[go: up one dir, main page]

CN101795409B - content adaptive fractional pixel motion estimation method - Google Patents

content adaptive fractional pixel motion estimation method Download PDF

Info

Publication number
CN101795409B
CN101795409B CN 201010117539 CN201010117539A CN101795409B CN 101795409 B CN101795409 B CN 101795409B CN 201010117539 CN201010117539 CN 201010117539 CN 201010117539 A CN201010117539 A CN 201010117539A CN 101795409 B CN101795409 B CN 101795409B
Authority
CN
China
Prior art keywords
search
fractional pixel
pixel motion
motion vector
motion estimation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN 201010117539
Other languages
Chinese (zh)
Other versions
CN101795409A (en
Inventor
祝世平
田隽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beihang University
Original Assignee
Beihang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beihang University filed Critical Beihang University
Priority to CN 201010117539 priority Critical patent/CN101795409B/en
Publication of CN101795409A publication Critical patent/CN101795409A/en
Application granted granted Critical
Publication of CN101795409B publication Critical patent/CN101795409B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Compression Or Coding Systems Of Tv Signals (AREA)

Abstract

本发明属于信号处理中的视频编码领域,涉及内容自适应分数像素运动估计方法。包括基于平坦区域宏块预测的无效分数像素运动矢量搜索省略方法:通过检测H.264运动估计7种模式中的模式1的运动矢量是否落在整像素点,判定当前宏块是否是平坦块。对于平坦块,后续模式只进行常规整像素运动矢量搜索。对于非平坦块,进行常规整像素和分数像素运动矢量搜索。改进的基于预测矢量的增强型菱形模板搜索方法采用了改进的搜索模板,将搜索停止在预测运动矢量的[-2,2]范围内,省略计算[-2,2]范围外的少数对编码效率提高不大的分数像素采样点。内容自适应分数像素运动估计方法比分数像素全搜索方法(FFPS)在峰值信噪比(PSNR)有微小降低(0.095~0.209dB)的情况下,平均减少了75.6%的分数像素搜索点,整个运动估计模块平均节省了38.5%的计算量。本发明的自适应分数像素运动估计方法可以在确保运动估计精度的基础上,减少分数像素运动估计的计算量。

Figure 201010117539

The invention belongs to the field of video coding in signal processing, and relates to a content adaptive fractional pixel motion estimation method. Including an invalid fractional pixel motion vector search and omission method based on flat area macroblock prediction: By detecting whether the motion vector of mode 1 in the 7 modes of H.264 motion estimation falls on an integer pixel, it is determined whether the current macroblock is a flat block. For flat blocks, subsequent modes only do regular integer-pixel motion vector searches. For non-flat blocks, regular integer and fractional pixel motion vector searches are performed. The improved enhanced diamond template search method based on the predicted vector uses an improved search template, stops the search within the [-2, 2] range of the predicted motion vector, and omits the calculation of a few pairs of codes outside the [-2, 2] range Fractional pixel sampling points with little efficiency improvement. The content-adaptive fractional pixel motion estimation method reduces the fractional pixel search points by an average of 75.6% compared with the fractional pixel full search method (FFPS) in the case of a slight decrease in the peak signal-to-noise ratio (PSNR) (0.095-0.209dB). The motion estimation module saves 38.5% computation on average. The adaptive fractional pixel motion estimation method of the present invention can reduce the calculation amount of fractional pixel motion estimation on the basis of ensuring the accuracy of motion estimation.

Figure 201010117539

Description

内容自适应分数像素运动估计方法Content Adaptive Fractional Pixel Motion Estimation Method

技术领域 technical field

本发明属于信号处理中的视频编码领域,特别针对最新的国际视频编码标准H.264/AVC提出了新的内容自适应分数像素运动估计方法。可以在确保运动估计精度的基础上,减少分数像素运动估计的计算量。The invention belongs to the field of video coding in signal processing, and especially proposes a new content-adaptive fractional pixel motion estimation method for the latest international video coding standard H.264/AVC. On the basis of ensuring the accuracy of motion estimation, the calculation amount of fractional pixel motion estimation can be reduced.

背景技术 Background technique

H.264/AVC是由ITU-T和ISO/IEC共同成立的联合视频组JVT(Joint Video Team)制定的最新视频编码国际标准。在H.264视频编码系统中,运动估计能有效去除视频序列相邻帧的时间冗余,在很大程度上决定了视频编码器的编码速度、压缩率和解码视频质量。因此,H.264运动估计模块增加了多种编码技术,例如,1/4像素预测精度,多参考帧,树状结构的运动补偿。H.264/AVC的性能超越了以往所有视频编码器,在相同编码质量的前提下,H.264/AVCBaseline Profile产生的码率比H.263Baseline节省了约40%(参见

Figure GSB00000646870500011
Ostermann,Jan Bormans,Peter List,Detlev Marpe,Matthias Narroschke,Fernando Pereira,Thomas Stockhammer,ThomasWedi.Video coding with H.264/AVC:tools,performance,and complexity[J].IEEE Circuits andSystems Magazine,2004,4(1):7-28.)。H.264的高性能是以计算复杂度的提高为代价的,其计算复杂度大约是H.263的4至5倍,其中,运动估计模块的计算量占到整个编码器的50%-90%(参见Yu-Wen Huang,Ching-Yeh Chen,Chen-Han Tsai,Chun-Fu Shen,Liang-Gee Chen.Surveyon block matching motion estimation algorithms and architectures with new results[J].Journal ofVLSI Signal Processing Systems for Signal,Image,and Video Technology,2006,42(3):297-320.)。H.264/AVC is the latest international video coding standard formulated by JVT (Joint Video Team), a joint video group jointly established by ITU-T and ISO/IEC. In the H.264 video coding system, motion estimation can effectively remove the time redundancy of adjacent frames in the video sequence, which largely determines the coding speed, compression rate and decoding video quality of the video encoder. Therefore, the H.264 motion estimation module adds a variety of coding techniques, such as 1/4 pixel prediction accuracy, multiple reference frames, and tree-structured motion compensation. The performance of H.264/AVC surpasses all previous video encoders. Under the premise of the same encoding quality, the bit rate generated by H.264/AVCBaseline Profile is about 40% lower than that of H.263Baseline (see
Figure GSB00000646870500011
Ostermann, Jan Bormans, Peter List, Detlev Marpe, Matthias Narroschke, Fernando Pereira, Thomas Stockhammer, Thomas Wedi. Video coding with H.264/AVC: tools, performance, and complexity[J]. IEEE Circuits and Systems Magazine, 2004, 4( 1): 7-28.). The high performance of H.264 is at the cost of increased computational complexity, which is about 4 to 5 times that of H.263. Among them, the calculation of the motion estimation module accounts for 50%-90% of the entire encoder. % (see Yu-Wen Huang, Ching-Yeh Chen, Chen-Han Tsai, Chun-Fu Shen, Liang-Gee Chen. Survey on block matching motion estimation algorithms and architectures with new results[J]. Journal of VLSI Signal Processing Systems for Signal , Image, and Video Technology, 2006, 42(3): 297-320.).

H.264编码器中,运动估计包括两个部分:整像素运动估计和分数像素运动估计。分数像素运动估计是在获得整像素运动矢量(MV:motion vector)的基础上进行插值运算,搜索得到分数像素精度的运动矢量过程。分数像素运动估计在压缩视频质量和压缩率上可以极大的提高编码器的性能。实验结果显示,使用分数像素运动估计方法比仅使用整像素运动估计方法压缩率平均提高48%,同时,峰值信噪比(PSNR)提高1~3dB。但是,由于额外的运算,如,插值和分数像素搜索,分数像素运动估计极大的增加了整个运动估计模块的计算量。In the H.264 encoder, motion estimation includes two parts: integer pixel motion estimation and fractional pixel motion estimation. Fractional pixel motion estimation is the process of interpolating on the basis of obtaining an integer pixel motion vector (MV: motion vector), and searching for a motion vector with fractional pixel precision. Fractional pixel motion estimation can greatly improve the performance of encoders in terms of compressed video quality and compression rate. Experimental results show that the average compression rate of the fractional pixel motion estimation method is 48% higher than that of the whole pixel motion estimation method, and at the same time, the peak signal-to-noise ratio (PSNR) is increased by 1-3dB. However, fractional pixel motion estimation greatly increases the computational load of the entire motion estimation module due to extra operations such as interpolation and fractional pixel search.

整像素运动估计方法是近年来的研究热点。H.264标准的JM参考软件采用了两种快速整像素运动估计方法UMHexagonS(参见Zhibo Chen,Peng Zhou,Yun He,Yidong Chen.Fastinteger pel and fractional pel motion estimation for JVT[C],JVT-F017,2002.)和EPZS(参见Alexis Michael Tourapis,Hye-Yeon Cheong,Pankaj Topiwala.Fast ME in the JM referencesoftware[C],JVT-P026,2005.),与全搜索方法相比,大大降低了搜索点数量(每个运动矢量的平均搜索点数减少到10个以下),计算复杂度降低90%以上。H.264采用树状结构运动补偿,共有7种模式的运动估计,若采用传统的1/4精度分数像素全搜索方法(full fractional pixelsearch),每个模式需要16个搜索点,则每个宏块需要搜索112个点。因此,分数像素精度运动估计方法的改进成为整个运动估计模块优化的关键。Integer pixel motion estimation method is a research hotspot in recent years. The H.264 standard JM reference software uses two fast integer pixel motion estimation methods UMHexagonS (see Zhibo Chen, Peng Zhou, Yun He, Yidong Chen. Fast integer pel and fractional pel motion estimation for JVT[C], JVT-F017, 2002.) and EPZS (cf. Alexis Michael Tourapis, Hye-Yeon Cheong, Pankaj Topiwala. Fast ME in the JM reference software [C], JVT-P026, 2005.), greatly reduces the number of search points compared to full search methods (the average number of search points for each motion vector is reduced to less than 10), and the computational complexity is reduced by more than 90%. H.264 uses tree structure motion compensation, and there are 7 modes of motion estimation. If the traditional full fractional pixel search method (full fractional pixel search) with 1/4 precision is used, each mode requires 16 search points, and each macro A block needs to search 112 points. Therefore, the improvement of fractional pixel precision motion estimation method becomes the key to the optimization of the whole motion estimation module.

目前H.264/AVC采纳了两种分数像素运动估计方法,分数像素全搜索方法(FFPS:FullFractional Pixel Search)和基于中心的分数像素搜索方法(CBFPS:Center Based Fractional PixelSearch)。(参见Zhibo Chen,Peng Zhou,Yun He,Yidong Chen.Fast integer pel and fractional pelmotion estimation for JVT[C],JVT-F017,2002.)At present, H.264/AVC adopts two fractional pixel motion estimation methods, fractional pixel full search method (FFPS: FullFractional Pixel Search) and center-based fractional pixel search method (CBFPS: Center Based Fractional PixelSearch). (See Zhibo Chen, Peng Zhou, Yun He, Yidong Chen. Fast integer pel and fractional pelmotion estimation for JVT[C], JVT-F017, 2002.)

FFPS方法如图1所示。FFPS以最佳整像素为中心进行层次搜索:首先,计算最佳整像素位置周围的8个1/2像素位置,找到最佳1/2像素匹配点;然后,计算最佳1/2像素周围的8个1/4像素位置,找到最佳1/4像素匹配点,作为FFPS的最佳运动矢量。FFPS需要计算16个像素位置。The FFPS method is shown in Figure 1. FFPS performs a hierarchical search centered on the best integer pixel: first, calculate the 8 1/2 pixel positions around the best integer pixel position, and find the best 1/2 pixel matching point; then, calculate the best 1/2 pixel around The 8 1/4 pixel positions, find the best 1/4 pixel matching point, as the best motion vector of FFPS. FFPS needs to calculate 16 pixel positions.

CBFPS方法如图2所示。CBFPS采用矢量预测和逐步求精的搜索策略:首先,通过计算相邻块的运动矢量的中值获得分数像素预测运动矢量(Pred_x,Pred_y),比较原始搜索中心(0,0)和预测运动矢量(Pred_x,Pred_y)的匹配误差,其中产生最小误差的搜索点作为分像素搜索的起始点;然后,使用菱形模板(参见Jo Yew Tham,Surendra Ranganath,Maitreya Ranganath,Ashraf Ali Kassim.A novel unrestricted center-biased diamond search algorithm for block motionestimation[J].IEEE Transactions on Circuits and Systems for Video Technology,1998,8(4):369-377.)迭代,以逐步求精,计算最终的分数像素匹配点。和FFPS相比,CBFPS可减少20%的计算量,而图像质量几乎不变,是一种非常有效的快速分数像素搜索方法。The CBFPS method is shown in Figure 2. CBFPS adopts the search strategy of vector prediction and progressive refinement: firstly, the fractional pixel prediction motion vector (Pred_x, Pred_y) is obtained by calculating the median value of motion vectors of adjacent blocks, and the original search center (0, 0) and the prediction motion vector are compared The matching error of (Pred_x, Pred_y), where the search point that produces the smallest error is used as the starting point of the sub-pixel search; then, using a diamond template (see Jo Yew Tham, Surendra Ranganath, Maitreya Ranganath, Ashraf Ali Kassim. A novel unrestricted center- biased diamond search algorithm for block motionestimation[J]. IEEE Transactions on Circuits and Systems for Video Technology, 1998, 8(4): 369-377.) Iterate to gradually refine and calculate the final fractional pixel matching points. Compared with FFPS, CBFPS can reduce the calculation amount by 20%, while the image quality is almost unchanged, which is a very effective fast fractional pixel search method.

H.264/AVC标准的帧间预测比以前的编码标准提供了更大的灵活性。采用树状结构的运动补偿,每个宏块可分为16×16,8×16,16×8,8×8的块;当采用8×8块时,还可以进一步分为更小的8×4,4×8,4×4子块,如图3所示。Inter prediction in the H.264/AVC standard provides greater flexibility than previous coding standards. Using tree structure motion compensation, each macro block can be divided into 16×16, 8×16, 16×8, 8×8 blocks; when using 8×8 blocks, it can be further divided into 8 smaller blocks ×4, 4×8, and 4×4 sub-blocks, as shown in Figure 3.

在进行运动估计时,编码器需要对整个预测模式集合{SKIP(采用SKIP模式,以有效地编码大面积的静止区域和运动一致区域。SKIP模式也是16×16块尺寸的运动补偿预测模式,只是不需要编码任何运动和预测残差信息),16×16,8×16,16×8,8×8,8×4,4×8,4×4}在每种分割模式下单独进行运动估计,得到各自的运动矢量。编码器综合考虑对残差值进行编码所需的比特数和对运动矢量进行编码所需的比特数,然后选择最佳的预测模式。H.264/AVC选择最优模式的方法称为率失真优化(Rate Distortion Optimization,RDO)。基于RDO的模式选择方法通过在各候选模式下编码宏块并比较所得的率失真代价,选取率失真代价最小的模式作为最佳编码模式。When performing motion estimation, the encoder needs to use the SKIP mode for the entire prediction mode set {SKIP (to use the SKIP mode to effectively encode large-area static areas and consistent motion areas. The SKIP mode is also a motion compensation prediction mode with a block size of 16×16, only No need to encode any motion and prediction residual information), 16×16, 8×16, 16×8, 8×8, 8×4, 4×8, 4×4} motion estimation in each partition mode separately , to get their respective motion vectors. The encoder comprehensively considers the number of bits required to encode the residual value and the number of bits required to encode the motion vector, and then selects the best prediction mode. The method for H.264/AVC to select the optimal mode is called Rate Distortion Optimization (RDO). The RDO-based mode selection method encodes macroblocks in each candidate mode and compares the resulting rate-distortion costs, and selects the mode with the smallest rate-distortion cost as the best encoding mode.

率失真代价函数定义如下:The rate-distortion cost function is defined as follows:

J(s,c,MODE|QP,λMODE)=SSD(s,c,MODE|QP)+λMODE·R(s,c,MODE|QP)(1)J(s,c,MODE|QP, λMODE )=SSD(s,c,MODE|QP)+ λMODE ·R(s,c,MODE|QP)(1)

其中,Qp为量化参数(Quantization Parameter),MODE为候选宏块编码模式,对I帧和P帧,拉格朗日因子λMODE=0.85×2QP/3。SSD为原始信号s与重建信号c的均方差之和,作为失真度量。R为量化参数QP和模式MODE下编码此宏块所需的比特数(包括宏块头信息、运动矢量及残差变换量化后的系数等)。Wherein, Qp is a quantization parameter (Quantization Parameter), MODE is a candidate macroblock coding mode, and for I frame and P frame, the Lagrangian factor λ MODE =0.85×2 QP/3 . SSD is the sum of the mean square errors of the original signal s and the reconstructed signal c, as a distortion measure. R is the quantization parameter QP and the number of bits required to encode this macroblock under the mode MODE (including macroblock header information, motion vectors, coefficients after residual transformation and quantization, etc.).

图4所示为某一候选模式下的率失真代价计算过程,可见,为计算候选模式对应的率失真代价,需要运动估计/补偿、变换、量化及熵编码过程以获得此模式下编码所需的比特数,也需要反量化/反变换以获得重建信号,整个过程具有很高的计算复杂度。由公式(1)可见,率失真代价为失真与所需比特数的折衷,比特数所占权重即为拉格朗日因子,其值为量化参数的单调函数。Figure 4 shows the calculation process of the rate-distortion cost in a certain candidate mode. It can be seen that in order to calculate the rate-distortion cost corresponding to the candidate mode, the processes of motion estimation/compensation, transformation, quantization and entropy coding are required to obtain the encoding requirements in this mode. Inverse quantization/inverse transformation is also required to obtain the reconstructed signal, and the whole process has a high computational complexity. It can be seen from the formula (1) that the rate-distortion cost is a compromise between the distortion and the required number of bits, and the weight of the number of bits is the Lagrangian factor, whose value is a monotone function of the quantization parameter.

发明内容 Contents of the invention

本发明的目的是克服已有技术的不足之处,提出一种内容自适应分数像素运动估计方法。可以在确保运动估计精度的基础上,减少分数像素运动估计的计算量。本方法适用于H.264国际标准,但不局限于H.264,可以推广至其它视频压缩国际标准和非国际标准的应用。The purpose of the present invention is to overcome the disadvantages of the prior art, and propose a content-adaptive fractional pixel motion estimation method. On the basis of ensuring the accuracy of motion estimation, the calculation amount of fractional pixel motion estimation can be reduced. This method is applicable to the H.264 international standard, but not limited to H.264, and can be extended to other video compression international standards and non-international standard applications.

本发明提出了一种内容自适应分数像素运动估计方法。其特征在于,采用基于平坦区域宏块预测的无效分数像素运动矢量搜索省略方法和改进的基于预测矢量的增强型菱形模板搜索方法。The invention proposes a content-adaptive fractional pixel motion estimation method. It is characterized in that it adopts an invalid fractional pixel motion vector search omission method based on flat area macroblock prediction and an improved enhanced diamond template search method based on prediction vector.

基于平坦区域宏块预测的无效分数像素运动矢量搜索省略方法具体如下:The method of searching and omitting invalid fractional pixel motion vectors based on flat area macroblock prediction is as follows:

通过检测H.264运动估计7种模式中的模式1的运动矢量是否落在整像素点,判定当前宏块是否是平坦块。对于平坦块,后续模式只进行常规整像素运动矢量搜索,而不进行分数像素运动矢量搜索。对于非平坦块,进行常规整像素和分数像素运动矢量搜索,针对其中的分数像素运动矢量搜索,采用以下改进的基于预测矢量的增强型菱形模板搜索方法。By detecting whether the motion vector of mode 1 in the 7 modes of H.264 motion estimation falls on an integer pixel, it is determined whether the current macroblock is a flat block. For flat blocks, subsequent modes only perform regular integer-pixel motion vector searches, not fractional-pixel motion vector searches. For the non-flat block, the conventional integral pixel and fractional pixel motion vector searches are performed, and the following improved prediction vector-based enhanced diamond template search method is used for the fractional pixel motion vector search.

改进的基于预测矢量的增强型菱形模板搜索方法具体如下:The improved enhanced diamond template search method based on prediction vector is as follows:

第一步:由相邻块预测当前块的分数像素运动矢量,获得FMVP,即(Pred_x,Pred_y)。直接以FMVP作为搜索起始点。Step 1: Predict the fractional pixel motion vector of the current block from adjacent blocks to obtain FMVP, ie (Pred_x, Pred_y). Directly use FMVP as the starting point of the search.

第二步:比较搜索起始点(Pred_x,Pred_y)周围的4个菱形搜索点和(Pred_x,Pred_y)的匹配误差,如果最小绝对误差之和MSAD位于(Pred_x,Pred_y),则停止分数像素运动矢量搜索,否则进行第三步搜索。Step 2: Compare the matching errors of the 4 diamond-shaped search points around the search start point (Pred_x, Pred_y) and (Pred_x, Pred_y), if the minimum sum of absolute errors MSAD is located at (Pred_x, Pred_y), stop the fractional pixel motion vector Search, otherwise go to the third step to search.

第三步:如果最佳匹配点和次最佳匹配点相对,则选择最佳匹配点MV为最终分数像素运动矢量;如果最佳匹配点和次最佳匹配点相邻,则计算与其相邻的正方形模板上点的匹配误差,若MSAD仍为菱形最佳匹配点,则选择菱形最佳匹配点MV为最终分数像素运动矢量,否则进行下一步。Step 3: If the best matching point is opposite to the sub-best matching point, select the best matching point MV as the final fractional pixel motion vector; if the best matching point is adjacent to the sub-best matching point, calculate its neighbor The matching error of the point on the square template, if MSAD is still the best matching point of rhombus, then choose the best matching point of rhombus MV as the final fractional pixel motion vector, otherwise proceed to the next step.

第四步:以第三步中正方形模板上的搜索点为中心,用菱形模板搜索其周围的点。选择MASD的点作为最终分数像素运动矢量。Step 4: Take the search point on the square template in the third step as the center, and use the rhombus template to search for points around it. Select the MASD point as the final fractional pixel motion vector.

本发明与现有技术相比所具有的优点在于:本发明的基于平坦区域宏块预测的无效分数像素运动矢量搜索省略方法,充分利用了运动估计模式相关性。根据模式1的运动矢量,预测平坦块SMB。对于SMB,其余6种匹配模式只进行整像素搜索,跳过分像素搜索。实验表明该方法在保证解码图像质量的前提下,可将分数像素运动矢量搜索的计算量减小28.70%~56.00%。该方法具有独立性,与本文提出的基于预测矢量的增强型菱形模板搜索方法结合使用,可以进一步减少分数像素运动估计的计算量。内容自适应分数像素运动估计方法和最优方法FFPS相比,平均节省38.5%的计算时间,PSNR损失不超过0.209dB。特别,对于运动平缓的视频序列,可节省46%的计算时间,并保持了与之相当、甚至更优的PSNR。Compared with the prior art, the present invention has the advantages that: the method for searching and omitting invalid fractional pixel motion vectors based on flat region macroblock prediction fully utilizes the correlation of motion estimation modes. From the motion vector of mode 1, the flat block SMB is predicted. For SMB, the remaining 6 matching modes only perform integer pixel search and skip sub-pixel search. Experiments show that this method can reduce the calculation amount of fractional pixel motion vector search by 28.70%-56.00% under the premise of ensuring the quality of the decoded image. The method is self-contained and combined with the enhanced diamond template search method based on predictive vectors proposed in this paper, it can further reduce the computational load of fractional pixel motion estimation. Compared with the optimal method FFPS, the content-adaptive fractional pixel motion estimation method saves 38.5% of calculation time on average, and the PSNR loss does not exceed 0.209dB. Especially, for video sequences with slow motion, it can save 46% computation time and maintain comparable or even better PSNR.

附图说明 Description of drawings

图1为分数像素全搜索(FFPS)示意图。Figure 1 is a schematic diagram of Fractional Full Pixel Search (FFPS).

图2为基于中心的快速分数像素搜索(CBFPS)示意图。Fig. 2 is a schematic diagram of center-based fast fractional pixel search (CBFPS).

图3为H.264可变宏块尺寸示意图。Fig. 3 is a schematic diagram of H.264 variable macroblock size.

图4为某一候选模式下的率失真代价的计算过程。Fig. 4 is a calculation process of the rate-distortion cost in a certain candidate mode.

图5为7种模式之间的空间关系。Figure 5 shows the spatial relationship among the seven modes.

图6为常用搜索模板:(a)为菱形模板;(b)为正方形模板;(c)为六边形模板。Figure 6 shows common search templates: (a) is a rhombus template; (b) is a square template; (c) is a hexagonal template.

图7为基于预测矢量的增强型菱形模板搜索示意图。Fig. 7 is a schematic diagram of enhanced diamond template search based on predictive vectors.

图8为基于平坦区域宏块预测的无效分数像素运动矢量搜索省略方法流程图。FIG. 8 is a flow chart of a method for searching and omitting invalid fractional pixel motion vectors based on flat area macroblock prediction.

具体实施方式 Detailed ways

本发明提出的内容自适应分数像素运动估计方法结合附图及具体实施方式详细说明如下:The content-adaptive fractional pixel motion estimation method proposed by the present invention is described in detail as follows in conjunction with the accompanying drawings and specific implementation methods:

本发明提出的内容自适应分数像素运动估计方法,包括:基于平坦区域宏块预测的无效分数像素运动矢量搜索省略方法和改进的基于预测矢量的增强型菱形模板搜索方法。下面分别介绍:The content adaptive fractional pixel motion estimation method proposed by the present invention includes: an invalid fractional pixel motion vector search omission method based on flat area macroblock prediction and an improved enhanced diamond template search method based on predictive vectors. The following are introduced respectively:

基于平坦区域宏块预测的无效分数像素运动矢量搜索省略方法,包括以下步骤:A method for searching and omitting invalid fractional pixel motion vectors based on flat area macroblock prediction, comprising the following steps:

分数像素运动估计可以提高压缩视频质量和压缩率,但是,分数像素运动矢量搜索需要巨大的计算量。如果分数运动矢量搜索获得的最小绝对误差和(MSAD:minimum sum ofabsolute difference)大于整像素运动矢量搜索获得的MSAD,则选择整像素MV作为最终MV,分数像素运动矢量搜索被视为无效。反之,分数像素运动矢量搜索为有效,选择分数像素MV作为最终MV。对7个标准视频序列的前20帧进行实验(其中,News,Container,Silent属于低空间细节且运动缓慢的测试序列;Paris,Foreman为中等空间细节且运动强度中等的测试序列;Football为高空间细节且运动剧烈的测试序列),将最终MV是整像素MV所占的比例列于表1。Fractional pixel motion estimation can improve compressed video quality and compression rate, however, fractional pixel motion vector search requires a huge amount of computation. If the minimum absolute error sum (MSAD: minimum sum of absolute difference) obtained by the fractional motion vector search is greater than the MSAD obtained by the integer pixel motion vector search, the integer pixel MV is selected as the final MV, and the fractional pixel motion vector search is considered invalid. On the contrary, the fractional pixel motion vector search is effective, and the fractional pixel MV is selected as the final MV. Experiment on the first 20 frames of 7 standard video sequences (among which, News, Container, Silent belong to the test sequence with low spatial detail and slow motion; Paris, Foreman are the test sequence with medium spatial detail and moderate motion intensity; Football is high spatial detail Details and intense motion test sequence), the proportion of the final MV is an integer pixel MV is listed in Table 1.

Figure GSB00000646870500051
Figure GSB00000646870500051

表1整像素MV所占的比例(10帧,QP=28)Table 1 Proportion of integer pixel MV (10 frames, QP=28)

视频内容运动平缓的序列,如News、Container、Silent,有超过80%的运动矢量位于整像素位置。实际上,对于视频帧的平坦区域,分数像素搜索对编码性能的提高并不明显,为无效搜索。如果可以预测这些平坦区域块,跳过无效的分数像素搜索,就可以减少不必要的计算。For sequences with gentle motion in video content, such as News, Container, and Silent, more than 80% of the motion vectors are located at integer pixel positions. In fact, for the flat area of the video frame, the fractional pixel search does not improve the coding performance significantly, which is an invalid search. If these flat region blocks can be predicted, unnecessary computation can be reduced by skipping ineffective fractional pixel searches.

因此,如何使编码器根据视频内容自适应地决定是否进行分数像素搜索,即,如何在分数像素运动估计之前,预测视频帧的平坦区域块,是省略无效的分数像素运动估计矢量搜索的关键所在。Therefore, how to make the encoder adaptively decide whether to perform fractional pixel search according to the video content, that is, how to predict the flat area block of the video frame before fractional pixel motion estimation, is the key to omit the invalid fractional pixel motion estimation vector search .

H.264的7种运动估计模式之间存在较强的相关性(7种模式之间的空间关系如图5)。利用上层模式运动矢量搜索的结果可以预测当前宏块的平坦程度。因此,如果上层模式1(16×16)运动矢量在整像素位置,则定义这样的宏块为平坦块,简称SMB(smoothmacro-block)。对于SMB,下层模式的运动矢量搜索可以跳过分数像素运动矢量搜索。There is a strong correlation between the seven motion estimation modes of H.264 (the spatial relationship between the seven modes is shown in Figure 5). The flatness of the current macroblock can be predicted using the result of the motion vector search in the upper layer mode. Therefore, if the upper layer mode 1 (16×16) motion vector is at an integer pixel position, such a macroblock is defined as a flat block, referred to as SMB (smoothmacro-block). For SMB, the motion vector search of the lower layer mode can skip the fractional pixel motion vector search.

本发明提出的基于平坦区域宏块预测的无效分数像素运动矢量搜索省略方法,简称SMBP(smooth macro-block prediction)。通过检测模式1运动矢量是否落在整像素点,判定当前宏块是否是平坦块。对于平坦块,后续模式只进行常规整像素运动矢量搜索,而不进行分数像素运动矢量搜索。对于非平坦块,进行常规整像素和分数像素运动矢量搜索。流程图如图8。The search and omission method of invalid fractional pixel motion vectors based on flat region macroblock prediction proposed by the present invention is referred to as SMBP (smooth macro-block prediction). Whether the current macroblock is a flat block is determined by detecting whether the mode 1 motion vector falls on an integer pixel. For flat blocks, subsequent modes only perform regular integer-pixel motion vector searches, not fractional-pixel motion vector searches. For non-flat blocks, regular integer and fractional pixel motion vector searches are performed. The flowchart is shown in Figure 8.

平坦块预测准确率指被判定为SMB的下层模式进行常规分数像素运动矢量搜索,并且其最终运动矢量落在整像素位置的比率。准确率如公式(2)定义。平坦块预测准确率、整像素MV所占比例统计结果见表2。The flat block prediction accuracy rate refers to the ratio of the lower layer mode determined as SMB to perform conventional fractional pixel motion vector search, and its final motion vector falls in the integer pixel position. The accuracy rate is defined as formula (2). See Table 2 for the statistical results of flat block prediction accuracy and the proportion of integer pixel MVs.

Figure GSB00000646870500061
Figure GSB00000646870500061

预测准确率越高,匹配误差越小,因此解码图像质量下降越小,码率变化越小。由表2可见,对于运动缓慢的视频序列,平坦块预测的准确率在91%以上,本发明方法对此类序列能够做出较准确的预测。分数像素MV减少的比例从28.70%~56.00%,即,本发明方法可将分数像素运动矢量搜索的计算量减少28.70%~56.00%。The higher the prediction accuracy, the smaller the matching error, and therefore the smaller the degradation of the decoded image quality and the smaller the bit rate change. It can be seen from Table 2 that for video sequences with slow motion, the accuracy rate of flat block prediction is above 91%, and the method of the present invention can make relatively accurate prediction for such sequences. The reduction ratio of fractional pixel MV is from 28.70% to 56.00%, that is, the method of the present invention can reduce the calculation amount of fractional pixel motion vector search by 28.70% to 56.00%.

Figure GSB00000646870500062
Figure GSB00000646870500062

表2平坦块预测准确率(10帧,QP=28)Table 2 Flat block prediction accuracy (10 frames, QP=28)

改进的基于预测矢量的增强型菱形模板搜索方法,包括以下步骤:An improved enhanced diamond template search method based on predicted vectors, comprising the following steps:

分数像素由整像素插值得到,分数像素搜索窗口内搜索点的相关性远高于整像素搜索点的相关性。当搜索点靠近全局最小点时,匹配误差单调下降。因此,许多快速分数像素运动矢量搜索方法采用了预测运动矢量(FMVP:fractional predicted mv)作为搜索起始点。如果可以精确预测分数像素运动矢量搜索的初始点,则可以更早地搜索到FMVP附近的最佳MV,及时停止分数像素运动估计搜索。Fractional pixels are obtained by integer pixel interpolation, and the correlation of search points within the fractional pixel search window is much higher than that of integer pixel search points. When the search point is close to the global minimum, the matching error decreases monotonically. Therefore, many fast fractional pixel motion vector search methods adopt the predicted motion vector (FMVP: fractional predicted mv) as the starting point of search. If the initial point of fractional pixel motion vector search can be accurately predicted, the best MV near FMVP can be searched earlier, and the fractional pixel motion estimation search can be stopped in time.

当前块的FMVP由相邻块(上、左、右上块)的分数像素运动矢量的中值决定。FMVP包含两部分信息:整像素预测矢量和分数像素预测矢量。用公式(3)提取分数像素预测矢量,其中mv是已搜索得到的整像素运动矢量,以分数像素为单位。%是取模操作,β=4时,搜索精度为1/4像素,β=8时,搜索精度为1/8像素。The FMVP of the current block is determined by the median value of the fractional pixel motion vectors of adjacent blocks (top, left, and top right blocks). FMVP contains two parts of information: integer pixel prediction vector and fractional pixel prediction vector. Use the formula (3) to extract the fractional pixel prediction vector, where mv is the integer pixel motion vector that has been searched, in units of fractional pixels. % is a modulo operation, when β=4, the search precision is 1/4 pixel, and when β=8, the search precision is 1/8 pixel.

frac_pred_mv=(pred_mv-mv)%β(3)frac_pred_mv=(pred_mv-mv)%β(3)

表3显示了FMVP和由FFPS获得的最佳分数像素MV的匹配程度。匹配表示FMVP等于最佳MV;[-1,1]表示FMVP和最佳MV之间的距离在1个分数像素单位之内。Table 3 shows how well FMVP matches the best fractional pixel MV obtained by FFPS. A match indicates that the FMVP is equal to the best MV; [-1, 1] indicates that the distance between the FMVP and the best MV is within 1 fractional pixel unit.

由表3可以发现运动缓慢的测试序列的FMVP和最佳MV的匹配概率大于82%。中高运动强度的测试序列的匹配概率较低,但其FMVP在最佳MV的[-2,2]范围内的概率在90%以上。因此,可以使用FMVP作为分数像素运动矢量搜索的起始点。It can be found from Table 3 that the matching probability of the FMVP of the slow-moving test sequence and the best MV is greater than 82%. The matching probability of the test sequence with medium and high exercise intensity is low, but the probability of its FMVP in the [-2, 2] range of the best MV is above 90%. Therefore, FMVP can be used as a starting point for the fractional pixel motion vector search.

Figure GSB00000646870500071
Figure GSB00000646870500071

表3 FMVP和最佳分数像素MV的匹配程度Table 3 Matching degree of FMVP and best score pixel MV

运动矢量搜索常用三种模板:菱形模板、正方形模板和六边形模板。其中,菱形模板最简单,被许多视频编码器采用,如图6(a);正方形模板在菱形模板上增加了对角线上的4个点,计算复杂度和搜索结果准确度增加,如图6(b);六边形适合搜索范围较大的场合,由于分数像素运动矢量搜索范围仅限于两个整像素之间,六边形模板不适用于分数像素运动矢量搜索,如图6(c)。There are three commonly used templates for motion vector search: diamond template, square template and hexagon template. Among them, the diamond-shaped template is the simplest and is adopted by many video encoders, as shown in Figure 6(a); the square template adds 4 points on the diagonal to the diamond-shaped template, which increases the computational complexity and accuracy of search results, as shown in Figure 6(a). 6(b); the hexagon is suitable for occasions where the search range is large. Since the search range of the fractional pixel motion vector is limited to between two integer pixels, the hexagonal template is not suitable for fractional pixel motion vector search, as shown in Figure 6(c ).

本发明提出基于预测矢量的增强型菱形模板搜索方法。与CBFPS不同的是,由于FMVP和最佳MV有较高的匹配率,本方法不考虑原始搜索中心(0,0),而直接以FMVP作为搜索起始点;采用增强型菱形模板(EDSP:extended diamond search pattern),结合正方形模板准确度较高的优点,在菱形模板的基础上增加对角线上的搜索点;不进行菱形模板的迭代,而将搜索停止在FMVP的[-2,2]范围内,省略[-2,2]范围外的少数对编码效率提高不大的分数像素运动矢量搜索,以减少搜索点数,从而进一步减少计算量。The invention proposes an enhanced rhombus template search method based on predictive vectors. Different from CBFPS, since FMVP and the best MV have a higher matching rate, this method does not consider the original search center (0, 0), but directly uses FMVP as the starting point of search; uses enhanced diamond template (EDSP: extended diamond search pattern), combined with the advantages of high accuracy of the square template, increase the search points on the diagonal line on the basis of the diamond template; do not iterate the diamond template, but stop the search at [-2, 2] of FMVP Within the range of [-2, 2], a few fractional pixel motion vector searches outside the range of [-2, 2] that do not greatly improve the coding efficiency are omitted to reduce the number of search points and further reduce the amount of calculation.

图7为基于预测矢量的增强型菱形模板搜索策略示意图,方法流程如下。Fig. 7 is a schematic diagram of an enhanced diamond template search strategy based on a predictive vector, and the method flow is as follows.

第一步:由相邻块预测当前块的分数像素运动矢量,获得FMVP,即(Pred_x,Pred_y)。直接以FMVP作为搜索起始点。Step 1: Predict the fractional pixel motion vector of the current block from adjacent blocks to obtain FMVP, ie (Pred_x, Pred_y). Directly use FMVP as the starting point of the search.

第二步:比较搜索起始点(Pred_x,Pred_y)周围的4个菱形搜索点和(Pred_x,Pred_y)的匹配误差,如果最小绝对误差之和MSAD位于(Pred_x,Pred_y),则停止分数像素运动矢量搜索,否则进行第三步搜索。Step 2: Compare the matching errors of the 4 diamond-shaped search points around the search start point (Pred_x, Pred_y) and (Pred_x, Pred_y), if the minimum sum of absolute errors MSAD is located at (Pred_x, Pred_y), stop the fractional pixel motion vector Search, otherwise go to the third step to search.

第三步:如图7(a),如果最佳匹配点和次最佳匹配点相对,则选择最佳匹配点MV为最终分数像素运动矢量;如图7(b),如果最佳匹配点和次最佳匹配点相邻,则计算与其相邻的正方形模板上点的匹配误差,若MSAD仍为菱形最佳匹配点,则选择菱形最佳匹配点MV为最终分数像素运动矢量,否则进行下一步。The third step: as shown in Figure 7(a), if the best matching point is opposite to the second best matching point, then select the best matching point MV as the final fractional pixel motion vector; as shown in Figure 7(b), if the best matching point Adjacent to the sub-best matching point, calculate the matching error of the point on the adjacent square template, if MSAD is still the best matching point of the rhombus, then select the best matching point MV of the rhombus as the final fractional pixel motion vector, otherwise proceed Next step.

第四步:以第三步中正方形模板上的搜索点为中心,用菱形模板搜索其周围的点。选择MASD的点作为最终分数像素运动矢量。Step 4: Take the search point on the square template in the third step as the center, and use the rhombus template to search for points around it. Select the MASD point as the final fractional pixel motion vector.

本发明提出的内容自适应分数像素运动估计方法在H.264测试平台JM15.0上进行了实验。选择了具有代表性的运动剧烈程度从缓慢到剧烈的6个视频序列进行了测试。JM15.0编码器的与运动估计相关的参数设置见表4。The content adaptive fractional pixel motion estimation method proposed by the present invention is tested on the H.264 test platform JM15.0. Six video sequences with representative motion intensity ranging from slow to vigorous were selected for testing. The parameter settings related to motion estimation of JM15.0 encoder are shown in Table 4.

Figure GSB00000646870500081
Figure GSB00000646870500081

表4编码器相关参数设置Table 4 Encoder-related parameter settings

将EDSP,SMBP+EDSP分别与JM15.0采用的FFPS和CBFPS在方法性能上进行了对比:(1)搜索点数(分数像素):每个宏块得到最终分数像素运动矢量需要的搜索点数,反映方法的匹配速度;(2)峰值信噪比的变化(ΔPSNR:Peak Signal Noise Radio):衡量运动估计和补偿后的图像和原始图像的差别,反映方法的预测质量;(3)Δ计算时间(运动估计节约的计算时间,包括整像素和分数像素):从整体上反映编码器在运动估计模块上消耗的时间。这三个实验参数均以FFPS为标准进行比较。EDSP, SMBP+EDSP were compared with FFPS and CBFPS adopted by JM15.0 in terms of method performance: (1) Number of search points (fractional pixels): the number of search points required for each macroblock to obtain the final fractional pixel motion vector, reflecting The matching speed of the method; (2) the change of the peak signal-to-noise ratio (ΔPSNR: Peak Signal Noise Radio): measure the difference between the motion estimation and compensation image and the original image, reflecting the prediction quality of the method; (3) Δ calculation time ( Calculation time saved by motion estimation, including integer pixels and fractional pixels): It reflects the time spent by the encoder on the motion estimation module as a whole. These three experimental parameters are compared with FFPS as the standard.

表5各方法性能比较Table 5 Performance comparison of each method

由表5可见,本文提出的EDSP方法平均每个宏块搜索点数为3.9,比FFPS节约了75.6%;EDSP方法的PSNR和FFPS相比,损失不超过0.13dB。SMBP结合EDSP可以进一步减少运算量,节省运算时间。SMBP+EDSP和EDSP相比,对于运动平缓的视频序列,如News、Container、Silent,平均节省16%的计算时间;运动强度中等的视频序列,如Paris和Forman,平均节省10%的计算时间;运动剧烈的视频序列,如Football,节省7%的计算时间。SMBP+EDSP和最优方法FFPS相比,平均节省38.5%的计算时间,PSNR损失不超过0.209dB;SMBP+EDSP和CBFPS相比,平均节省14.7%的计算时间,PSNR损失不超过0.196dB。It can be seen from Table 5 that the EDSP method proposed in this paper has an average of 3.9 search points per macroblock, saving 75.6% compared with FFPS; PSNR loss of EDSP method is no more than 0.13dB compared with FFPS. Combining SMBP with EDSP can further reduce the amount of computation and save computation time. Compared with EDSP, SMBP+EDSP saves an average of 16% computing time for video sequences with gentle motion, such as News, Container, and Silent; and saves an average of 10% computing time for video sequences with moderate motion intensity, such as Paris and Forman; Video sequences with intense motion, such as football, save 7% of computing time. Compared with the optimal method FFPS, SMBP+EDSP saves an average of 38.5% of the calculation time, and the PSNR loss does not exceed 0.209dB; compared with CBFPS, SMBP+EDSP saves an average of 14.7% of the calculation time, and the PSNR loss does not exceed 0.196dB.

Claims (1)

1. invalid fraction pixel motion-vector search omission method that is used for the employing of content adaptive fractional pixel motion estimation method based on the flat site macroblock prediction, whether drop on whole pixel by the motion vector that detects the pattern 1 in 7 kinds of patterns of estimation H.264, judge whether current macro is flat block; For flat block, follow-up mode is only carried out the whole pixel motion vector search of routine, and does not carry out the fraction pixel motion-vector search; For the non-flat forms piece, carry out whole pixel of routine and fraction pixel motion-vector search, it is characterized in that:
At fraction pixel motion-vector search wherein, adopt improved enhancement mode rhombus template searching method based on predictive vector, carry out following four steps:
The first step: the fraction pixel motion vector by adjacent block prediction current block, obtain motion vectors FMVP, promptly (Pred_x, Pred_y); Directly with FMVP as the search starting point;
Second step: comparison search starting point (Pred_x, Pred_y) point of the search of 4 on the rhombus template on every side and (Pred_x, Pred_y) matching error, if least absolute error sum MSAD is positioned at (Pred_x, Pred_y), then stop invalid fraction pixel motion-vector search omission method, otherwise carry out the search of the 3rd step;
The 3rd step: if optimal match point is relative with the suboptimum match point, then selecting optimal match point MV is final fraction pixel motion vector; If optimal match point is adjacent with the suboptimum match point, then calculate the matching error of putting on the square template adjacent with optimal match point, if MSAD still is the rhombus optimal match point, then selecting rhombus optimal match point MV is final fraction pixel motion vector, otherwise carries out next step;
The 4th step: with the search point on the square template in the 3rd step is the center, searches for its point on every side with the rhombus template; The point of selecting MSAD is as final fraction pixel motion vector.
CN 201010117539 2010-03-03 2010-03-03 content adaptive fractional pixel motion estimation method Expired - Fee Related CN101795409B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201010117539 CN101795409B (en) 2010-03-03 2010-03-03 content adaptive fractional pixel motion estimation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201010117539 CN101795409B (en) 2010-03-03 2010-03-03 content adaptive fractional pixel motion estimation method

Publications (2)

Publication Number Publication Date
CN101795409A CN101795409A (en) 2010-08-04
CN101795409B true CN101795409B (en) 2011-12-28

Family

ID=42587797

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201010117539 Expired - Fee Related CN101795409B (en) 2010-03-03 2010-03-03 content adaptive fractional pixel motion estimation method

Country Status (1)

Country Link
CN (1) CN101795409B (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102625293B (en) 2012-03-21 2014-11-05 华为技术有限公司 Method, device and system for notifying and acquiring address information invalidation
US9325991B2 (en) * 2012-04-11 2016-04-26 Qualcomm Incorporated Motion vector rounding
CN102740073B (en) * 2012-05-30 2015-06-17 华为技术有限公司 Coding method and device
CN103281533B (en) * 2013-05-14 2016-02-24 芯原微电子(北京)有限公司 For equipment and the method for enhancement layer estimation in scalable video
CN103873875A (en) * 2014-03-25 2014-06-18 山东大学 Layering sub pixel motion estimation method for image super resolution
CN103957420B (en) * 2014-04-30 2017-02-15 华南理工大学 Comprehensive movement estimation modified algorithm of H.264 movement estimation code
CN104811728B (en) * 2015-04-23 2018-03-02 湖南大目信息科技有限公司 A kind of method for searching motion of video content adaptive
CN105611299B (en) * 2015-12-25 2018-11-23 北京工业大学 A kind of method for estimating based on HEVC
CN105872310B (en) * 2016-04-20 2020-03-17 上海联影医疗科技有限公司 Image motion detection method and image noise reduction method for movable imaging equipment
CN110832861A (en) * 2018-07-03 2020-02-21 深圳市大疆创新科技有限公司 Video processing method and device
CN109089121B (en) * 2018-10-19 2021-06-22 北京金山云网络技术有限公司 Motion estimation method and device based on video coding and electronic equipment
CN109660811B (en) * 2018-12-17 2020-09-18 杭州当虹科技股份有限公司 Rapid HEVC inter-frame coding method
CN113728646A (en) * 2019-04-25 2021-11-30 北京达佳互联信息技术有限公司 Method and apparatus for predictive refinement with optical flow
WO2020258039A1 (en) * 2019-06-25 2020-12-30 Oppo广东移动通信有限公司 Processing method for motion compensation, encoder, decoder and storage medium
CN112911310B (en) * 2021-01-15 2023-05-16 北京博雅慧视智能技术研究院有限公司 Multi-layer whole pixel motion estimation searching method, device, equipment and storage medium

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101394566A (en) * 2008-10-29 2009-03-25 北京航空航天大学 A Cross-Diamond Motion Estimation Search Method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7580456B2 (en) * 2005-03-01 2009-08-25 Microsoft Corporation Prediction-based directional fractional pixel motion estimation for video coding
ES2630203T3 (en) * 2006-10-10 2017-08-18 Nippon Telegraph And Telephone Corporation Intra prediction coding control method and device, its program, and storage medium containing program

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101394566A (en) * 2008-10-29 2009-03-25 北京航空航天大学 A Cross-Diamond Motion Estimation Search Method

Also Published As

Publication number Publication date
CN101795409A (en) 2010-08-04

Similar Documents

Publication Publication Date Title
CN101795409B (en) content adaptive fractional pixel motion estimation method
CN101815218B (en) Method for coding quick movement estimation video based on macro block characteristics
JP4898467B2 (en) Coding mode determination method and apparatus for variable block size motion prediction
CN101640802B (en) Video inter-frame compression coding method based on macroblock features and statistical properties
CN103188496B (en) Based on the method for coding quick movement estimation video of motion vector distribution prediction
CN107087200B (en) Skip coding mode advanced decision method for high-efficiency video coding standard
CN102238391A (en) Predictive coding method and device
JP5795525B2 (en) Image encoding method, image decoding method, image encoding device, image decoding device, image encoding program, and image decoding program
CN103546758B (en) A kind of fast deep graphic sequence inter mode decision fractal coding
CN101022555B (en) Fast Mode Selection Method for Inter-Frame Predictive Coding
CN108366256A (en) A kind of HEVC intra prediction modes quickly select system and method
WO2015010317A1 (en) P frame-based multi-hypothesis motion compensation method
TWI401967B (en) Method for scalable video coding, scalable video coding apparatus, program for scalable video coding, and computer readable storage medium storing program for scalable video coding
CN101394560A (en) A Hybrid Pipeline Apparatus for Video Coding
CN102647598B (en) H.264 inter-frame mode optimization method based on maximum and minimum MV difference
CN101304529A (en) Method and device for selecting macroblock mode
CN110365975A (en) A kind of AVS2 video encoding and decoding standard prioritization scheme
JP6607040B2 (en) Motion vector search apparatus, motion vector search method, and recording medium for storing motion vector search program
CN102164283A (en) A Subpixel Motion Estimation Method Based on AVS
US20130128954A1 (en) Encoding method and apparatus
JP2009049519A (en) Predicted motion vector generation apparatus for moving picture encoding apparatus
CN101237580A (en) A Fast Hybrid Search Method for Integer Pixels Based on Center Prediction
CN101867818B (en) Selection method and device of macroblock mode
CN101883275A (en) Video encoding method
CN1237818C (en) A coding method based on selfadaptive hexagon search

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20111228

Termination date: 20140303