CN101805750B - Construction and application of farnesyl pyrophosphoric acid synthetase RNA (Ribonucleic Acid) interference recombinant lentivirus vector - Google Patents
Construction and application of farnesyl pyrophosphoric acid synthetase RNA (Ribonucleic Acid) interference recombinant lentivirus vector Download PDFInfo
- Publication number
- CN101805750B CN101805750B CN2009101566097A CN200910156609A CN101805750B CN 101805750 B CN101805750 B CN 101805750B CN 2009101566097 A CN2009101566097 A CN 2009101566097A CN 200910156609 A CN200910156609 A CN 200910156609A CN 101805750 B CN101805750 B CN 101805750B
- Authority
- CN
- China
- Prior art keywords
- fds
- vector
- recombinant
- rna interference
- pgcsil
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
本发明提供一种针对法呢基焦磷酸合成酶RNA干扰重组慢病毒载体的构建,在工具细胞293T细胞中筛选出FDS基因RNAi最有效靶序列,合成最有效靶序列的双链DNA连接到pGCSIL-GFP载体,通过酶切测序鉴定成功构建该重组载体。研究表明所构建的RNA干扰载体LV-sh-FDS在新生乳鼠心肌细胞中可下调FDS mRNA水平的表达,同时也能下调心肌肥厚标记如细胞面积和标记基因beta-MHC及BNP的表达,另外在下调FDS的同时也能有效抑制RhoA的活性,可在制备治疗心肌肥厚疾病的药物中应用。也可在制备胆固醇代谢调控药物中的应用。The present invention provides the construction of a recombinant lentiviral vector targeting farnesyl pyrophosphate synthase RNA interference. The most effective target sequence of FDS gene RNAi is screened out in the tool cell 293T cells, and the double-stranded DNA of the most effective target sequence is synthesized and connected to pGCSIL - GFP vector, the recombinant vector was successfully constructed through restriction sequencing. Studies have shown that the constructed RNA interference vector LV-sh-FDS can down-regulate the expression of FDS mRNA level in neonatal rat cardiomyocytes, and can also down-regulate the expression of cardiac hypertrophy markers such as cell area and marker genes beta-MHC and BNP. While down-regulating FDS, it can also effectively inhibit the activity of RhoA, and can be used in the preparation of drugs for treating cardiac hypertrophy diseases. It can also be used in the preparation of drugs for regulating cholesterol metabolism.
Description
技术领域 technical field
本发明属分子生物学,生物医药及基因工程技术领域,主要涉及针对法呢基焦磷酸合成酶(Farnesylpyrophosphate synthase,FDS)基因的RNA干扰重组慢病毒载体(LV-sh-FDS)的构建及其在心肌肥厚和胆固醇代谢调控中的应用。The invention belongs to the technical fields of molecular biology, biomedicine and genetic engineering, and mainly relates to the construction of an RNA interference recombinant lentiviral vector (LV-sh-FDS) for the gene of Farnesyl pyrophosphate synthase (FDS) and its Applications in cardiac hypertrophy and regulation of cholesterol metabolism.
背景技术 Background technique
目前研究表明小G蛋白参与心肌肥厚的发生。RhoA属于小G蛋白的超家族成员,有GDP结合的非活性态和GTP结合的活性态两种形式。目前很多研究表明RhoA参与心肌肥厚的发生如血管紧张素II(Ang II)诱导的心肌肥厚。有研究发现过表达Rho-GDI(Rho-GDP分离抑制体)及Rho抑制剂C3exeoezyme可以明显抑制Ang II诱导的心肌肥厚。Current research shows that small G protein is involved in the occurrence of cardiac hypertrophy. RhoA belongs to the superfamily of small G proteins, and has two forms: a GDP-bound inactive state and a GTP-bound active state. At present, many studies have shown that RhoA is involved in the occurrence of cardiac hypertrophy, such as angiotensin II (Ang II)-induced cardiac hypertrophy. Studies have found that overexpression of Rho-GDI (Rho-GDP separation inhibitor) and Rho inhibitor C3exeoezyme can significantly inhibit Ang II-induced cardiac hypertrophy.
法呢基焦磷酸合成酶(Farnesylpyrophosphate synthase,FDS)是甲羟戊酸途径中的关键酶,甲羟戊酸途径是哺乳动物体内胆固醇合成的唯一途径。同时FDS也是异戊二烯途径中的关键酶,分解产生的类异戊二烯中间产物为RhoA活化进而发挥功能提供了重要的底物。我们前期的实验表明在培养的乳鼠心肌细胞用1μM Ang II诱导的心肌肥厚模型及自发性高血压大鼠(SHRs)肥厚心肌(该模型心肌中含有高浓度的Ang II),FDS抑制剂阿伦磷酸钠可以通过明显抑制RhoA活性来抑制心肌肥厚。这些充分显示了FDS在心肌中调节RhoA活性及在心肌肥厚中的可能重要作用。另外我们的研究也表明在培养的乳鼠心肌细胞中用1μM Ang II孵育12-48h,FDS基因得到上调,尤其在24h最为明显。同时在18周自发性高血压大鼠(SHRs)肥厚心肌中也发现了FDS基因的上调。这些前期研究表明了FDS在心肌肥厚中可能的重要作用。Farnesylpyrophosphate synthase (FDS) is a key enzyme in the mevalonate pathway, which is the only way for cholesterol synthesis in mammals. At the same time, FDS is also a key enzyme in the isoprene pathway, and the isoprenoid intermediate produced by the decomposition provides an important substrate for the activation of RhoA and its function. Our previous experiments showed that in the cultured neonatal rat cardiomyocytes induced by 1 μM Ang II in the model of cardiac hypertrophy and in the hypertrophic myocardium of spontaneously hypertensive rats (SHRs) (this model contains high concentrations of Ang II in the myocardium), FDS inhibitor A Sodium lenronate can inhibit cardiac hypertrophy by significantly inhibiting the activity of RhoA. These fully demonstrated the possible important role of FDS in regulating RhoA activity in the myocardium and in cardiac hypertrophy. In addition, our study also showed that in the cultured neonatal rat cardiomyocytes incubated with 1μM Ang II for 12-48h, the FDS gene was up-regulated, especially at 24h. At the same time, the up-regulation of FDS gene was also found in the hypertrophic myocardium of spontaneously hypertensive rats (SHRs) at 18 weeks. These previous studies suggested a possible important role of FDS in cardiac hypertrophy.
FDS在其他领域的研究中也表现出相当的重要性。生物学研究显示通过抑制FDS的表达,寄生虫生长速度下降直至最后死亡。另外也有研究表明大鼠前列腺癌细胞中发现FDS高表达。另研究显示下调FDS的表达能通过Vγ9Vδ2T细胞介导的免疫监视作用来靶向治疗肿瘤细胞。FDS also shows considerable importance in the research of other fields. Biological studies have shown that by inhibiting the expression of FDS, the growth rate of the parasite decreases until finally it dies. In addition, some studies have shown that FDS is highly expressed in rat prostate cancer cells. Another study showed that down-regulating the expression of FDS can target and treat tumor cells through the immune surveillance mediated by Vγ9Vδ2 T cells.
所有这些证据表明抑制FDS基因的表达可能阻止Ang II相关的心肌细胞/组织肥厚反应。All these evidences suggest that inhibition of FDS gene expression may prevent Ang II-associated cardiomyocyte/tissue hypertrophic responses.
RNA干扰(RNA interference,RNAi)技术是抑制基因表达的常用手段,又叫基因沉默。RNA干扰的原理是当细胞中导入与内源性mRNA编码区同源的双链RNA时,该mRNA发生降解而导致基因表达沉默的现象。RNA interference (RNA interference, RNAi) technology is a common means of inhibiting gene expression, also known as gene silencing. The principle of RNA interference is that when double-stranded RNA homologous to the endogenous mRNA coding region is introduced into the cell, the mRNA is degraded, resulting in the silencing of gene expression.
RNA干扰过程主要有两个步骤:一、双链RNA被细胞源性双链RNA特异性的核酸酶切成21-23个碱基对的短双链RNA,即小干扰RNA(smallinterference RNA,siRNA)二、siRNA的反义链与核酸酶形成了沉默复合物(RNA-induced silencing complex,RISC),该复合体具有识别结合与小干扰RNA有同源序列的mRNA,并在特异位点将该mRNA切断。RNA干扰技术目前在基因治疗及研究中得到了广泛的应用,同时那些在靶标实验中证明有效的siRNA/shRNA本身可以进一步开发成为RNAi药物。shRNA即短发夹RNA(short hairpin RNA)包含两个短反向重复序列(其中一个与目的基因互补),中间loop序列分隔组成发夹结构。在体内shRNA被加工成siRNA有效降解目的基因抑制其表达。但是要将该技术应用于临床治疗,需要解决RNA干扰片段表达持续及表达效率等重要问题。The process of RNA interference mainly has two steps: 1. The double-stranded RNA is cut into short double-stranded RNA of 21-23 base pairs by a cell-derived double-stranded RNA-specific nuclease, namely small interfering RNA (small interference RNA, siRNA) 2. The antisense strand of siRNA and nuclease form a silencing complex (RNA-induced silencing complex, RISC). mRNA cleavage. RNA interference technology is currently widely used in gene therapy and research, and those siRNA/shRNAs that have proved effective in target experiments can be further developed into RNAi drugs. shRNA (short hairpin RNA) consists of two short inverted repeat sequences (one of which is complementary to the target gene), and the middle loop sequence is separated to form a hairpin structure. In vivo shRNA is processed into siRNA to effectively degrade the target gene and inhibit its expression. However, in order to apply this technology to clinical treatment, it is necessary to solve important problems such as the persistence and expression efficiency of RNA interference fragments.
目前基因治疗的载体主要有非病毒载体及病毒载体,然而非病毒载体无法满足长时间的表达,这一缺陷无疑被病毒载体填补。近年来慢病毒介导的RNA干扰技术在研究中已经取得了良好的开端。慢病毒载体是逆转录病毒的一种,具有逆转录病毒的基本结构,但又有不同逆转录病毒的组分特性,该病毒既可以转染分裂细胞又可以转染非分裂细胞。病毒基因组可以整合宿主中,使得基因长时间稳定的表达,并且慢病毒具有较低的免疫源性,这使得慢病毒成为RNA干扰的最佳载体,目前广泛用于基因表达调控,基因治疗等领域。我们选用的是第三代复制缺陷型慢病毒载体是自杀性病毒(SIN),在体内可以较长期的表达且安全性高。因此慢病毒载体介导的RNA干扰效应在靶细胞内长期存在,可为更好发挥干扰作用创造条件。At present, the vectors for gene therapy mainly include non-viral vectors and viral vectors. However, non-viral vectors cannot satisfy long-term expression, and this defect is undoubtedly filled by viral vectors. In recent years, lentivirus-mediated RNA interference technology has made a good start in research. Lentiviral vector is a kind of retrovirus, which has the basic structure of retrovirus, but has the component characteristics of different retroviruses. The virus can transfect both dividing cells and non-dividing cells. The viral genome can be integrated into the host, enabling long-term stable gene expression, and the lentivirus has low immunogenicity, which makes the lentivirus the best carrier for RNA interference, and is currently widely used in gene expression regulation, gene therapy and other fields . The third-generation replication-deficient lentiviral vector we choose is a suicide virus (SIN), which can be expressed in vivo for a long time and has high safety. Therefore, the lentiviral vector-mediated RNA interference effect exists in the target cells for a long time, which can create conditions for better interference.
发明内容 Contents of the invention
本发明的一个目的是提供一种干扰载体,即法呢基焦磷酸合成酶(Farnesylpyrophosphate synthase,FDS)基因RNA干扰重组慢病毒载体(LV-sh-FDS)。所述载体含有慢病毒骨架质粒重组载体pGCSIL-sh-FDS,所述的重组载体是在p-GCSIL-GFP骨架质粒载体的MCS中连接了针对shRNA的双链DNA片段,针对的靶序列为:1#-GACAGCTTTCTACTCTTTC,合成的DNA片段信息为:One object of the present invention is to provide an interference vector, that is, a recombinant lentiviral vector (LV-sh-FDS) for RNA interference of the Farnesyl pyrophosphate synthase (FDS) gene. The vector contains the lentiviral backbone plasmid recombinant vector pGCSIL-sh-FDS, and the recombinant vector is connected to the double-stranded DNA fragment for shRNA in the MCS of the p-GCSIL-GFP backbone plasmid vector, and the target sequence for it is: 1#-GACAGCTTTCTACTCTTTC, the information of the synthesized DNA fragment is:
1#-1:5’-CcggaaGACAGCTTTCTACTCTTTCTTCAAGAGAGAAAGAGTAGAAAGCTGTCttTTTTTg-3’,1#-1: 5'-CcggaaGACAGCTTTCTACTCTTTCTTCAAGAGAGAAAGAGTAGAAAGCTGTCttTTTTTg-3',
1#-2:5’-aattcaaaaaaaGACAGCTTTCTACTCTTTCTCTCTTGAAGAAAGAGTAGAAAGCTGTCtt-3’。1#-2: 5'-aattcaaaaaaaGACAGCTTTCTACTCTTTTCTCTTGAAGAAAGAGTAGAAAGCTGTCtt-3'.
该载体能有效转染细胞或组织后特异性降低FDS基因的表达,从而应用于基因治疗或基因功能研究。本发明提供的LV-sh-FDS最重要特征在于提供靶向性FDS抑制效应,并用重组慢病毒载体作为载体,使得干扰效果得到持续性作用。整个制备过程全部使用质粒,避免传统方法腺病毒污染。本发明中针对的靶基因FDS是甲羟戊酸途径中的关键酶,也是异戊二烯途径中的关键酶,产生的异戊二烯化中间产物为小G蛋白家族包括RhoA活化及功能学提供了重要的底物。甲羟戊酸途径是哺乳动物体内胆固醇合成的唯一途径。通过抑制FDS的表达进而降低RhoA的活性,从而有效抑制Ang II相关的心肌肥厚。另外通过降低FDS表达,也减少了甲羟戊酸途径中胆固醇的产生。本发明通过筛选最有效FDS干扰序列,合成其双链DNA,连接到慢病毒骨架质粒载体中,与辅助质粒共转染工具细胞(293T细胞)制备出FDS干扰重组慢病毒载体:LV-sh-FDS。The vector can specifically reduce the expression of the FDS gene after effectively transfecting cells or tissues, so that it can be applied to gene therapy or gene function research. The most important feature of the LV-sh-FDS provided by the present invention is to provide a targeted FDS inhibitory effect, and use a recombinant lentiviral vector as a carrier, so that the interference effect can be sustained. The entire preparation process uses plasmids to avoid adenovirus contamination by traditional methods. The target gene FDS targeted in the present invention is a key enzyme in the mevalonate pathway and is also a key enzyme in the isoprene pathway. The prenylated intermediates produced are small G protein family including RhoA activation and functional provide an important substrate. The mevalonate pathway is the only pathway for cholesterol synthesis in mammals. By inhibiting the expression of FDS and reducing the activity of RhoA, it can effectively inhibit Ang II-related cardiac hypertrophy. Additionally, cholesterol production in the mevalonate pathway was also reduced by reducing FDS expression. In the present invention, by screening the most effective FDS interference sequence, synthesizing its double-stranded DNA, connecting it to the lentiviral backbone plasmid vector, and co-transfecting tool cells (293T cells) with the helper plasmid, the FDS interference recombinant lentiviral vector: LV-sh- FDS.
本发明的另一个目的是提供所述载体的制备方法,通过以下步骤实现:Another object of the present invention is to provide a preparation method of the carrier, which is achieved through the following steps:
(1)针对FDS基因干扰有效序列的合成、筛选及鉴定;(1) Synthesis, screening and identification of effective sequences for FDS gene interference;
(2)FDS基因干扰慢病毒骨架质粒重组载体pGCSIL-sh-FDS的构建和鉴定;(2) Construction and identification of the FDS gene interference lentiviral backbone plasmid recombinant vector pGCSIL-sh-FDS;
(3)FDS基因干扰重组慢病毒载体LV-sh-FDS的包装、收集、纯化、鉴定和滴度测定。(3) Packaging, collection, purification, identification and titer determination of FDS gene interference recombinant lentiviral vector LV-sh-FDS.
步骤(1)中FDS基因有效干扰序列的筛选,主要分以下几步:(a)、购买FDS cDNA(imaGenes,Germany),通过酶切测序成功克隆GFP-FDS-FLAG融合蛋白质粒;(b)按照RNA干扰序列设计原则,设计四个针对FDS的四个RNA干扰(RNAi)靶点,靶向序列(Target Seq)分别为1#:5’-GACAGCTTTCTACTCTTTC-3;2#:5’-CACGCTAATGCCCTGAAGA-3’;3#:5’-CTGTAGGAGGCAAGTACAA-3;4#:5’-CTGGTGGAAC CAAG GAAAC-3’(FDS mRNA NM_031840 GenBank GI:13929205),并分别合成其双链DNA,序列分别为:The screening of the effective interference sequence of the FDS gene in step (1) is mainly divided into the following steps: (a), purchase FDS cDNA (imaGenes, Germany), and successfully clone the GFP-FDS-FLAG fusion protein particle by restriction enzyme sequencing; (b) According to the principle of RNA interference sequence design, four RNA interference (RNAi) targets for FDS were designed, and the target sequences (Target Seq) were 1#: 5'-GACAGCTTTCTACTCTTTC-3; 2#: 5'-CACGCTAATGCCCTGAAGA- 3'; 3#: 5'-CTGTAGGAGGCAAGTACAA-3; 4#: 5'-CTGGTGGAAC CAAG GAAAC-3' (FDS mRNA NM_031840 GenBank GI: 13929205), and synthesize their double-stranded DNA respectively, the sequences are:
1#-1:5’-GATCCCaaGACAGCTTTCTACTCTTTCTTCAAGAGAGAAAGAGTAGAAAGCTGTCttTTTTTGGAT-3’1#-1: 5'-GATCCCaaGACAGCTTTCTACTCTTTCTTCAAGAGAGAAAGAGTAGAAAGCTGTCttTTTTTGGAT-3'
1#-2:5’-AGCTATCCAAAAAaaGACAGCTTTCTACTCTTTCTCTCTTGAAGAAAGAGTAGAAAGCTGTCttGG-3’1#-2: 5'-AGCTATCCAAAAAaaGACAGCTTTCTACTCTTTCTCTCTTGAAGAAAGAGTAGAAAGCTGTCttGG-3'
2#-1:5’-GATCCC-aaCACGCTAATGCCCTGAAGATTCAAGAGATCTTCAGGGCATTAGCGTGttTTTTTGGAT-3’2#-1: 5'-GATCCC-aaCACGCTAATGCCCTGAAGATTCAAGAGATCTTCAGGGCATTAGCGTGttTTTTTGGAT-3'
2#-2:5’-AGCTATCCAAAAAaaCACGCTAATGCCCTGAAGATCTCTTGAATCTTCAGGGCATTAGCGTGttGG-3’2#-2: 5'-AGCTATCCAAAAAaaCACGCTAATGCCCTGAAGATCTCTTGAATCTTCAGGGCATTAGCGTGttGG-3'
3#-1:5’-GATCCCaCTGTAGGAGGCAAGTACAATTCAAGAGATTGTACTTGCCTCCTACAGtTTTTTGGAT-3’3#-1: 5'-GATCCCaCTGTAGGAGGCAAGTACAATTCAAGAGATTGTACTTGCCTCCTACAGtTTTTTGGAT-3'
3#-2:5’-AGCTATCCAAAAAaCTGTAGGAGGCAAGTACAATCTCTTGAATTGTACTTGCCTCCTACAGtGG-3’3#-2: 5'-AGCTATCCAAAAAaCTGTAGGAGGCAAGTACAATCTCTTGAATTGTACTTGCCTCCTACAGtGG-3'
4#-1:5’-GATCCCaaCTGGTGGAACCAAGGAAACTTCAAGAGAGTTTCCTTGGTTCCACCAGttTTTTTGGAT-3’4#-1: 5'-GATCCCaaCTGGTGGAACCAAGGAAACTTCAAGAGAGTTTCCTTGGTTCCACCAGttTTTTTGGAT-3'
4#-2:5’-AGCTATCCAAAAAaaCTGGTGGAACCAAGGAAACTCTCTTGAAGTTTCCTTGGTTCCACCAGttGG-3’;并合成阴性对照(NC),DNA片段信息如下:4#-2: 5'-AGCTATCCAAAAAaaCTGGTGGAACCAAGGAAACTCTCTTGAAGTTTCCTTGGTTCCACCAGttGG-3'; and synthesized negative control (NC), the DNA fragment information is as follows:
NC-1:5’-GATCCCCTTCTCCGAACGTGTCACGTTTCAAGAGAACGTGACACGTTCGGAGAATTTTTT-3’;NC-1: 5'-GATCCCCTTCTCCGAACGTGTCACGTTTCAAGAGAACGTGACACGTTCGGAGAATTTTTT-3';
NC-2:5’-AGCTAAAAAATTCTCCGAACGTGTCACGTTCTCTTGAAACGTGACACGTTCGGAGAAGGG-3’。然后连接到酶切后的质粒pGC-U6/Neo/DsRed(质粒载体含有RFP红色荧光标记,便于观察)。pGC-U6/Neo/DsRed重组载体构建框架NC-2: 5'-AGCTAAAAAATTCTCCGAACGTGTCACGTTCTCTTGAAACGTGACACGTTCGGAGAAGGG-3'. Then connect to the digested plasmid pGC-U6/Neo/DsRed (the plasmid vector contains RFP red fluorescent marker, which is convenient for observation). Construction framework of pGC-U6/Neo/DsRed recombinant vector
NO. 5’ STEMP Loop STEMPNO. 5’ STEMP Loop STEMP
1#-1 GATCCC aaGACAGCTTTCTACTCTTTC TTCAAGAGA GAAAGAGTAGAAAGCTGTCtt TTTTTGGAT1#-1 GATCCC aaGACAGCTTTCTACTCTTTTC TTCAAGAGA GAAAGAGTAGAAAGCTGTCtt TTTTTGGAT
1#-2 AGCTATCCAAAAA aaGACAGCTTTCTACTCTTTC TCTCTTGAA GAAAGAGTAGAAAGCTGTCtt GG1#-2 AGCTATCCAAAAA aaGACAGCTTTTCTACTTCTTTC TCTCTTGAA GAAAGAGTAGAAAGCTGTCtt GG
2#-1 GATCCC aaCACGCTAATGCCCTGAAGA TTCAAGAGA TCTTCAGGGCATTAGCGTGtt TTTTTGGAT2#-1 GATCCC aaCACGCTAATGCCCTGAAGA TTCAAGAGA TCTTCAGGGCATTAGCGTGtt TTTTTGGAT
2#-2 AGCTATCCAAAAA aaCACGCTAATGCCCTGAAGA TCTCTTGAA TCTTCAGGGCATTAGCGTGtt GG2#-2 AGCTATCCAAAAA aaCACGCTAATGCCCTGAAGA TCTCTTGAA TCTTCAGGGCATTAGCGTGtt GG
3#-1 GATCCC aCTGTAGGAGGCAAGTACAA TTCAAGAGA TTGTACTTGCCTCCTACAGt TTTTTGGAT3#-1 GATCCC aCTGTAGGAGGCAAGTACAA TTCAAGAGA TTGTACTTGCCTCCTACAGt TTTTTGGAT
3#-2 AGCTATCCAAAAA aCTGTAGGAGGCAAGTACAA TCTCTTGAA TTGTACTTGCCTCCTACAGt GG3#-2 AGCTATCCAAAAA aCTGTAGGAGGCAAGTACAA TCTCTTGAA TTGTACTTGCCTCCTACAGt GG
4#-1 GATCCC aaCTGGTGGAACCAAGGAAAC TTCAAGAGA GTTTCCTTGGTTCCACCAGtt TTTTTGGAT4#-1 GATCCC aaCTGGTGGAACCAAGGAAAC TTCAAGAGA GTTTCCTTGGTTCCACCAGtt TTTTTGGAT
3#-2 AGCTATCCAAAAA aaCTGGTGGAACCAAGGAAAC TCTCTTGAA GTTTCCTTGGTTCCACCAGtt GG3#-2 AGCTATCCAAAAA aaCTGGTGGAACCAAGGAAAC TCTCTTGAA GTTTCCTTGGTTCCACCAGtt GG
NC-1 GATCCCC TTCTCCGAACGTGTCACGT TTCAAGAGA ACGTGACACGTTCGGAGAA TTTTTTNC-1 GATCCCC TTCTCCGAACGTGTCACGT TTCAAGAGA ACGTGACACGTTCGGAGAA TTTTTT
NC-2 AGCTAAAAAA TTCTCCGAACGTGTCACGT TCTCTTGAA ACGTGACACGTTCGGAGAA GGGNC-2 AGCTAAAAAA TTCTCCGAACGTGTCACGT TCTCTTGAA ACGTGACACGTTCGGAGAA GGG
(c)将构建好的FDS融合蛋白和四个不同靶点的RNAi载体质粒或阴性对照质粒(NS,编码无序序列,无干扰效果),共同转染生长状态良好的工具细胞293T细胞,36到48小时后分别采用免疫荧光及免疫印迹的方法观察GFP/RFP表达和检测FLAG蛋白的表达情况,判断不同靶点的干扰效果。(c) The constructed FDS fusion protein and four RNAi vector plasmids with different targets or negative control plasmids (NS, coding disordered sequence, no interference effect) were co-transfected into tool cell 293T cells in good growth state, 36 After 48 hours, immunofluorescence and immunoblotting were used to observe the expression of GFP/RFP and detect the expression of FLAG protein to judge the interference effect of different targets.
步骤(2)中,本发明采用的慢病毒载体构建系统(吉凯,上海)由骨架质粒pGCSIL-GFP,携带病毒gag、pol、及rev基因的辅助质粒pHelper 1.0及含有VSV-G的辅助质粒pHelper 2.0组成。FDS干扰质粒pGCSIL-sh-FDS的构建和鉴定步骤在前(1)外源筛靶结果中获得最有效序列为1#设计并合成其shRNA的双链DNA。1:5’-CcggaaGACAGCTTTCTACTCTTTCTTCAAGAGAGAAAGAGTAGAAAGCTGTCttTTTTTg-3’;2:5’-aattcaaaaaaaGACAGCTT TCTAC TCTTTCTCTCTTGAAGAAAGAGTAGAAAGCTGTCtt-3’,与pGCSIL-GFP慢病毒骨架质粒载体连接。连接后产物转化DH5大肠杆菌后PCR及测序鉴定(上海美季公司)。PCR鉴定阳性克隆的引物为Primer:Up:5’-CCTATTTCCCATGATTCCTTCATA-3’;Down:5’-GTAATACGGTTATCCACGCG-3。慢病毒骨架质粒重组载体构建框架:In step (2), the lentiviral vector construction system (Jikai, Shanghai) adopted in the present invention consists of the backbone plasmid pGCSIL-GFP, the helper plasmid pHelper 1.0 carrying the virus gag, pol, and rev genes, and the helper plasmid containing VSV-G pHelper 2.0 composition. The construction and identification steps of the FDS interference plasmid pGCSIL-sh-FDS In the previous (1) results of foreign source screening, the most effective sequence was the double-stranded DNA whose shRNA was designed and synthesized for 1#. 1: 5'-CcggaaGACAGCTTTCTACTCTTTCTTCAAGAGAGAAAGAGTAGAAAGCTGTCttTTTTTg-3'; 2: 5'-aattcaaaaaaaGACAGCTT TCTAC TCTTTCTCTCTTGAAGAAAGAGTAGAAAGCTGTCtt-3', ligated with the pGCSIL-GFP lentiviral backbone plasmid vector. After ligation, the product was transformed into DH5 Escherichia coli and identified by PCR and sequencing (Shanghai Meiji Company). The primers for positive clones identified by PCR were Primer: Up: 5'-CCTATTTCCCATGATTCCTTCATA-3'; Down: 5'-GTAATACGGTTATCCACGCG-3. Lentiviral Backbone Plasmid Recombination Vector Construction Framework:
连接产物PCR鉴定循环条件:Ligation product PCR identification cycle conditions:
步骤(3)FDS干扰重组慢病毒载体LV-sh-FDS的包装、收集、纯化、鉴定和滴度测定。高纯度无内毒素抽提三种质粒pGCSIL-GFP,pHelper 1.0和pHelper 2.0,制备三种DNA溶液吸取pGCSIL-sh-FDS(20μg),pHelper 1.0(15μg)和pHelper 2.0(10μg)按Invitrogen公司Lipofectamine 2000使用说明进行共转染293T细胞,同时设立重组病毒的阳性对照。转染后8h更换为完全培养基,于37℃、5%CO2培养箱内继续培养48h后,收集富含慢病毒颗粒的细胞上清液。Step (3) FDS interferes with the packaging, collection, purification, identification and titer determination of the recombinant lentiviral vector LV-sh-FDS. High-purity and endotoxin-free extraction of three plasmids pGCSIL-GFP, pHelper 1.0 and pHelper 2.0, preparation of three DNA solutions to absorb pGCSIL-sh-FDS (20μg), pHelper 1.0 (15μg) and pHelper 2.0 (10μg) by Invitrogen Lipofectamine 2000 instructions for co-transfection of 293T cells, while establishing a positive control for recombinant virus. After 8 hours of transfection, the complete medium was replaced, and the culture medium was continued for 48 hours at 37° C. in a 5% CO 2 incubator, and the cell supernatant rich in lentiviral particles was collected.
本发明的再一目的是提供该基因药物LV-sh-FDS在心肌肥厚中的应用。在Ang II(1μM)诱导的心肌细胞肥厚模型中,LV-sh-FDS的应用在有效抑制FDS表达的同时,有效逆转了心肌细胞对血管紧张素II所致的心肌肥厚反应(具体包括细胞面积减小,β-MHC、BNP等肥厚标记基因的减少等)。在自发性高血压大鼠中通过心肌注射LV-sh-FDS,在降低心肌组织FDS表达水平的同时也减轻了β-MHC、BNP等肥厚标记基因的表达,并部分逆转心脏指数包括全心/体重(HW/BW)、左室重/体重(LVW/BW),不同程度改善了心超指标IVSD,EF,FS%。Another object of the present invention is to provide the application of the gene drug LV-sh-FDS in cardiac hypertrophy. In the Ang II (1 μM) induced cardiomyocyte hypertrophy model, the application of LV-sh-FDS effectively inhibited the expression of FDS, and effectively reversed the hypertrophic response of cardiomyocytes to angiotensin II (specifically, including the cell area decrease, reduction of hypertrophy marker genes such as β-MHC and BNP, etc.). In spontaneously hypertensive rats, intramyocardial injection of LV-sh-FDS not only reduced the expression level of FDS in myocardial tissue, but also reduced the expression of hypertrophic marker genes such as β-MHC and BNP, and partially reversed the cardiac index including whole heart/ Body weight (HW/BW), left ventricle weight/body weight (LVW/BW), and echocardiographic indexes IVSD, EF, and FS% were improved to varying degrees.
LV-sh-FDS除了应用于基因治疗外,还能够用于小G蛋白相关的研究,例如:通过western及Rho活性试剂盒检测到,LV-sh-FDS预孵育心肌细胞能有效抑制Ang II(1μM)诱导的RhoA活性增加,总RhoA蛋白的表达量没有改变,进而揭示了在Ang II(1μM)诱导的心肌肥厚中,FDS与RhoA之间的关系。In addition to being used in gene therapy, LV-sh-FDS can also be used in research related to small G proteins. For example, as detected by western and Rho activity kits, LV-sh-FDS pre-incubated cardiomyocytes can effectively inhibit Ang II ( 1μM) induced RhoA activity increased, but the expression of total RhoA protein did not change, thus revealing the relationship between FDS and RhoA in Ang II (1μM)-induced cardiac hypertrophy.
LV-sh-FDS也能用于研究甲羟戊酸途径中的关键酶FDS的功能,例如通过商业化试剂盒发现自发性高血压大鼠血清中的总胆固醇水平(TC),低密度脂蛋白(LDL-C)得到下降,同时肝脏组织中FDS也得到了抑制。LV-sh-FDS can also be used to study the function of the key enzyme FDS in the mevalonate pathway, for example, to find the total cholesterol level (TC), low-density lipoprotein (LDL-C) was decreased, and FDS in the liver tissue was also inhibited.
本发明的载体能有效转染细胞或组织后特异性降低FDS基因的表达,从而应用于基因治疗或基因功能研究。本发明提供的LV-sh-FDS最重要特征在于提供靶向性FDS抑制效应,并用重组慢病毒载体作为载体,使得干扰效果得到持续性作用。整个制备过程全部使用质粒,避免传统方法腺病毒污染。本发明中针对的靶基因FDS是甲羟戊酸途径中的关键酶,也是异戊二烯途径中的关键酶,产生的异戊二烯化中间产物为小G蛋白家族包括RhoA活化及功能学提供了重要的底物。甲羟戊酸途径是哺乳动物体内胆固醇合成的唯一途径。通过抑制FDS的表达进而降低RhoA的活性,从而有效抑制Ang II相关的心肌肥厚。另外通过降低FDS表达,也减少了甲羟戊酸途径中胆固醇的产生。The carrier of the invention can specifically reduce the expression of FDS gene after effectively transfecting cells or tissues, so that it can be applied to gene therapy or gene function research. The most important feature of the LV-sh-FDS provided by the present invention is to provide a targeted FDS inhibitory effect, and use a recombinant lentiviral vector as a carrier, so that the interference effect can be sustained. The entire preparation process uses plasmids to avoid adenovirus contamination by traditional methods. The target gene FDS targeted in the present invention is a key enzyme in the mevalonate pathway and is also a key enzyme in the isoprene pathway. The prenylated intermediates produced are small G protein family including RhoA activation and functional provide an important substrate. The mevalonate pathway is the only pathway for cholesterol synthesis in mammals. By inhibiting the expression of FDS and reducing the activity of RhoA, it can effectively inhibit Ang II-related cardiac hypertrophy. Additionally, cholesterol production in the mevalonate pathway was also reduced by reducing FDS expression.
同时本发明的LV-sh-FDS带有荧光标记EGFP便于检测转染效率。实验表明,LV-sh-FDS可以有效的转染心肌细胞及心肌组织,细胞水平转染实验表明MOI为20时,心肌细胞转染效率可以达到80%以上。同时给药途径可采用直接心肌注射也可静脉给药冠脉给药等多种方式。At the same time, the LV-sh-FDS of the present invention has a fluorescent marker EGFP to facilitate detection of transfection efficiency. Experiments have shown that LV-sh-FDS can effectively transfect cardiomyocytes and myocardial tissue. Cell level transfection experiments show that when the MOI is 20, the transfection efficiency of cardiomyocytes can reach more than 80%. At the same time, the route of administration can be various ways such as direct myocardial injection or intravenous administration and coronary artery administration.
本发明的药效实验表明,LV-sh-FDS能有效抑制心肌细胞及心肌组织中FDS基因的表达。The drug efficacy experiment of the present invention shows that LV-sh-FDS can effectively inhibit the expression of FDS gene in cardiomyocytes and myocardial tissue.
本发明的有益之处是:The benefits of the present invention are:
1本发明针对FDS靶基因根据在线原则设计出四个有效干扰序列,为克服原代细胞转染效率低及靶基因无商业化抗体,构建出四个FDS干扰质粒与FDS融合基因质粒通过共转染293T细胞,通过检测标记蛋白筛选出最有效干扰片段,并在靶细胞中得到验证,为进一步有关FDS基因研究奠定良好实验基础。1 The present invention designs four effective interference sequences for the FDS target gene according to the online principle. In order to overcome the low transfection efficiency of primary cells and the lack of commercial antibodies for the target gene, four FDS interference plasmids and FDS fusion gene plasmids are constructed by co-transfection After transfecting 293T cells, the most effective interference fragments were screened out by detecting marker proteins, and verified in target cells, laying a good experimental foundation for further research on FDS genes.
2.本发明中在构建出最有效的FDS干扰质粒基础上进一步通过重组的慢病毒干扰载体构建系统,构建包装获得LV-sh-FDS,不仅克服非病毒载体的低转染效率,也避免了重组腺病毒产生的免疫原性,表达时间较短等缺点,这种重组的慢病毒载体是“自杀性”病毒比较安全能整合到宿主的基因组中,使得干扰作用更加持续,能广泛用于体内基因治疗及基因功能研究。2. In the present invention, on the basis of constructing the most effective FDS interference plasmid, the recombinant lentiviral interference vector construction system is further constructed to obtain LV-sh-FDS by packaging, which not only overcomes the low transfection efficiency of non-viral vectors, but also avoids the The recombinant adenovirus has disadvantages such as immunogenicity and short expression time. This recombinant lentiviral vector is a "suicide" virus that is relatively safe and can be integrated into the host genome, making the interference effect more sustainable, and can be widely used in vivo Gene therapy and gene function research.
3.本发明中的LV-sh-FDS本身带有EGFP标记在转染后表达“增强荧光蛋白”便于转染后的检测快捷方便。3. The LV-sh-FDS in the present invention is marked with EGFP to express "enhanced fluorescent protein" after transfection, which is convenient for detection after transfection.
4.本发明构建的LV-sh-FDS能有效转染培养的心肌细胞,FDS的mRNA水平得到明显抑制(78.56%),心肌细胞对Ang II(1μM)诱导的肥厚反应得到了明显的抑制。在自发性高血压大鼠心肌注射LV-sh-FDS 11周后,FDS的mRNA水平得到抑制(37.25%)的同时,肥厚基因β-MHC、BNP得到明显抑制,心脏指数(HW/BW,LVW/BW)部分逆转,同时心超指标(IVSD,EF,FS%)得到部分改善。预示该载体为心肌肥厚的研究提供了重要的实验资源。4. The LV-sh-FDS constructed by the present invention can effectively transfect the cultured cardiomyocytes, the mRNA level of FDS is significantly suppressed (78.56%), and the hypertrophic response of cardiomyocytes induced by Ang II (1 μM) has been significantly inhibited. After myocardial injection of LV-sh-FDS in spontaneously hypertensive rats for 11 weeks, the mRNA level of FDS was suppressed (37.25%), and the hypertrophy genes β-MHC and BNP were significantly suppressed, and the cardiac index (HW/BW, LVW /BW) was partially reversed, while the echocardiographic indexes (IVSD, EF, FS%) were partially improved. It is predicted that the carrier provides an important experimental resource for the study of cardiac hypertrophy.
5.本发明LV-sh-FDS心肌注射有效转染心肌组织,肥厚反应改善的同时,血清TC LDL-C也有不同程度减轻,肝脏组织FDS水平也能有效抑制,预示LV-sh-FDS可能通过血液循环影响肝脏FDS的表达,进而调控胆固醇代谢,预示该载体可以通过心肌注射静脉注射冠脉注射等多种方式实施。5. LV-sh-FDS myocardial injection of the present invention effectively transfects myocardial tissue, while the hypertrophy response is improved, serum TC LDL-C is also reduced to varying degrees, and the level of FDS in liver tissue can also be effectively suppressed, indicating that LV-sh-FDS may pass Blood circulation affects the expression of FDS in the liver, and then regulates cholesterol metabolism, which indicates that the carrier can be implemented in various ways such as myocardial injection, intravenous injection, and coronary artery injection.
6.本发明能有效转染心肌细胞,在MOI为20时,转染效率可以达到80%以上,活体研究中心肌注射LV-sh-FDS得到高效表达,适用于细胞活体内基因功能研究及基因治疗等领域的应用。6. The present invention can effectively transfect cardiomyocytes. When the MOI is 20, the transfection efficiency can reach more than 80%. In vivo studies, myocardial injection of LV-sh-FDS can be highly expressed, which is suitable for gene function research and gene expression in vivo. applications in the field of therapy.
附图说明 Description of drawings
图1为pGC-U6/Neo/DsRed载体结构示意图。Figure 1 is a schematic diagram of the pGC-U6/Neo/DsRed vector structure.
图2为pEGFP-C1载体结构示意图。Fig. 2 is a schematic diagram of the structure of the pEGFP-C1 vector.
图3为慢病毒骨架质粒pGCSIL-GFP载体结构示意图。Fig. 3 is a schematic diagram of the structure of the lentiviral backbone plasmid pGCSIL-GFP vector.
图4为外源筛靶有效靶点干扰效果图片。Figure 4 is a picture of the effective target interference effect of the exogenous sieve target.
图5为pGCSIL-sh-FDS琼脂糖凝胶电泳鉴定图。Fig. 5 is an agarose gel electrophoresis identification map of pGCSIL-sh-FDS.
图6为pGCSIL-sh-FDS测序鉴定图。Fig. 6 is a sequence identification map of pGCSIL-sh-FDS.
图7为LV-sh-FDS在心肌细胞及心肌组织中的转染效率图片。Figure 7 is a picture of the transfection efficiency of LV-sh-FDS in cardiomyocytes and myocardial tissue.
图8为LV-sh-FDS有效下调心肌细胞/组织中FDS mRNA图片。Figure 8 is a picture of LV-sh-FDS effectively down-regulating FDS mRNA in cardiomyocytes/tissues.
图9为LV-sh-FDS有效改善血管紧张素II相关的心肌细胞肥厚反应图片。Fig. 9 is a picture showing that LV-sh-FDS effectively improves the hypertrophic response of cardiomyocytes related to angiotensin II.
图10为LV-sh-FDS改善自发性高血压大鼠心肌肥厚反应图片。Figure 10 is a picture of LV-sh-FDS improving myocardial hypertrophy in spontaneously hypertensive rats.
图11为LV-sh-FDS影响自发性高血压大鼠心脏超声图片。Fig. 11 is the echocardiogram of spontaneously hypertensive rats affected by LV-sh-FDS.
图12为LV-sh-FDS影响RhoA活性及表达的图片。Fig. 12 is a picture showing the effect of LV-sh-FDS on the activity and expression of RhoA.
图13为LV-sh-FDS影响自发性高血压大鼠肝脏FDS mRNA图片。Figure 13 is a picture of LV-sh-FDS affecting liver FDS mRNA in spontaneously hypertensive rats.
具体实施方式 Detailed ways
本发明结合附图和实施例作进一步的说明。The present invention will be further described in conjunction with drawings and embodiments.
实施例1:FDS融合基因质粒和干扰质粒共转染工具细胞筛选FDS干扰最有效靶序列siRNA:Example 1: FDS fusion gene plasmid and interference plasmid co-transfection tool cell screening FDS interference most effective target sequence siRNA:
一、按照设计原则,根据在线RNAi系列设计软件,设计4个干扰靶点,并合成其双链DNA连接到BamHI和HindIII酶切线性化的pGC-U6/Neo/DsRed载体(购自上海吉凯基因化学技术有限公司,参见图1)后鉴定正确的克隆进行质粒抽提备用。1. According to the design principle, 4 interference targets were designed according to the online RNAi series design software, and the double-stranded DNA was synthesized and connected to the linearized pGC-U6/Neo/DsRed vector (purchased from Shanghai Jikai Gene Chemical Technology Co., Ltd., see Figure 1) After the correct clone was identified, the plasmid was extracted for future use.
靶点序列(Target Seq)如下:The target sequence (Target Seq) is as follows:
1#:GACAGCTTTCTACTCTTTC#1: GACAGCTTTCTACTTCTTTC
2#:CACGCTAATGCCCTGAAGA2#: CACGCTAATGCCCTGAAGA
3#:CTGTAGGAGGCAAGTACAA#3: CTGTAGGAGGCAAGTACAA
4#:CTGGTGGAACCAAGGAAAC#4: CTGGTGGAACCAAGGAAAC
同时各自的DNA合成片段信息如下:At the same time, the respective DNA synthesis fragment information is as follows:
1#-1:5’-GATCCCaaGACAGCTTTCTACTCTTTCTTCAAGAGAGAAAGAGTAGAAAGCTGTCttTTTTTGGAT-3’1#-1: 5'-GATCCCaaGACAGCTTTCTACTCTTTCTTCAAGAGAGAAAGAGTAGAAAGCTGTCttTTTTTGGAT-3'
1#-2:5’-AGCTATCCAAAAAaaGACAGCTTTCTACTCTTTCTCTCTTGAAGAAAGAGTAGAAAGCTGTCttGG-3’1#-2: 5'-AGCTATCCAAAAAaaGACAGCTTTCTACTCTTTCTCTCTTGAAGAAAGAGTAGAAAGCTGTCttGG-3'
2#-1:5’-GATCCC-aaCACGCTAATGCCCTGAAGATTCAAGAGATCTTCAGGGCATTAGCGTGttTTTTTGGAT-3’2#-1: 5'-GATCCC-aaCACGCTAATGCCCTGAAGATTCAAGAGATCTTCAGGGCATTAGCGTGttTTTTTGGAT-3'
2#-2:5’-AGCTATCCAAAAAaaCACGCTAATGCCCTGAAGATCTCTTGAATCTTCAGGGCATTAGCGTGttGG-3’2#-2: 5'-AGCTATCCAAAAAaaCACGCTAATGCCCTGAAGATCTCTTGAATCTTCAGGGCATTAGCGTGttGG-3'
3#-1:5’-GATCCCaCTGTAGGAGGCAAGTACAATTCAAGAGATTGTACTTGCCTCCTACAGtTTTTTGGAT-3’3#-1: 5'-GATCCCaCTGTAGGAGGCAAGTACAATTCAAGAGATTGTACTTGCCTCCTACAGtTTTTTGGAT-3'
3#-2:5’-AGCTATCCAAAAAaCTGTAGGAGGCAAGTACAATCTCTTGAATTGTACTTGCCTCCTACAGtGG-3’3#-2: 5'-AGCTATCCAAAAAaCTGTAGGAGGCAAGTACAATCTCTTGAATTGTACTTGCCTCCTACAGtGG-3'
4#-1:5’-GATCCCaaCTGGTGGAACCAAGGAAACTTCAAGAGAGTTTCCTTGGTTCCACCAGttTTTTTGGAT-3’4#-1: 5'-GATCCCaaCTGGTGGAACCAAGGAAACTTCAAGAGAGTTTCCTTGGTTCCACCAGttTTTTTGGAT-3'
4#-2:5’-AGCTATCCAAAAAaaCTGGTGGAACCAAGGAAACTCTCTTGAAGTTTCCTTGGTTCCACCAGttGG-3’,并合成阴性对照(NC),DNA片段信息如下:4#-2: 5'-AGCTATCCAAAAAaaCTGGTGGAACCAAGGAAACTCTCTTGAAGTTTCCTTGGTTCCACCAGttGG-3', and synthesized negative control (NC), the DNA fragment information is as follows:
NC-1:5’-GATCCCCTTCTCCGAACGTGTCACGTTTCAAGAGAACGTGACACGTTCGGAGAATTTTTT-3’;NC-1: 5'-GATCCCCTTCTCCGAACGTGTCACGTTTCAAGAGAACGTGACACGTTCGGAGAATTTTTT-3';
NC-2:5’-AGCTAAAAAATTCTCCGAACGTGTCACGTTCTCTTGAAACGTGACACGTTCGGAGAAGGG-3’。NC-2: 5'-AGCTAAAAAATTCTCCGAACGTGTCACGTTCTCTTGAAACGTGACACGTTCGGAGAAGGG-3'.
二、FDS融合蛋白质粒载体的制备2. Preparation of FDS Fusion Protein Particle Vector
购买FDS cDNA文库(imaGenes,Germany),利用PCR方法钓取其目的基因与表达载体pEGFP-C1 Vector(clonetech,#632465,参见图2)分别进行双酶切后定向连接并在表达载体的C端加上FLAG标记蛋白,产物转化感受态细胞进行PCR鉴定测序分析比对正确构建成功的融合蛋白表达质粒载体pEGFP-FDS-FLAG,并进行超纯去内毒素抽提备用。Purchase the FDS cDNA library (imaGenes, Germany), use the PCR method to capture the target gene and the expression vector pEGFP-C1 Vector (clonetech, #632465, see Figure 2) respectively, perform double enzyme digestion and directional ligation at the C-terminal of the expression vector Add the FLAG tagged protein, and transform the product into competent cells for PCR identification and sequencing analysis to compare and correctly construct the successful fusion protein expression plasmid vector pEGFP-FDS-FLAG, and perform ultra-pure endotoxin-free extraction for future use.
三、外源共转染293T细胞筛选FDS RNAi最有效靶序列3. Exogenous co-transfection of 293T cells to screen for the most effective target sequence of FDS RNAi
培养生长状态良好的工具细胞(即293T细胞),将构建好的FDS过表达融合基因质粒(1μg)和针对不同靶点的RNAi载体质粒(1μg)及阴性参照质粒(1μg),按Invitrogen公司的lipofectamine 2000使用说明共转染293T细胞,36h后在荧光显微镜下观察GFP/RFP的表达,初步判断不同靶点的干扰效果,同时转染效率大于70%以上的实验组才可进入后续检测,48h后采用Western blot的方法同时检测FLAG蛋白的表达情况,进而进一步确认最有效的靶点为1号(参见图4)。图4中A:免疫荧光观察293细胞过表达质粒和干扰质粒共转染GFP/RFP的变化,其中a:绿色荧光(GFP),b:红色荧光(RFP),c:平光显微镜;B:Western-blot检测293细胞过表达质粒和干扰质粒蛋白共转染后FLAG蛋白改变,其中OV:过表达质粒转染组,NC:阴性病毒转染组,α-Tubilin:内参照。Cultivate tool cells (i.e. 293T cells) in a good growth state, construct FDS overexpression fusion gene plasmids (1 μg), RNAi vector plasmids (1 μg) for different targets and negative reference plasmids (1 μg), according to Invitrogen’s Instructions for use of lipofectamine 2000 Co-transfect 293T cells, observe the expression of GFP/RFP under a fluorescent microscope after 36 hours, and preliminarily judge the interference effect of different targets. At the same time, the experimental group with a transfection efficiency greater than 70% can enter the follow-up detection, 48 hours Afterwards, Western blot was used to detect the expression of FLAG protein at the same time, and further confirmed that the most effective target was No. 1 (see Figure 4). Figure 4 A: Immunofluorescence observation of the changes of GFP/RFP co-transfected with overexpression plasmid and interference plasmid in 293 cells, where a: green fluorescence (GFP), b: red fluorescence (RFP), c: plain light microscope; B: Western -blot detection of FLAG protein changes after co-transfection of overexpression plasmid and interference plasmid protein in 293 cells, where OV: overexpression plasmid transfection group, NC: negative virus transfection group, α-Tubilin: internal reference.
实施例2:慢病毒重组质粒pGCSIL-sh-FDS的构建和鉴定Example 2: Construction and identification of lentiviral recombinant plasmid pGCSIL-sh-FDS
外源筛靶获得的最有效靶序列为1号:GACAGCTTTCTACTCTTTC,合成其shRNA的双链DNA,合成片段信息如下:The most effective target sequence obtained by exogenous screening target is No. 1: GACAGCTTTCTACTCTTTC, the double-stranded DNA of its shRNA is synthesized, and the information of the synthesized fragment is as follows:
1:CcggaaGACAGCTTTCTACTCTTTCTTCAAGAGAGAAAGAGTAGAAAGCTGTCttTTTTTg;1: CcggaaGACAGCTTTCTACTCTTTCTTCAAGAGAGAAAGAGTAGAAAAGCTGTCttTTTTTTg;
2:aattcaaaaaaaGACAGCTTTCTACTCTTTCTCTCTTGAAGAAAGAGTAGAAAGCTGTCtt。2: aattcaaaaaaaGACAGCTTTCTACTCTTTTCTCTTGAAGAAAGAGTAGAAAGCTGTCtt.
连接到经AgeI和EcoRI双酶切后的线性pGCSIL-GFP载体(购自上海吉凯基因化学技术有限公司,参见图3),连接反应体系:酶切回收的载体DNA(100ng/μl)1μl,退火的双链DNA(100ng/μl)1μl,10×T4噬菌体DNA连接酶缓冲液1μl,T4噬菌体DNA连接酶1μl,dd H2O 7μl,于4℃连接12h后,然后37℃培养16h转化到DH5大肠杆菌,提取阳性克隆菌后行PCR及测序鉴定。PCR鉴定阳性克隆的引物为Primer:Up:5’-CCTATTTCCCATGATTCCTTCATA-3’;Down:5’-GTAATACGGTTATCCACGCG-3,细菌克隆的PCR产物鉴定结果(图5)和测序结果(图6)确证了pGCSIL-sh-FDS插入方向和序列的正确性。测序后进行阳性克隆质粒抽提,获得的重组质粒pGCSIL-sh-FDS,用于制备慢病毒载体。Ligated to the linear pGCSIL-GFP vector (purchased from Shanghai Jikai Gene Chemical Technology Co., Ltd., see Figure 3) after being digested by AgeI and EcoRI, ligation reaction system: 1 μl of vector DNA (100ng/μl) recovered by enzyme digestion, Annealed double-stranded DNA (100ng/μl) 1μl, 10×T4 phage DNA ligase buffer 1μl, T4 phage DNA ligase 1μl, dd H2O 7μl, ligate at 4°C for 12h, then culture at 37°C for 16h to transform into DH5 large intestine Bacillus, positive clones were extracted and identified by PCR and sequencing. The primers of the positive clones identified by PCR were Primer: Up: 5'-CCTATTTCCCATGATTCCTTCATA-3'; Down: 5'-GTAATACGGTTATCCACGCG-3, the PCR product identification results (Figure 5) and sequencing results (Figure 6) of bacterial clones confirmed that pGCSIL- The insertion direction and sequence of sh-FDS are correct. After sequencing, positive clone plasmids were extracted, and the obtained recombinant plasmid pGCSIL-sh-FDS was used to prepare lentiviral vectors.
图5中泳道1是阴性对照(ddH2O),泳道2是阴性对照(空载体组)306bp,泳道3是Marker:10kb,8kb,6kb,5kb,4kb,3.5kb,3kb,2.5kb,2kb,1.5kb,1kb,750bp,500bp,250bp,泳道4-8是连接入pGCSIL-shFDS载体的阳性克隆343bp。In Figure 5,
PCR循环条件(表2):PCR cycling conditions (Table 2):
实施例3:FDS基因RNA干扰重组慢病毒载体(LV-sh-FDS)的制备Example 3: Preparation of FDS gene RNA interference recombinant lentiviral vector (LV-sh-FDS)
本慢病毒载体构建系统(购于上海吉凯基因化学技术有限公司)由骨架质粒载体pGCSIL-GFP,携带病毒gag、pol、及rev基因的辅助质粒pHelper1.0及含有VSV-G的辅助质粒pHelper 2.0组成。The lentiviral vector construction system (purchased from Shanghai Jikai Gene Chemical Technology Co., Ltd.) consists of the backbone plasmid vector pGCSIL-GFP, the helper plasmid pHelper1.0 carrying the virus gag, pol, and rev genes, and the helper plasmid pHelper containing VSV-G 2.0 composition.
制备编码慢病毒颗粒的重组病毒质粒及辅助质粒即pGCSIL-sh-FDS,pHelper1.0和pHelper 2.0质粒,分别进行高纯度无内毒素抽提。吸取质粒pGCSIL-sh-FDS(20μg),pHelper 1.0(15μg)和pHelper 2.0(10μg),按Invitrogen公司Lipofectamine 2000使用说明进行共转染293T细胞成功包装FDS)基因RNA干扰重组慢病毒(LV-sh-FDS),同时设立阳性对照,即pGCSIL-NS(阴性参照)(20μg),pHelper 1.0(15μg)和pHelper 2.0(10μg)共转染293T细胞构建阴性对照重组慢病毒载体,Prepare recombinant virus plasmids encoding lentiviral particles and helper plasmids, namely pGCSIL-sh-FDS, pHelper1.0 and pHelper2.0 plasmids, and perform high-purity endotoxin-free extraction respectively. Draw the plasmid pGCSIL-sh-FDS (20 μg), pHelper 1.0 (15 μg) and pHelper 2.0 (10 μg), carry out co-transfection according to Invitrogen Company Lipofectamine 2000 instructions, successfully package FDS) gene RNA interference recombinant lentivirus (LV-sh -FDS), and set up a positive control at the same time, that is, pGCSIL-NS (negative reference) (20 μg), pHelper 1.0 (15 μg) and pHelper 2.0 (10 μg) co-transfect 293T cells to construct a negative control recombinant lentiviral vector,
转染后8h更换为完全培养基,于37℃、5%CO2培养箱内继续培养48h后,收集富含慢病毒颗粒的细胞上清液。4℃,4000g离心10min除去细胞碎片后并以0.45μM滤器过滤上清液获得慢病毒备用可满足一般细胞试验。若要获得较高浓度的慢病毒可对其进一步浓缩纯化后得到高滴度的慢病毒浓缩液,分装病毒浓缩液-80度长期保存,取其中一支进行病毒生物学滴度测定。After 8 hours of transfection, the complete medium was replaced, and the culture medium was continued for 48 hours at 37° C. in a 5% CO 2 incubator, and the cell supernatant rich in lentiviral particles was collected. Centrifuge at 4000g for 10min at 4°C to remove cell debris and filter the supernatant with a 0.45μM filter to obtain lentivirus for use in general cell experiments. If you want to obtain a higher concentration of lentivirus, you can further concentrate and purify it to obtain a high-titer lentivirus concentrate, subpackage the virus concentrate for long-term storage at -80 degrees, and take one of them to measure the biological titer of the virus.
实施例4:FDS基因RNA干扰重组慢病毒载体(LV-sh-FDS)用于血管紧张素II相关的心肌肥厚模型基因治疗研究。Example 4: FDS Gene RNA Interference Recombinant Lentiviral Vector (LV-sh-FDS) was used in gene therapy research of angiotensin II-related cardiac hypertrophy model.
一、LV-sh-FDS在体外培养的心肌细胞肥厚的应用1. Application of LV-sh-FDS in hypertrophy of cardiomyocytes cultured in vitro
取1-3日龄新生WKYs鼠的心室剪成1mm2左右小块碎,同时用0.125%胰酶与0.05%胶原酶II型混合物重复消化,200目钢网过滤1000g离心6min后收集细胞,5%CO2培养箱37℃培养1h后,除去贴壁细胞,将细胞密度调整至5×10E5-1×10E6/mL接种于六孔板种培养。按照病毒与细胞比值(MOI)为20加入LV-sh-FDS及阴性病毒颗粒(对照),感染乳鼠心肌细胞,24h后换完全培养基,感染48h后在荧光显微镜下通过观察GFP表达判断转染效率(效率约80%以上),参见图7A,感染72h后换无血清培养基24h后加入Ang II(1μM)孵育24h后结束实验。结果显示:LV-sh-FDS有效抑制乳鼠心肌细胞中FDS的表达,Ang II(1μM)共孵时这种抑制作用更加明显,阴性病毒颗粒对FDS的表达没有影响,参见图8A(i)。同时实验结果表明LV-sh-FDS能有效抑制心肌细胞对Ang II(1μM)的肥厚反应,表现为细胞面积的逆转及肥厚基因BNP、β-MHC表达的下调。参见图9;另外预孵LV-sh-FDS可以明显抑制Ang II(1μM)(孵育15min)诱导的RhoA活性增加,RhoA蛋白表达量不改变,参见图12。Cut the ventricles of 1-3 day old newborn WKYs mice into small pieces of about 1mm2, and digest them repeatedly with a mixture of 0.125% trypsin and 0.05% collagenase type II, filter them through a 200-mesh stencil and centrifuge at 1000g for 6min to collect cells, 5% After culturing in a CO 2 incubator at 37°C for 1 h, remove the adherent cells, adjust the cell density to 5×10E5-1×10E6/mL and inoculate them in a six-well plate for culture. According to the virus-to-cell ratio (MOI) of 20, LV-sh-FDS and negative virus particles (control) were added to infect neonatal mouse cardiomyocytes, and the complete medium was changed after 24 hours. Transfection efficiency (efficiency about 80% or more), see Figure 7A, after 72 hours of infection, the serum-free medium was changed for 24 hours, and Ang II (1 μM) was added to incubate for 24 hours, and then the experiment was terminated. The results showed that: LV-sh-FDS effectively inhibited the expression of FDS in neonatal mouse cardiomyocytes, and the inhibitory effect was more obvious when Ang II (1 μM) was co-incubated, negative virus particles had no effect on the expression of FDS, see Figure 8A(i) . At the same time, the experimental results showed that LV-sh-FDS could effectively inhibit the hypertrophic response of cardiomyocytes to Ang II (1 μM), which was manifested by the reversal of cell area and the down-regulation of the expression of hypertrophic genes BNP and β-MHC. See Figure 9; in addition, pre-incubation of LV-sh-FDS can significantly inhibit the increase of RhoA activity induced by Ang II (1 μM) (incubation for 15 min), and the expression of RhoA protein does not change, see Figure 12.
图7A:免疫荧光镜观察转染后的心肌细胞(10×)(MOI=20);B:Western-blot检测心肌组织中GFP蛋白表达,其中a:SHR大鼠未注射病毒液组,b:SHR大鼠阴性病毒转染组,c:SHR大鼠干扰病毒敲除组,d:WKY大鼠组。Figure 7A: Immunofluorescence microscope observation of transfected cardiomyocytes (10×) (MOI=20); B: Western-blot detection of GFP protein expression in myocardial tissue, where a: SHR rats without virus solution group, b: SHR rat negative virus transfection group, c: SHR rat interference virus knockout group, d: WKY rat group.
图8数据以均数±标准误表示。图8A细胞水平:其中1:未转染组,2:阴性病毒转染组,3:干扰病毒敲除组,4:阴性病毒转染心肌肥厚模型组(AngII孵育),5:干扰病毒转染心肌肥厚模型(Ang II孵育),#P<0.05and ##P<0.01vs.2 group.**P<0.01 vs.4group;图8B心肌组织,其中b:SHR大鼠阴性病毒转染组,c:SHR大鼠干扰病毒敲除组,d:WKY大鼠组,*P<0.05and**P<0.01 vs.b group。The data in Figure 8 are expressed as mean ± standard error. Figure 8A cell level: 1: non-transfection group, 2: negative virus transfection group, 3: interference virus knockout group, 4: negative virus transfection cardiac hypertrophy model group (AngII incubation), 5: interference virus transfection Myocardial hypertrophy model (Ang II incubation), # P<0.05and ## P<0.01vs.2 group. ** P<0.01 vs.4group; Figure 8B Myocardial tissue, where b: SHR rat negative virus transfection group, c: SHR rat interference virus knockout group, d: WKY rat group, * P<0.05 and ** P<0.01 vs.b group.
图9的数据以均数±标准误表示。图9中A:细胞面积,B:肥厚标记基因β-MHC,C:肥厚标记基因BNP;其中横坐标的1是阴性病毒感染组,2是干扰病毒敲除组;##P<0.01 vs.1 group(Ang II-)and **P<0.01 vs.1 group(Ang II+)。The data in Fig. 9 are presented as mean ± standard error. In Figure 9, A: cell area, B: hypertrophy marker gene β-MHC, C: hypertrophy marker gene BNP; where 1 on the abscissa is the negative virus infection group, and 2 is the interfering virus knockout group; ## P<0.01 vs. 1 group (Ang II-) and ** P<0.01 vs. 1 group (Ang II+).
图12的数据以均数±标准误表示。图中1:阴性病毒转染组,2:阴性病毒转染心肌肥厚模型组(Ang II孵育),3:干扰病毒转染心肌肥厚模型组(Ang II孵育)。#P<0.05 vs.1 group and *P<0.05 vs.2group。The data in Figure 12 are presented as mean ± standard error. Figure 1: negative virus transfection group, 2: negative virus transfection myocardial hypertrophy model group (Ang II incubation), 3: interference virus transfection myocardial hypertrophy model group (Ang II incubation). # P<0.05 vs. 1 group and * P<0.05 vs. 2 group.
二、LV-sh-FDS用于自发性高血压大鼠(SHRs)心肌肥厚的研究2. Study on LV-sh-FDS for myocardial hypertrophy in spontaneously hypertensive rats (SHRs)
7周龄SHR大鼠共12只及7周龄WKYs大鼠6只入组,水合氯醛(400mg/kg/mg)腹腔注射全身麻醉,取仰卧位,气管切开,连接动物呼吸机,打开胸腔,暴露心脏,吸取LV-sh-FDS或者阴性病毒颗粒80uL(约5×107TU)于心尖及左心室壁取3-4点注射重组病毒,其中WKYs大鼠心肌注射以同剂量生理盐水以正常对照。关闭胸腔,撤除呼吸机。大鼠清醒后于清洁级环境普通饲料饲养11周后予以心脏超声检查,大鼠称重后取心脏称重留取左心室予以逆转录和实时定量PCR检测FDS、BNP、β-MHC的基因检测。结果显示:LV-sh-FDS能明显下调FDS的转录(图8B),同时肥厚基因BNP、β-MHC降低,心脏指数(HW/BW和LVW/BW)部分减轻,参见图10。另外心超结果也有不同程度的改善,参见图11。A total of 12 7-week-old SHR rats and 6 7-week-old WKYs rats were enrolled in the group. Chloral hydrate (400mg/kg/mg) was injected intraperitoneally for general anesthesia. The supine position was taken, the tracheotomy was performed, and the animal ventilator was connected. Chest cavity, expose the heart, draw 80uL (about 5×10 7 TU) of LV-sh-FDS or negative virus particles, inject the recombinant virus at 3-4 points on the apex of the heart and the wall of the left ventricle, and inject the same dose of normal saline into the myocardium of WKYs rats To normal control. Close the chest and remove the ventilator. After waking up, the rats were fed with common feed in a clean environment for 11 weeks, and then echocardiographic examination was performed. After the rats were weighed, the heart was weighed and the left ventricle was retained for reverse transcription and real-time quantitative PCR detection of FDS, BNP, and β-MHC gene detection. . The results showed that: LV-sh-FDS can significantly down-regulate the transcription of FDS (Fig. 8B), and at the same time the hypertrophy genes BNP and β-MHC are reduced, and the heart index (HW/BW and LVW/BW) is partially relieved, see Fig. 10 . In addition, the results of echocardiography also improved to varying degrees, see Figure 11.
图10数据以均数±标准误表示。图10的A:HW/BW(心脏重/体重),B:LVW/BW(左室重/体重),C:肥厚标记基因β-MHC,D:肥厚标记基因BNP。各图中b:SHR大鼠阴性病毒转染组,c:SHR大鼠干扰病毒敲除组,d:WKY大鼠组;#P<0.05 vs.d group。*P<0.05 and **P<0.01 vs.b group。The data in Figure 10 are expressed as mean ± standard error. A of FIG. 10 : HW/BW (heart weight/body weight), B: LVW/BW (left ventricular weight/body weight), C: hypertrophy marker gene β-MHC, D: hypertrophy marker gene BNP. Each figure b: SHR rat negative virus transfection group, c: SHR rat interference virus knockout group, d: WKY rat group; # P<0.05 vs.d group. * P<0.05 and ** P<0.01 vs. b group.
图11数据以均数±标准误表示。图11的A:IVSD(舒张末期室间隔壁厚度),B:LVPWD(舒张末期心室后壁厚度),C:FS(短轴缩短率),D:EF(射血分数)。各图中b:SHR大鼠阴性病毒转染组,c:SHR大鼠干扰病毒敲除组,d:WKY大鼠阴性对照组。#P<0.05 and ##P<0.01 vs.d group;*P<0.05 and **P<0.01 vs.bgroup。The data in Figure 11 are expressed as mean ± standard error. A of FIG. 11 : IVSD (end-diastolic ventricular septal wall thickness), B: LVPWD (end-diastolic ventricular posterior wall thickness), C: FS (short axis shortening), D: EF (ejection fraction). In each figure b: SHR rat negative virus transfection group, c: SHR rat interference virus knockout group, d: WKY rat negative control group. #P <0.05 and ## P<0.01 vs.d group; * P<0.05 and ** P<0.01 vs.bgroup.
实施例5:LV-sh-FDS在胆固醇代谢调控中的研究Example 5: Research of LV-sh-FDS in Regulation of Cholesterol Metabolism
7周龄SHR大鼠共12只及7周龄WKYs大鼠6只入组,水合氯醛(400mg/kg/mg)腹腔注射全身麻醉,取仰卧位,气管切开,连接动物呼吸机,打开胸腔,暴露心脏,吸取LV-sh-FDS或者阴性病毒颗粒80uL(约5×107TU)于心尖及左心室壁取3-4点注射重组病毒,其中WKYs大鼠心肌注射以同剂量生理盐水以正常对照。关闭胸腔,撤除呼吸机。大鼠清醒后于清洁级环境普通饲料饲养11周后取大鼠全血,3000g离心15min后取血清分装后置-80度保存。取500uL血清检测大鼠血清胆固醇(TC)、低密度脂蛋白(LDL-C)。结果显示LV-sh-FDS心肌注射有效转染心肌组织,肥厚反应改善的同时,血清TC LDL-C有不同程度减轻,同时肝脏组织FDS mRNA水平也得到有效抑制,分别参见表1和图13,预示LV-sh-FDS可能通过血液循环影响肝脏FDS的表达,进而影响胆固醇代谢,血清胆固醇浓度下降,也预示该载体可能可以通过心肌注射静脉注射冠脉注射等多种方式实施。A total of 12 7-week-old SHR rats and 6 7-week-old WKYs rats were enrolled in the group. Chloral hydrate (400mg/kg/mg) was injected intraperitoneally for general anesthesia. The supine position was taken, the tracheotomy was performed, and the animal ventilator was connected. Chest cavity, expose the heart, draw 80uL (about 5×10 7 TU) of LV-sh-FDS or negative virus particles, inject the recombinant virus at 3-4 points on the apex of the heart and the wall of the left ventricle, and inject the same dose of normal saline into the myocardium of WKYs rats To normal control. Close the chest and remove the ventilator. After waking up, the rats were fed with common feed in a clean environment for 11 weeks, and then the whole blood was collected from the rats. After centrifugation at 3000g for 15 minutes, the serum was separated and stored at -80°C. Take 500uL serum to detect rat serum cholesterol (TC) and low-density lipoprotein (LDL-C). The results showed that LV-sh-FDS myocardial injection effectively transfected myocardial tissue, while the hypertrophic response was improved, serum TC LDL-C was reduced to varying degrees, and FDS mRNA levels in liver tissue were also effectively suppressed, see Table 1 and Figure 13, respectively. It indicates that LV-sh-FDS may affect the expression of FDS in the liver through blood circulation, thereby affecting cholesterol metabolism and decreasing serum cholesterol concentration, and also indicates that the carrier may be implemented in various ways such as myocardial injection, intravenous injection, and coronary injection.
表1:LV-sh-FDS影响自发性高血压大鼠血清胆固醇数据Table 1: LV-sh-FDS affects serum cholesterol data in spontaneously hypertensive rats
注:数据以均数±标准误表示;b:SHR大鼠阴性病毒转染组;c:SHR大鼠干扰病毒敲除组;d:WKY大鼠阴性对照组。;#P<0.05 and ##P<0.01 vs.d group and *P<0.05 vs.bgroup。Note: The data are expressed as mean ± standard error; b: SHR rat negative virus transfection group; c: SHR rat interference virus knockout group; d: WKY rat negative control group. ; #P <0.05 and ## P<0.01 vs.d group and * P<0.05 vs.bgroup.
图13中b:SHR大鼠阴性病毒转染组,c:SHR大鼠干扰病毒敲除组,d:WKY大鼠阴性对照组。#P<0.01 vs.d group and*P<0.05 vs.b group。In Fig. 13, b: SHR rat negative virus transfection group, c: SHR rat interference virus knockout group, d: WKY rat negative control group. # P<0.01 vs. d group and * P<0.05 vs. b group.
本发明涉及的序列Sequences involved in the present invention
<110>浙江大学<110> Zhejiang University
<120>法呢基焦磷酸合成酶RNA干扰慢病毒载体构建及用途<120> Construction and application of farnesyl pyrophosphate synthase RNA interference lentiviral vector
<160>14<160>14
<210>1<210>1
<211>66<211>66
<212>DNA<212>DNA
<213>人工序列<213> Artificial sequence
<220><220>
<221>Target seq<221>Target sequence
<222>9-27<222>9-27
<223>人工设计的正义链<223> Artificially designed justice chain
<400>1<400>1
gatcccaaga cagctttcta ctctttcttc aagagagaaa gagtagaaag ctgtcttttt ttgga t 66gatcccaaga cagctttcta ctctttcttc aagagagaaa gagtagaaag ctgtcttttt ttgga t 66
<210>2<210>2
<211>66<211>66
<212>DNA<212>DNA
<213>人工序列<213> Artificial sequence
<220><220>
<221>Target seq<221>Target sequence
<222>16-34<222>16-34
<223>人工设计的反义链<223>Artificially designed antisense strand
<400>2<400>2
Agctatccaa aaaaagacag ctttctactc tttctctctt gaagaaagag tagaaagctg tcttg g 66Agctatccaa aaaaagacag ctttctactc tttctctctt gaagaaagag tagaaagctg tcttg g 66
<210>3<210>3
<211>66<211>66
<212>DNA<212>DNA
<213>人工序列<213> Artificial sequence
<220><220>
<221>Target seq<221>Target sequence
<222>9-27<222>9-27
<223>人工设计的正义链<223> Artificially designed justice chain
<400>3<400>3
Gatcccaaca cgctaatgcc ctgaagattc aagagatctt cagggcatta gcgtgttttt ttggat 66Gatcccaaca cgctaatgcc ctgaagattc aagagatctt cagggcatta gcgtgttttt ttggat 66
<210>4<210>4
<211>66<211>66
<212>DNA<212>DNA
<213>人工序列<213> Artificial sequence
<220><220>
<221>Target seq<221>Target sequence
<222>16-34<222>16-34
<223>人工设计的反义链<223>Artificially designed antisense strand
<400>4<400>4
Agatatccaa aaaaacacgc taatgccctg aagatctctt gaatcttcag ggcattagcg tgttgg 66Agatatccaa aaaaacacgc taatgccctg aagatctctt gaatcttcag ggcattagcg tgttgg 66
<210>5<210>5
<211>64<211>64
<212>DNA<212>DNA
<213>人工序列<213> Artificial sequence
<220><220>
<221>Target seq<221>Target sequence
<222>8-26<222>8-26
<223>人工设计的正义链<223> Artificially designed justice chain
<400>5<400>5
Gatcccactg taggaggcaa gtacaattca agagattgta cttgcctcct acagtttttt ggat 64Gatcccactg taggaggcaa gtacaattca agagattgta cttgcctcct acagtttttt ggat 64
<210>6<210>6
<211>64<211>64
<212>DNA<212>DNA
<213>人工序列<213> Artificial sequence
<220><220>
<221>Target seq<221>Target sequence
<222>15-33<222>15-33
<223>人工设计的反义链<223>Artificially designed antisense strand
<400>6<400>6
Agctatccaa aaaactgtag gaggcaagtacaatctcttg aattgtactt gcctcctaca gtgg 64Agctatccaa aaaactgtag gaggcaagtacaatctcttg aattgtactt gcctcctaca gtgg 64
<210>7<210>7
<211>66<211>66
<212>DNA<212>DNA
<213>人工序列<213> Artificial sequence
<220><220>
<221>Target seq<221>Target sequence
<222>9-27<222>9-27
<223>人工设计的正义链<223> Artificially designed justice chain
<400>7<400>7
Gatcccaact ggtggaacca aggaaacttc aagagagttt ccttggttcc accagttttt ttggat 66Gatcccaact ggtggaacca aggaaacttc aagagagttt ccttggttcc accagttttt ttggat 66
<210>8<210>8
<211>66<211>66
<212>DNA<212>DNA
<213>人工序列<213> Artificial sequence
<220><220>
<221>Target seq<221>Target sequence
<222>16-34<222>16-34
<223>人工设计的反义链<223>Artificially designed antisense strand
<400>8<400>8
Agctatccaa aaaaactggt ggaaccaagg aaactctctt gaagtttcct tggttccacc agttgg 66Agctatccaa aaaaactggt ggaaccaagg aaactctctt gaagtttcct tggttccacc agttgg 66
<210>9<210>9
<211>60<211>60
<212>DNA<212>DNA
<213>人工序列<213> Artificial sequence
<220><220>
<221>Target seq<221>Target sequence
<222>8-26<222>8-26
<223>人工设计的正义链<223> Artificially designed justice chain
<400>9<400>9
Gatccccttc tccgaacgtg tcacgtttca agagaacgtg acacgttcgg agaatttttt 60Gatccccttc tccgaacgtg tcacgtttca agagaacgtg acacgttcgg agaatttttt 60
<210>10<210>10
<211>60<211>60
<212>DNA<212>DNA
<213>人工序列<213> Artificial sequence
<220><220>
<221>Target seq<221>Target sequence
<222>8-26<222>8-26
<223>人工设计的反义链<223>Artificially designed antisense strand
<400>10<400>10
Agctaaaaaa ttctccgaac gtgtcacgtt ctcttgaaac gtgacacgtt cggagaaggg 60Agctaaaaaa ttctccgaac gtgtcacgtt ctcttgaaac gtgacacgtt cggagaaggg 60
<210>11<210>11
<211>61<211>61
<212>DNA<212>DNA
<213>人工序列<213> Artificial sequence
<220><220>
<221>Target seq<221>Target sequence
<222>7-25<222>7-25
<223>人工设计的正义链<223> Artificially designed justice chain
<400>11<400>11
Ccggaagaca gctttctact ctttcttcaa gagagaaaga gtagaaagct gtcttttttt g 61Ccggaagaca gctttctact ctttcttcaa gagagaaaga gtagaaagct gtcttttttt g 61
<210>12<210>12
<211>61<211>61
<212>DNA<212>DNA
<213>人工序列<213> Artificial sequence
<220><220>
<221>Target seq<221>Target sequence
<222>13-31<222>13-31
<223>人工设计的反义链<223>Artificially designed antisense strand
<400>12<400>12
Aattcaaaaa aagacagctt tctactcttt ctctcttgaa gaaagagtag aaagctgtct t 61Aattcaaaaa aagacagctt tctactcttt ctctcttgaa gaaagagtag aaagctgtct t 61
<210>13<210>13
<211>24<211>24
<212>DNA<212>DNA
<213>人工序列<213> Artificial sequence
<220>用于PCR反应的上游引物<220> Upstream primers for PCR reactions
<400>13<400>13
Cctatttccc atgattcctt cata 24Cctatttccc atgattcctt cata 24
<210>14<210>14
<211>20<211>20
<212>DNA<212>DNA
<213>人工序列<213> Artificial sequence
<220>用于PCR反应的下游引物<220> Downstream primers for PCR reactions
<400>14<400>14
Gtaatacggt tatccacgcg 20Gtaatacggt tatccacgcg 20
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2009101566097A CN101805750B (en) | 2009-12-29 | 2009-12-29 | Construction and application of farnesyl pyrophosphoric acid synthetase RNA (Ribonucleic Acid) interference recombinant lentivirus vector |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2009101566097A CN101805750B (en) | 2009-12-29 | 2009-12-29 | Construction and application of farnesyl pyrophosphoric acid synthetase RNA (Ribonucleic Acid) interference recombinant lentivirus vector |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101805750A CN101805750A (en) | 2010-08-18 |
CN101805750B true CN101805750B (en) | 2011-11-30 |
Family
ID=42607703
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2009101566097A Expired - Fee Related CN101805750B (en) | 2009-12-29 | 2009-12-29 | Construction and application of farnesyl pyrophosphoric acid synthetase RNA (Ribonucleic Acid) interference recombinant lentivirus vector |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101805750B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017156311A3 (en) * | 2016-03-09 | 2017-10-19 | American Gene Technologies International Inc. | Combination vectors and methods for treating cancer |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010045659A1 (en) | 2008-10-17 | 2010-04-22 | American Gene Technologies International Inc. | Safe lentiviral vectors for targeted delivery of multiple therapeutic molecules |
US11980663B2 (en) | 2015-07-08 | 2024-05-14 | American Gene Technologies International Inc. | HIV pre-immunization and immunotherapy |
US10137144B2 (en) | 2016-01-15 | 2018-11-27 | American Gene Technologies International Inc. | Methods and compositions for the activation of gamma-delta T-cells |
AU2017207906B2 (en) | 2016-01-15 | 2021-03-11 | American Gene Technologies International Inc. | Methods and compositions for the activation of gamma-delta T-cells |
JP7153332B2 (en) | 2016-02-08 | 2022-10-14 | アメリカン ジーン テクノロジーズ インターナショナル インコーポレイテッド | HIV vaccination and immunotherapy |
WO2017213697A1 (en) | 2016-06-08 | 2017-12-14 | American Gene Technologies International Inc. | Non-integrating viral delivery system and methods related thereto |
WO2018009246A1 (en) | 2016-07-08 | 2018-01-11 | American Gene Technologies International Inc. | Hiv pre-immunization and immunotherapy |
WO2018017882A1 (en) | 2016-07-21 | 2018-01-25 | American Gene Technologies International Inc. | Viral vectors for treating parkinson's disease |
WO2018187231A2 (en) | 2017-04-03 | 2018-10-11 | American Gene Technologies International Inc. | Compositions and methods for treating phenylketonuria |
US11352646B2 (en) | 2018-11-05 | 2022-06-07 | American Gene Technologies International Inc. | Vector system for expressing regulatory RNA |
CN112980809B (en) * | 2021-03-17 | 2023-04-11 | 云南中烟工业有限责任公司 | Tobacco farnesyl pyrophosphate synthase gene and application thereof |
-
2009
- 2009-12-29 CN CN2009101566097A patent/CN101805750B/en not_active Expired - Fee Related
Non-Patent Citations (3)
Title |
---|
Angela Reynolds et al.Rational siRNA design for RNA interference.《NATURE BIOTECHNOLOGY》.2004,第22卷(第3期), * |
Patrick J. Paddison et al.A resource for large-scale RNA-interference-based screens in mammals.《Nature》.2004,第428卷 * |
王延洲等.Smad3基因RNAi慢病毒载体的构建与鉴定.《第三军医大学学报》.2009,第31卷(第8期), * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017156311A3 (en) * | 2016-03-09 | 2017-10-19 | American Gene Technologies International Inc. | Combination vectors and methods for treating cancer |
Also Published As
Publication number | Publication date |
---|---|
CN101805750A (en) | 2010-08-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101805750B (en) | Construction and application of farnesyl pyrophosphoric acid synthetase RNA (Ribonucleic Acid) interference recombinant lentivirus vector | |
Liu et al. | Systemic delivery of CRISPR/Cas9 with PEG-PLGA nanoparticles for chronic myeloid leukemia targeted therapy | |
US11352646B2 (en) | Vector system for expressing regulatory RNA | |
EP3154560B1 (en) | Methods and materials for increasing viral vector infectivity | |
JP2022115976A (en) | Method for treating muscular dystrophy by targeting utrophin gene | |
WO2011066578A1 (en) | Safe lentiviral vectors for targeted delivery of multiple therapeutic molecules to treat liver cancer | |
JP7667595B2 (en) | sgRNA targeting Aqp1 RNA and its vectors and uses | |
CN113278591B (en) | A heart-targeted genetically engineered exosome and its preparation method and application | |
CN107252491B (en) | Medicine for treating heart failure and screening method and preparation method thereof | |
CN103834691B (en) | The construction method of targeting IL-33 gene RNA interference recombinant lentivirus vector | |
CN104721811A (en) | Application of polypeptide in preparation of drug for preventing and treating glioblastoma | |
WO2020223160A1 (en) | A novel chromatin-opening element for stable long term gene expression | |
Xiang et al. | LITAF acts as a novel regulator for pathological cardiac hypertrophy | |
WO2019052000A1 (en) | Stat3 signal path targeting mirna, preparation method therefor, and application thereof | |
CN113913463A (en) | Recombinant plasmid for inhibiting SOST gene expression, bone-targeted recombinant adeno-associated virus and application thereof | |
US20220186228A1 (en) | Synthetic microrna mimics | |
Wang et al. | Gene Therapy Then and Now: A Look Back at Changes in the Field Over the Past 25 Years | |
WO2008080985A1 (en) | Polynucleotide sequence for the inhibition of phospholamban synthesis | |
US9567583B2 (en) | Method for treating glioma using Tarbp2 expression inhibitor | |
US20250034573A1 (en) | Circular rna derived from rna viruses and related compositions and methods | |
CN114958855B (en) | An siRNA that promotes endothelial cell apoptosis and a cell line with low expression of SIRT6 | |
CN108517335A (en) | A kind of Lentiviral and its construction method of liver cell miR-199b low expressions | |
CN115838725B (en) | Promoter sequence of specific promoter gene in mammal heart and application thereof | |
CN118516354A (en) | IRES-like hexamer combined translation promoter, translatable circular messenger RNA and application thereof | |
WO2022230924A1 (en) | Therapeutic drug for myotonic dystrophy type 1 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20111130 Termination date: 20171229 |