CN101809147A - 修饰的木聚糖生产 - Google Patents
修饰的木聚糖生产 Download PDFInfo
- Publication number
- CN101809147A CN101809147A CN200880107883A CN200880107883A CN101809147A CN 101809147 A CN101809147 A CN 101809147A CN 200880107883 A CN200880107883 A CN 200880107883A CN 200880107883 A CN200880107883 A CN 200880107883A CN 101809147 A CN101809147 A CN 101809147A
- Authority
- CN
- China
- Prior art keywords
- plant
- sequence
- xylan
- cell
- dna
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8241—Phenotypically and genetically modified plants via recombinant DNA technology
- C12N15/8242—Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
- C12N15/8243—Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine
- C12N15/8245—Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine involving modified carbohydrate or sugar alcohol metabolism, e.g. starch biosynthesis
- C12N15/8246—Non-starch polysaccharides, e.g. cellulose, fructans, levans
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/415—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8241—Phenotypically and genetically modified plants via recombinant DNA technology
- C12N15/8242—Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
- C12N15/8243—Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine
- C12N15/8245—Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine involving modified carbohydrate or sugar alcohol metabolism, e.g. starch biosynthesis
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/10—Transferases (2.)
- C12N9/1048—Glycosyltransferases (2.4)
- C12N9/1051—Hexosyltransferases (2.4.1)
-
- C—CHEMISTRY; METALLURGY
- C13—SUGAR INDUSTRY
- C13K—SACCHARIDES OBTAINED FROM NATURAL SOURCES OR BY HYDROLYSIS OF NATURALLY OCCURRING DISACCHARIDES, OLIGOSACCHARIDES OR POLYSACCHARIDES
- C13K13/00—Sugars not otherwise provided for in this class
- C13K13/002—Xylose
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23V—INDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
- A23V2002/00—Food compositions, function of food ingredients or processes for food or foodstuffs
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Genetics & Genomics (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Molecular Biology (AREA)
- Biotechnology (AREA)
- Zoology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Wood Science & Technology (AREA)
- Biochemistry (AREA)
- Biomedical Technology (AREA)
- General Engineering & Computer Science (AREA)
- Nutrition Science (AREA)
- General Health & Medical Sciences (AREA)
- Biophysics (AREA)
- Microbiology (AREA)
- Plant Pathology (AREA)
- Physics & Mathematics (AREA)
- Cell Biology (AREA)
- Medicinal Chemistry (AREA)
- Botany (AREA)
- Gastroenterology & Hepatology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
用于产生在植物中具有非天然糖部分取代侧链组分的木聚糖结构的方法和工具,包括修饰的木聚糖结构的植物和植物细胞,鉴定包括在植物中具有非天然糖部分取代侧链组分的木聚糖结构的突变植物的方法,其用途,以及分离的木聚糖结构及其用途。
Description
发明领域
本发明涉及用于在植物细胞材料中筛选改变的木聚糖糖侧链取代组分和改变的木聚糖糖侧链取代酶活性和/或模式形成(patterning)的方法、转化的植物细胞材料和用于在植物细胞材料中产生修饰的木聚糖的方法。
具体地,本发明涉及用于在植物中筛选修饰的木聚糖糖侧链取代活性的方法,包括具有改变的4-O-甲基葡糖醛酸和/或葡糖醛酸侧链含量的木聚糖分子的转化的植物细胞材料,其中木聚糖葡糖醛酸基转移酶(XGAT)的活性改变,用于产生在植物细胞材料中包括的修饰的木聚糖的方法,因此需要的遗传材料例如DNA和RNA,载体,宿主细胞,将遗传材料引入植物细胞内的方法,及其用途。
发明背景
为了本发明的目的,“葡糖醛酸”和“4-O-甲基葡糖醛酸”在下文分别称为术语“GlcA”和“MeGlcA”。术语“[Me]GlcA”在本文中用作指示GlcA和MeGlcA两者的集合名词。
天然木聚糖是通常经由[Me]GlcA侧链与木质素交联的半纤维素(例如Balakshin等人2007,Holzforschung,61,1-7)。天然木聚糖也与纤维素微原纤维紧密结合。天然木聚糖在特定工业中具有价值,但它的提取通过与细胞壁其他组分的一系列共价和非共价化学键合,例如与[Me]GlcA的键合而复杂化。一般地,酶促和化学方法尤其用于破坏侧链键合,从而使得能够提取木聚糖。提取方法一般费用大并且产生不希望有的副产品。酶促方法也用于使纤维素和半纤维素解聚成可溶己糖和戊糖。木聚糖的解聚(在本领域中也称为“糖化作用”)需要多种酶以断裂主链和侧链键合。酶促处理的一些产物不能由在发酵或生物加工中使用的许多生物用于产生液体运输用燃料例如乙醇或丁醇。
提取的天然木聚糖尤其在纸生产中使用,并且含修饰的木聚糖的植物材料具有尤其用于生产糖和经由糖发酵间接用于生产液体运输用燃料例如乙醇的潜力。尤其在纸和其他材料中使用的纤维素原纤维通过从原纤维中提取木聚糖和其他半纤维素的方法得到损害。
现有技术看起来未记载木聚糖糖侧链修饰酶例如XGAT酶在次生细胞壁结构中发挥的确切作用,并且它们的功能看起来未正确阐明。
Brown D.M.等人The Plant Cell,第17卷,2281-2295,2005年8月描述了关于突变鼠耳芥(Arabidopsis thaliana)植物的研究,所述植物包括进入所谓的糖基转移酶8-样基因的插入片段,鉴定为At3g18660,这据说导致具有弱茎的植物,所述弱茎已知是已知次生细胞壁突变体的特征。然而,At3g18660功能的阐明及其在次生细胞壁合成中的作用看起来未由Brown D.M.等人描述。事实上,At3g18860未描述为木聚糖葡糖醛酸基转移酶,并且未考虑关于At3g18860的推定工业用途。
Pena M.J.等人The Plant Cell,第19卷:549-563,2007年2月描述了关于鼠耳芥突变植物的研究,其中存在“木材相关GTs”例如IRX8的存在。该研究局限于考虑IRX8和IRX9基因及其对葡糖醛酸木聚糖化学和结构的作用。鼠耳芥基因At4g33330和At3g18660作为“木材相关GTs”的同源物(sic)提及,但看起来是Pena M.J.等人同上说到的全部。
Zhong R.等人The Plant Cell第17卷,3390-3408,2005年12月描述了尤其关于鼠耳芥Fragile Fiberβ突变植物的研究,作者认为所述Fragile Fiberβ编码与次生壁合成有关的葡糖醛酸基转移酶。Zhong R等人报告木聚糖的GlcA组分缺失。未报告总体[Me]GlcA取代水平没有变化。由Zhong R等人呈现的数据指出他们不能区分总体[Me]GlcA取代水平是否已改变。在野生型植物中,木聚糖中的木糖约7%由MeGlcA取代并且3%由GlcA取代;总共10%。因此,木糖取代的总比例与野生型植物并无不同。总体取代模式与使用本发明的XGATs制备的新木聚糖结构不同,其中使用At4g33330和/或At3g18660制备的木聚糖上的[Me]GlcA绝对取代水平可以依赖于可能产生的表达水平或基因沉默水平而改变。
发明概述
通过本发明的方法产生的植物具有包括新[Me]GlcA组成的木聚糖,即MeGlcA和GlcA的总和与野生型植物或现有技术中描述的突变植物的那种不同。
此外,包括本发明修饰的木聚糖的植物可能更顺应最终用途,例如纸浆生产;用于食草动物例如驯养动物的动物饲料;用于人消耗的食物改善的饮食纤维组分;作为生物质用于液体燃料产生的用途;以及在目的植物产物的提取中,例如可以容易地转化成可发酵糖的糖,这是因为植物产物的提取可能比对常规植物使用的提取方法的那种更简单。包括修饰的木聚糖的本发明植物的这些和其他优点由于下述说明书和例子将是显而易见的。
根据本发明提供了包括木聚糖结构的转化植物细胞,所述木聚糖结构具有非天然糖部分取代模式侧链组分,例如[Me]GlcA侧链组分。
在本发明的范围内还包括的是可以衍生自本发明的转化植物组织的转化植物、转化植物部分、或转化植物细胞,例如转化愈伤组织、转化体细胞胚、转化胚发生前团(pre-embryogenic masses)、转化根尖培养物等。
在本发明背景中的“非天然的”意指具有修饰的糖部分取代侧链组分的木聚糖结构,例如不在或已知不在与转化植物细胞或转化植物的那种相同物种的天然植物中出现的[Me]GlcA侧链组分。当应用于本领域已知的突变植物时,即未使用分子生物学且特别地植物分子生物学常见的传统DNA或RNA插入或缺失技术转化的相同物种的突变植物,“非天然的”具有与对于转化的植物描述的那种相同的含义(参见上文)。因此,本领域已知的突变植物指天然存在的突变体以及已使用技术制备的突变体,所述技术例如化学诱变例如使用甲基磺酸乙酯(EMS)、或物理程序例如γ-射线照射,这一般不采用本领域已知的传统DNA或RNA插入或缺失技术。突变植物可以例如通过采用定向诱导基因组局部突变(targeting induced local lesions in genome)(“TILLING”)程序进行鉴定,如由Colbert等人Plant Physiol,2001年6月,第126卷,第480-484页描述的。在TILLING程序中,从具有随机点突变的植物群体中收集DNA,所述随机点突变可能是天然变异或经由通过人类的人工诱导的结果。通过选择性合并DNA样品并且用标记引物扩增它们,在野生型DNA链和突变DNA链之间形成错配的异源双链体。错配的异源双链体随后可以与内切核酸酶一起温育,所述内切核酸酶能够在错配位点处切割异源双链体,并且例如在测序凝胶上鉴定所得到的产物。通过分析数据,可以鉴定在基因中具有突变的植物,所述基因已知与在木聚糖上的糖取代模式形成有关或怀疑与此种活性有关。此种植物随后可以使用本文描述的技术就其在木聚糖上的糖取代模式形成进行研究。
优选地,提供了本发明转化的植物细胞,其中非天然糖部分取代侧链组分模式位于木聚糖结构的最高达50%主链木糖残基上。可以发现本发明植物的此种糖侧链组分例如木聚糖GlcA和MeGlcA侧链取代主链木糖残基,其比例不同于在现有技术的相同物种的相应植物中发现的那种。可通过本发明达到的关于糖部分取代模式形成(例如,[Me]GlcA)的合适取代比例包括最高达50%、最高达30%、最高达20%,例如从0.001%直到1%、2%、3%、4%、5%、6%、7%、8%、9%、10%、11%、12%、13%、14%或15%等等,前提是实际新糖部分取代模式形成组分(例如,关于[Me]GlcA组分的模式形成)在现有技术的相关植物物种中未知。
在本发明的进一步方面,提供了编码反义RNA分子的核苷酸序列,所述反义RNA分子与编码在木聚糖侧链取代中具有酶促活性的蛋白质的有义mRNA分子互补,所述核苷酸序列处于启动子和终止子的转录控制下,启动子和终止子都能够在植物细胞中起作用。
编码反义RNA分子的核苷酸序列可以具有任何长度,前提是可由其转录的反义RNA分子足够长,以便能够与编码蛋白质的有义mRNA分子形成复合物,所述蛋白质在木聚糖侧链取代中具有酶促活性。在木聚糖侧链取代反应中具有酶促活性的合适蛋白质包括木聚糖葡糖醛酸基转移酶(XGATs),例如鼠耳芥序列At4g33330和At3g18660、At1g77130、At1g08990、At1g54940(来自鼠耳芥),PttGT8A、PttGT8B和PttGT8C(来自杨树),CAK29728(来自欧洲云杉(Pica abies),针叶树的部分序列),以及其来自其他物种的其他XGAT同源物或直向同源物,例如Os03g0184300、Os01g0880200、Os05g0426400、OsI_010047、AAK92624(来自稻)AK250038(来自大麦)、AY110752(来自玉蜀黍)和ABE88903(来自蒺藜苜蓿(Medicago truncatula))。因此,认为在植物中、在体内或在体外从其衍生的反义RNA分子或短序列例如短干扰RNA(siRNA),形成能够干扰蛋白质的mRNA的复合物。因此,阻止或基本上抑制了在木聚糖侧链取代中具有酶促活性的一种或多种功能蛋白质例如XGAT蛋白质的合成。由于反义RNA的干扰,减少了与木聚糖侧链取代有关的一种或多种XGAT蛋白质的酶活性。
为了本说明书的目的,“核苷酸序列”将称为DNA,除非另有不同指示。编码反义RNA的DNA可以是长度约20个核苷酸直至由细胞产生的相关mRNA的长度。编码反义RNA的DNA长度将优选是长度20至1500、更优选20至1000个核苷酸。当干扰反义RNA是干扰siRNA时,siRNA链的长度是长度20至30个核苷酸,并且可以是长度20、21、22、23、24、25、26、27、28、29或30个碱基。关于本发明DNA构建体的反义RNA的优选来源是显示与具有XGAT酶促活性的蛋白质基因或其片段的相当大同一性或相似性的DNA。因此,本发明构建体的编码DNA可以选自编码XGATS的核酸分子,例如选自At4g33330、At3g18660、At1g77130、At1g08990、At1g54940(来自鼠耳芥),PttGT8A、PttGT8B和PttGT8C(来自杨树),CAK29728(来自欧洲云杉,针叶树的部分序列),以及其来自其他物种的其他XGAT同源物或直向同源物,例如Os03g0184300、Os01g0880200、Os05g 0426400、OsI_010047、AAK92624(来自稻)AK250038(来自大麦)、AY110752(来自玉蜀黍)、ABE88903(来自蒺藜苜蓿)的蛋白质及其片段,例如其酶促活性片段,或来自其他植物物种的其直向同源物或其片段例如其酶促活性片段。
在本发明的进一步方面中,提供了包括转录调节序列的核苷酸序列(根据本发明的核苷酸序列),处于其转录控制下的序列编码RNA,所述RNA由多个子序列组成,其特征在于RNA子序列是针对在植物细胞中在木聚糖侧链取代中具有酶促活性的蛋白质的mRNAs的反义RNAs。
核苷酸序列可以以反义方向编码具有任何数目子序列的RNA,所述子序列可以包括超过一个siRNA序列;可以包括至少一个siRNA序列和至少一个更长的RNA序列;可以包括至少一个更长的RNA序列。优选地,子序列数目最高达6个,且更优选1至3个。
本发明的核苷酸序列还包括本发明的反义序列的互补有义多核苷酸序列,当在植物材料中转录时,相对于在相同物种或相应物种的天然植物中发现的水平,其导致在木聚糖侧链取代中的增加,及因此木聚糖侧链取代的不相称地高总体水平。技术人员也将认识到关于XGAT蛋白质的此种有义序列的超表达还可以引发siRNA介导的XGAT基因沉默,从而产生木聚糖侧链取代模式,其中木聚糖侧链取代的总体水平低于相同物种的天然植物的那种。
优选地,由邻接序列编码的RNA包括在2个子序列之间的切割位点,例如核酶或限制酶位点例如XbaI、SalI、KpnI等,从而使得RNA可以切割成包括所述子序列的区域,或甚至切割成子序列本身。自然地,技术人员将认识到在由邻接序列编码的RNA内包含的起因于此种切割的子序列将不包含5′帽或核酶结合位点,并且因此当存在于真核细胞例如植物细胞中时将不翻译。
本发明再进一步提供了类似于上文公开的反义RNA序列的核苷酸序列。“类似”意指能够与这样的序列杂交的测试序列,所述序列与本发明的核苷酸序列互补。当测试和本发明的序列是双链时,构成测试序列的核酸优选具有在本发明序列那种的20℃内的Tm。在其中测试和本发明序列混合在一起且同时变性的情况下,序列的Tm值优选在彼此的10℃内。更优选地,杂交在严格条件下执行,其中测试或本发明DNA优选是有支持体的(supported)。因此,变性的测试或本发明序列优选首先与支持体结合,并且在50至70℃的温度下在包含0.1%十二烷基硫酸钠(SDS)的二倍强度SSC(2x NaCl 17.5g/l和8.8g/l的柠檬酸钠(SC))缓冲盐水中,实施杂交进行特定时间段,随后为在相同温度下但用具有降低的SSC浓度的缓冲液的支持体冲洗。依赖于需要的严格性程度,以及因此序列的相似性程度,此种降低的浓度的缓冲液一般是包含0.1%SDS的单倍强度SSC,包含0.1%SDS的半强度SSC和包含0.1%SDS的十分之一强度SSC。具有最大相似性程度的序列是其杂交受在降低的浓度的缓冲液中洗涤最少影响的那些。最优选测试和本发明序列是如此相似,从而使得在它们之间的杂交基本上不受在包含0.1%SDS的十分之一强度柠檬酸钠缓冲液中的洗涤或温育影响。
本发明再进一步提供了与这样的序列互补的核苷酸序列,所述序列在严格条件下与上文公开的核苷酸序列杂交。
本发明再进一步提供了根据本发明的序列的用途,无论是“裸的”还是在真核细胞产生中的DNA构建体或生物载体中存在,特别是具有如本文所述的修饰的木聚糖含量的植物细胞。
本发明再进一步提供了在植物细胞中诱导木聚糖侧链取代的酶促蛋白质表达不足的方法,其包括将根据本发明的核苷酸序列、或包含其的构建体或载体引入此种细胞内。
本发明再进一步提供了抑制真核细胞中的至少一种XGAT酶产生的方法,其包括将包括调节转录序列和与所述转录调节序列邻接且处于其转录控制下的序列的核苷酸序列引入所述细胞,所述邻接序列编码由单个子序列或多个子序列组成的RNA,其特征在于一个或多个子序列具有针对在植物中在木聚糖侧链取代中具有酶促活性的蛋白质的mRNA′s的反义RNA′s序列。
下文提供了本发明的核苷酸序列的例子。这些例子涉及植物的产生,例如具有本发明的改变的木聚糖组分的鼠耳芥植物。
1.本发明的核苷酸序列可以编码以5′至3′方向由下述组成的mRNA:(i)启动子、(ii)反方向即3′至5′方向的至少一个cDNA、(III)终止子、(iv)任选地进一步启动子、(v)标记基因例如GFP的编码区、和(vi)任选进一步终止密码子。当此种序列引入植物细胞内时,转录编码mRNA的序列。翻译因此转录的编码标记基因的mRNA区域,同时不翻译编码cDNA的mRNA区域。
2.本发明的核苷酸序列可以编码以5′至3′方向由下述组成的mRNA:(i)启动子、(ii)标记基因例如GFP的编码区、(iii)翻译终止密码子、(iv)任选地进一步起始密码子、(v)反方向即3′至5′方向编码至少一个cDNA的区域、和(vi)任选进一步终止密码子。当此种序列引入植物细胞内时,转录编码mRNA的序列。翻译因此转录的编码标记基因的mRNA区域,同时不翻译编码以反方向即3′至5′方向编码cDNA的mRNA区域。
3.本发明的核苷酸序列可以编码以5′至3′方向包含下述的mRNA:(i)启动子、(ii)反方向即3′至5′方向的cDNA、(iii)终止子、(iv)启动子、(v)标记基因例如GFP的编码区、(vi)终止子、(vii)启动子、(viii)反方向即3′至5′方向的第二个cDNA、(ix)终止子。当此种序列引入植物细胞内时,转录编码(ii)和(viii)的序列。翻译因此转录的编码标记基因例如GFP的mRNA区域,同时不翻译编码cDNA的mRNA区域。
可以在本发明的植物和构建体中使用的合适cDNAs包括XGATcDNAs,其编码选自下述的蛋白质:At4g33330和At3g18660或At1g77130、At1g08990、At1g54940(来自鼠耳芥),PttGT8A、PttGT8B和PttGT8C(来自杨树),CAK29728(来自欧洲云杉,针叶树的部分序列),以及其来自其他物种的其他XGAT同源物或直向同源物,例如Os03g0184300、Os01g0880200、Os05g 0426400、OsI_010047、AAK92624(来自稻)AK250038(来自大麦)、AY110752(来自玉蜀黍)、和ABE88903(来自蒺藜苜蓿),当引入在植物中包括的植物细胞内时,所述蛋白质能够改变在木聚糖上的糖侧链取代。At4g33330和/或At3g18660的反义序列可以置于其他植物物种例如十字花科(Brassicaceae)成员中,例如羽衣甘蓝(curly kale)、卷心菜、花椰菜、嫩茎花椰菜等。
在载体中编码在本发明中有用的蛋白质例如At4g33330和/或At3g18660的cDNA′s包含至少一个类型的启动子,所述启动子在植物细胞中可操作,例如与如本文定义且如本发明提供的第一个和/或第二个核酸序列或核酸序列组分可操作地连接的诱导型和组成型启动子。如讨论的,这使得能够控制本发明的多核苷酸表达。本发明还提供了用多核苷酸序列或构建体转化的植物,和包括将此种多核苷酸核酸序列或构建体引入植物细胞和/或诱导所述第一个或第二个核酸序列或构建体在植物细胞内表达的方法,例如通过应用合适的刺激,例如有效的外源诱导物。
术语“诱导型”当应用于启动子时由本领域技术人员充分理解。本质上,处于诱导型启动子控制下的表达响应于应用的刺激(其可以在细胞内产生或由外源提供)而“打开”或“增加”。刺激的性质在启动子之间有变化。一些诱导型启动子在不存在合适刺激的情况下引起少许或不可检测水平的表达(或无表达)。其他诱导型启动子在不存在刺激的情况下引起可检测的组成型表达。无论表达水平在不存在刺激的情况下是什么样的,来自任何诱导型启动子的表达在正确刺激的存在下是增加的。优选情况是其中表达水平在相关刺激应用后增加有效改变表型特征的量。因此,可以使用诱导型或(或“切换型”(switchable)启动子,其在不存在刺激的情况下引起基础水平的表达,这个水平太低以致于无法达到所需表型(并且事实上可以是零)。在应用刺激后,表达增加(或打开)至达到所需表型的水平。诱导型启动子的一个例子是公开于Caddick等人(1998)Nature Biotechnology 16:177-180中的乙醇诱导型基因开关。许多诱导型启动子是本领域已知的。
通过应用外源化学调节剂,化学调节的启动子可以用于调节本发明的基因或多核苷酸序列在植物中的表达。依赖于目的,启动子可以是其中化学制品的应用诱导基因表达的化学诱导型启动子,或其中化学制品的应用阻遏基因表达的化学阻遏型启动子。化学诱导型启动子是本领域已知的,并且包括但不限于通过苯磺酰胺除草剂安全剂活化的玉蜀黍In2-2启动子,通过用作萌发前(pre-emergent)除草剂的疏水亲电子化合物活化的玉蜀黍GST启动子,和通过水杨酸活化的烟草PR-1a启动子。其他重要的化学调节的启动子包括类固醇应答性启动子(参见例如,Schena等人(1991)Proc.Natl.Acad.Sci.USA 88:10421-10425和McNellis等人(1998)Plant J.14(2):247-257中的糖皮质激素诱导型启动子以及四环素诱导型启动子和四环素阻遏型启动子(参见例如,Gatz等人(1991)Mol.Gen.Genet.227:229-237以及美国专利号5,814,618和5,789,156),引入本文作为参考。
当需要本发明的XGAT序列在特定组织中增强的表达(以反义方向或有义方向)时,可以利用组织特异性启动子。组织特异性启动子包括由下述描述的那些:Yamamoto等人(1997)Plant J.12(2)255-265;Kawamata等人(1997)Plant Cell Physiol.38(7):792-803;Hansen等人(1997)Mol.Gen Genet.254(3):337-343;Russell等人(1997)Transgenic Res.6(2):157-168;Rinehart等人(1996)Plant Physiol.112(3):1331-1341;Van Camp等人(1996)Plant Physiol.112(2):525-535;Canevascini等人(1996)Plant Physiol.112(2):513-524;Yamamoto等人(1994)Plant Cell Physiol.35(5):113-118;Lam(1994)ResultsProbl.Cell Differ.20:181-196;Orozco等人(1993)Plant Mol Biol.23(6).1129-1138;Matsuoka等人(1993)Proc Natl.Acad.Sci.USA 90(20):9586-9590;和Guevara-Garcia等人(1993)Plant J.4(3):495-505.
所谓的组成型启动子也可以在本发明的方法中使用。组成型启动子包括例如CaMV 35S启动子(Odell等人(1985)Nature 313:810-812);稻肌动蛋白(McElroy等人(1990)Plant Cell 2:163-171);泛蛋白(Christensen等人(1989)Plant Mol.Biol.12:619-632和Christensen等人(1992)Plant Mol.Biol.18:675-689);pEMU(Last等人(1991)Theor.Appl.Genet.81:581-588);MAS(Velten等人(1984)EMBO J.3:2723-2730);ALS启动子(美国申请系列号08/409,297)等。其他组成型启动子包括美国专利号5,608,149;5,608,144;5,604,121;5,569,597;5,466,785;5,399,680;5,268,463;和5,608,142中的那些。
自然地,本领域技术人员将认识到终止子DNA序列将存在于本发明中使用的构建体中。预期终止子为在转录单位末端处发出转录终止信号的DNA序列。这些元件是包含多腺苷酸化信号的3′非翻译序列,所述多腺苷酸化信号发挥作用以引起多腺苷酸序列对初级转录物3′末端的添加。对于在植物细胞中的表达,胭脂氨酸合酶转录终止子(A.Depicker等人,1982,J.of Mol.&Applied Gen.1:561-573)序列充当转录终止信号。
本领域技术人员完全能够构建载体且设计规程用于重组核酸序列或基因表达。适当时,可以选择或构建包含合适调节序列的合适载体,所述调节序列包括启动子序列、终止子片段、多腺苷酸化序列、增强子序列、标记基因和其他序列。关于进一步的细节,参见例如,MolecularCloning:a Laboratory Manual:第2版,Sambrook等人,1989,Cold SpringHarbor Laboratory Press。用于处理核酸例如在核酸构建体制备、诱变、测序、DNA引入细胞内和基因表达、以及蛋白质分析中的许多已知技术和规程,在Current Protocols in Molecular Biology,第2版,Ausubel等人编辑,John Wiley & Sons,1992中详细描述。Sambrook等人和Ausubel等人的公开内容引入本文作为参考。先前使用的对植物广泛成功的特定程序和载体由Bevan(Nucl.Acids Res.12,8711-8721(1984))以及Guerineau和Mullineaux(1993)(Plant transformation and expressionvectors.In:Plant Molecular Biology Labfax(Croy RRD编辑)Oxford,BIOS Scientific Publishers,第121-148页)描述。
自然地,技术人员将认识到每种引入的核酸序列,例如基因组DNA序列或cDNA序列,将处于其自身外源启动子和终止子的调节控制下,所述基因组DNA序列或cDNA序列编码至少一种糖部分侧链组分修饰蛋白质,例如XGAT有义序列,并且设计为超表达XGAT,并且从而起始植物细胞的siRNA基因沉默机制的活化,即在其启动子后以5′至3′方向定向的序列(例如,有义At4g33330和/或有义At3g18660)。
选择遗传标记可以促进转基因植物的选择,并且这些可以由嵌合基因组成,所述嵌合基因赋予选择表型例如对抗生素的抗性,所述抗生素例如卡那霉素、新霉素、潮霉素、puramycin、膦丝菌素、绿黄隆(chlorsulfuron)、氨甲蝶呤、庆大霉素、壮观霉素、咪唑啉酮和草甘膦,或它们可以由其他标记例如能够发荧光的蛋白质例如绿色荧光蛋白(GFP)组成。
当将根据本发明选择的核酸序列引入细胞内时,必须考虑本领域技术人员众所周知的某些考虑。待插入的核酸应在构建体内装配,所述构建体包含将驱动转录的有效调节元件。必须存在将构建体转运到细胞内的可用方法。一旦构建体在细胞膜内,整合到内源染色体材料就将发生或不发生。最后,就涉及的植物而言,靶细胞类型必须是这样的,从而使得细胞可以再生成全植物。
用如本文提供的包含目的序列的DNA区段转化的植物可以通过标准技术产生,其已知用于植物的基因操作。DNA可以使用任何合适的技术转化入植物细胞,例如由土壤杆菌属(Agrobacterium)利用其天然基因转移能力携带的卸甲(disarmed)Ti质粒载体(EP-A-270355、EP-A-0116718、NAR 12(22)8711-872151984)、粒子或微粒轰击(US5100792、EP-A-444882、EP-A-434616)显微注射(WO 92/09696、WO94/00583、EP 331083、EP 175966、Green等人(1987)Plant Tissue andCell Culture,Academic Press)、电穿孔(EP 290395、WO 8706614)其他形式的直接DNA摄取(DE 4005152、WO 9012096、US 4684611)、脂质体介导的DNA摄取(例如Freeman等人Plant Cell Physiol.29:1353(1984))、或涡旋法(例如Kindle,PNAS U.S.A.87:1228(1990d)Physical methods for the transformation of plant cells are reviewed inOard,1991,Biotech.Adv.9:1-11。
因此,一旦已鉴定核酸序列或基因,它就可以使用本领域技术人员众所周知的技术再引入植物细胞内,以产生合适表型的转基因植物。
土壤杆菌属转化由本领域技术人员广泛用于转化双子叶物种。在几乎所有经济上相关的单子叶植物中稳定、能育转基因植物的产生目前也是常规的:(Toriyama,等人(1988)Bio/Technology 6,1072-1074;Zhang,等人(1988)Plant Cell Rep.7,379-384;Zhang,等人(1988)Theor.Appl.Genet 76,835-840;Shimamoto,等人(1989)Nature 338,274-276;Datta,等人(1990)Bio/Technology 8,736-740;Christou,等人(1991)Bio/Technology 9,957-962;Peng,等人(1991)International Rice ResearchInstitute,Manila,Philippines 563-574;Cao,等人(1992)Plant Cell Rep.11,585-591;Li,等人(1993)Plant Cell Rep.12,250-255;Rathore,等人(1993)Plant Molecular Biology 21,871-884;Fromm,等人(1990)Bio/Technology 8,833-839;Gordon-Kamm,等人(1990)Plant Cell 2,603-618;D′Halluin,等人(1992)Plant Cell 4,1495-1505;Walters,等人(1992)Plant Molecular Biology 18,189-200;Koziel,等人(1993)Biotechnology 11,194-200;Vasil,I.K.(1994)Plant Molecular Biology25,925-937;Weeks,等人(1993)Plant Physiology 102,1077-1084;Somers,等人(1992)Bio/Technology 10,1589-1594;WO92/14828)。具体地,土壤杆菌属介导的转化目前是在单子叶植物中高度有效的替代转化法(Hiei等人(1994)The Plant Journal 6,271-282)。
能育转基因植物的产生已在谷物稻、玉蜀黍、小麦、燕麦和大麦中实现(在Shimamoto,K.(1994)Current Opinion in Biotechnology 5,158-162.;Vasil,等人(1992)Bio/Technology 10,667-674;Vain等人,1995,Biotechnology Advances 13(4):653-671;Vasil,1996,NatureBiotechnology 14 page 702)中综述)。Wan和Lemaux(1994)Plant Physiol.104:37-48描述了用于产生大量独立转化的能育大麦植物的技术。
能育转基因树的产生已在杨树(Halpin,C等人TREE GENETICS &GENOMES 3(2):101-110APR 2007,Song JY,PLANT AND CELLPHYSIOLOGY 47(11):1582-1589NOV 2006)、火炬松(在Boerjan WCURRENT OPINION IN BIOTECHNOLOGY 16(2):159-166APR 2005中综述)、北美白松(北美乔松(Pinus strobus L.))Tang W PLANT CELLREPORTS 26(5):673-682MAY 2007)中实现。
当土壤杆菌属低效或无效时,微粒轰击、电穿孔和直接DNA摄取是优选的。可替代地,不同技术的组合可以用于增强转化方法的效率,例如用土壤杆菌属包被的微粒轰击(EP-A-486234)或微粒轰击以诱导创伤,随后与土壤杆菌属共培养(EP-A-486233)。
转化后,可以例如由单细胞、愈合组织或叶盘(leaf disc)再生植物,如本领域中标准的。几乎任何植物都可以完全由植物的细胞、组织和器官再生。可用技术在Vasil等人,Cell Culture and Somatic CellGenetics of Plants,第I、II和III卷,Laboratory Procedures and TheirApplications,Academic Press,1984,,以及Weiss Bach和Weiss Bach,Methods for Plant Molecular Biology,Academic Press,1989中综述。
转化技术的具体选择将通过其转化特定植物物种的效率以及实践本发明的个人对具体选择方法的经验和偏爱来决定。对于本领域技术人员显而易见的是,将核酸引入植物细胞内的转化系统的具体选择和用于植物再生的技术选择都不是本发明必不可少或限制性的。
本发明进一步包含用如上所述的载体或构建体转化的宿主细胞,特别是植物或微生物细胞。因此,提供了包括如本文所示的本发明的核苷酸序列的宿主细胞例如植物细胞。在细胞内,核苷酸序列可以整合入染色体内。
根据本发明还提供了在其基因组内已整合入至少一个核苷酸序列的植物细胞,所述核苷酸序列特别是如由本发明提供的异源核苷酸序列,其处于如本文所述用于控制表达的调节序列的操作控制下。编码序列可以与一种或多种调节序列可操作地连接,所述调节序列对于本发明中采用的核酸序列可以是异源或外来的,例如不与一种或多种核酸序列天然结合用于其表达。根据本发明的核苷酸序列可以置于外来诱导型启动子控制下,以使表达置于用户控制下。本发明的进一步方面提供了制备此种植物细胞的方法,其涉及将预期用于在本发明中使用的一种或多种核酸序列或包括预期用于在本发明中使用的一种或多种序列的合适载体引入植物细胞内,并且引起或允许载体和植物细胞基因组之间的重组,以将所述序列引入基因组内。本发明延伸至由于核苷酸序列引入祖先细胞内而包含根据本发明的核苷酸序列的植物细胞。
术语“异源的”可以用于指示正被讨论的基因/核苷酸序列已引入所述植物细胞或其祖先内,其中使用基因工程,即通过人为干预。可以提供转基因植物细胞,即对于正被讨论的核苷酸序列是转基因的。转基因可以在基因组外载体上或优选稳定地整合入基因组内。异源基因可以替代内源等价基因,即正常执行相同或相似功能的基因,或插入的序列可以对于内源基因或其他序列是附加的。引入异源基因的优点是使序列表达置于选择的启动子控制下的能力,以使得能够根据偏爱影响表达。此外,野生型基因的突变体、变体和衍生物,例如具有比野生型更高或更低的活性,可以用于替代内源基因。对植物细胞异源或外源或外来的核苷酸序列可以是那个类型、变种或物种的细胞中非天然存在的。因此,核苷酸序列可以包括特定类型的植物细胞或植物物种或变种的编码序列、或衍生自特定类型的植物细胞或植物物种或变种的编码序列,其置于不同植物类型或物种或变种的植物细胞的背景内。进一步的可能性是使核苷酸序列置于细胞内,在其中天然发现其或同源物,但其中核苷酸序列与那个植物类型或物种或变种的一种或多种细胞内非天然存在的核酸连接和/或相邻,例如与一种或多种调节序列例如启动子序列可操作地连接,用于控制表达。在植物或其他宿主细胞内的序列可以可辨认地为异源、外源或外来的。
还提供了包括根据本发明的植物细胞的植物,连同其任何部分或繁殖体、种子、自交或杂种后代和子代。特别提供的是转基因农作物植物和转基因树物种,其已进行工程改造以携带如上所述鉴定的基因。合适植物的例子包括烟草(Nicotania tabacum)和其他烟草属(Nicotiana)物种、甜菜、甘蔗、小麦、大麦、(玉米)玉蜀黍、稻、芒属(Miscanthus)、柳枝稷(柳枝稷(Panicum virgatum))、高粱和棉花。顺应根据本发明教导的转化的树物种例子包括杨树、火炬松、杂种白杨(Aspen):欧洲山杨(Populus tremula)x似欧洲山杨(Populus tremuloides)、杂种杨树:欧洲山杨x银白杨(P.alba)、桉属(Eucalyptus)物种例如蓝桉(Eucalyptus globulus)(南部蓝桉)、赤桉(Eucalyptus camaldulensis)x蓝桉、巨桉(Eucalyptus grandis)、加柠桉(Eucalyptus gunnii)、松属(pinus)物种、银枞、胶枞、日本冷杉、西伯利亚冷杉、Japanese Cyprus、欧洲落叶松、西方落叶松、西伯利亚落叶松、欧洲云杉、白云杉、北美云杉、西部白松、欧洲黑松、长叶松、西黄松、辐射松、美加红松、刚松、北美乔松、欧洲赤松、穗花罗汉松、黄杉(Douglas fir)、欧洲白桦、纸桦、北美鹅掌楸、白柳、黑柳、美洲榆和山榆。本发明尤其优选的转化植物和/或转化植物细胞选自杨树,火炬松,选自本文列出那些的松属物种,选自蓝桉(南部蓝桉)、赤桉x蓝桉、巨桉、加柠桉的桉属物种,小麦,大麦,(玉米)玉蜀黍,稻,芒属,柳枝稷(柳枝稷),甘蔗。
除植物外,本发明提供了此种植物、种子、自交或杂种后代和子代的任何克隆,和这些中任何一种的任何部分,例如插条、种子。本发明提供了任何植物繁殖体,即可以在有性或无性生殖或繁殖中使用的任何部分,包括插条、种子等等。还由本发明包含的是植物,其为有性或无性繁殖的后代,此种植物的克隆或子代,或所述植物、后代、克隆或子代的任何部分或繁殖体。
天然、非转化植物还可以就目的核酸序列中天然存在的突变进行筛选和分析,所述天然存在的突变在野生型植物的天然群体中的木聚糖糖部分取代中采用。此外,其中突变已例如如本文概述的经由常规诱变或经由TDNA插入而诱导的植物也可以就核苷酸序列中的改变进行筛选,所述改变已知或怀疑在木聚糖的糖部分取代中采用,即在此种常规诱变植物的群体中。此外,在包括核酸序列中的突变的此种植物中可能存在的糖取代水平可以使用类似于本文概述那些的程序进行筛选,并且木聚糖的糖部分取代水平可以如本文概述的进行测定。起初,目的植物群体可以使用合适的目的核酸序列进行筛选,所述目的核酸序列已知在木聚糖的糖部分取代中采用,例如编码选自下述的XGAT蛋白质的核酸序列:At4g33330、At3g18660、At1g77130、At1g08990、At1g54940(来自鼠耳芥),PttGT8A、PttGT8B和PttGT8C(来自杨树),CAK29728(来自欧洲云杉,针叶树的部分序列),以及其来自其他物种的其他XGAT同源物或直向同源物,例如Os03g0184300、Os01g0880200、Os05g0426400、OsI_010047、AAK92624(来自稻)AK250038(来自大麦)、AY110752(来自玉蜀黍)和ABE88903(来自蒺藜苜蓿)。
因此,在本发明的进一步方面,提供了用于就与木聚糖的糖部分取代有关的突变等位基因在给定植物群体中筛选植物的方法,其包括:
i)从植物获得核酸样品;
ii)用在木聚糖的糖取代中采用的核酸序列的至少一个已知标记序列筛选核酸样品;
iii)鉴定包括与步骤ii)的已知标记序列有关的至少一个突变等位基因的植物。
标记序列可以选自已知在木聚糖的糖取代中采用的核酸序列,例如编码选自下述的蛋白质的XGAT序列:At4g33330、At3g18660、At1g77130、At1g08990、At1g54940(来自鼠耳芥),PttGT8A、PttGT8B和PttGT8C(来自杨树),CAK29728(来自欧洲云杉,针叶树的部分序列),以及其来自其他物种的其他XGAT同源物或直向同源物,例如Os03g0184300、Os01g0880200、Os05g 0426400、OsI_010047、AAK92624(来自稻)AK250038(来自大麦)、AY110752(来自玉蜀黍)和ABE88903(来自蒺藜苜蓿),这依赖于在研究中的植物物种。
一旦已鉴定了具有突变等位基因的植物,那么其木聚糖含量,以及特别地其木聚糖的糖取代模式就可以例如依照如本文概述的方法进行测定(Goubet等人;Vicky Wong,PhD thesis,University of Cambridge2005)。
因此,本发明进一步包含可以如本文概述在植物群体中鉴定的新诱变的植物的分离、修饰的木聚糖产物,和/或天然存在的突变植物的分离、修饰的木聚糖产物。
除筛选和/或鉴定在其木聚糖上包括新糖部分取代模式的植物的上文概述方法外,其中TDNA文库可以用于制备植物品系,目的是获得在其木聚糖上的新糖部分取代模式,可以采用用于产生在核酸序列中包括T-DNA插入片段的突变植物或探测包括T-DNA插入片段的突变植物的技术。因此,作为本发明的进一步方面,提供了鉴定突变植物的方法,其包括
i)提取核酸;
ii)使用引物就天然DNA和T-DNA插入片段筛选提取的核酸;
iii)经由PCR扩增步骤ii)的筛选的核酸;和
iv)将PCR产物与参考标准进行比较。
本领域技术人员将认识到一旦根据本发明的这个实施方案已鉴定了突变植物,那么就可以使用方法例如PACE研究且证实在木聚糖结构上的糖部分取代模式,如本文概述的。
在本发明的进一步实施方案中,提供了产生在其木聚糖结构上包括修饰的糖取代模式的突变植物的方法,其包括:
i)将DNA序列插入在活植物细胞内编码酶的核酸序列内,所述酶在木聚糖上的糖部分取代模式形成中具有酶活性;和
ii))由所述植物细胞产生植物。
插入的DNA序列可以是T-DNA序列或无义DNA序列,其使得靶向的核酸序列(“基因”序列)至少部分功能异常、或基本上功能异常,即不能产生能够产生在木聚糖结构上的天然糖取代模式的完全功能酶。此种丧失能力的核酸可以是完全功能异常的。优选地,此种丧失能力的核酸是完全功能异常的,即不能产生在木聚糖结构上的天然糖取代模式。
此种植物可以使用如本文概述的标准规程和程序来产生,并且可应用于提供包括目的反义核酸序列或引起“共表达”的序列的植物,此种序列一般与siRNA种类的产生有联系。
本发明还包含了如本文公开的或可依照本文的信息和提示获得的根据本发明的转化植物的修饰的木聚糖产物。本领域技术人员完全能够构建载体且设计适合于执行本发明的规程和系统。
与例如术语例如“同源重组”的标准使用一致,所述同源重组仅要求2个核苷酸序列足够相似,以在合适条件下重组,术语“同源性”和“同源的”在本文中的使用不暗示在比较的序列之间的任何必需的进化关系。
本文引用的所有参考文献的教导整体引入本说明书内。
发明详述
现在接下来是举例说明本发明的非限制性例子和图。
图1:显示在xgat突变体中的木聚糖取代中的减少的PACE凝胶。在xgat1-2和双重突变型xgat1/xgat2中,随着[Me]GlcA(Xyl)4减少,(Xyl)3和(Xyl)4增加。Xgat2-1显示[Me]GlcA(Xyl)4中的小量减少。(*)非特异性条带。
图2:相对于野生型植物,在xgat突变体中木聚糖主链的量是未改变的。N=2至4生物学重复。
图3:如由PACE测定的,在2次独立实验中(WT n=3),木糖由[Me]GlcA的取代在xgat1中减少,并且在xgat1/xgat2双重突变型中缺失。
图4:木聚糖酶Xyl11消化的细胞壁的MALDI-TOF MS证实[Me]GlcA(Xyl)4在xgat单重突变型中检测出,但在双重突变型中缺失。(A)野生型;(B)xgat1-2;(C)xgat2-1;(D)xgat1-2 xgat2-1。
图5:在去果胶酸盐(de-pectinated)细胞壁中单糖的HPLC分析显示在突变体中不存在GlcA。壁中的多糖通过2M三氟乙酸在120℃水解3小时。
图6:[Me]GlcA取代强烈影响木聚糖从壁中的可提取性。在xgat双重突变型中大多数木聚糖通过1M NaOH提取。壁通过CDTA、Na2CO3、1M KOH、4M KOH进行顺次提取。提取物中的木聚糖和不溶性残渣随后通过PACE进行分析。
图7:RT-PCR显示xgat1-1、xgat1-2、xgat2-1和xgat2-2是转录敲除的。组蛋白H1用于证实cDNA质量。
实施例1:就基因At4g33330或At3g18660中插入片段的存在分析鼠耳芥植物
为了分离缺乏xgat基因活性的突变植物,鉴定插入品系。提取DNA且就T-DNA插入通过PCR进行筛选。
所有基因型的鼠耳芥哥伦比亚栽培变种植物通过在水中于4℃在黑暗中温育72小时进行分层,并且随后在土壤中播种,并且允许在受控环境条件下(25/20℃、16小时光/8小时暗循环)生长。
可用的T-DNA插入突变体由位于SIGnAL站点(http://signal.salk.edu/cgi-bin/tdnaexpress)中的SIGnAL″T-DNAExpress″Arabidopsis Gene Mapping Tool进行鉴定。下述植物插入品系就下述目的基因进行鉴定:At3g18660(xgat1)和At4g33330(xgat2):(xgat1-1,SALK_063763(NASC原种编号N563763);xgat1-2,SALK_046841(NASC原种编号N546841)和xgat2-1,GK-722F09(NASC原种编号N469285);xgar2-2,SM_3.16768(NASC原种编号N104457)。
对于DNA提取,收集来自所有推定T-DNA品系的4周大植物的单片莲座叶,并且在液氮中冷冻并且磨碎成细粉。磨碎的叶组织随后与预热的DNA提取缓冲液(20%w/w CTAB、1.4M NaCl、0.02M EDTA、0.1M Tris-HCL pH 8.0)β-巯基乙醇一起于60℃温育30分钟。这随后为与氯仿∶异戊醇24∶1温育,并且使样品上下倒置,在10,000g下离心30分钟,并且收集水层。加入冷异丙醇,混合,并且随后在10,000g下离心30分钟,并且取出上清液。用70%乙醇洗涤DNA沉淀,在10,000g下离心5分钟,取出上清液,并且使DNA重悬浮于DNA悬浮缓冲液(包含0.1mM Tris-HCL和0.02μM EDTA)中。
代表各种推定突变体的DNA样品就野生型基因和T-DNA插入片段进行筛选。下述引物组用于扩增xgat1-1的野生型基因(可读框):(R-引物)5′-CAATGCCGCAGCATACTTTTC-3′(Seq.Id.No.1)和(L-引物)5′-GCAAGAGGAGATTCCGGAGAA-3′(Seq.Id.No.2)(扩增产物=2.5kb),以及扩增T-DNA插入片段:(L-引物)5′-GCAAGAGGAGATTCCGGAGAA-3′(Seq.Id.No.2)和(L-边界引物)5′-TTTTTCGCCCTTTGACGTTGGAG-3′(Seq.Id.No.3)(扩增产物=2kb)。xgat1-2:(R-引物)5′-CAATGCCGCAGCATACTTTTC-3′(Seq.Id.No.1)和(L-引物)5′-GCAAGAGGAGATTCCGGAGAA-3′(Seq.Id.No.2)(扩增产物=2.5kb)以及扩增T-DNA插入片段:(L-引物)5′-GCAAGAGGAGATTCCGGAGAA-3′(Seq.Id.No.2)和(L-边界引物)5′-TTTTTCGCCCTTTGACGTTGGAG-3′(Seq.Id.No.3)(扩增产物L-边界引物/L-引物=0.9kb)。xgat2-1:(R-引物)5′-TATGATGTCTAAATACAAGGA-3′(Seq.Id.No.4)和(L-引物)TACGCTTTAATCTAGTCTTGTT-3′(Seq.Id.No.5)(扩增产物=2.9kb)以及扩增T-DNA插入片段:(R-引物)5′-TATGATGTCTAAATACAAGGA-3′(Seq.Id.No.4)和(L-边界引物2)5′-ATATTGACCATCATACTCATTGC-3′(Se q.Id.No.6)(扩增产物=0.9kb)。xgat2-2:(R-引物)5′-TATGATGTCTAAATACAAGGA-3′(Seq.Id.No.4)和(L-引物)TACGCTTTAATCTAGTCTTGTT-3′(Seq.Id.No.5)(扩增产物=2.9kb)以及扩增T-DNA插入片段:(R-引物)5′-TATGATGTCTAAATACAAGGA-3′(Seq.Id.No.4)和(L-边界引物3)5′-GGTGCAGCAAAACCCACACTTTTACTTC-3′(Seq.Id.No.7)(扩增产物L-边界引物=1.2kb)。
DNA样品(2μl)用于PCR反应,并且等分试样到PCR管内,所述PCR管包含具有MgCl2的10μl Sigma REDTaq ready mix(Cat#R2523),1μl引物(L、R或左边界),使用H2O调整至20μl的终体积。对于加样对照和阳性对照,使用组蛋白引物代替基因/基因或基因/左边界引物。对于阴性对照,使用5μl无菌水代替DNA。使用下述PCR程序,其中依赖于PCR产物的长度,退火时间调整为更长或更短:94℃2分钟(1个循环),随后为94℃15秒、55℃30秒、68℃3分钟(15个循环),94℃15秒、55℃30秒、68℃3分钟(25个循环),68℃10分钟(1个循环),并且最终反应保持于4℃。随后将PCR产物8-10μl/样品和5μl hyperladder装载到在包含溴化乙锭(5μl/100ml)的1X TAE缓冲液(0.04M Tris乙酸盐、0.001M EDTA)中的0.8%琼脂糖凝胶上。样品在100伏特下在室温下分离约45分钟。凝胶随后在UV下显现,并且使用数码相机进行成像。
实施例2:就修饰的木聚糖的存在分析鼠耳芥植物
突变植物通过PACE就木聚糖上的[Me]GlcA侧链量进行分析,这涉及用木聚糖酶水解木聚糖,用荧光团衍生寡糖,并且通过聚丙烯酰胺凝胶电泳分离寡糖(Goubet等人2002)。
鼠耳芥植物于22℃在受控环境橱中在150至180μmol m-2s-1的16小时日光方案下生长。茎部分在95%(v/v)乙醇中于65℃温育30分钟以灭活酶,并且随后在Mixer Mill MM200(Glen Creston,Middlesex,UK)中磨碎。匀浆在4,000g下离心15分钟。沉淀用60%(v/v)乙醇(3-4次)、甲醇/氯仿(2∶3(v/v);过夜)、100%丙酮、乙醇/水[6∶4(v/v)]和乙醇/水[9∶1(v/v)]进行洗涤。包含细胞壁的其余沉淀于80℃干燥过夜。
在用HCl(1M)调整至pH 5-6前,干燥的细胞壁材料(50μg)用4M NaOH(20μg)在室温下处理1小时。木聚糖水解在0.1M乙酸铵pH 6中用20mU木聚糖酶执行过夜。内切-β-1,4-木聚糖酶、Xyl10A(来自Cellvibrio japonicus的糖基水解酶(glycosylhydrolase)家族10)或Xyl11(来自Neocallimastix patriciarum的糖基水解酶家族11)是来自Harry Gilbert(University of Newcastle,UK)的赠品。无底物或酶的对照在相同条件下执行,以鉴定在酶、多糖/细胞壁或标记试剂中的任何非特异性化合物。反应通过煮沸30分钟得到终止且使样品干燥。
糖用ANTS(8-氨基萘-1,3,6-三磺酸)的衍生在10μL缓冲液(DMSO∶水∶乙酸,20∶17∶3)中。ANTS购自Molecular Probes(Leiden,荷兰)。衍生在包含干燥的多糖、寡糖或单糖的管中执行。对于单糖或寡糖标准,将5μl 1nM糖加入管中,并且在衍生前干燥。ANTS在乙酸/水(3/17,v/v)中以0.2M作为终浓度进行制备(新鲜制备或贮藏于-20℃)。使NaCNBH3(1M,新鲜制备且立即使用)溶解于DMSO中用于ANTS衍生。向每种干燥样品中加入5μl ANTS溶液和5μl合适的NaCNBH3溶液。使试剂混合、离心且于37℃温育过夜。溶液在真空离心蒸发器中于40℃冻干3小时。使衍生的糖重悬浮于100μL 3M尿素中,并且在使用前贮藏于-20℃。
使用具有24cm板、0.75mm隔板和宽度0.25cm孔的Hoefer SE 660垂直板凝胶电泳仪(Amersham,Bucks,UK)执行使用1μL样品/凝胶泳道的ANTS衍生糖的分离。使用标准玻璃或低荧光硬质玻璃板。在所有情况下,电泳在10℃下执行。20%(w/v)聚丙烯酰胺凝胶包含0.5%(w/v)N,N′-亚甲双丙烯酰胺,加上8%(w/v)聚丙烯酰胺和0.2%(w/v)N,N′-亚甲基双丙烯酰胺的浓缩胶(2cm)。包含丙烯酰胺/N,N′-亚甲双丙烯酰胺(29∶1)比的聚丙烯酰胺得自Severn Biotech Ltd.(Worcs,UK)。电泳缓冲系统是用硼酸调整至pH 8.2的0.1M Tris(Tris-硼酸)。样品最初在200V下电泳20分钟,并且随后在1,000V下电泳90分钟。
使用具有在400nm下的激发滤光片和在530nm下的检测滤光片的MasterImager CCD照相机系统(Amersham,Bucks,UK)扫描凝胶。最优化曝光时间,以增加灵敏度而不使强条带饱和。获得凝胶图像(分辨率,100微米),并且在16比特文件中输出以进行定量。凝胶还使用标准UV透射仪(波长,360nm)进行显现。定量使用GeneTools软件(Syngene,Cambridge,UK)执行,其中使用滚珠本底检测。
在每块凝胶中运行标准(单个或多个),以获得标准曲线用于定量样品中的糖。在每块凝胶中用于定量的标准[木糖、(Man)2和(Man)3]在样品旁边分离,以获得pmol量荧光团标记的寡糖的标准曲线。对于用Xyl11的消化,使用这个标准曲线计算在1uL样品中的Xyl、(Xyl)2、(Xyl)3和[Me]GlcUA(Xyl)4的量。通过与GlcUA/McGlcUA=([Me]GlcUA(Xyl)4)x1相比较,合计包含Xyl的条带=(Xyl)1x1+(Xyl)2x2+(Xyl)3x3+([Me]GlcUA(Xyl)4)x4的相对贡献,计算Xyl与Glc/Me-Glc的比。
在单重突变型、xgat1-2和xgat2-1以及双重突变型的茎中研究木聚糖结构。图1显示用Xyl11消化茎木聚糖的PACE凝胶,其主要产生Xyl、(Xyl)2(Xyl)3和[Me]GlcAXyl4。MeGlcAXyl4和GlcAXyl4通过PACE技术并未良好区分。在单重突变型中,[Me]GlcAXyl4条带的强度降低。在xgat1-2xgat2-1双重突变型植物品系中,[Me]GlcAXyl4不存在。在xgat突变体和野生型植物中测量木聚糖主链的总量,并且发现其是相等的(图2)。在xgat突变体和野生型植物中测量木聚糖主链中由[Me]GlcA取代的木糖残基比例,并且显示在单重突变型中是减少的,并且在双重突变型中基本上不存在(图3)。总之,这指出XGAT活性的处理可以用于减少木聚糖由[Me]GlcA的取代,而基本上不改变木聚糖的量。
实施例3:修饰的植物通过木聚糖酶消化和质谱分析法的木聚糖结构指纹分析。
通过经由质谱分析法研究木聚糖酶释放的寡糖来研究在木聚糖上GlcA或MeGlcA的存在。
在用HCl(1M)调整至pH 5-6前,如实施例2制备的细胞壁材料(500μg)用4M NaOH(50μL)在室温下处理1小时。木聚糖水解在0.1M乙酸铵pH 6中用100mU木聚糖酶例如Xyl10A或Xyl11执行过夜。反应通过煮沸30分钟得到终止。样品使用Nanosep系统(分子量截断值10kDa,Pall,New York,USA)进行过滤且干燥。所得到的寡糖使用HyperSep Hypercarb药液筒(ThermoHypersil-Keystone,Runcorn,Cheshire,UK)进行纯化,并且随后通过MALDI-TOF-MS进行分析。由于使这些天然谱复杂化的污染信号的存在,在通过MALDI-TOF-MS再分析前,每种样品的剩余部分进行全氘甲基化(perdeuteromethylated)(使用Dell等人,1989中描述的NaOH浆法)。所有质谱都在4700Proteomics Analyzer(Applied Biosystems,Foster City,CA)上以阳离子模式进行记录。这种MALDI串联质谱仪使用在355nm波长下操作的200Hz频率-三重Nd-YAG激光器。溶解于50%含水甲醇中的2,5-二羟基苯甲酸(DHB)(Fluka)用作基质,并且2500次击中的平均值用于获得所有MS谱。
显示了在xgat单重和双重突变型中木聚糖酶释放的寡糖的MS分析结果(图4)。963和966Da[M+Na]+分别与MeGlcA Xyl4和GlcAXyl4对应,并且在氘化全甲基化(deuteropermethylation)后,它们在质量方面相差3Da。在单重突变型中,2种寡糖仍存在,但存在MeGlcA Xyl4比例超过GlcA Xyl4的小量增加。MeGlcA比例超过GlcA中大得多的增加先前已在木聚糖合成突变型irx7/fra8、irx8和irx9中发现(Pena等人2007,Zhong等人,2005)。可以看出MeGlcA和GlcA取代在双重突变型中消失,并且在本底上不可检测。连同取代水平的定量PACE分析,MS指出XGAT活性的处理导致不含[Me]GlcA侧链的木聚糖,并且可以用于处理木聚糖的MeGlcA和GlcA取代。
实施例4:修饰的鼠耳芥植物的半纤维素的糖组成
为了检测在半纤维素中的GlcA,如上制备细胞壁。取出果胶,留下在不溶性材料中包括木聚糖的半纤维素(“半纤维素材料”)。使细胞壁材料(50μg)在室温下悬浮于1mL 0.05M 1,2-环己二胺四乙酸(CDTA)(pH 6.5)中24小时。使悬浮液离心,并且沉淀用蒸馏水洗涤1次。残渣随后使用包含0.01M NaBH4的0.05M Na2CO3于4℃提取24小时。残渣用冰乙酸调整至pH 5,并且随后针对去离子水广泛透析5天,并且随后冻干。
半纤维素材料在400μl 2M三氟乙酸中于120℃酸水解3小时,干燥且悬浮于100μL蒸馏水中。
用由电化学检测器(ED40)、梯度泵(GP50)、注射器系统(LC30)和UV/VIS检测器(UVD 170U)组成的Dionex DX-500BioLC系统执行单糖分析,其中使用与CarboPacTM PA20保护柱(3x30nm)组合的CarboPacTMPA20分析柱(3x150nm),Dionex Corp.,CA,USA。数据通过Chromeleon软件进行解释。在30℃下用0.5ml/分钟的流速进行HPAEC-PAD,其中使用由通过氦气除气的去离子水制备的等度梯度的3种洗脱剂:洗脱剂A:来自46/48%(w/w)NaOH(Fisher Scientific,UK)原液的100mM NaOH,5.23mL,以使碳酸盐含量降到最低;洗脱剂B,1M NaOH,52.3mL NaOH原液;洗脱剂D,去离子-除气水。在下一次注射前,柱用200mM NaOH洗涤10分钟,并且用1.5mM NaOH再平衡10分钟。注射20μL样品,并且通过脉冲-电流检测器进行监控,所述检测器使用一次性金工作电极和Ag/AgCl2参比电极(Dionex,CA,USA)。GlcA通过与标准参考进行检测。
野生型和双重xgat突变植物的分析揭示GlcA在修饰的植物的半纤维素中减少至痕量水平(图5)。这显示GlcA在修饰的植物中从木聚糖中缺失。
实施例5:修饰木的聚糖在鼠耳芥中的化学可提取性。
如Brown等人(2007)中所述,通过PACE测量经由0.05M CDTA(pH 6.5)、1M NaOH(弱)或4K NaOH(强)碱溶液提取的木聚糖量。
干燥的细胞壁材料(500mg)首先用0.05M CDTA(pH 6.5)在室温提取24小时。使悬浮液离心(48000g),并且沉淀用蒸馏H2O洗涤1次。上清液作为CDTA-可溶级分组合。AIR随后在无氧条件下使用包含0.01M MaBH4的0.05M Na2CO3于4℃提取24小时(Na2CO3-可溶级分),使用包含0.01M MaBH4的1M KOH在室温提取24小时(1MKOH-可溶级分),并且随后使用包含0.01M MaBH4的4M KOH在室温提取24小时(4M KOH可溶级分)。所有级分通过GF/C玻璃纤维滤器(Whatman)进行过滤。Na2CO3和KOH级分也在冰上冷却并且用冰乙酸调整至pH 5。所有细胞壁级分随后针对去离子水广泛透析5天,并且随后冻干。样品(提取物和残渣)1/20的木聚糖在0.1M乙酸铵pH 6中用20mU木聚糖酶水解过夜。样品用ANTS衍生,并且通过聚丙烯酰胺凝胶电泳分离单糖和寡糖,如对于实施例2描述的。
在野生型植物中,一些木聚糖通过1M NaOH溶解,并且一些仍与纤维素残渣保持附着(图6)。在xgat双重突变植物中,大多数木聚糖通过1M NaOH提取,从而指示与在壁中木质素或纤维素的相互作用被改变。[Me]GlcA在修饰的植物中的不存在改善木聚糖在弱碱溶液中的可提取性。这指出[Me]GlcA取代的处理可以用于改变木聚糖可溶性。
实施例6:杨树物种中的木聚糖修饰
木聚糖在树例如杨树物种中进行修饰,这通过产生具有增加的XGAT基因表达或XGAT活性中的减少的转基因植物来实现,其中使用如本文所述的反义方法。
XGAT基因使用对于编码XGATs的基因特异的引物进行克隆,其中使用如本文所述的程序。对于杨树,PttGTb和pttGT8C的序列通过PCR进行扩增,其中使用来自杂交白杨的cDNAs,引物例如:
PttGT8C,使用序列AY935503,
F5′-GTGCAACCCTTGTTGCTAAGA-3′(Seq Id No.8)
R5′-GCCTCTTTAGTCAAATGAAACAGAAC-3′(Seq Id No.9)
PttGT8B使用序列AY935502B
F5′-ACGGAAGCGGAAGAAGATAA-3′(Seq Id No.10)
R5′-TCATTTCCCATTAGTCTCACCATAT-3′(Seq Id No.11)
将序列插入克隆载体例如pBIN克隆载体内,处于合适启动子例如增强的串联CaMV 35S组成型启动子的控制下,或处于在合成次生细胞壁的细胞中特别活跃的启动子下,例如在双子叶植物例如鼠耳芥的XGAT编码序列5′的2kb的启动子。为了增加XGAT活性,序列以有义方向克隆。为了减少XGAT活性,序列以反(反义)方向克隆。序列还可以用于产生引起双链RNA产生以抑制XGAT基因表达的其他构建体,其中使用本领域技术人员众所周知的方法。为了证实启动子和基因插入二元载体(binary vector)内,测定构建体的核苷酸序列。
杂交杨树使用有毒力的根癌土壤杆菌(Agrobacterium tumefaciens)进行转化,其中使用标准技术,例如如本文描述的叶盘接种。例如,切割叶盘,并且与根癌土壤杆菌在室温共培养1小时,印迹干燥并且轴外铺平板到合适的琼脂固化培养基上,所述琼脂固化培养基补加有各0.1μM萘乙酸(NAA)、6-苄氨基嘌呤(BA)和赛二唑素(thiadiazuron)(TDZ)。3天后,将盘转移至补加有羧苄青霉素二钠盐(500mg l-1)和头孢氨噻肟钠盐(250mg l-1)的琼脂平板。在另外3天后,将盘转移至具有包含羧苄青霉素、头孢氨噻肟和卡那霉素(25mg l-1)的培养基的琼脂平板。5周后,将枝条和愈伤组织材料转移至如上补加加上0.01μM BA的培养基。一旦可见个别枝条,就将小植株转移至具有0.01μMNAA和抗生素选择的固化培养基以诱导生根。在这种培养基上2个连续5周时间段后,枝条尖分离至具有0.01μM NAA的固化无抗生素培养基。
植物通过基因组DNA的PCR筛选证实为转化体,所述PCR筛选采用如上所述的基因和启动子特异性寡核苷酸。
将组织培养中的小植株转移到包含泥炭、细树皮和轻石层土壤混合物的7.51罐,并且在温室中生长直至在田间种植时。
具有改善的木聚糖性质的植物的克隆通过下述进行鉴定:用1MNaOH提取木聚糖且使量与未转化植物相比较,或如本文所述通过经由PACE分析木聚糖分支。
参考文献:
Goubet,F,P Jackson,M Deery和P Dupree(2002)PolysaccharideAnalysis using Carbohydrate gel Electrophoresis(PACE):a method to studyplant cell wall polysaccharides and polysaccharide hydrolases.AnalyticalBiochemistry,300,53-68.
Claims (41)
1.一种转化的植物细胞,其包括具有非天然糖部分取代模式侧链组分的木聚糖结构。
2.根据权利要求1的转化的植物细胞,其包括其中所述非天然糖部分取代模式位于支链侧链糖和/或直链侧链糖组分中的木聚糖结构。
3.根据权利要求1或权利要求2的转化的植物细胞,其中所述非天然糖部分取代侧链组分模式位于所述木聚糖结构的最高达50%主链木糖残基上。
4.根据权利要求1-3中任一项的转化的植物细胞,其中所述非天然糖部分取代侧链组分模式位于所述木聚糖结构的最高达30%主链木糖残基上。
5.根据权利要求1-4中任一项的转化的植物细胞,其中所述非天然糖部分取代侧链组分模式是所述木聚糖结构的最高达20%总糖部分取代侧链组分。
6.根据权利要求1-5中任一项的转化的植物细胞,其中所述非天然糖部分取代侧链组分模式是所述木聚糖结构的最高达15%总糖部分取代侧链组分。
7.根据权利要求1-6中任一项的转化的植物细胞,其中所述非天然糖部分取代侧链组分模式是[Me]GlcA侧链组分。
8.根据权利要求1-7中任一项的转化的植物细胞,其通过化学或物理诱变处理步骤或通过将核酸序列插入植物细胞的基因组内来产生。
9.根据权利要求8的转化的植物细胞,其包括编码反义RNA分子的引入的DNA序列,所述DNA序列与启动子和终止子可操作地连接,所述启动子和终止子都能够在植物细胞中起作用,其中所述反义RNA分子与在植物细胞中在木聚糖侧链修饰中具有酶促活性的蛋白质的编码序列的部分互补。
10.根据权利要求8或权利要求9的转化的植物细胞,其包括编码有义RNA分子的DNA序列,所述DNA序列与启动子和终止子可操作地连接,所述启动子和终止子都能够在植物细胞中起作用,其中所述有义RNA分子是在植物细胞中在木聚糖侧链修饰中具有酶促活性的蛋白质的编码序列。
11.根据权利要求8-10中任一项的转化的植物细胞,其中所述蛋白质的酶促活性是XGAT活性。
12.根据权利要求11的转化的植物细胞,其包括核苷酸序列,其中所述DNA分子选自编码下述的蛋白质或其片段的核苷酸序列:At4g33330、At3g18660、At1g77130、At1g08990、At1g54940(来自鼠耳芥),PttGT8A、PttGT8B和PttGT8C(来自杨树),CAK29728(来自欧洲云杉,针叶树的部分序列),Os03g0184300、Os01g0880200、Os05g0426400、OsI_010047、AAK92624(来自稻)AK250038(来自大麦)、AY110752(来自玉蜀黍)和ABE88903(来自蒺藜苜蓿)。
13.根据权利要求1-12中任一项的转化的植物细胞,其选自杨树、火炬松、棉花、小麦、大麦、黑麦、甜菜、芒属、柳树、柳枝稷和甘蔗的转化细胞。
14.核苷酸序列在提供根据权利要求1-13中任一项的植物细胞中木聚糖结构上的侧链组分中非天然糖部分取代模式中的用途,所述植物细胞包括编码反义RNA分子的DNA序列,所述DNA序列与启动子和终止子可操作地连接,所述启动子和终止子都能够在植物细胞中起作用,其中所述反义RNA分子与在植物细胞中在木聚糖侧链修饰中具有酶促活性的蛋白质的编码序列的部分互补。
15.核苷酸序列在提供根据权利要求1-13中任一项的植物细胞中木聚糖结构上的侧链组分中非天然糖部分取代模式中的用途,所述植物细胞包括编码有义RNA分子的DNA序列,所述DNA序列与启动子和终止子可操作地连接,所述启动子和终止子都能够在植物细胞中起作用,其中所述有义RNA分子编码在植物细胞中在木聚糖侧链修饰中具有酶促活性的蛋白质的编码序列。
16.根据权利要求14或权利要求15的核苷酸序列的用途,其中所述蛋白质的酶促活性是XGAT活性。
17.根据权利要求14的核苷酸序列的用途,其中所述RNA分子是与有义mRNA分子互补的反义RNA分子,所述有义mRNA分子编码选自下述的蛋白质或其片段:At4g33330、At3g18660、At1g77130、At1g08990、At1g54940(来自鼠耳芥),PttGT8A、PttGT8B和PttGT8C(来自杨树),CAK29728(欧洲云杉,针叶树的部分序列),以及其来自其他物种的其他XGAT同源物或直向同源物,例如Os03g0184300、Os01g0880200、Os05g 0426400、OsI_010047、AAK92624(来自稻)AK250038(来自大麦)、AY110752(来自玉蜀黍)和ABE88903(来自蒺藜苜蓿)。
18.根据权利要求15或权利要求16的核苷酸序列的用途,其中所述有义RNA分子是有义mRNA分子,所述有义mRNA分子编码选自下述的蛋白质或其片段:At4g33330、At3g18660、At1g77130、At1g08990、At1g54940(来自鼠耳芥),PttGT8A、PttGT8B和PttGT8C(来自杨树),CAK29728(欧洲云杉,针叶树的部分序列),以及其来自其他物种的其他XGAT同源物或直向同源物,例如Os03g0184300、Os01g0880200、Os05g 0426400、OsI_010047、AAK92624(来自稻)AK250038(来自大麦)、AY110752(来自玉蜀黍)和ABE88903(来自蒺藜苜蓿)。
19.根据权利要求14-18中任一项的核苷酸序列的用途,其中所述启动子选自组成型、诱导型和发育调节的启动子。
20.根据权利要求19的核苷酸序列的用途,其中所述核苷酸序列进一步包括编码标记蛋白质的DNA序列,所述标记蛋白质与启动子和终止子可操作地连接,所述启动子和终止子都能够在植物细胞中起作用。
21.一种植物,其包括根据权利要求1-13中任一项的植物细胞。
22.权利要求21的植物的种子。
23.权利要求21的植物的后代。
24.一种在其细胞中表达反义RNA的植物,所述反义RNA与在木聚糖侧链取代中具有酶促活性的蛋白质或其片段的编码序列的部分互补,其中所述蛋白质选自At4g33330和At3g18660、At1g77130、At1g08990、At1g54940(来自鼠耳芥),PttGT8A、PttGT8B和PttGT8C(来自杨树),CAK29728(欧洲云杉,针叶树的部分序列),以及其来自其他物种的其他XGAT同源物或直向同源物,例如Os03g0184300、Os01g0880200、Os05g 0426400、OsI_010047、AAK92624(来自稻)AK250038(来自大麦)、AY110752(来自玉蜀黍)和ABE88903(来自蒺藜苜蓿)。
25.根据权利要求21的植物,其衍生自选自杨树、火炬松、棉花、小麦、大麦、黑麦、甜菜和甘蔗的转化的细胞。
26.一种用于在纸或浆制造中使用的修饰的木聚糖,其衍生自根据权利要求1-13中任一项的植物细胞。
27.一种用于在纸或浆制造中使用的修饰的木聚糖,其衍生自根据权利要求21、24或25中任一项的植物。
28.一种用于在用于药物的药物递送载体制造中使用的修饰的木聚糖,其衍生自根据权利要求21、24或25中任一项的植物。
29.一种用于在纸或浆制造中使用的修饰的纤维素,其衍生自根据权利要求1-13中任一项的植物细胞。
30.根据权利要求1-13中任一项的植物细胞,其用于动物饲料补充剂中。
31.一种用于在动物饲料中使用的植物,其衍生自根据权利要求21、24或25中任一项的植物。
32.根据权利要求1-13中任一项的植物细胞,其用于人营养的饮食补充剂中。
33.用于作为人营养的饮食补充剂使用的植物材料,其得自根据权利要求21的植物。
34.根据权利要求1-13中任一项的植物细胞,其用于烃液体燃料或氢制造中。
35.根据权利要求34的植物细胞,其用于乙醇或丁醇制造中。
36.一种用于就与木聚糖的糖部分取代有关的突变等位基因在植物群体中筛选植物的方法,其包括:
i)从所述植物获得核酸样品;
ii)用在木聚糖的糖取代中采用的核酸序列的至少一个已知标记序列筛选所述核酸样品;
iii)鉴定包括与步骤ii)的已知标记序列有关的至少一个突变等位基因的植物。
37.根据权利要求36的方法,其中所述标记序列是XGAT核酸序列。
38.根据权利要求36或权利要求37的方法,其中所述标记序列选自核酸序列,所述核酸序列编码选自下述的蛋白质或其直向同源物:At4g33330、At3g18660、At1g77130、At1g08990、At1g54940(来自鼠耳芥),PttGT8A、PttGT8B和PttGT8C(来自杨树),CAK29728(欧洲云杉,针叶树的部分序列),Os03g0184300、Os01g0880200、Os05g0426400、OsI_010047、AAK92624(来自稻)AK250038(来自大麦)、AY110752(来自玉蜀黍)、ABE88903(来自蒺藜苜蓿)。
39.一种用于产生在其木聚糖结构上包括修饰的糖部分取代模式的突变植物的方法,其包括:
i)将DNA序列插入在活植物细胞内编码酶的核酸序列内,所述酶在木聚糖上的糖取代模式形成中具有酶活性;和
ii)由所述植物细胞产生植物。
40.根据权利要求39的方法,其中所述插入的核酸是T-DNA核酸序列或无义核酸序列。
41.一种分离的、修饰的木聚糖产物,其来自根据权利要求1-13、21和23-25中任一项的转化的植物细胞或植物。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GBGB0718377.5A GB0718377D0 (en) | 2007-09-21 | 2007-09-21 | Improvements in or relating to organic compounds |
GB0718377.5 | 2007-09-21 | ||
PCT/GB2008/050830 WO2009037502A1 (en) | 2007-09-21 | 2008-09-17 | Modified xylan production |
Publications (1)
Publication Number | Publication Date |
---|---|
CN101809147A true CN101809147A (zh) | 2010-08-18 |
Family
ID=38670242
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN200880107883A Pending CN101809147A (zh) | 2007-09-21 | 2008-09-17 | 修饰的木聚糖生产 |
Country Status (10)
Country | Link |
---|---|
US (1) | US8993842B2 (zh) |
EP (1) | EP2190983A1 (zh) |
CN (1) | CN101809147A (zh) |
AU (1) | AU2008300366A1 (zh) |
BR (1) | BRPI0816927A2 (zh) |
CA (1) | CA2698130A1 (zh) |
GB (1) | GB0718377D0 (zh) |
UA (1) | UA104575C2 (zh) |
WO (1) | WO2009037502A1 (zh) |
ZA (1) | ZA201001297B (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107674882A (zh) * | 2011-01-28 | 2018-02-09 | 加利福尼亚大学董事会 | 植物中经空间修饰的基因表达 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
BR112013010278B1 (pt) | 2010-10-27 | 2020-12-29 | Ceres, Inc | método para produzir uma planta, método para modular a composição de biomassa em uma planta, ácido nucleico isolado e método para alterar a composição de biomassa em uma planta |
CN118064491A (zh) * | 2023-12-07 | 2024-05-24 | 四川农业大学 | 水稻基因OsGUX1及其应用 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1997022691A1 (en) * | 1995-12-18 | 1997-06-26 | Röhm Enzyme Finland OY | Novel xylanases and uses thereof |
WO1998055596A1 (en) | 1997-06-03 | 1998-12-10 | Chris Somerville | Use of genes encoding xylan synthase to modify plant cell wall composition |
GB0119342D0 (en) | 2001-08-08 | 2001-10-03 | Gemstar Cambridge Ltd | Starch modification |
-
2007
- 2007-09-21 GB GBGB0718377.5A patent/GB0718377D0/en not_active Ceased
-
2008
- 2008-09-17 WO PCT/GB2008/050830 patent/WO2009037502A1/en active Application Filing
- 2008-09-17 AU AU2008300366A patent/AU2008300366A1/en not_active Abandoned
- 2008-09-17 BR BRPI0816927A patent/BRPI0816927A2/pt not_active IP Right Cessation
- 2008-09-17 CN CN200880107883A patent/CN101809147A/zh active Pending
- 2008-09-17 EP EP08806646A patent/EP2190983A1/en not_active Withdrawn
- 2008-09-17 US US12/679,309 patent/US8993842B2/en not_active Expired - Fee Related
- 2008-09-17 CA CA2698130A patent/CA2698130A1/en not_active Abandoned
- 2008-09-17 UA UAA201004799A patent/UA104575C2/ru unknown
-
2010
- 2010-02-23 ZA ZA2010/01297A patent/ZA201001297B/en unknown
Non-Patent Citations (1)
Title |
---|
ZHONG RQ ET AL.: "Arabidopsis Fragile Fiber8,Which Encodes a Putative Glucuronyltransferase, Is Essential for Normal Secondary Wall Synthesis", 《THE PLANT CELL》 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107674882A (zh) * | 2011-01-28 | 2018-02-09 | 加利福尼亚大学董事会 | 植物中经空间修饰的基因表达 |
Also Published As
Publication number | Publication date |
---|---|
GB0718377D0 (en) | 2007-10-31 |
US8993842B2 (en) | 2015-03-31 |
ZA201001297B (en) | 2011-04-28 |
UA104575C2 (ru) | 2014-02-25 |
BRPI0816927A2 (pt) | 2019-09-24 |
US20110185449A1 (en) | 2011-07-28 |
CA2698130A1 (en) | 2009-03-26 |
WO2009037502A1 (en) | 2009-03-26 |
EP2190983A1 (en) | 2010-06-02 |
AU2008300366A1 (en) | 2009-03-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20220380790A1 (en) | Spatially modified gene expression in plants | |
US9309528B2 (en) | Biofuel production methods and compositions | |
US8173866B1 (en) | Modulation of plant xylan synthases | |
US11473086B2 (en) | Loss of function alleles of PtEPSP-TF and its regulatory targets in rice | |
US8796509B2 (en) | Plants with modified lignin content and methods for production thereof | |
Ziegelhoffer et al. | Expression of Acidothermus cellulolyticus E1 endo‐β‐1, 4‐glucanase catalytic domain in transplastomic tobacco | |
CN103237895A (zh) | 具有提高的糖化产率的转基因植物以及产生其的方法 | |
Derba-Maceluch et al. | Impact of xylan on field productivity and wood saccharification properties in aspen | |
CN101809147A (zh) | 修饰的木聚糖生产 | |
US9738901B2 (en) | Regulation of galactan synthase expression to modify galactan content in plants | |
CN110612022B (zh) | 产生碳水化合物的植物材料 | |
US8168861B2 (en) | Compositions and methods for increasing cellulose production | |
WO2009095641A2 (en) | Enhanced plant growth | |
US20140289903A1 (en) | Enhancing cell wall properties in plants or trees | |
CN101578370A (zh) | 编码c3hc4家族植物蛋白质的核酸分子和改变植物纤维素和木素含量的方法 | |
JP4070354B2 (ja) | 4−クマル酸:CoAリガーゼのcDNA、該cDNAを用いて作製した遺伝子及び該遺伝子を導入した形質転換植物 | |
US11674147B2 (en) | Expression of unfolded protein response proteins improves plant biomass and growth | |
Lopes et al. | The EgMUR 3 xyloglucan galactosyltransferase from Eucalyptus grandis complements the mur 3 cell wall phenotype in Arabidopsis thaliana | |
WO2009104181A1 (en) | Plants having genetically modified lignin content and methods of producing same | |
US20140331363A1 (en) | Plants with altered glucuronoxylan methyl transferase activity and methods of use | |
Brandon | Reducing Xylan and Improving Lignocellulosic Biomass through Antimorphic and Heterologous Enzyme Expression | |
AU2010258280A1 (en) | Production of plants with reduced lignin content | |
US20150082494A1 (en) | Cell Modified in the Expression of a Nucleotide Sugar Transporter |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C12 | Rejection of a patent application after its publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20100818 |