CN101805753A - Method of producing biogas through high-solid two-phase three-stage anaerobic digestion by using perishable organic wastes - Google Patents
Method of producing biogas through high-solid two-phase three-stage anaerobic digestion by using perishable organic wastes Download PDFInfo
- Publication number
- CN101805753A CN101805753A CN201010106904.4A CN201010106904A CN101805753A CN 101805753 A CN101805753 A CN 101805753A CN 201010106904 A CN201010106904 A CN 201010106904A CN 101805753 A CN101805753 A CN 101805753A
- Authority
- CN
- China
- Prior art keywords
- reactor
- acid
- hydrolysis
- methanogenic
- perishable organic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000010815 organic waste Substances 0.000 title claims abstract description 59
- 230000029087 digestion Effects 0.000 title claims abstract description 37
- 239000007787 solid Substances 0.000 title claims abstract description 19
- 238000000034 method Methods 0.000 title abstract description 38
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 claims abstract description 78
- 238000004519 manufacturing process Methods 0.000 claims abstract description 73
- 230000007062 hydrolysis Effects 0.000 claims abstract description 72
- 238000006460 hydrolysis reaction Methods 0.000 claims abstract description 72
- 230000000696 methanogenic effect Effects 0.000 claims abstract description 64
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims abstract description 44
- 150000007524 organic acids Chemical class 0.000 claims abstract description 27
- 230000004087 circulation Effects 0.000 claims abstract description 19
- 238000006243 chemical reaction Methods 0.000 claims abstract description 13
- 235000005985 organic acids Nutrition 0.000 claims abstract description 9
- 239000000203 mixture Substances 0.000 claims abstract description 5
- 239000002253 acid Substances 0.000 claims description 61
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims description 52
- 241000894006 Bacteria Species 0.000 claims description 40
- 238000012856 packing Methods 0.000 claims description 31
- 239000001569 carbon dioxide Substances 0.000 claims description 26
- 229910002092 carbon dioxide Inorganic materials 0.000 claims description 26
- 230000000789 acetogenic effect Effects 0.000 claims description 22
- 239000000835 fiber Substances 0.000 claims description 22
- 239000001257 hydrogen Substances 0.000 claims description 18
- 229910052739 hydrogen Inorganic materials 0.000 claims description 18
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 17
- 230000009471 action Effects 0.000 claims description 16
- 239000002994 raw material Substances 0.000 claims description 16
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 15
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 claims description 15
- 238000005325 percolation Methods 0.000 claims description 11
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 11
- FERIUCNNQQJTOY-UHFFFAOYSA-N Butyric acid Chemical compound CCCC(O)=O FERIUCNNQQJTOY-UHFFFAOYSA-N 0.000 claims description 10
- LCTONWCANYUPML-UHFFFAOYSA-N Pyruvic acid Chemical compound CC(=O)C(O)=O LCTONWCANYUPML-UHFFFAOYSA-N 0.000 claims description 10
- XBDQKXXYIPTUBI-UHFFFAOYSA-N dimethylselenoniopropionate Natural products CCC(O)=O XBDQKXXYIPTUBI-UHFFFAOYSA-N 0.000 claims description 10
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 claims description 10
- 239000000047 product Substances 0.000 claims description 10
- NQPDZGIKBAWPEJ-UHFFFAOYSA-N valeric acid Chemical compound CCCCC(O)=O NQPDZGIKBAWPEJ-UHFFFAOYSA-N 0.000 claims description 10
- 239000000945 filler Substances 0.000 claims description 9
- 230000003301 hydrolyzing effect Effects 0.000 claims description 8
- 150000001413 amino acids Chemical class 0.000 claims description 6
- 235000011187 glycerol Nutrition 0.000 claims description 6
- 150000004668 long chain fatty acids Chemical class 0.000 claims description 6
- 239000013049 sediment Substances 0.000 claims description 6
- 239000004310 lactic acid Substances 0.000 claims description 5
- 235000014655 lactic acid Nutrition 0.000 claims description 5
- 230000020477 pH reduction Effects 0.000 claims description 5
- 235000019260 propionic acid Nutrition 0.000 claims description 5
- 229940107700 pyruvic acid Drugs 0.000 claims description 5
- IUVKMZGDUIUOCP-BTNSXGMBSA-N quinbolone Chemical compound O([C@H]1CC[C@H]2[C@H]3[C@@H]([C@]4(C=CC(=O)C=C4CC3)C)CC[C@@]21C)C1=CCCC1 IUVKMZGDUIUOCP-BTNSXGMBSA-N 0.000 claims description 5
- 239000002893 slag Substances 0.000 claims description 5
- 239000007921 spray Substances 0.000 claims description 5
- 229940005605 valeric acid Drugs 0.000 claims description 5
- 230000000694 effects Effects 0.000 claims description 4
- 238000001914 filtration Methods 0.000 claims description 4
- 239000002846 particulate organic matter Substances 0.000 claims description 4
- -1 small molecule organic acid Chemical class 0.000 claims description 4
- 235000000346 sugar Nutrition 0.000 claims description 4
- 150000008163 sugars Chemical class 0.000 claims description 4
- 238000003860 storage Methods 0.000 claims description 3
- 230000000903 blocking effect Effects 0.000 claims description 2
- 239000000706 filtrate Substances 0.000 claims description 2
- 230000008569 process Effects 0.000 abstract description 30
- 230000002053 acidogenic effect Effects 0.000 abstract description 6
- 230000002401 inhibitory effect Effects 0.000 abstract description 2
- 238000012423 maintenance Methods 0.000 abstract 1
- 239000010806 kitchen waste Substances 0.000 description 11
- 239000010802 sludge Substances 0.000 description 8
- 239000002699 waste material Substances 0.000 description 7
- 230000005764 inhibitory process Effects 0.000 description 6
- 239000002054 inoculum Substances 0.000 description 6
- 239000010813 municipal solid waste Substances 0.000 description 5
- 239000005416 organic matter Substances 0.000 description 5
- 229920002472 Starch Polymers 0.000 description 4
- 235000013325 dietary fiber Nutrition 0.000 description 4
- 235000021245 dietary protein Nutrition 0.000 description 4
- 150000004676 glycans Chemical class 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 235000013372 meat Nutrition 0.000 description 4
- 229920001282 polysaccharide Polymers 0.000 description 4
- 239000005017 polysaccharide Substances 0.000 description 4
- 102000004169 proteins and genes Human genes 0.000 description 4
- 108090000623 proteins and genes Proteins 0.000 description 4
- 235000019698 starch Nutrition 0.000 description 4
- 239000008107 starch Substances 0.000 description 4
- 235000013311 vegetables Nutrition 0.000 description 4
- 229960004756 ethanol Drugs 0.000 description 3
- 229960000448 lactic acid Drugs 0.000 description 3
- 150000002632 lipids Chemical class 0.000 description 3
- 244000005700 microbiome Species 0.000 description 3
- 230000008901 benefit Effects 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- 235000013399 edible fruits Nutrition 0.000 description 2
- 238000010336 energy treatment Methods 0.000 description 2
- 238000000855 fermentation Methods 0.000 description 2
- 230000004151 fermentation Effects 0.000 description 2
- 239000012765 fibrous filler Substances 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 238000011081 inoculation Methods 0.000 description 2
- 230000004060 metabolic process Effects 0.000 description 2
- 150000002772 monosaccharides Chemical class 0.000 description 2
- 238000005086 pumping Methods 0.000 description 2
- 239000010865 sewage Substances 0.000 description 2
- 238000009270 solid waste treatment Methods 0.000 description 2
- 102000004190 Enzymes Human genes 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000000149 chemical water pollutant Substances 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 239000010791 domestic waste Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 239000005431 greenhouse gas Substances 0.000 description 1
- 239000003673 groundwater Substances 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 238000011112 process operation Methods 0.000 description 1
- 238000009790 rate-determining step (RDS) Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000001228 trophic effect Effects 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E50/00—Technologies for the production of fuel of non-fossil origin
- Y02E50/30—Fuel from waste, e.g. synthetic alcohol or diesel
Landscapes
- Processing Of Solid Wastes (AREA)
- Treatment Of Sludge (AREA)
Abstract
Description
技术领域technical field
本发明涉及一种有机垃圾处理方法,更具体地说,本发明涉及一种以易腐性有机垃圾为原料的高固体两相三段厌氧消化产沼气的方法。The invention relates to a method for treating organic garbage, more specifically, the invention relates to a method for producing biogas by high-solid two-phase three-stage anaerobic digestion using perishable organic garbage as raw materials.
技术背景technical background
易腐性有机垃圾主要指生活和生产过程中产生易腐败和易生物降解的废弃物,包括厨余垃圾、泔脚、蔬菜、水果和肉类加工废弃物等。由于城市化进程的加快以及生活水平的提高,易腐性有机垃圾不仅在绝对产量上显著增加,而且在城市生活垃圾中的所占的比例也大幅提高,目前该部分垃圾占城市生活垃圾总量的50%以上。易腐性有机垃圾最大的特点是水分含量和有机质含量较高,水分含量一般在70%以上,有机质含量以干基计一般在90%以上。上述特点使得目前的主要城市生活垃圾处理技术均存在一些问题,例如,较高的有机质含量导致在填埋过程中产生大量能够污染地下水和土壤圈的渗滤液以及无序排放的温室气体甲烷;而较高的水分含量导致焚烧处理时需要添加大量额外的辅助燃料。实际上,如今的卫生填埋对选址要求较高,且占地面地较大,在许多大城市,已经很难找到适合卫生填埋的场地;对于焚烧处理,由于存在二次污染等问题,目前政府和民众对焚烧处理也持谨慎的态度。因此,迫切需要开发一种新的无二次污染且占地面积小的处理方式。对易腐性有机垃圾的有效处理能够为城市生活垃圾处理做出很大贡献。高水分含量和高有机质含量的特点使得易腐性有机垃圾更适于进行厌氧消化处理,而且在处理垃圾的同时能获得清洁可再生能源(沼气)。Perishable organic waste mainly refers to perishable and biodegradable waste generated in the process of life and production, including kitchen waste, slops, vegetable, fruit and meat processing waste, etc. Due to the acceleration of urbanization and the improvement of living standards, not only the absolute output of perishable organic waste has increased significantly, but also the proportion of urban domestic waste has also increased significantly. More than 50% of. The biggest feature of perishable organic waste is the high moisture content and organic matter content, the moisture content is generally above 70%, and the organic matter content is generally above 90% on a dry basis. The above characteristics lead to some problems in the current major municipal solid waste treatment technologies. For example, the high organic matter content leads to the production of a large amount of leachate that can pollute groundwater and the pedosphere during the landfill process, as well as the disorderly emission of greenhouse gas methane; and The higher moisture content leads to the need to add a large amount of additional auxiliary fuel during incineration. In fact, today's sanitary landfill has high requirements for site selection and occupies a large area. In many large cities, it is difficult to find a suitable site for sanitary landfill; for incineration, due to secondary pollution and other problems, At present, the government and the public are also cautious about incineration. Therefore, there is an urgent need to develop a new treatment method without secondary pollution and with a small footprint. Effective treatment of perishable organic waste can make a great contribution to municipal solid waste treatment. The characteristics of high moisture content and high organic matter content make perishable organic waste more suitable for anaerobic digestion, and clean and renewable energy (biogas) can be obtained while processing waste.
有机质厌氧消化产甲烷过程包括4个步骤:胞外水解、产酸、产乙酸和产甲烷。胞外水解步骤指在多聚糖酶、淀粉酶、纤维素酶、蛋白质酶和脂肪酶的作用下,将多糖、淀粉、膳食纤维、蛋白质和脂类水解为单糖、氨基酸、甘油和长链脂肪酸;产酸步骤指水解产生的小分子化合物在产酸菌的作用下分解为更简单的乙酸、丙酸、丁酸、丙酮酸、乳酸、戊酸、乙醇及少量的二氧化碳和氢气;产乙酸步骤指产酸步骤的有机酸产物(除乙酸外)进一步转化为乙酸、二氧化碳和氢气的过程;产甲烷步骤指乙酸经乙酸营养型产甲烷菌生成甲烷和二氧化碳以及二氧化碳和氢气生成甲烷的过程。高效稳定的厌氧消化产甲烷工艺需要保证水解产酸过程和产乙酸产甲烷过程之间的平衡,水解产酸过程产生的小分子有机酸能够及时被产甲烷过程利用,避免有机酸积累从而抑制发酵系统内的微生物,尤其是对产甲烷菌的抑制,因为产甲烷菌对有机酸的耐受浓度较低,有机酸浓度累积到13000mg/L时就会完全抑制产甲烷活性。The methanogenic process of anaerobic digestion of organic matter includes 4 steps: extracellular hydrolysis, acidogenesis, acetogenicity and methanogenesis. The extracellular hydrolysis step refers to the hydrolysis of polysaccharides, starch, dietary fiber, proteins and lipids into monosaccharides, amino acids, glycerol and long-chain Fatty acid; the acid production step refers to the decomposition of small molecular compounds produced by hydrolysis into simpler acetic acid, propionic acid, butyric acid, pyruvic acid, lactic acid, valeric acid, ethanol and a small amount of carbon dioxide and hydrogen under the action of acid-producing bacteria; The step refers to the process in which the organic acid products (except acetic acid) of the acidogenic step are further converted into acetic acid, carbon dioxide and hydrogen; the methanogenic step refers to the process in which acetic acid is generated by acetic acid-forming methanogens and carbon dioxide and hydrogen to generate methane. An efficient and stable anaerobic digestion methanogenesis process needs to ensure the balance between the hydrolysis acid production process and the acetogenic methanogenesis process. The small molecule organic acids produced in the hydrolysis acid production process can be used by the methanogenesis process in time to avoid the accumulation of organic acids and thus inhibit The microorganisms in the fermentation system, especially the inhibition of methanogens, because methanogens have a low tolerance to organic acids, and when the concentration of organic acids accumulates to 13000mg/L, the methanogenic activity will be completely inhibited.
易腐性有机垃圾主要成分为多糖、淀粉、膳食纤维、蛋白质,它们属于容易水解酸化的物质,在厌氧消化过程中水解产酸速率较快,与之相比,产甲烷过程是整个厌氧消化过程的限速步骤,导致易腐性有机垃圾进行厌氧消化处理时容易产生有机酸抑制。为了避免有机酸抑制,传统的单相厌氧消化只能在较低的发酵原料浓度(低于4%)下完成,而对于像厨余垃圾这类的易腐性有机垃圾,其总固体含量一般为15%~25%。此时,不仅需要消耗大量的水用于调低原料浓度,而且较低的原料浓度大大降低了易腐性有机垃圾厌氧消化处理效率及产沼气能力。因此,开发无抑制高效厌氧消化产沼气工艺成为易腐性有机垃圾减量化和能源化处理的关键。The main components of perishable organic waste are polysaccharides, starch, dietary fiber, and protein. They are substances that are easily hydrolyzed and acidified. The rate-limiting step of the digestion process leads to organic acid inhibition when perishable organic waste is subjected to anaerobic digestion. In order to avoid organic acid inhibition, traditional single-phase anaerobic digestion can only be completed at a low concentration of fermentation raw materials (less than 4%), and for perishable organic waste such as kitchen waste, its total solid content Generally 15%~25%. At this time, not only a large amount of water needs to be consumed to reduce the concentration of raw materials, but also the lower concentration of raw materials greatly reduces the efficiency of anaerobic digestion of perishable organic waste and the ability to produce biogas. Therefore, the development of non-inhibition and efficient anaerobic digestion biogas production process has become the key to the reduction and energy treatment of perishable organic waste.
发明内容Contents of the invention
本发明的主要目的在于克服现有技术中的不足,提供一种以易腐性有机垃圾为原料的高固体两相三段厌氧消化产沼气的方法,以提高厌氧消化稳定性、处理效率及产沼气能力。The main purpose of the present invention is to overcome the deficiencies in the prior art and provide a method for producing biogas by high-solid two-phase three-stage anaerobic digestion using perishable organic waste as raw material, so as to improve the stability and processing efficiency of anaerobic digestion and biogas production capacity.
为了解决上述技术问题,本发明是通过以下技术方案实现的:In order to solve the above technical problems, the present invention is achieved through the following technical solutions:
本发明方法的工艺流程包括以下步骤:The technological process of the inventive method comprises the following steps:
(1)在水解产酸反应器中将易腐性有机垃圾水解,生成可溶性的糖类、氨基酸、长链脂肪酸和甘油;并将上述水解后得到的混合物酸化,生成大量小分子有机酸产物;水解产酸反应器采用固体渗滤床,易腐性有机垃圾装填于渗滤床的渗滤填料上面,来自于喷淋头的水对易腐性有机垃圾进行淋洒,同时水解产酸反应生成的有机酸溶于水中,并经过渗滤填料和多孔板形成渗滤液贮于水解产酸反应器底部;(1) Hydrolyzing perishable organic waste in a hydrolysis acid production reactor to generate soluble sugars, amino acids, long-chain fatty acids and glycerin; and acidifying the mixture obtained after the above hydrolysis to generate a large amount of small molecule organic acid products; The hydrolysis acid generation reactor adopts a solid percolation bed, and the perishable organic waste is filled on the percolation packing of the percolation bed, and the water from the sprinkler sprays the perishable organic waste, and at the same time, the perishable organic waste is hydrolyzed to generate acid. The organic acid is dissolved in water, and the leachate is formed through the percolation filler and the porous plate, and is stored at the bottom of the hydrolysis acid production reactor;
步骤(1)中优选工艺条件为:Preferred process condition is in the step (1):
将易腐性有机垃圾在原料固体浓度15%~40%、温度25℃~60℃、pH值4.5~6.5的条件下水解,生成可溶性的糖类、氨基酸、长链脂肪酸和甘油;Hydrolyze perishable organic waste under the conditions of raw material solid concentration of 15%~40%, temperature of 25°C~60°C, and pH value of 4.5~6.5 to produce soluble sugars, amino acids, long-chain fatty acids and glycerol;
将上述水解后得到的混合物在温度25℃~60℃、pH值4.5~6.5的条件下酸化,生成大量小分子有机酸产物,包括丙酮酸、乙酸、丙酸、丁酸、戊酸、乳酸、乙醇,以及少量氢气和二氧化碳。The mixture obtained after the above hydrolysis is acidified at a temperature of 25°C~60°C and a pH value of 4.5~6.5 to generate a large number of small molecule organic acid products, including pyruvic acid, acetic acid, propionic acid, butyric acid, valeric acid, lactic acid, ethanol, and small amounts of hydrogen and carbon dioxide.
(2)水解产酸反应器底部和产甲烷反应器底部通过循环泵及管道连通;产甲烷反应器顶部和水解产酸反应器顶部连通;在产甲烷反应器中进行产乙酸反应,将步骤(1)酸化产生的除乙酸外的有机酸产物在产乙酸菌的作用下生成乙酸、氢气和二氧化碳;并继续进行产甲烷反应,将乙酸在乙酸营养型产甲烷菌的作用下发酵生成甲烷和二氧化碳,将氢气和二氧化碳在氢营养型产甲烷菌的作用下发酵生成甲烷;产甲烷反应器的主体为上部的纤维填料床反应器,纤维填料能够附着产乙酸菌和产甲烷菌,提高产甲烷反应器内产乙酸菌和产甲烷菌的浓度,从而提高产沼气性能;产甲烷反应器底部设置过滤床,用于截留渗滤液中的颗粒有机物,避免堵塞纤维填料床;在步骤(1)产生的渗滤液流经产甲烷反应器的同时,渗滤液中的有机酸在产乙酸菌和产甲烷菌的相继作用下生成甲烷和二氧化碳;(2) The bottom of the hydrolysis acid production reactor is connected with the bottom of the methanation reactor through a circulating pump and a pipeline; the top of the methanation reactor is connected with the top of the hydrolysis acid production reactor; in the production of the methanation reactor, the acetogenic reaction is carried out, and the step ( 1) The organic acid products produced by acidification except acetic acid generate acetic acid, hydrogen and carbon dioxide under the action of acetogenic bacteria; and continue the methanogenic reaction, and ferment acetic acid under the action of acetic acid-trophic methanogenic bacteria to generate methane and carbon dioxide , ferment hydrogen and carbon dioxide under the action of hydrogenotrophic methanogens to generate methane; the main body of the methanogen reactor is the upper fiber packed bed reactor, and the fiber filler can attach acetogenic bacteria and methanogenic bacteria to improve the methanogenic reaction The concentration of acetogenic bacteria and methanogenic bacteria in the reactor, thereby improving the performance of biogas production; the bottom of the methanogenic reactor is provided with a filter bed, which is used to intercept the particulate organic matter in the leachate and avoid blocking the fiber packing bed; the biogas produced in step (1) While the leachate flows through the methanogenic reactor, the organic acids in the leachate generate methane and carbon dioxide under the successive action of acetogenic bacteria and methanogenic bacteria;
步骤(2)的优选工艺条件为:The preferred process condition of step (2) is:
将步骤(1)酸化产生的除乙酸外的有机酸产物在产乙酸菌的作用下生成乙酸、氢气和二氧化碳,该反应控制温度为25℃~60℃,pH值6.5~8.0。The organic acid products except acetic acid produced in the acidification step (1) are generated under the action of acetogenic bacteria to generate acetic acid, hydrogen and carbon dioxide, and the temperature of the reaction is controlled at 25° C. to 60° C., and the pH value is 6.5 to 8.0.
所得乙酸在乙酸营养型产甲烷菌的作用下发酵生成甲烷和二氧化碳,上一步骤中的氢气和二氧化碳在氢营养型产甲烷菌的作用下发酵生成甲烷,这两类产甲烷菌参与的产甲烷反应均控制温度为25℃~60℃,pH值6.5~8.0。The obtained acetic acid is fermented under the action of acetic acidotrophic methanogens to produce methane and carbon dioxide. The hydrogen and carbon dioxide in the previous step are fermented under the action of hydrogenotrophic methanogens to produce methane. The two types of methanogens participate in the methanogenic The reaction temperature is controlled at 25°C~60°C, and the pH value is 6.5~8.0.
(3)定期从水解产酸反应器的卸料口清除部分易腐性有机垃圾水解残渣,以提高反应器有效处理体积;定期从水解产酸反应器的排渣口清除易腐性有机垃圾渗滤液沉淀物,以提高渗滤液有效贮存体积;定期清洗并重新装填产甲烷反应器中过滤床内的过滤填料,保证良好的过滤效果。(3) Regularly remove some perishable organic waste hydrolysis residues from the discharge port of the hydrolysis acid production reactor to increase the effective treatment volume of the reactor; regularly remove perishable organic waste seepage from the slag discharge port of the hydrolysis acid production reactor Filtrate sediment to increase the effective storage volume of leachate; regularly clean and refill the filter packing in the filter bed in the methanogenic reactor to ensure good filtering effect.
一般定期清理的时间为:The general cleaning time is as follows:
每隔10天~60天从水解产酸反应器的卸料口清除部分易腐性有机垃圾水解残渣,以提高反应器有效处理体积;每隔30天~90天从水解产酸反应器的排渣口清除易腐性有机垃圾渗滤液沉淀物,以提高渗滤液有效贮存体积;每隔30天~90天清洗并重新装填产甲烷反应器中过滤床内的过滤填料,保证良好的过滤效果。Remove some perishable organic waste hydrolysis residues from the discharge port of the hydrolysis acid production reactor every 10 days to 60 days to increase the effective treatment volume of the reactor; Remove perishable organic landfill leachate sediments at the slag port to increase the effective storage volume of leachate; clean and refill the filter packing in the filter bed of the methanogenic reactor every 30 days to 90 days to ensure good filtering effect.
本发明的进一步改进是:A further improvement of the present invention is:
水解产酸反应器底部和产甲烷反应器底部通过循环泵及管道相连,所述循环泵入口段设置分支管路,用于向产甲烷反应器添加厌氧消化接种物、酸碱调节剂和水等。当产甲烷反应器运行出现异常时,具体来讲,当产甲烷反应器中轻度过酸或过碱时,可以通过控制渗滤液的循环量来调节;当产甲烷反应器中严重过酸或过碱时,可以从循环泵入口段的分支管路泵入酸碱度调节剂以调节酸碱度。The bottom of the hydrolysis acid production reactor and the bottom of the methanation reactor are connected by a circulation pump and a pipeline. The inlet section of the circulation pump is provided with a branch pipeline for adding anaerobic digestion inoculum, acid-base regulator and water to the methanation reactor. wait. When the operation of the methanogenic reactor is abnormal, specifically, when the methanogenic reactor is slightly overacidic or overalkaline, it can be adjusted by controlling the circulation of the leachate; when the methanogenic reactor is severely overacidic or When it is too alkaline, a pH regulator can be pumped from the branch pipeline at the inlet section of the circulation pump to adjust the pH.
与现有技术相比,本发明的有益效果是:Compared with prior art, the beneficial effect of the present invention is:
本发明可以将厌氧消化过程的水解产酸过程(水解产酸相)和产乙酸产甲烷过程(产甲烷相)分开,避免易腐性有机垃圾产生的有机酸抑制产甲烷作用。水解产酸相采用高固体渗滤床反应器,可以使易腐性有机垃圾在较高的原料浓度下发酵,原料浓度最高可达40%,因此,无需额外添加大量的水用于调低原料浓度。另外,在固体渗滤床反应器内用于淋洒易腐性有机垃圾的水来自于产甲烷反应器,整个系统内的水可以实现自循环,因此,该发明是一个水节约型易腐性有机垃圾厌氧消化产沼气处理装置。产甲烷反应器中纤维填料床内的填料可以附着产甲烷菌,提高反应器内产甲烷菌的细胞浓度,从而提高厌氧消化产沼气能力。渗滤液进入纤维填料床之前,过滤床的设置能够有效截留渗滤液中的颗粒有机物,以避免堵塞纤维填料床。在过滤床上设置过滤填料入口和出口,可以定期清洗并重新装填过滤填料以保证良好的过滤效果。与传统的易腐性有机垃圾单相厌氧消化装置相比,采用该发明装置能够显著提高易腐性有机垃圾厌氧消化的处理浓度,最高能从4%提高到40%,池容产沼气率最高能从0.8m3/(m3·d)提高到2.5m3/(m3·d),而且能够有效避免有机酸对产甲烷作用的抑制。The invention can separate the hydrolysis acid production process (hydrolysis acid production phase) and the acetogenic methanation process (methanogenic phase) of the anaerobic digestion process, and avoid the organic acid produced by perishable organic garbage from inhibiting the methanogenic effect. The hydrolysis acid production phase uses a high solid percolation bed reactor, which can ferment perishable organic waste at a higher raw material concentration, and the raw material concentration can reach up to 40%. Therefore, there is no need to add a large amount of water to reduce the raw material concentration. In addition, the water used for showering perishable organic waste in the solid percolation bed reactor comes from the methanogenic reactor, and the water in the whole system can realize self-circulation. Therefore, the invention is a water-saving perishable Anaerobic digestion of organic waste to generate biogas treatment device. The filler in the fiber packing bed in the methanogenic reactor can attach methanogenic bacteria to increase the cell concentration of methanogenic bacteria in the reactor, thereby improving the biogas production capacity of anaerobic digestion. Before the leachate enters the fiber packing bed, the setting of the filter bed can effectively intercept the particulate organic matter in the leachate to avoid clogging the fiber packing bed. The filter packing inlet and outlet are set on the filter bed, and the filter packing can be cleaned and refilled regularly to ensure a good filtering effect. Compared with the traditional single-phase anaerobic digestion device for perishable organic waste, the device of the invention can significantly increase the treatment concentration of perishable organic waste anaerobic digestion, the highest can be increased from 4% to 40%, and the pool capacity can produce biogas The maximum rate can be increased from 0.8m 3 /(m 3 ·d) to 2.5m 3 /(m 3 ·d), and it can effectively avoid the inhibition of organic acid on methanogenesis.
本发明方法工艺运行管理简单,厌氧消化产沼气性能稳定可靠。适用于各类易腐性有机垃圾的厌氧消化处理,既可以高效处理有机垃圾,减少其对环境的严重污染,又可以生产清洁可再生能源(沼气),能够实现有机垃圾的能源化利用,从而变废为宝。The process operation and management of the method of the invention are simple, and the anaerobic digestion biogas production performance is stable and reliable. It is suitable for anaerobic digestion treatment of various perishable organic wastes. It can not only efficiently treat organic wastes, reduce its serious pollution to the environment, but also produce clean and renewable energy (biogas), which can realize the energy utilization of organic wastes. Thereby turning waste into treasure.
本发明具有高效稳定的易腐性有机垃圾厌氧消化产沼气能力,非常适合厨余垃圾处理场、泔脚处理中心以及水果、蔬菜和肉类加工厂等进行应用推广,具有良好的经济、环境和社会效益。The invention has efficient and stable perishable organic waste anaerobic digestion biogas production capacity, is very suitable for application and promotion in kitchen waste treatment plants, slop treatment centers, fruit, vegetable and meat processing plants, etc., and has good economic and environmental advantages and social benefits.
附图说明Description of drawings
图1是本发明方法流程图。Fig. 1 is a flow chart of the method of the present invention.
附图标记:进料斗1、水解产酸反应器2、产甲烷反应器3、循环泵4、布水器5、喷淋头6、进料口7、多孔板8、卸料口9、排渣口10、渗滤填料11、过滤床12、纤维填料床13、过滤填料14、纤维填料架15、纤维填料16、过滤填料入口17、过滤填料出口18、气体排放口19、安全阀20、压力表21、气体排放口分别设置流量计22、增温夹套23、保温层24、温度/酸度计25、采样口26、分支管路27。Reference signs: feed hopper 1, hydrolysis acid production reactor 2, methane production reactor 3, circulation pump 4, water distributor 5, spray head 6, feed inlet 7, perforated plate 8, discharge outlet 9, Slag outlet 10, filter packing 11, filter bed 12, fiber packing bed 13, filter packing 14, fiber packing frame 15, fiber packing 16, filter packing inlet 17,
具体实施方式Detailed ways
以下结合附图和实施例进一步对本发明进行描述。The present invention will be further described below in conjunction with the accompanying drawings and embodiments.
易腐性有机垃圾的主要成分为多糖、淀粉、膳食纤维、蛋白质和脂类,这类原料的厌氧消化产甲烷过程包括4个步骤:胞外水解、产酸、产乙酸和产甲烷。胞外水解步骤指在多聚糖酶、淀粉酶、纤维素酶、蛋白质酶和脂肪酶的作用下,将多糖、淀粉、膳食纤维、蛋白质和脂类水解为单糖、氨基酸、甘油和长链脂肪酸;产酸步骤指水解产生的小分子化合物在产酸菌的作用下分解为更简单的乙酸、丙酸、丁酸、丙酮酸、乳酸、戊酸、乙醇及少量的二氧化碳和氢气;产乙酸步骤指产酸步骤的有机酸产物(除乙酸外)进一步转化为乙酸、二氧化碳和氢气的过程;产甲烷步骤指乙酸经乙酸营养型产甲烷菌生成甲烷和二氧化碳以及二氧化碳和氢气生成甲烷的过程。The main components of perishable organic waste are polysaccharides, starch, dietary fiber, protein, and lipids. The anaerobic digestion of such raw materials to produce methanogenesis includes four steps: extracellular hydrolysis, acid production, acetogenic production, and methanogenesis. The extracellular hydrolysis step refers to the hydrolysis of polysaccharides, starch, dietary fiber, proteins and lipids into monosaccharides, amino acids, glycerol and long-chain Fatty acid; the acid production step refers to the decomposition of small molecular compounds produced by hydrolysis into simpler acetic acid, propionic acid, butyric acid, pyruvic acid, lactic acid, valeric acid, ethanol and a small amount of carbon dioxide and hydrogen under the action of acid-producing bacteria; The step refers to the process in which the organic acid products (except acetic acid) of the acidogenic step are further converted into acetic acid, carbon dioxide and hydrogen; the methanogenic step refers to the process in which acetic acid is generated by acetic acid-forming methanogens and carbon dioxide and hydrogen to generate methane.
参与上述整个过程的微生物类型包括水解产酸菌、产乙酸菌和产甲烷菌,其中水解产酸菌能够分泌胞外水解酶进行原料水解,并将水解产物发酵生成有机酸,产甲烷菌包括乙酸营养型产甲烷菌和氢营养型产甲烷菌。来源于沼气池或市政污水处理厂等处的厌氧活性污泥,一般都含有上述类型的微生物,因此通常以这类厌氧活性污泥作为厌氧消化产沼气的接种物。但是水解产酸菌和产甲烷菌的生理特性不相同,水解产酸菌生长代谢允许的pH值范围较广,为4.5~9.0,且该菌的生长速率较快,其世代时间一般为10~30分钟;而产甲烷菌生长代谢允许的pH范围较窄,为6.5~8.0,且生长速率较慢,其世代时间一般在4~6天。本发明鉴于以上特点,将易腐性有机垃圾的水解产酸过程和产甲烷过程分别在两个反应器中完成,并对两个反应器的运行pH单独控制,一方面避免水解产酸生成的高浓度有机酸抑制产甲烷菌,另一方面便于对两个过程独立优化控制。同时,采用纤维填料床作为产甲烷反应器,通过纤维填料对产乙酸菌和产甲烷菌的吸附,提高产甲烷反应器中这两类细菌的浓度,从而提高厌氧消化产沼气性能。The types of microorganisms involved in the above-mentioned whole process include hydrolytic acid producing bacteria, acetogenic bacteria and methanogenic bacteria, among which hydrolytic acid producing bacteria can secrete extracellular hydrolytic enzymes to hydrolyze raw materials, and ferment the hydrolyzate to produce organic acids, and methanogenic bacteria include acetic acid trophic methanogens and hydrogenotrophic methanogens. Anaerobic activated sludge from biogas digesters or municipal sewage treatment plants generally contains the above-mentioned types of microorganisms, so this type of anaerobic activated sludge is usually used as an inoculum for anaerobic digestion of biogas. However, the physiological characteristics of hydrolytic acid producing bacteria and methanogenic bacteria are different. The pH value range allowed for the growth and metabolism of hydrolytic acid producing bacteria is relatively wide, ranging from 4.5 to 9.0, and the growth rate of the bacteria is relatively fast, and its generation time is generally 10~ 30 minutes; while the pH range allowed for the growth and metabolism of methanogens is narrow, 6.5-8.0, and the growth rate is slow, and the generation time is generally 4-6 days. In view of the above characteristics, the present invention completes the acid production process and the methane production process of perishable organic waste in two reactors respectively, and controls the operating pH of the two reactors separately, on the one hand avoids the generation of acid by hydrolysis High concentration of organic acid inhibits methanogens, and on the other hand facilitates the independent optimal control of the two processes. At the same time, the fiber packing bed is used as the methanogenic reactor, and the concentration of these two types of bacteria in the methanogenic reactor is increased through the adsorption of the fiber packing on the acetogenic bacteria and methanogenic bacteria, thereby improving the biogas production performance of anaerobic digestion.
本实施例中工艺的运行过程如下:The operation process of technology in the present embodiment is as follows:
本实施例使用装置见图1,启动时,从进料斗1向水解产酸反应器2添加少量的易腐性有机垃圾,并将接种液从循环泵4入口段的分支管路27泵入产甲烷反应器3,待接种液淹没纤维填料后,继续泵入接种液直至在水解产酸反应器2底部形成易腐性有机垃圾渗滤液,且渗滤液高度接近多孔板8时,关闭分支管路27的阀门停止泵入接种液,至此完成接种液的添加。随后,将渗滤液从水解产酸反应器2底部通过循环泵4泵入产甲烷反应器3,而产甲烷反应器3中的液体又从纤维填料床13顶部溢流至水解产酸反应器2,并借助布水器5及喷淋头6对易腐性有机垃圾进行淋洒,淋洒下来的液体溶解易腐性有机垃圾水解产酸过程产生的有机酸,并流经渗滤填料11和多孔板8形成渗滤液贮存于水解产酸反应器2底部,至此完成一个液体循环。经过多次的这样一种循环完成产甲烷菌的驯化及其在纤维填料16上的附着和生长。当驯化完成后,逐步添加易腐性有机垃圾,直至易腐性有机垃圾的装填高度接近进料口7的位置。在逐步添加易腐性有机垃圾的同时,增加液体循环次数,直至连续循环,最终实现该发明装置的连续正常运行。The device used in this embodiment is shown in Figure 1. When starting, add a small amount of perishable organic waste from the feed hopper 1 to the hydrolysis acid production reactor 2, and pump the inoculum from the branch pipeline 27 of the inlet section of the circulation pump 4. For the methanogenic reactor 3, after the inoculum is submerged in the fiber filler, continue to pump the inoculum until perishable organic waste leachate is formed at the bottom of the hydrolysis acid production reactor 2, and when the leachate height is close to the porous plate 8, close the branch pipe The valve of road 27 stops pumping inoculation solution, so far completes the addition of inoculation solution. Subsequently, the leachate is pumped into the methanogenic reactor 3 from the bottom of the hydrolysis acid production reactor 2 through the circulation pump 4, and the liquid in the methanation reactor 3 overflows from the top of the fiber packing bed 13 to the hydrolysis acid production reactor 2 , and spray the perishable organic waste with the help of the water distributor 5 and the spray head 6, the liquid that is sprayed down dissolves the organic acid produced in the process of hydrolyzing the perishable organic waste to produce acid, and flows through the percolation filler 11 and The perforated plate 8 forms leachate and stores it at the bottom of the hydrolysis acid generation reactor 2, thus completing a liquid cycle. Acclimatization of the methanogens and their attachment and growth on the fibrous filler 16 are accomplished through a number of such cycles. After the domestication is completed, the perishable organic waste is gradually added until the filling height of the perishable organic waste is close to the position of the feed inlet 7 . While gradually adding perishable organic waste, increase the number of liquid circulation until continuous circulation, and finally realize the continuous normal operation of the device of the invention.
所述的接种液为沼气池或市政污水处理厂等处的厌氧活性污泥。The inoculum is anaerobic activated sludge from biogas digesters or municipal sewage treatment plants.
实施例1Example 1
(1)从进料斗1向水解产酸反应器2添加少量的厨余垃圾,并控制水解产酸反应器2温度为37℃。(1) Add a small amount of kitchen waste from the feed hopper 1 to the hydrolysis acid production reactor 2, and control the temperature of the hydrolysis acid production reactor 2 at 37°C.
(2)采集沼气池中的厌氧活性污泥,通过分支管路27泵入产甲烷反应器3,待厌氧活性污泥淹没纤维填料16后,继续泵入厌氧活性污泥直至在水解产酸反应器2底部形成厨余垃圾渗滤液,且渗滤液高度接近多孔板8时,关闭分支管路27的阀门停止泵入厌氧活性污泥,上述过程控制产甲烷反应器3的温度为37℃。(2) Collect the anaerobic activated sludge in the digester, pump it into the methane reactor 3 through the branch pipeline 27, after the anaerobic activated sludge submerges the fiber filler 16, continue to pump the anaerobic activated sludge until it is hydrolyzed Kitchen waste leachate is formed at the bottom of the acid-generating reactor 2, and when the leachate height is close to the porous plate 8, the valve of the branch pipeline 27 is closed to stop pumping the anaerobic activated sludge. 37°C.
(3)上述过程中的水解产酸反应器内,厨余垃圾在厌氧活性污泥中水解产酸菌作用下生成乙酸、丙酸、丁酸、戊酸、丙酮酸、乳酸、乙醇及少量二氧化碳和氢气,其中二氧化碳和氢气从水解产酸反应器2顶部的排气口19排出,有机酸溶解于渗滤液中。水解产酸作用控制温度为37℃,pH为5.5。(3) In the hydrolysis acid production reactor in the above process, the kitchen waste is hydrolyzed in the anaerobic activated sludge to generate acetic acid, propionic acid, butyric acid, valeric acid, pyruvic acid, lactic acid, ethanol and a small amount of Carbon dioxide and hydrogen, wherein carbon dioxide and hydrogen are discharged from the exhaust port 19 at the top of the hydrolysis acid production reactor 2, and the organic acid is dissolved in the leachate. The control temperature of hydrolysis and acid generation is 37°C and pH is 5.5.
(4)将上述渗滤液经循环泵4泵入产甲烷反应器3,在产甲烷反应器3内,渗滤液中的有机酸在产乙酸菌和产甲烷菌的相继作用下生成甲烷和二氧化碳,甲烷和二氧化碳从产甲烷反应器3顶部的排气口排出,有机酸被利用后的渗滤液从产甲烷反应器3顶部的溢流口流至水解产酸反应器2。产乙酸和产甲烷作用控制温度为37℃,控制pH为7.2。(4) The above-mentioned leachate is pumped into the methanogenic reactor 3 through the circulation pump 4, and in the methanogenic reactor 3, the organic acid in the leachate generates methane and carbon dioxide under the successive actions of the acetogenic bacteria and the methanogenic bacteria, Methane and carbon dioxide are discharged from the exhaust port at the top of the methanogenic reactor 3 , and the leachate after the organic acid is utilized flows from the overflow port at the top of the methanogenic reactor 3 to the hydrolysis acid production reactor 2 . The control temperature for acetogenic and methanogenesis is 37°C, and the pH is 7.2.
产乙酸和产甲烷反应在产甲烷反应器3中进行,产甲烷反应器3从下至上分为过滤床12和纤维填料床13,过滤床12截留渗滤液中的颗粒有机物,避免堵塞纤维填料床13。纤维填料床13内的纤维填料16能够附着产乙酸菌和产甲烷菌,提高产甲烷反应器3中这两类细菌的浓度,从而提高厌氧消化产沼气性能。The acetogenic and methanogenic reactions are carried out in the methanogenic reactor 3, and the methanogenic reactor 3 is divided into a filter bed 12 and a fiber packing bed 13 from bottom to top, and the filter bed 12 retains particulate organic matter in the leachate to avoid clogging the fiber packing bed 13. The fiber packing 16 in the fiber packing bed 13 can attach acetogenic bacteria and methanogenic bacteria, increase the concentration of these two types of bacteria in the methanogenic reactor 3, thereby improving the performance of anaerobic digestion for biogas production.
(5)经过10天的多次的渗滤液循环,完成产甲烷反应器3中产甲烷菌的驯化及其在纤维填料16上的附着和生长。在这个过程中控制水解产酸反应器2的温度为37℃,pH为5.5;控制产甲烷反应器3的温度为37℃,pH为7.2。(5) The domestication of the methanogenic bacteria in the methanogenic reactor 3 and their attachment and growth on the fibrous filler 16 were completed after 10 days of repeated leachate circulation. During this process, the temperature of the hydrolysis acid production reactor 2 is controlled to be 37° C., and the pH is 5.5; the temperature of the methanation reactor 3 is controlled to be 37° C., and the pH is 7.2.
(6)当驯化完成后,逐步添加厨余垃圾,直至厨余垃圾的装填高度接近水解产酸反应器2进料口7的位置。在逐步添加厨余垃圾的同时,增加渗滤液循环次数,直至连续循环,最终实现该工艺的连续正常运行。在这个过程中控制水解产酸反应器2的温度为37℃,pH为5.5;控制产甲烷反应器3的温度为37℃,pH为7.2。(6) After the domestication is completed, add kitchen waste gradually until the filling height of the kitchen waste is close to the position of the feed port 7 of the hydrolysis acid generation reactor 2 . While gradually adding kitchen waste, increase the number of leachate circulation until continuous circulation, and finally realize the continuous normal operation of the process. During this process, the temperature of the hydrolysis acid production reactor 2 is controlled to be 37° C., and the pH is 5.5; the temperature of the methanation reactor 3 is controlled to be 37° C., and the pH is 7.2.
(7)正常运行后,每隔30天,从水解产酸反应器2的卸料口9清除部分厨余垃圾水解残渣。(7) After normal operation, remove part of the hydrolysis residue of kitchen waste from the discharge port 9 of the hydrolysis acid generation reactor 2 every 30 days.
(8)正常运行后,每隔50天,从水解产酸反应器2的排渣口10清除厨余垃圾渗滤液沉淀物;每隔50天,从过滤床12的过滤填料出口18排出过滤填料14进行清洗,并从过滤填料入口17处重新装填。(8) After normal operation, every 50 days, remove the kitchen waste leachate sediment from the slag outlet 10 of the hydrolysis acid production reactor 2; every 50 days, discharge the filter packing from the
实施例2Example 2
本实施例的步骤与实施例1相同,其中处理原料为肉类加工垃圾,且The steps of this embodiment are the same as in Example 1, wherein the processing raw material is meat processing waste, and
步骤(2)中控制产甲烷反应器3的温度为25℃;步骤(3)中水解产酸作用控制pH为6.5;步骤(4)中产乙酸和产甲烷作用控制温度为25℃,控制pH为8.0;步骤(5)中经过20天的多次的渗滤液循环,控制水解产酸反应器2的温度为25℃,pH为6.5;产甲烷反应器的温度为25℃,pH为8.0;步骤(6)中控制水解产酸反应器的温度为25℃,pH为6.5,产甲烷反应器的温度为25℃,pH为8.0;步骤(7)中每隔40天清除部分肉类加工垃圾水解残渣;步骤(8)中每隔60天,清除渗滤液沉淀物;每隔60天,清洗并重新装填过滤床12内的过滤填料14。In the step (2), the temperature of the control methanogenic reactor 3 is 25° C.; in the step (3), the hydrolysis acid production control pH is 6.5; 8.0; in the step (5), through 20 days of repeated leachate circulation, the temperature of the control hydrolysis acid production reactor 2 is 25 ℃, and the pH is 6.5; the temperature of the methanogenic reactor is 25 ℃, and the pH is 8.0; the step In (6), the temperature of the hydrolysis acid production reactor is controlled to be 25°C, the pH is 6.5, the temperature of the methane production reactor is 25°C, and the pH is 8.0; in step (7), part of the meat processing waste is removed every 40 days for hydrolysis residue; every 60 days in step (8), remove the leachate sediment; every 60 days, clean and refill the filter filler 14 in the filter bed 12 .
实施例3Example 3
本实施例的步骤与实施例1相同,其中处理原料为蔬菜加工垃圾,且The steps of this embodiment are the same as in embodiment 1, wherein the processing raw material is vegetable processing waste, and
步骤(1)中控制水解产酸反应器2的温度为60℃;步骤(2)中控制产甲烷反应器3的温度为60℃;步骤(3)中水解产酸作用控制温度为60℃,pH为4.5;步骤(4)中产乙酸和产甲烷作用控制温度为60℃,pH为6.5;步骤(5)中经过15天的多次的渗滤液循环,控制水解产酸反应器2的温度为60℃,pH为4.5;产甲烷反应器3的温度为60℃,pH为6.5;步骤(6)中控制水解产酸反应器2的温度为60℃,pH为4.5;产甲烷反应器3的温度为60℃,pH为6.5;步骤(7)中每隔20天清除部分蔬菜加工垃圾水解残渣;步骤(8)中每隔40天,清除渗滤液沉淀物;每隔40天,清洗并重新装填过滤床12内的过滤填料14。In the step (1), the temperature of the hydrolysis acid generation reactor 2 is controlled to be 60° C.; the temperature of the methane production reactor 3 is controlled to be 60° C. in the step (2); the hydrolysis acid generation control temperature of the step (3) is 60° C. The pH is 4.5; in the step (4), the control temperature of acetic acid and methane production is 60 ℃, and the pH is 6.5; in the step (5), the temperature of the hydrolysis acid production reactor 2 is controlled through multiple leachate circulations of 15 days. 60 DEG C, the pH is 4.5; the temperature of the methanogenic reactor 3 is 60 DEG C, and the pH is 6.5; the temperature of the controlled hydrolysis acid production reactor 2 in step (6) is 60 DEG C, and the pH is 4.5; The temperature is 60°C and the pH is 6.5; in step (7), remove part of the vegetable processing waste hydrolysis residue every 20 days; in step (8), remove the leachate sediment every 40 days; every 40 days, clean and re- The filter packing 14 in the filter bed 12 is filled.
与传统的易腐性有机垃圾低固体浓度单相厌氧消化产沼气方法相比,本发明能在原料固体浓度高达40%的条件下处理易腐性有机垃圾,且将厌氧消化过程的水解产酸过程(水解产酸相)和产乙酸产甲烷过程(产甲烷相)分开,并在产甲烷相设置两段,即过滤床和纤维填料床,这种高固体两相三段厌氧消化产沼气工艺是一种高效稳定的易腐性有机垃圾能源化处理方法。采用该发明能够显著提高易腐性有机垃圾厌氧消化的处理浓度,最高能将原料固体浓度从4%提高到40%,最高能将池容产沼气率从0.8m3/(m3·d)提高到2.5m3/(m3·d),而且能够有效避免有机酸对产甲烷作用的抑制。Compared with the traditional single-phase anaerobic digestion biogas production method of perishable organic waste with low solid concentration, the present invention can process perishable organic waste under the condition that the raw material solid concentration is as high as 40%, and the hydrolysis of the anaerobic digestion process The acid production process (hydrolysis acid production phase) is separated from the acetogenic and methanogenic process (methanogenic phase), and two stages are set in the methanogenic phase, namely the filter bed and the fiber packing bed. This high-solid two-phase three-stage anaerobic digestion The biogas production process is an efficient and stable energy treatment method for perishable organic waste. Adopting the invention can significantly increase the treatment concentration of anaerobic digestion of perishable organic waste, can increase the raw material solid concentration from 4% to 40% at the highest, and can increase the biogas production rate of the tank capacity from 0.8m 3 /(m 3 ·d at the highest) ) to 2.5m 3 /(m 3 ·d), and can effectively avoid the inhibition of organic acids on methanogenesis.
最后,还需要注意的是,以上列举的仅是本发明的具体实施例子。显然,本发明不限于以上实施例,还可以有许多变形。本领域的普通技术人员能从本发明公开的内容直接导出或联想到的所有变形,均应认为是本发明的保护范围。Finally, it should also be noted that the above examples are only specific implementation examples of the present invention. Obviously, the present invention is not limited to the above embodiments, and many variations are possible. All deformations that can be directly derived or associated by those skilled in the art from the content disclosed in the present invention should be considered as the protection scope of the present invention.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201010106904.4A CN101805753B (en) | 2010-02-03 | 2010-02-03 | Method of producing biogas through high-solid two-phase three-stage anaerobic digestion by using perishable organic wastes |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201010106904.4A CN101805753B (en) | 2010-02-03 | 2010-02-03 | Method of producing biogas through high-solid two-phase three-stage anaerobic digestion by using perishable organic wastes |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101805753A true CN101805753A (en) | 2010-08-18 |
CN101805753B CN101805753B (en) | 2012-09-05 |
Family
ID=42607706
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201010106904.4A Expired - Fee Related CN101805753B (en) | 2010-02-03 | 2010-02-03 | Method of producing biogas through high-solid two-phase three-stage anaerobic digestion by using perishable organic wastes |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101805753B (en) |
Cited By (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102190410A (en) * | 2011-05-05 | 2011-09-21 | 北京水气蓝德环保科技有限公司 | Method for performing anaerobic treatment on organic garbage by using percolation bed |
CN102321675A (en) * | 2011-08-26 | 2012-01-18 | 中国农业机械化科学研究院 | Method and device for producing bio-gas by organic waste |
CN102321674A (en) * | 2011-08-25 | 2012-01-18 | 中国科学院广州能源研究所 | A two-phase reaction method for improving the efficiency of biogas production from energy plants |
CN102492728A (en) * | 2011-12-02 | 2012-06-13 | 同济大学 | Rancidity-prone waste biogas utilization method based on in-subarea inoculation and quick start |
CN102492506A (en) * | 2011-12-12 | 2012-06-13 | 中国科学院广州能源研究所 | Method and device for removing carbon dioxide in methane by organic waste water |
CN102559771A (en) * | 2012-01-11 | 2012-07-11 | 北京化工大学 | Method for improving anaerobic digestion performance of biomass wastes by biological phase separation and optimization technology |
CN102660454A (en) * | 2012-05-07 | 2012-09-12 | 黑龙江龙能伟业燃气股份有限公司 | Anaerobic dry fermentation equipment and anaerobic dry fermentation process using same |
CN102757889A (en) * | 2011-04-27 | 2012-10-31 | 中国科学院青岛生物能源与过程研究所 | Method for producing methane from kitchen waste by two continuous anaerobic fermentation steps |
CN102876726A (en) * | 2012-10-21 | 2013-01-16 | 韩洪波 | Anaerobic fermentation method sequentially performing filter pressing and marsh production |
CN103820502A (en) * | 2014-03-05 | 2014-05-28 | 东南大学 | Two-phase anaerobic fermentation method for biogas production |
CN104004791A (en) * | 2014-05-16 | 2014-08-27 | 浙江工商大学 | Coupled two-phase anaerobic kitchen garbage strengthening treatment method combining microbial electrolysis cell and microbial cell and device |
CN104498342A (en) * | 2015-01-22 | 2015-04-08 | 陆永柱 | U-shaped methane generation system with multiple fermentation regions |
CN104646390A (en) * | 2013-11-19 | 2015-05-27 | 深圳德瑞新能科技有限公司 | High-efficiency low-energy-consumption kitchen garbage comprehensive treatment method |
CN105330358A (en) * | 2015-12-11 | 2016-02-17 | 苏州华周胶带有限公司 | Agricultural waste recycling and reproduction method |
CN106282245A (en) * | 2016-03-23 | 2017-01-04 | 香港生产力促进局 | A new type of organic waste resource recycling method and system |
CN107267376A (en) * | 2017-08-08 | 2017-10-20 | 四川六叶草环保科技有限公司 | A kind of house refuse Zymolysis Equipment and method |
CN107555591A (en) * | 2017-09-15 | 2018-01-09 | 大连理工大学 | A two-phase anaerobic treatment device and process for direct interspecies electron transfer based on ethanol-type fermentation |
CN108147627A (en) * | 2018-02-23 | 2018-06-12 | 南京林业大学 | The anaerobic acid-production methane phase technique of the anaerobic acid-production methane phase device of synchronous recycling ammonia nitrogen and synchronous recycling ammonia nitrogen |
CN108485945A (en) * | 2018-03-26 | 2018-09-04 | 太原理工大学 | A kind of reaction system suitable for organic solid castoff recycling |
CN109650690A (en) * | 2019-02-19 | 2019-04-19 | 常州市环境卫生管理处 | Kitchen castoff efficient anaerobic produces the processing method that acid produces gas |
CN110184171A (en) * | 2019-04-16 | 2019-08-30 | 齐鲁工业大学 | A kind of mono- two-phase anaerobic digestion device of perishable organic matter |
CN110295201A (en) * | 2019-06-26 | 2019-10-01 | 山东省科学院能源研究所 | The method that ligno-cellulose hydrolysate prepares biogas |
US10590439B2 (en) | 2012-01-12 | 2020-03-17 | Blaygow Limited | Anaerobic process |
CN111592974A (en) * | 2020-03-12 | 2020-08-28 | 嘉兴恒创环保科技有限公司 | Three-phase integrated plug flow type biogas fermentation system and fermentation method |
CN111826474A (en) * | 2020-06-24 | 2020-10-27 | 中国科学院广州能源研究所 | Thermodynamic early warning method based on Gibbs free energy change of key biochemical reactions |
US11193143B2 (en) | 2012-11-16 | 2021-12-07 | Blaygow Limited | Grain processing |
CN114350481A (en) * | 2022-01-07 | 2022-04-15 | 天津大学 | Two-phase double-cycle kitchen waste biogas system and method |
JP2022106601A (en) * | 2021-01-07 | 2022-07-20 | 水ing株式会社 | Anaerobic treatment device and anaerobic treatment method |
CN115488140A (en) * | 2022-09-09 | 2022-12-20 | 中节能(肥西)环保能源有限公司 | System and method for treating kitchen garbage by coupling tidal fermentation percolation bed and efficient anaerobic reactor |
CN116216925A (en) * | 2022-12-30 | 2023-06-06 | 青岛理工大学 | Agricultural waste and sewage cooperative treatment device |
CN116281856A (en) * | 2022-06-27 | 2023-06-23 | 中晶城康资源再生利用技术有限公司 | Method for producing hydrogen and carbon materials and use thereof |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CS201654B1 (en) * | 1976-10-29 | 1980-11-28 | Jaroslav Kristoufek | Method of obtaining concentrated nitrogenous and organic phosphatocalcareous products from organic materials,animal excrements and sewage sludge |
CZ2007657A3 (en) * | 2007-09-20 | 2009-04-01 | Ecofuel Labs Llc | Method of processing stillage |
CN101565719B (en) * | 2008-04-25 | 2011-12-21 | 北京化工大学 | Method for producing methane by two-phase multi-stage anaerobic fermentation of organic solid wastes |
CN101337838B (en) * | 2008-08-11 | 2012-02-22 | 鄂尔多斯市东胜区传祥垃圾处理有限责任公司 | Combined anaerobic fermentation process for organic solid wastes |
-
2010
- 2010-02-03 CN CN201010106904.4A patent/CN101805753B/en not_active Expired - Fee Related
Cited By (44)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102757889A (en) * | 2011-04-27 | 2012-10-31 | 中国科学院青岛生物能源与过程研究所 | Method for producing methane from kitchen waste by two continuous anaerobic fermentation steps |
CN102190410A (en) * | 2011-05-05 | 2011-09-21 | 北京水气蓝德环保科技有限公司 | Method for performing anaerobic treatment on organic garbage by using percolation bed |
CN102321674A (en) * | 2011-08-25 | 2012-01-18 | 中国科学院广州能源研究所 | A two-phase reaction method for improving the efficiency of biogas production from energy plants |
CN102321674B (en) * | 2011-08-25 | 2013-10-23 | 中国科学院广州能源研究所 | A two-phase reaction method for improving the efficiency of biogas production from energy plants |
CN102321675A (en) * | 2011-08-26 | 2012-01-18 | 中国农业机械化科学研究院 | Method and device for producing bio-gas by organic waste |
CN102321675B (en) * | 2011-08-26 | 2014-11-12 | 中国农业机械化科学研究院 | Method and device for producing bio-gas by organic waste |
CN102492728B (en) * | 2011-12-02 | 2014-05-21 | 同济大学 | A method for rapid start-up of biogas utilization of easily rancid waste by district inoculation |
CN102492728A (en) * | 2011-12-02 | 2012-06-13 | 同济大学 | Rancidity-prone waste biogas utilization method based on in-subarea inoculation and quick start |
CN102492506A (en) * | 2011-12-12 | 2012-06-13 | 中国科学院广州能源研究所 | Method and device for removing carbon dioxide in methane by organic waste water |
CN102559771A (en) * | 2012-01-11 | 2012-07-11 | 北京化工大学 | Method for improving anaerobic digestion performance of biomass wastes by biological phase separation and optimization technology |
CN102559771B (en) * | 2012-01-11 | 2014-01-22 | 北京化工大学 | Method for improving anaerobic digestion performance of biomass wastes by biological phase separation and optimization technology |
US10590439B2 (en) | 2012-01-12 | 2020-03-17 | Blaygow Limited | Anaerobic process |
CN102660454A (en) * | 2012-05-07 | 2012-09-12 | 黑龙江龙能伟业燃气股份有限公司 | Anaerobic dry fermentation equipment and anaerobic dry fermentation process using same |
CN102660454B (en) * | 2012-05-07 | 2014-03-19 | 黑龙江龙能伟业燃气股份有限公司 | Anaerobic dry fermentation equipment and anaerobic dry fermentation process using same |
CN102876726A (en) * | 2012-10-21 | 2013-01-16 | 韩洪波 | Anaerobic fermentation method sequentially performing filter pressing and marsh production |
US11193143B2 (en) | 2012-11-16 | 2021-12-07 | Blaygow Limited | Grain processing |
CN104646390A (en) * | 2013-11-19 | 2015-05-27 | 深圳德瑞新能科技有限公司 | High-efficiency low-energy-consumption kitchen garbage comprehensive treatment method |
CN103820502A (en) * | 2014-03-05 | 2014-05-28 | 东南大学 | Two-phase anaerobic fermentation method for biogas production |
CN104004791A (en) * | 2014-05-16 | 2014-08-27 | 浙江工商大学 | Coupled two-phase anaerobic kitchen garbage strengthening treatment method combining microbial electrolysis cell and microbial cell and device |
CN104498342A (en) * | 2015-01-22 | 2015-04-08 | 陆永柱 | U-shaped methane generation system with multiple fermentation regions |
CN105330358A (en) * | 2015-12-11 | 2016-02-17 | 苏州华周胶带有限公司 | Agricultural waste recycling and reproduction method |
CN106282245A (en) * | 2016-03-23 | 2017-01-04 | 香港生产力促进局 | A new type of organic waste resource recycling method and system |
CN106282245B (en) * | 2016-03-23 | 2023-06-02 | 香港生产力促进局 | Novel organic garbage recycling method and system |
CN107267376A (en) * | 2017-08-08 | 2017-10-20 | 四川六叶草环保科技有限公司 | A kind of house refuse Zymolysis Equipment and method |
CN107267376B (en) * | 2017-08-08 | 2020-07-10 | 四川六叶草环保科技有限公司 | Household garbage fermentation equipment and method |
CN107555591A (en) * | 2017-09-15 | 2018-01-09 | 大连理工大学 | A two-phase anaerobic treatment device and process for direct interspecies electron transfer based on ethanol-type fermentation |
CN108147627A (en) * | 2018-02-23 | 2018-06-12 | 南京林业大学 | The anaerobic acid-production methane phase technique of the anaerobic acid-production methane phase device of synchronous recycling ammonia nitrogen and synchronous recycling ammonia nitrogen |
CN108485945A (en) * | 2018-03-26 | 2018-09-04 | 太原理工大学 | A kind of reaction system suitable for organic solid castoff recycling |
CN109650690A (en) * | 2019-02-19 | 2019-04-19 | 常州市环境卫生管理处 | Kitchen castoff efficient anaerobic produces the processing method that acid produces gas |
CN110184171A (en) * | 2019-04-16 | 2019-08-30 | 齐鲁工业大学 | A kind of mono- two-phase anaerobic digestion device of perishable organic matter |
CN110184171B (en) * | 2019-04-16 | 2023-12-19 | 齐鲁工业大学 | A single-two-phase anaerobic digestion device for perishable organic matter |
CN110295201A (en) * | 2019-06-26 | 2019-10-01 | 山东省科学院能源研究所 | The method that ligno-cellulose hydrolysate prepares biogas |
CN111592974A (en) * | 2020-03-12 | 2020-08-28 | 嘉兴恒创环保科技有限公司 | Three-phase integrated plug flow type biogas fermentation system and fermentation method |
CN111826474A (en) * | 2020-06-24 | 2020-10-27 | 中国科学院广州能源研究所 | Thermodynamic early warning method based on Gibbs free energy change of key biochemical reactions |
JP7150899B6 (en) | 2021-01-07 | 2022-10-31 | 水ing株式会社 | Anaerobic treatment apparatus and anaerobic treatment method |
JP7150899B2 (en) | 2021-01-07 | 2022-10-11 | 水ing株式会社 | Anaerobic treatment apparatus and anaerobic treatment method |
JP2022106601A (en) * | 2021-01-07 | 2022-07-20 | 水ing株式会社 | Anaerobic treatment device and anaerobic treatment method |
CN114350481A (en) * | 2022-01-07 | 2022-04-15 | 天津大学 | Two-phase double-cycle kitchen waste biogas system and method |
CN114350481B (en) * | 2022-01-07 | 2024-01-26 | 天津大学 | System and method for preparing biogas from two-phase double-circulation kitchen waste |
CN116281856A (en) * | 2022-06-27 | 2023-06-23 | 中晶城康资源再生利用技术有限公司 | Method for producing hydrogen and carbon materials and use thereof |
CN115488140A (en) * | 2022-09-09 | 2022-12-20 | 中节能(肥西)环保能源有限公司 | System and method for treating kitchen garbage by coupling tidal fermentation percolation bed and efficient anaerobic reactor |
CN115488140B (en) * | 2022-09-09 | 2024-02-20 | 中节能(肥西)环保能源有限公司 | System and method for treating kitchen waste by coupling tidal type fermentation percolating bed and efficient anaerobic reactor |
CN116216925A (en) * | 2022-12-30 | 2023-06-06 | 青岛理工大学 | Agricultural waste and sewage cooperative treatment device |
CN116216925B (en) * | 2022-12-30 | 2024-09-20 | 青岛理工大学 | Agricultural waste and sewage cooperative treatment device |
Also Published As
Publication number | Publication date |
---|---|
CN101805753B (en) | 2012-09-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101805753B (en) | Method of producing biogas through high-solid two-phase three-stage anaerobic digestion by using perishable organic wastes | |
CN101565719B (en) | Method for producing methane by two-phase multi-stage anaerobic fermentation of organic solid wastes | |
CN101597562B (en) | Secondary anaerobic fermentation and power generation system for large and medium-sized biogas projects | |
EP2220004B1 (en) | Method and device for converting biomass into methane | |
CN101760481B (en) | Method and device for producing hydrogen and/or methane by fermenting fiber waste | |
CN104178526B (en) | A kind of method of two Coherent producing marsh gas through mixed anaerobic fermentation | |
CN102965278B (en) | A high-efficiency two-phase anaerobic fermentation device | |
CN103958688A (en) | Methods and apparatus for hydrogen based biogas upgrading | |
CN101812401B (en) | Device for producing biogas by two-phase three-section anaerobic digestion of high solids of perishable organic wastes | |
CN105969809B (en) | A method of biogas is prepared using stalk joint excess sludge | |
CN106754294A (en) | A device and method for producing biogas by solid-liquid phase-separation anaerobic digestion of vinegar grains | |
CN201865755U (en) | Biogas power generation system | |
CN104276737A (en) | Energy source output type sewage sludge treatment method | |
CN202595137U (en) | Methane collection power generation system | |
CN205576158U (en) | Two stage of solid -liquid anaerobic fermentation device | |
CN102133575A (en) | Combined anaerobic pretreatment method for village-in-lake domestic sewage and organic waste | |
CN109401947B (en) | Sludge and kitchen waste co-digestion system and operation method thereof | |
CN1769220A (en) | Biogas production technology using kitchen waste, straw, livestock and poultry manure and activated sludge as raw materials | |
CN102632069B (en) | Device for commonly treating kitchen waste and domestic sewage | |
CN201644487U (en) | Biogas production device for high-solid two-phase three-stage anaerobic digestion of perishable organic waste | |
Lay et al. | Continuous anaerobic hydrogen and methane production using water hyacinth feedstock | |
CN202945237U (en) | Efficient two-phase anaerobic fermentation device | |
CN103086512A (en) | Method for controlling anaerobic digestion of easily-degradable organic wastes through utilizing intermittent micro-aeration | |
Kumar et al. | Biogas production from kitchen waste water using USAB reactor | |
CN101456651B (en) | A treatment method for primary leachate of garbage |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20120905 |