and a discharge restart resistor connected in series to each other are connected in parallel to the Zener diode and an electrolytic capacitor connected in parallel to each other; and 当就在完成放电操作时接收来自于所述车辆控制控制器的重启命令部件的放电重启信号时,所述栅极电源电路部件导通所述放电重启晶体管并且对被充电在所述电解电容器中的电荷进行放电。When receiving a discharge restart signal from a restart command part of the vehicle control controller upon completion of a discharge operation, the gate power supply circuit part turns on the discharge restart transistor and charges the electrolytic capacitor charge is discharged. 8.根据权利要求1所述的电动车辆逆变器设备,其中8. The electric vehicle inverter device according to claim 1, wherein 所述放电电路部件的功率半导体元件被替换为放电继电器;The power semiconductor elements of the discharge circuit part are replaced by discharge relays; 通过所述驱动电路部件励磁所述放电继电器的励磁绕组;exciting the field winding of the discharge relay through the drive circuit part; 所述放电继电器的接触中的一个被连接至所述放电电阻器;并且one of the contacts of the discharge relay is connected to the discharge resistor; and 所述放电继电器的另一个接触被连接至所述放电电流检测电阻器。The other contact of the discharge relay is connected to the discharge current sense resistor. 9.一种电动车辆逆变器设备,包括:9. An electric vehicle inverter device, comprising: 逆变器部件,所述逆变器部件被构造为驱动被机械地连接至电动车辆的车辆驱动部件的AC电动机;an inverter component configured to drive an AC electric motor mechanically connected to a vehicle drive component of the electric vehicle; 转换器部件,所述转换器部件被构造为将通过电动车辆的引擎驱动力生成电功率的AC发电机生成的电功率转换为预定的电压范围内的直流电压;a converter part configured to convert electric power generated by an AC generator generating electric power by an engine driving force of the electric vehicle into a direct current voltage within a predetermined voltage range; 逆变器控制器,所述逆变器控制器被构造为控制所述逆变器部件和所述转换器部件;an inverter controller configured to control the inverter component and the converter component; 主电路电容器,所述主电路电容器被连接在所述逆变器与所述转换器的DC总线之间;以及a main circuit capacitor connected between the inverter and the DC bus of the converter; and 强制放电电路部件,所述强制放电电路部件被构造为响应于放电命令信号对被充电在所述主电路电容器中的电荷进行放电,a forced discharge circuit part configured to discharge the charge charged in the main circuit capacitor in response to a discharge command signal, 从高压电池单元提供用于所述逆变器部件的直流电源,所述高压电池单元包括逆变器主电路连接开关、高压电池以及涌入电流抑制电路,所述涌入电流抑制电路被构造为当所述逆变器主电路连接开关被接通时抑制来自于高压电池的涌入电流并且被连接至DC总线,DC power for the inverter part is supplied from a high-voltage battery unit comprising an inverter main circuit connection switch, a high-voltage battery, and an inrush current suppression circuit configured to suppressing inrush current from a high voltage battery and connected to a DC bus when the inverter main circuit connection switch is turned on, 从低压电池单元提供控制电源,所述低压电池单元包括低压电池和低电压电池开关,所述低电压电池开关被构造为断开和闭合所述低压电池,providing control power from a low voltage battery unit comprising a low voltage battery and a low voltage battery switch configured to open and close the low voltage battery, 电动车辆逆变器设备接收来自于车辆控制控制器的控制信号以及来自于碰撞检测器的控制信号并且根据上述信号对电动车辆逆变器设备进行控制,所述车辆控制控制器被构造为监督地控制电动车辆,并且所述碰撞检测器被连接在所述车辆控制控制器和所述低压电池之间并且包括碰撞检测器开关,所述碰撞检测器开关被构造为当检测到由于电动车辆的碰撞导致的冲击时进入断开状态,其中An electric vehicle inverter device receives a control signal from a vehicle control controller and a control signal from a crash detector and controls the electric vehicle inverter device in accordance with the above signals, the vehicle control controller being configured to supervise An electric vehicle is controlled, and the collision detector is connected between the vehicle control controller and the low voltage battery and includes a collision detector switch configured to detect a collision due to the electric vehicle cause the shock to go into the disconnected state, where the 所述车辆控制控制器检测表示当通过电动车辆的碰撞操作碰撞检测器时碰撞检测器开关被断开的断开信号;The vehicle control controller detects an off signal indicating that the crash detector switch is turned off when the crash detector is operated by a collision of the electric vehicle; 所述车辆控制控制器使所述高压电池单元的所述逆变器主电路连接开关进入断开状态,中断对DC总线部件的高压电池的直流电源的供给并且将放电命令信号输出至所述强制放电电路部件;以及The vehicle control controller puts the inverter main circuit connection switch of the high voltage battery unit into an off state, interrupts the supply of DC power to the high voltage battery of the DC bus section and outputs a discharge command signal to the forced discharge circuit components; and 所述强制放电电路部件对被充电在所述主电路电容器中的电荷进行放电,the forced discharge circuit part discharges the charge charged in the main circuit capacitor, 其中,所述强制放电电路部件包括:Wherein, the forced discharge circuit components include: DC-DC转换器,所述DC-DC转换器被构造为将从所述低压电池提供的电池电压转换为控制电路部件的操作电压;a DC-DC converter configured to convert a battery voltage supplied from the low-voltage battery into an operating voltage of a control circuit component; 存储部件,所述存储部件被构造为存储所述DC-DC转换器的输出电压;a storage unit configured to store an output voltage of the DC-DC converter; 放电操作命令输入部件,所述放电操作命令输入部件被构造为输入来自于所述碰撞检测器的检测信号和来自于所述车辆控制控制器的放电信号;a discharge operation command input part configured to input a detection signal from the collision detector and a discharge signal from the vehicle control controller; 放电命令延迟部件,所述放电命令延迟部件被构造为防止被输入到所述放电操作命令输入部件的信号的切跳的发生;a discharge command delay part configured to prevent occurrence of skipping of a signal input to the discharge operation command input part; 放电信号绝缘部件,所述放电信号绝缘部件被构造为电气地绝缘来自于所述放电命令延迟部件的输出信号;并且a discharge signal isolation part configured to electrically insulate an output signal from the discharge command delay part; and 所述存储部件具有充分的存储容量使得在电动车辆的碰撞时能够稍微地延迟由于从所述低压电池单元提供的电压的中断导致的压降,并且能够保持在控制电路部件可操作的电源电压直到所述强制放电电路部件的放电操作被启动。The storage part has a sufficient storage capacity to slightly delay a voltage drop due to an interruption of voltage supplied from the low-voltage battery unit at the time of a collision of the electric vehicle, and to maintain a power supply voltage at which the control circuit part is operable until A discharge operation of the forced discharge circuit part is started. 10.根据权利要求9所述的电动车辆逆变器设备,其中10. The electric vehicle inverter device according to claim 9, wherein 所述强制放电电路部件被构造为放电命令锁存部件被提供在所述放电命令延迟部件和所述放电信号绝缘部件之间并且保持放电命令信号;并且The forced discharge circuit part is configured such that a discharge command latch part is provided between the discharge command delay part and the discharge signal isolation part and holds a discharge command signal; and 所述强制放电电路部件将放电状态监测信号输出至车辆控制控制器。The forced discharge circuit part outputs a discharge state monitoring signal to a vehicle control controller. 11.一种用于电动车辆逆变器设备的保护方法,11. A protection method for an electric vehicle inverter device, 所述电动车辆逆变器设备包括:The electric vehicle inverter device includes: 逆变器部件,所述逆变器部件被构造为驱动被机械地连接至电动车辆的车辆驱动部件的AC电动机;an inverter component configured to drive an AC electric motor mechanically connected to a vehicle drive component of the electric vehicle; 转换器部件,所述转换器部件被构造为将通过电动车辆的引擎驱动力生成电功率的AC发电机生成的电功率转换为预定的电压范围内的直流电压;a converter part configured to convert electric power generated by an AC generator generating electric power by an engine driving force of the electric vehicle into a direct current voltage within a predetermined voltage range; 逆变器控制器,所述逆变器控制器被构造为控制所述逆变器部件和所述转换器部件;an inverter controller configured to control the inverter component and the converter component; 主电路电容器,所述主电路电容器被连接在所述逆变器与所述转换器的DC总线之间;以及a main circuit capacitor connected between the inverter and the DC bus of the converter; and 强制放电电路部件,所述强制放电电路部件被构造为响应于放电命令信号对被充电在所述主电路电容器中的电荷进行放电,a forced discharge circuit part configured to discharge the charge charged in the main circuit capacitor in response to a discharge command signal, 从高压电池单元提供用于所述逆变器部件的直流电源,所述高压电池单元包括逆变器主电路连接开关、高压电池以及涌入电流抑制电路,所述涌入电流抑制电路被构造为当所述逆变器主电路连接开关被接通时抑制来自于高压电池的涌入电流并且被连接至DC总线,DC power for the inverter part is supplied from a high-voltage battery unit comprising an inverter main circuit connection switch, a high-voltage battery, and an inrush current suppression circuit configured to suppressing inrush current from a high voltage battery and connected to a DC bus when the inverter main circuit connection switch is turned on, 从低压电池单元提供控制电源,所述低压电池单元包括低压电池和低电压电池开关,所述低电压电池开关被构造为断开并且闭合所述低压电池,providing control power from a low voltage battery unit comprising a low voltage battery and a low voltage battery switch configured to open and close the low voltage battery, 所述电动车辆逆变器设备接收来自于车辆控制控制器的控制信号以及来自于碰撞检测器的控制信号并且根据上述信号对电动车辆逆变器设备进行控制,所述车辆控制控制器被构造为监督地控制电动车辆,并且所述碰撞检测器被连接在所述车辆控制控制器和所述低压电池之间并且包括碰撞检测器开关,所述碰撞检测器开关被构造为当检测到由于电动车辆的碰撞导致的冲击时进入断开状态,The electric vehicle inverter device receives a control signal from a vehicle control controller and a control signal from a collision detector and controls the electric vehicle inverter device according to the above signals, and the vehicle control controller is configured to an electric vehicle is supervisedly controlled, and the crash detector is connected between the vehicle control controller and the low voltage battery and includes a crash detector switch configured to The shock caused by the collision enters the disconnected state, 所述保护方法包括:The protection methods include: 通过所述车辆控制控制器检测表示当通过电动车辆的碰撞操作碰撞检测器时碰撞检测器开关被断开的断开信号;detecting, by the vehicle control controller, an off signal indicating that the crash detector switch is turned off when the crash detector is operated by a collision of the electric vehicle; 通过所述车辆控制控制器使所述高压电池单元的所述逆变器主电路连接开关进入断开状态,bringing the inverter main circuit connection switch of the high voltage battery unit into an off state by the vehicle control controller, 通过所述车辆控制控制器中断对DC总线部件的高压电池的直流电源的供给,interrupting the supply of DC power to the high voltage battery of the DC bus component by the vehicle control controller, 通过所述车辆控制控制器将放电命令信号输出至所述强制放电电路部件;以及outputting a discharge command signal to the forced discharge circuit part through the vehicle control controller; and 通过所述强制放电电路部件对被充电在所述主电路电容器中的电荷进行放电,discharging the charge charged in the main circuit capacitor through the forced discharge circuit part, 其中,所述强制放电电路部件包括:Wherein, the forced discharge circuit components include: 放电电路部件,所述放电电路部件包括被串联地连接在所述DC总线之间的放电电阻器、功率半导体元件、以及放电电流检测电阻器;a discharge circuit part including a discharge resistor, a power semiconductor element, and a discharge current detection resistor connected in series between the DC buses; 放电电阻器过热保护电路部件,所述放电电阻器过热保护电路部件被构造为通过接收由于流过所述放电电流检测电阻器的放电电流导致的压降生成的电压作为到其的输入而进行操作;a discharge resistor overheat protection circuit part configured to operate by receiving, as an input thereto, a voltage generated by a voltage drop due to a discharge current flowing through the discharge current detection resistor ; 栅极电源电路部件,所述栅极电源电路部件被构造为从所述DC总线之间的直流电压生成用于所述功率半导体元件的驱动电源;a gate power circuit part configured to generate drive power for the power semiconductor elements from a DC voltage between the DC buses; 驱动电路部件,所述驱动电路部件被构造为将驱动信号给予所述功率半导体元件的控制端子;以及a driving circuit part configured to give a driving signal to a control terminal of the power semiconductor element; and 放电信号锁存电路部件,所述放电信号锁存电路部件被构造为接收根据来自于所述碰撞检测器的检测信号的放电命令信号并且将驱动信号给予所述驱动电路部件;a discharge signal latch circuit part configured to receive a discharge command signal according to a detection signal from the collision detector and to give a drive signal to the drive circuit part; 当接收根据来自于所述碰撞检测器的检测信号的放电命令信号时,所述放电信号锁存电路部件保持到所述驱动电路部件的导通信号从而所述放电电路部件能够继续保持放电操作导通状态;并且When receiving a discharge command signal based on a detection signal from the collision detector, the discharge signal latch circuit part maintains the conduction signal to the drive circuit part so that the discharge circuit part can continue to maintain the discharge operation conduction status; and 当所述主电路电容器的端子电压通过放电操作被降低到接近于0伏特的值时,并且当所述栅极电源电路部件的电源电压被降低到等于或者低于所述驱动电路部件的可操作电压的值时,所述放电操作导通状态被取消。When the terminal voltage of the main circuit capacitor is lowered to a value close to 0 volts by a discharging operation, and when the power supply voltage of the gate power supply circuit part is lowered to be equal to or lower than the operable voltage value, the discharge operation conduction state is canceled. 12.根据权利要求11所述的用于电动车辆逆变器设备的保护方法,其中12. The protection method for an electric vehicle inverter device according to claim 11, wherein 所述栅极电源电路部件包括在DC总线之间经由二极管串联地连接的电阻器和齐纳二极管,以及相互串联地连接并且分别并行地连接至所述电阻器和所述齐纳二极管的电解电容器;并且The gate power supply circuit part includes a resistor and a Zener diode connected in series between DC buses via a diode, and electrolytic capacitors connected in series with each other and in parallel to the resistor and the Zener diode, respectively. ;and 所述齐纳二极管的齐纳电压高于所述驱动电路部件的可操作电压,并且小于或等于所述功率半导体元件的容许栅极电压。A Zener voltage of the Zener diode is higher than an operable voltage of the driving circuit part and less than or equal to an allowable gate voltage of the power semiconductor element. 13.根据权利要求12所述的用于电动车辆逆变器设备的保护方法,其中13. The protection method for an electric vehicle inverter device according to claim 12, wherein 所述栅极电源电路部件被构造为相互串联地连接的放电重启晶体管和放电重启电阻器被并联地连接至彼此并联地连接的所述齐纳二极管和电解电容器;并且The gate power supply circuit part is configured such that a discharge restart transistor and a discharge restart resistor connected in series to each other are connected in parallel to the Zener diode and an electrolytic capacitor connected in parallel to each other; and 当就在完成放电操作时接收来自于所述车辆控制控制器的重启命令部件的放电重启信号时,所述栅极电源电路部件导通所述放电重启晶体管并且对被充电在所述电解电容器中的电荷进行放电。When receiving a discharge restart signal from a restart command part of the vehicle control controller upon completion of a discharge operation, the gate power supply circuit part turns on the discharge restart transistor and charges the electrolytic capacitor charge is discharged. 14.一种用于电动车辆逆变器设备的保护方法,14. A protection method for an electric vehicle inverter device, 所述电动车辆逆变器设备包括:The electric vehicle inverter device includes: 逆变器部件,所述逆变器部件被构造为驱动被机械地连接至电动车辆的车辆驱动部件的AC电动机;an inverter component configured to drive an AC electric motor mechanically connected to a vehicle drive component of the electric vehicle; 转换器部件,所述转换器部件被构造为将通过电动车辆的引擎驱动力生成电功率的AC发电机生成的电功率转换为预定的电压范围内的直流电压;a converter part configured to convert electric power generated by an AC generator generating electric power by an engine driving force of the electric vehicle into a direct current voltage within a predetermined voltage range; 逆变器控制器,所述逆变器控制器被构造为控制所述逆变器部件和所述转换器部件;an inverter controller configured to control the inverter component and the converter component; 主电路电容器,所述主电路电容器被连接在所述逆变器与所述转换器的DC总线之间;以及a main circuit capacitor connected between the inverter and the DC bus of the converter; and 强制放电电路部件,所述强制放电电路部件被构造为响应于放电命令信号对被充电在所述主电路电容器中的电荷进行放电,a forced discharge circuit part configured to discharge the charge charged in the main circuit capacitor in response to a discharge command signal, 从高压电池单元提供用于所述逆变器部件的直流电源,所述高压电池单元包括逆变器主电路连接开关、高压电池以及涌入电流抑制电路,所述涌入电流抑制电路被构造为当所述逆变器主电路连接开关被接通时抑制来自于高压电池的涌入电流并且被连接至DC总线,DC power for the inverter part is supplied from a high-voltage battery unit comprising an inverter main circuit connection switch, a high-voltage battery, and an inrush current suppression circuit configured to suppressing inrush current from a high voltage battery and connected to a DC bus when the inverter main circuit connection switch is turned on, 从低压电池单元提供控制电源,所述低压电池单元包括低压电池和低电压电池开关,所述低电压电池开关被构造为断开并且闭合所述低压电池,providing control power from a low voltage battery unit comprising a low voltage battery and a low voltage battery switch configured to open and close the low voltage battery, 所述电动车辆逆变器设备接收来自于车辆控制控制器的控制信号以及来自于碰撞检测器的控制信号并且根据上述信号对电动车辆逆变器设备进行控制,所述车辆控制控制器被构造为监督地控制电动车辆,并且所述碰撞检测器被连接在所述车辆控制控制器和所述低压电池之间并且包括碰撞检测器开关,所述碰撞检测器开关被构造为当检测到由于电动车辆的碰撞导致的冲击时进入断开状态,The electric vehicle inverter device receives a control signal from a vehicle control controller and a control signal from a collision detector and controls the electric vehicle inverter device according to the above signals, and the vehicle control controller is configured to an electric vehicle is supervisedly controlled, and the crash detector is connected between the vehicle control controller and the low voltage battery and includes a crash detector switch configured to The shock caused by the collision enters the disconnected state, 所述保护方法包括:The protection methods include: 通过所述车辆控制控制器检测表示当通过电动车辆的碰撞操作碰撞检测器时碰撞检测器开关被断开的断开信号;detecting, by the vehicle control controller, an off signal indicating that the crash detector switch is turned off when the crash detector is operated by a collision of the electric vehicle; 通过所述车辆控制控制器使所述高压电池单元的所述逆变器主电路连接开关进入断开状态,bringing the inverter main circuit connection switch of the high voltage battery unit into an off state by the vehicle control controller, 通过所述车辆控制控制器中断对DC总线部件的高压电池的直流电源的供给,interrupting the supply of DC power to the high voltage battery of the DC bus component by the vehicle control controller, 通过所述车辆控制控制器将放电命令信号输出至所述强制放电电路部件;以及outputting a discharge command signal to the forced discharge circuit part through the vehicle control controller; and 通过所述强制放电电路部件对被充电在所述主电路电容器中的电荷进行放电,discharging the charge charged in the main circuit capacitor through the forced discharge circuit part, 其中,所述强制放电电路部件包括:Wherein, the forced discharge circuit components include: DC-DC转换器,所述DC-DC转换器被构造为将从所述低压电池提供的电池电压转换为控制电路部件的操作电压;a DC-DC converter configured to convert a battery voltage supplied from the low-voltage battery into an operating voltage of a control circuit component; 存储部件,所述存储部件被构造为存储所述DC-DC转换器的输出电压;a storage unit configured to store an output voltage of the DC-DC converter; 放电操作命令输入部件,所述放电操作命令输入部件被构造为输入来自于所述碰撞检测器的检测信号和来自于所述车辆控制控制器的放电信号;a discharge operation command input part configured to input a detection signal from the collision detector and a discharge signal from the vehicle control controller; 放电命令延迟部件,所述放电命令延迟部件被构造为防止被输入到所述放电操作命令输入部件的信号的切跳的发生;a discharge command delay part configured to prevent occurrence of skipping of a signal input to the discharge operation command input part; 放电信号绝缘部件,所述放电信号绝缘部件被构造为电气地绝缘来自于所述放电命令延迟部件的输出信号;并且a discharge signal isolation part configured to electrically insulate an output signal from the discharge command delay part; and 所述存储部件具有充分的存储容量使得在电动车辆的碰撞时能够稍微地延迟由于从所述低压电池单元提供的电压的中断导致的压降,并且能够保持在控制电路部件可操作的电源电压直到所述强制放电电路部件的放电操作被启动。The storage part has a sufficient storage capacity to slightly delay a voltage drop due to an interruption of voltage supplied from the low-voltage battery unit at the time of a collision of the electric vehicle, and to maintain a power supply voltage at which the control circuit part is operable until A discharge operation of the forced discharge circuit part is started. 15.根据权利要求14所述的用于电动车辆逆变器设备的保护方法,其中15. The protection method for an electric vehicle inverter device according to claim 14, wherein 所述强制放电电路部件被构造为放电命令锁存部件被提供在所述放电命令延迟部件和所述放电信号绝缘部件之间并且保持放电命令信号;并且The forced discharge circuit part is configured such that a discharge command latch part is provided between the discharge command delay part and the discharge signal isolation part and holds a discharge command signal; and 所述强制放电电路部件将放电状态监测信号输出至车辆控制控制器。The forced discharge circuit part outputs a discharge state monitoring signal to a vehicle control controller.
CN201010114364.4A 2009-02-20 2010-02-20 Electric vehicle inverter apparatus and protection method therefor Expired - Fee Related CN101814720B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009038271A JP5317188B2 (en) 2009-02-20 2009-02-20 Inverter device for electric vehicle and protection method thereof
JP2009-038271 2009-02-20

Publications (2)

Publication Number Publication Date
CN101814720A CN101814720A (en) 2010-08-25
CN101814720B true CN101814720B (en) 2014-04-30

Family

ID=42356823

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201010114364.4A Expired - Fee Related CN101814720B (en) 2009-02-20 2010-02-20 Electric vehicle inverter apparatus and protection method therefor

Country Status (4)

Country Link
US (1) US8612073B2 (en)
JP (1) JP5317188B2 (en)
CN (1) CN101814720B (en)
DE (1) DE102010002102A1 (en)

Families Citing this family (161)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9496720B2 (en) 2004-08-20 2016-11-15 Midtronics, Inc. System for automatically gathering battery information
US8253269B2 (en) * 2009-09-25 2012-08-28 Lear Corporation Economizer for vehicle battery disconnect
US9588185B2 (en) 2010-02-25 2017-03-07 Keith S. Champlin Method and apparatus for detecting cell deterioration in an electrochemical cell or battery
JP5562702B2 (en) * 2010-03-31 2014-07-30 株式会社デンソー Discharge control device for power conversion system
JP5519398B2 (en) * 2010-05-12 2014-06-11 株式会社デンソー Power converter
JP5389730B2 (en) * 2010-05-14 2014-01-15 株式会社デンソー Discharge device for power conversion system
US11740294B2 (en) 2010-06-03 2023-08-29 Midtronics, Inc. High use battery pack maintenance
JP5829681B2 (en) 2010-06-03 2015-12-09 ミッドトロニクス インコーポレイテッド Maintenance of battery packs for electric vehicles
US10046649B2 (en) * 2012-06-28 2018-08-14 Midtronics, Inc. Hybrid and electric vehicle battery pack maintenance device
US8604919B2 (en) * 2010-08-25 2013-12-10 General Motors, Llc Determining status of high voltage battery for emergency responders
JP5174109B2 (en) 2010-09-15 2013-04-03 豊田合成株式会社 Discharge device for vehicle
JP5177245B2 (en) * 2010-10-25 2013-04-03 トヨタ自動車株式会社 Vehicle and control method thereof
CN102069715B (en) * 2010-12-14 2012-10-03 湖南南车时代电动汽车股份有限公司 Running and charging interlocking device of electric vehicle
JP2012186893A (en) * 2011-03-04 2012-09-27 Honda Motor Co Ltd Electric vehicle
JP5264949B2 (en) * 2011-03-08 2013-08-14 本田技研工業株式会社 Electric vehicle
JP5472176B2 (en) * 2011-03-25 2014-04-16 三菱自動車工業株式会社 Inverter device
DE112011105135T5 (en) * 2011-04-08 2014-01-02 Mitsubishi Electric Corporation Power supply system for a vehicle
JP5794301B2 (en) * 2011-05-31 2015-10-14 トヨタ自動車株式会社 Vehicle and vehicle control method
US9381819B2 (en) * 2011-06-29 2016-07-05 Ford Global Technologies, Llc Method and apparatus for charging or discharging and electrical device by controlling switches
JP5338868B2 (en) * 2011-07-14 2013-11-13 トヨタ自動車株式会社 Drive device, vehicle equipped with the same, and control method
US9225269B2 (en) * 2011-07-20 2015-12-29 Toyota Jidosha Kabushiki Kaisha Vehicle and method for controlling vehicle
ITTO20110767A1 (en) * 2011-08-12 2013-02-13 Magneti Marelli Spa DEVICE AND DISCHARGE METHOD TO ACTIVALLY DOWNLOAD A CONDENSER IN AN ELECTRIC POWER SYSTEM OF A VEHICLE WITH ELECTRIC TRACTION
ITTO20110769A1 (en) * 2011-08-12 2013-02-13 Magneti Marelli Spa DEVICE AND DISCHARGE METHOD FOR A CONDENSER IN AN ELECTRIC POWER PLANT OF A VEHICLE WITH ELECTRIC TRACTION
ITTO20110768A1 (en) * 2011-08-12 2013-02-13 Magneti Marelli Spa DEVICE AND METHOD OF DISCHARGE FOR THE ACTIVE DOWNLOAD OF A CONDENSER IN AN ELECTRIC POWER PLANT OF A VEHICLE WITH ELECTRIC TRACTION
CN102381196B (en) * 2011-08-17 2014-03-12 联合汽车电子有限公司 Circuit for solving towing problem of electric vehicle
JP5397432B2 (en) * 2011-08-22 2014-01-22 トヨタ自動車株式会社 Rotating electrical machine drive system
WO2013042215A1 (en) * 2011-09-21 2013-03-28 トヨタ自動車株式会社 Electric vehicle
JP5510424B2 (en) * 2011-09-26 2014-06-04 トヨタ自動車株式会社 Electric car
CN102390270A (en) * 2011-10-10 2012-03-28 重庆长安汽车股份有限公司 Series connection stroke increment type electric automobile high-voltage electricity quick-discharge control method
FR2981219B1 (en) * 2011-10-11 2015-04-10 Michelin Soc Tech SECURE POWER SUPPLY BREAKING METHOD OF AN ELECTRIC MOTOR AND CORRESPONDING DEVICE
CN103181053B (en) * 2011-10-24 2014-11-12 丰田自动车株式会社 Electricity-storage system
CN102371911B (en) * 2011-10-27 2013-09-11 奇瑞汽车股份有限公司 Method for releasing electric quantity of high-voltage bus capacitor of car motor driver
KR101241226B1 (en) * 2011-10-27 2013-03-13 현대자동차주식회사 System of main relay monitoring for green cars and method thereof
US9059486B2 (en) * 2011-10-31 2015-06-16 GM Global Technology Operations LLC Automatic crash battery discharge method
DE112012004706T5 (en) 2011-11-10 2014-08-21 Midtronics, Inc. Battery pack test device
JP5731360B2 (en) * 2011-11-18 2015-06-10 日立オートモティブシステムズ株式会社 Power converter
CN104417375B (en) * 2011-12-08 2016-08-17 北汽福田汽车股份有限公司 For the bleeder of electric automobile and the electric automobile with it
US9156343B2 (en) * 2011-12-27 2015-10-13 GM Global Technology Operations LLC Electrolytic capacitor reformation systems and methods
CN203120353U (en) * 2011-12-31 2013-08-07 比亚迪股份有限公司 Radiator
WO2013097825A1 (en) 2011-12-31 2013-07-04 深圳市比亚迪汽车研发有限公司 Electric automobile and discharging device thereof
JP5699944B2 (en) * 2012-01-13 2015-04-15 トヨタ自動車株式会社 Discharge controller and electric vehicle
WO2013116678A2 (en) * 2012-02-02 2013-08-08 Robert Bosch Gmbh System and method for discharging a battery in a vehicle after a crash
US20150034406A1 (en) * 2012-02-23 2015-02-05 Toyota Jidosha Kabushiki Kaisha Electric vehicle
JP2013188092A (en) * 2012-03-09 2013-09-19 Aisin Aw Co Ltd Inverter device for electric vehicle
JP5814841B2 (en) * 2012-03-23 2015-11-17 株式会社日立産機システム Power converter
US20130264325A1 (en) * 2012-04-04 2013-10-10 GM Global Technology Operations LLC Remote high voltage switch for controlling a high voltage heater located inside a vehicle cabin
JP5505451B2 (en) * 2012-04-13 2014-05-28 株式会社デンソー Power converter
KR101627960B1 (en) * 2012-06-07 2016-06-07 미쓰비시덴키 가부시키가이샤 Electric vehicle control device
US9851411B2 (en) 2012-06-28 2017-12-26 Keith S. Champlin Suppressing HF cable oscillations during dynamic measurements of cells and batteries
US11325479B2 (en) 2012-06-28 2022-05-10 Midtronics, Inc. Hybrid and electric vehicle battery maintenance device
WO2014011606A2 (en) * 2012-07-11 2014-01-16 Magna E-Car Systems Of America, Inc. System and method for controlling the transmission of high voltage current to an electric motor in an electric vehicle
KR102035033B1 (en) * 2012-08-22 2019-10-23 에스케이이노베이션 주식회사 Power Relay Assembly for Electric Vehicle and the Operation Method Thereof
EP2722977A3 (en) * 2012-09-10 2018-01-03 OCT Circuit Technologies International Limited Method and apparatus for controlling a start-up sequence of a DC/DC Buck converter
CN102897057B (en) * 2012-09-12 2015-01-28 郑州宇通客车股份有限公司 Integrated motor control and charge device for hybrid electric bus
US9327610B2 (en) * 2012-09-12 2016-05-03 GM Global Technology Operations LLC Method for automatic energy discharge of a battery pack via internal battery electronics post crash event
CN102969918B (en) * 2012-11-06 2016-03-02 联合汽车电子有限公司 Three-phase bridge type converter system and promptly descend short-circuit protection circuit
CN103042926B (en) * 2012-12-04 2016-09-28 联合汽车电子有限公司 The trailer guard method of new-energy automobile and realize circuit
JP5776678B2 (en) * 2012-12-21 2015-09-09 トヨタ自動車株式会社 Vehicle equipped with power control unit
JP5817748B2 (en) * 2013-01-25 2015-11-18 トヨタ自動車株式会社 Inverter
JP5602890B2 (en) * 2013-01-29 2014-10-08 ファナック株式会社 Motor control device having power storage device and resistance discharge device
JP2014166033A (en) * 2013-02-25 2014-09-08 Toyota Motor Corp Power unit
KR20140114151A (en) 2013-03-18 2014-09-26 주식회사 한라홀딩스 Forced discharge circuit of battery charger for electric vehicle, battery charger for electric vehicle including the same circuit and electric vehicle having the function of the charge
JP5817767B2 (en) * 2013-03-21 2015-11-18 トヨタ自動車株式会社 Electric car
JP6186163B2 (en) * 2013-04-15 2017-08-23 本田技研工業株式会社 Collision detection system
JP5857998B2 (en) * 2013-04-25 2016-02-10 トヨタ自動車株式会社 DRIVE DEVICE AND VEHICLE HAVING DRIVE DEVICE
JP6089942B2 (en) * 2013-05-09 2017-03-08 株式会社デンソー Rotating electric machine for vehicles
DE102014106218B4 (en) 2013-05-09 2021-11-25 Denso Corporation Rotating electrical machine for a vehicle
JP5862606B2 (en) * 2013-05-17 2016-02-16 株式会社デンソー Power converter
CN103472306B (en) * 2013-09-06 2016-04-13 富奥汽车零部件股份有限公司 A kind of electric automobile high-voltage insulation detecting method and system
JP5730975B2 (en) * 2013-10-11 2015-06-10 富士重工業株式会社 Electric vehicle
JP6171885B2 (en) * 2013-11-20 2017-08-02 株式会社デンソー In-vehicle electrical system
US10843574B2 (en) 2013-12-12 2020-11-24 Midtronics, Inc. Calibration and programming of in-vehicle battery sensors
DE102013226763A1 (en) * 2013-12-19 2015-06-25 Bayerische Motoren Werke Aktiengesellschaft Safety circuit arrangement for an electric drive unit
DE102014200262B4 (en) * 2014-01-10 2025-03-13 Robert Bosch Gmbh Battery system with a battery that can be connected to at least one of its high-voltage terminals via a contactor, and method for switching such a contactor
EP2897229A1 (en) 2014-01-16 2015-07-22 Midtronics, Inc. Battery clamp with endoskeleton design
US9656556B2 (en) * 2014-01-22 2017-05-23 Ford Global Technologies, Llc Capacitor discharging during deactivation of electric vehicle drive system
CN103944468A (en) * 2014-03-03 2014-07-23 江苏星光发电设备有限公司 Excitation constant-current device for TFW brushless generator
JP6024701B2 (en) * 2014-04-28 2016-11-16 トヨタ自動車株式会社 Power conversion circuit
JP5954356B2 (en) * 2014-05-12 2016-07-20 トヨタ自動車株式会社 Electric vehicle
CN105216632A (en) * 2014-06-30 2016-01-06 观致汽车有限公司 For Vehicular battery group management system and method
US10473555B2 (en) 2014-07-14 2019-11-12 Midtronics, Inc. Automotive maintenance system
JP2016052138A (en) * 2014-08-28 2016-04-11 株式会社ケーヒン Discharge control device
JP2016052140A (en) * 2014-08-28 2016-04-11 株式会社ケーヒン Discharge control device
CN104354655A (en) * 2014-09-25 2015-02-18 重庆长安汽车股份有限公司 Discharging method and system for new energy vehicle
US10222397B2 (en) 2014-09-26 2019-03-05 Midtronics, Inc. Cable connector for electronic battery tester
EP3034351B1 (en) * 2014-12-01 2024-04-24 Marelli Europe S.p.A. Electronic device for controlling the electric charge of a load electrically supplied by a battery pack and system for moving an electric or hybrid traction vehicle using the device
CN104393586B (en) * 2014-12-04 2017-10-13 合肥巨一动力系统有限公司 A kind of electric machine controller for motor vehicle electric capacity active discharge circuit
WO2016123075A1 (en) 2015-01-26 2016-08-04 Midtronics, Inc. Alternator tester
US9645185B2 (en) * 2015-03-05 2017-05-09 Ford Global Technologies, Llc AC traction motor fault detection using DC bus leakage hardware
KR101693991B1 (en) * 2015-05-18 2017-01-17 현대자동차주식회사 System and method for cutting high voltage of battery for vehicle
DE102015006416A1 (en) * 2015-05-19 2016-11-24 Man Truck & Bus Ag Circuit arrangement for discharging an energy store of a motor vehicle
US9966676B2 (en) 2015-09-28 2018-05-08 Midtronics, Inc. Kelvin connector adapter for storage battery
US10353014B2 (en) * 2015-10-08 2019-07-16 Deere & Company Watchdog scheme for monitoring a power electronic inverter and determining a manner of operating a load
JP6038265B1 (en) 2015-11-05 2016-12-07 三菱電機株式会社 Ignition device and ignition control method
JP2017093108A (en) * 2015-11-09 2017-05-25 日立オートモティブシステムズ株式会社 Overboosting suppressing circuit of booster circuit
KR20170068826A (en) * 2015-12-10 2017-06-20 주식회사 엘지화학 System and method for connecting battery
US20170203666A1 (en) * 2016-01-19 2017-07-20 Ford Global Technologies, Llc Battery charging system and servicing method
JP6332300B2 (en) * 2016-02-17 2018-05-30 トヨタ自動車株式会社 vehicle
US10020755B2 (en) * 2016-03-03 2018-07-10 GM Global Technology Operations LLC Apparatus for discharging a high-voltage bus
JP6399029B2 (en) * 2016-04-07 2018-10-03 トヨタ自動車株式会社 Electric car
US10035422B2 (en) * 2016-06-14 2018-07-31 Ford Global Technologies, Llc Self-limiting active discharge circuit for electric vehicle inverter
JP6493314B2 (en) * 2016-06-15 2019-04-03 トヨタ自動車株式会社 Electric car
US10086705B2 (en) 2016-06-28 2018-10-02 Toyota Motor Engineering & Manufacturing North America, Inc. Multipoint emergency responder safety isolation system
US10608353B2 (en) 2016-06-28 2020-03-31 Midtronics, Inc. Battery clamp
CN106080210A (en) * 2016-08-09 2016-11-09 江苏卡威汽车工业集团有限公司 Electric automobile emergency power off system and emergency power off control method
US10252618B2 (en) * 2016-09-06 2019-04-09 Ford Global Technologies, Llc Backup electrical supply for main capacitor discharge
US11054480B2 (en) 2016-10-25 2021-07-06 Midtronics, Inc. Electrical load for electronic battery tester and electronic battery tester including such electrical load
US12320857B2 (en) 2016-10-25 2025-06-03 Midtronics, Inc. Electrical load for electronic battery tester and electronic battery tester including such electrical load
JP6867780B2 (en) * 2016-10-28 2021-05-12 矢崎総業株式会社 Semiconductor switch controller
EP3327745B1 (en) 2016-11-28 2020-08-05 Volkswagen Aktiengesellschaft Electric fuse, method for operating an electric fuse and electrical traction network
DE102017203851B4 (en) 2016-11-28 2018-06-14 Volkswagen Aktiengesellschaft Electrical fuse, method of operating an electrical fuse and electric traction network
DE102016224813A1 (en) * 2016-12-13 2018-06-14 Bayerische Motoren Werke Aktiengesellschaft Motor vehicle with an electric motor, in particular hybrid or electric vehicle
CN106828110A (en) * 2017-03-03 2017-06-13 镇江海姆霍兹传热传动系统有限公司 Vehicle high-voltage bus safety protector
FR3063843B1 (en) * 2017-03-08 2019-03-15 Valeo Equipements Electriques Moteur ELECTRIC DISCHARGE CIRCUIT WITH CAPACITY, ELECTRICAL SYSTEM AND MOTOR VEHICLE COMPRISING SUCH AN ELECTRIC DISCHARGE CIRCUIT
KR102384785B1 (en) 2017-03-14 2022-04-08 삼성전자주식회사 Electronic apparatus and method for charging battery
FR3064416B1 (en) * 2017-03-23 2021-06-18 Renault Sas HIGH-VOLTAGE NETWORK DISCHARGE DEVICE FOR A MOTOR VEHICLE.
DE102017205618A1 (en) * 2017-04-03 2018-10-04 Robert Bosch Gmbh Device and method for providing an activation voltage for a safety device for a vehicle and safety device
CN107257192A (en) * 2017-05-19 2017-10-17 苏州汇川联合动力系统有限公司 A kind of passive electric discharge device and electric machine controller
DE102017209183B4 (en) * 2017-05-31 2024-09-12 Bayerische Motoren Werke Aktiengesellschaft Vehicle energy storage
CN109142872A (en) * 2017-06-16 2019-01-04 日本贵弥功株式会社 The measuring method and measurement device of the resistance of charge storage element
US10124680B1 (en) 2017-06-28 2018-11-13 Lear Corporation Methods and systems for pre-charging on-board charger of vehicle
TWM576750U (en) * 2017-07-25 2019-04-11 美商米沃奇電子工具公司 Electrical composition, electric device system, battery pack, electric motor, motor assembly and electric motor assembly
JP6554151B2 (en) * 2017-08-31 2019-07-31 本田技研工業株式会社 Vehicle power system
JP6545230B2 (en) * 2017-08-31 2019-07-17 本田技研工業株式会社 Vehicle power system
JP6644043B2 (en) * 2017-11-08 2020-02-12 矢崎総業株式会社 Semiconductor relay control device
CN108001229A (en) * 2017-12-08 2018-05-08 东风柳州汽车有限公司 Motor in electric automobile active discharge circuit
US10351004B1 (en) 2018-01-03 2019-07-16 Lear Corporation Pre-charging DC link capacitor of on-board charger (OBC) using traction battery
KR20190136233A (en) * 2018-05-30 2019-12-10 엘에스산전 주식회사 Apparatus for protecting inverter
IT201800007859A1 (en) * 2018-08-03 2020-02-03 Meta System Spa ACTIVE DISCHARGE SYSTEM FOR ELECTRIC OR HYBRID VEHICLES
KR102423888B1 (en) * 2018-08-13 2022-07-20 주식회사 엘지에너지솔루션 Apparatus for controlling switch
JP7232000B2 (en) * 2018-08-24 2023-03-02 株式会社Subaru discharge system
CN109240154B (en) * 2018-09-03 2024-07-12 中车大连电力牵引研发中心有限公司 Output control device and vehicle low-voltage control system
US11513160B2 (en) 2018-11-29 2022-11-29 Midtronics, Inc. Vehicle battery maintenance device
DE102018221209A1 (en) * 2018-12-07 2020-06-10 Zf Friedrichshafen Ag Device and method for discharging an intermediate circuit capacitor
DE102018133470A1 (en) * 2018-12-21 2020-06-25 Thyssenkrupp Ag DC link discharge unit, electrical device and vehicle
JP7177985B2 (en) * 2019-02-05 2022-11-25 マツダ株式会社 vehicle power system
CN109842095B (en) * 2019-02-25 2021-06-11 阳光电源股份有限公司 Power conversion system, controller and control method
DE102019205801A1 (en) * 2019-04-23 2020-10-29 Robert Bosch Gmbh Disconnector
KR102271495B1 (en) * 2019-07-17 2021-07-05 재단법인 자동차융합기술원 Apparatus for resolving crisis situation for Electric Vehicle
US11566972B2 (en) 2019-07-31 2023-01-31 Midtronics, Inc. Tire tread gauge using visual indicator
DE102019216568B3 (en) 2019-10-28 2020-10-15 Magna powertrain gmbh & co kg Discharge device for an electric drive arrangement of a vehicle and electric drive arrangement with the discharge device
US11545839B2 (en) 2019-11-05 2023-01-03 Midtronics, Inc. System for charging a series of connected batteries
US11668779B2 (en) 2019-11-11 2023-06-06 Midtronics, Inc. Hybrid and electric vehicle battery pack maintenance device
US11474153B2 (en) 2019-11-12 2022-10-18 Midtronics, Inc. Battery pack maintenance system
CN113022309B (en) * 2019-12-25 2023-03-17 北京车和家信息技术有限公司 High-voltage system for vehicle, method for protecting high-voltage system and vehicle
US11973202B2 (en) 2019-12-31 2024-04-30 Midtronics, Inc. Intelligent module interface for battery maintenance device
DE102020216599A1 (en) 2019-12-31 2021-07-01 Midtronics, Inc. Intelligent module interface for a battery maintenance device
US11486930B2 (en) 2020-01-23 2022-11-01 Midtronics, Inc. Electronic battery tester with battery clamp storage holsters
JP7390916B2 (en) 2020-02-10 2023-12-04 株式会社Subaru Battery status notification device for electric vehicles
CN111245336A (en) * 2020-02-27 2020-06-05 中国电子产品可靠性与环境试验研究所((工业和信息化部电子第五研究所)(中国赛宝实验室)) Servo drive circuit
KR20210156107A (en) * 2020-06-17 2021-12-24 현대자동차주식회사 Apparatus and method for charging battery of vehicle
JP2022015975A (en) * 2020-07-10 2022-01-21 本田技研工業株式会社 vehicle
DE112021004832T5 (en) * 2020-09-17 2023-08-03 Rivian Ip Holdings, Llc Systems and methods for controlling vehicle towing
CN112234812A (en) * 2020-09-27 2021-01-15 杭州长川科技股份有限公司 Bleeder circuit, energy storage circuit, semiconductor test system and bleeder method
US11654883B2 (en) 2021-04-16 2023-05-23 Ford Global Technologies, Llc Current based anti-chatter latch
US12034295B2 (en) 2021-06-23 2024-07-09 Appleton Grp Llc Inrush current protection circuit with noise immune latching circuit
US12330513B2 (en) 2022-02-14 2025-06-17 Midtronics, Inc. Battery maintenance device with high voltage connector
JP7647650B2 (en) 2022-03-29 2025-03-18 トヨタ自動車株式会社 Discharge Device
US11691517B1 (en) 2022-05-04 2023-07-04 Beta Air, Llc Emergency high voltage disconnection device for an electric aircraft
KR102755752B1 (en) * 2022-12-28 2025-01-22 주식회사 현대케피코 Control system for safety after collision with secondary battery applied vehicle and method using thereof
CN116760157B (en) * 2023-08-23 2023-11-03 长沙普洛电气设备有限公司 Time-delay power-off circuit and special electric chassis vehicle

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1833921A (en) * 2005-03-18 2006-09-20 丰田自动车株式会社 Power conversion device and vehicle equipped therewith
CN101025436A (en) * 2006-12-28 2007-08-29 奇瑞汽车有限公司 High-voltage safety monitoring device for electric automobile

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06276610A (en) 1993-03-19 1994-09-30 Sanden Corp Driver for motor
JP2003235241A (en) 2002-02-01 2003-08-22 Sumitomo Metal Micro Devices Inc Power supply device and discharge current control method for power supply device
JP2004015892A (en) * 2002-06-05 2004-01-15 Toshiba Corp Inverter controlling device and electric vehicle
JP2006224772A (en) * 2005-02-16 2006-08-31 Toyota Motor Corp Vehicle power supply
JP2006304551A (en) * 2005-04-22 2006-11-02 Toyota Motor Corp State determination system and vehicle
JP2006322792A (en) * 2005-05-18 2006-11-30 Toyota Motor Corp Electric leakage detection device and electric leakage detection method
US7649335B2 (en) * 2005-06-07 2010-01-19 Toyota Jidosha Kabushiki Kaisha Vehicular power supply system and vehicle
JP4378707B2 (en) * 2006-01-27 2009-12-09 株式会社デンソー Control device for voltage conversion circuit
JP2009038271A (en) 2007-08-03 2009-02-19 Canon Inc Aligner, aligning method, and manufacturing method of device
JP2010200455A (en) * 2009-02-24 2010-09-09 Toyota Motor Corp Automobile and discharging method of smoothing capacitor
EP2431211A1 (en) * 2009-05-13 2012-03-21 Toyota Jidosha Kabushiki Kaisha Vehicle power conversion device and vehicle in which same is installed
US8415825B2 (en) * 2009-05-15 2013-04-09 Toyota Jidosha Kabushiki Kaisha Power conversion device, method of controlling power conversion device, and vehicle with the same mounted thereon
JP5434381B2 (en) * 2009-08-31 2014-03-05 株式会社デンソー In-vehicle motor drive system
KR101124973B1 (en) * 2009-12-03 2012-03-27 현대자동차주식회사 Motor control system for hybrid vehicle and method for controlling the same
JP4962583B2 (en) * 2010-03-11 2012-06-27 株式会社デンソー Discharge control device for power conversion system
JP5093268B2 (en) * 2010-03-11 2012-12-12 株式会社デンソー Discharge control device for power conversion system
JP5562702B2 (en) * 2010-03-31 2014-07-30 株式会社デンソー Discharge control device for power conversion system
JP5007754B2 (en) * 2010-05-14 2012-08-22 株式会社デンソー Discharge control device for power conversion system
JP5174109B2 (en) * 2010-09-15 2013-04-03 豊田合成株式会社 Discharge device for vehicle
JP5064547B2 (en) * 2010-09-15 2012-10-31 豊田合成株式会社 Discharge device for vehicle
JP5338868B2 (en) * 2011-07-14 2013-11-13 トヨタ自動車株式会社 Drive device, vehicle equipped with the same, and control method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1833921A (en) * 2005-03-18 2006-09-20 丰田自动车株式会社 Power conversion device and vehicle equipped therewith
CN101025436A (en) * 2006-12-28 2007-08-29 奇瑞汽车有限公司 High-voltage safety monitoring device for electric automobile

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JP特开2006-224772A 2006.08.31
JP特开2006-322792A 2006.11.30

Also Published As

Publication number Publication date
DE102010002102A1 (en) 2010-08-26
US8612073B2 (en) 2013-12-17
US20100214055A1 (en) 2010-08-26
JP5317188B2 (en) 2013-10-16
CN101814720A (en) 2010-08-25
JP2010193691A (en) 2010-09-02

Similar Documents

Publication Publication Date Title
CN101814720B (en) Electric vehicle inverter apparatus and protection method therefor
US10800360B2 (en) Electric power system of vehicle with quick discharge of a high-voltage condenser
US7269535B2 (en) Fault diagnosing apparatus for vehicle and fault diagnosing method for vehicle
JP4969516B2 (en) Electric vehicle power control device
US10787136B2 (en) Electric power system for controlling pre-charge of vehicle
US20150034406A1 (en) Electric vehicle
US20140240872A1 (en) Power-supply unit
US20140049215A1 (en) Method for monitoring the charging mode of an energy store in a vechile and charging system for charging an energy store in a vechile
CN111656666B (en) power conversion device
CN104512275A (en) Electric vehicle power conversion system
CN103738197A (en) Discharging method of bus capacitor for electric automobile
JP6428735B2 (en) Power converter
JP2013236442A (en) Electric vehicle
EP2544346A1 (en) Load driving device
KR20160134206A (en) Active capacitor discharge system of electric power system for eco-friendly vehicle
JP4701821B2 (en) Load driving device and vehicle equipped with the same
JP5939165B2 (en) Rotating electrical machine control device
JP2008206313A (en) Smoothing capacitor discharge device for vehicle power converter
US10122317B2 (en) Electric compressor for vehicle
KR100559398B1 (en) Power connection controls for hybrid and fuel cell vehicles
US11012021B2 (en) Inverter device and control circuit therefor, and motor driving system
CN115395813A (en) Inverter unit
JP2005312156A (en) Power supply control device and motor drive device including the same
TW202133523A (en) Undervoltage protection apparatus and method
JP6344334B2 (en) Power control unit

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20140430

CF01 Termination of patent right due to non-payment of annual fee