CN101794385A - Multi-angle multi-target fast human face tracking method used in video sequence - Google Patents
Multi-angle multi-target fast human face tracking method used in video sequence Download PDFInfo
- Publication number
- CN101794385A CN101794385A CN 201010129492 CN201010129492A CN101794385A CN 101794385 A CN101794385 A CN 101794385A CN 201010129492 CN201010129492 CN 201010129492 CN 201010129492 A CN201010129492 A CN 201010129492A CN 101794385 A CN101794385 A CN 101794385A
- Authority
- CN
- China
- Prior art keywords
- face
- target
- skin
- area
- people
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 20
- PCTMTFRHKVHKIS-BMFZQQSSSA-N (1s,3r,4e,6e,8e,10e,12e,14e,16e,18s,19r,20r,21s,25r,27r,30r,31r,33s,35r,37s,38r)-3-[(2r,3s,4s,5s,6r)-4-amino-3,5-dihydroxy-6-methyloxan-2-yl]oxy-19,25,27,30,31,33,35,37-octahydroxy-18,20,21-trimethyl-23-oxo-22,39-dioxabicyclo[33.3.1]nonatriaconta-4,6,8,10 Chemical compound C1C=C2C[C@@H](OS(O)(=O)=O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2.O[C@H]1[C@@H](N)[C@H](O)[C@@H](C)O[C@H]1O[C@H]1/C=C/C=C/C=C/C=C/C=C/C=C/C=C/[C@H](C)[C@@H](O)[C@@H](C)[C@H](C)OC(=O)C[C@H](O)C[C@H](O)CC[C@@H](O)[C@H](O)C[C@H](O)C[C@](O)(C[C@H](O)[C@H]2C(O)=O)O[C@H]2C1 PCTMTFRHKVHKIS-BMFZQQSSSA-N 0.000 claims description 9
- 230000011218 segmentation Effects 0.000 claims description 6
- 238000005315 distribution function Methods 0.000 claims description 2
- 238000005070 sampling Methods 0.000 claims description 2
- 238000012549 training Methods 0.000 claims description 2
- 239000003086 colorant Substances 0.000 claims 1
- 238000001514 detection method Methods 0.000 abstract description 29
- 238000012545 processing Methods 0.000 abstract description 3
- 230000004927 fusion Effects 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- 238000012795 verification Methods 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000001815 facial effect Effects 0.000 description 1
- 238000011017 operating method Methods 0.000 description 1
- 238000007781 pre-processing Methods 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
Images
Landscapes
- Image Analysis (AREA)
Abstract
一种视频处理技术领域的用于视频序列的多角度多目标快速人脸跟踪方法,通过多角度人脸快速检测以及对人脸区域建立颜色直方图,计算待检测图像的颜色概率图,用Camshift算法的迭代结果,更新人脸区域位置,同时更新由卡尔曼滤波器建立的人脸运动模型,同时,当目标遮挡时则进行人脸预测:如果出现人脸遮挡,由卡尔曼滤波器预测人脸区域位置,再更新人脸运动模型。本发明能够快速排除非人脸区域,使视频序列的实时多角度多人脸目标跟踪成为可能;同时,通过引入卡尔曼滤波器,在视频序列中出现目标遮挡时,利用卡尔曼滤波器的预测结果,更新被遮挡目标的位置,可以较好地克服由遮挡带来的跟踪困难。
A multi-angle and multi-target fast face tracking method for video sequences in the field of video processing technology, through fast multi-angle face detection and the establishment of color histograms for face regions, the color probability map of the image to be detected is calculated, and Camshift is used The iterative results of the algorithm update the position of the face area, and at the same time update the face motion model established by the Kalman filter. At the same time, when the target is occluded, the face prediction is performed: if there is a face occlusion, the Kalman filter predicts the face. The position of the face area, and then update the face motion model. The invention can quickly exclude non-face areas, making real-time multi-angle multi-face target tracking possible in video sequences; at the same time, by introducing a Kalman filter, when a target is occluded in a video sequence, the prediction of the Kalman filter is used As a result, updating the position of the occluded target can better overcome the tracking difficulty caused by occlusion.
Description
技术领域technical field
本发明涉及的是一种视频处理技术领域的方法,具体是一种用于视频序列的多角度多目标快速人脸跟踪方法。The invention relates to a method in the technical field of video processing, in particular to a multi-angle and multi-target fast face tracking method for video sequences.
背景技术Background technique
视频序列中的人脸检测与跟踪技术具有广泛的应用前景,在国家安全、军事安全和公共安全领域,智能门禁、智能视频监控、公安布控、海关身份验证、司机驾照验证等都有广泛的应用。Face detection and tracking technology in video sequences has broad application prospects. In the fields of national security, military security and public security, intelligent access control, intelligent video surveillance, public security control, customs identity verification, driver's license verification, etc. have a wide range of applications .
经过对现有技术的检索发现,基于级联结构的AdaBoost人脸检测方法,目前被认为是有效的人脸检测方案,如中国专利文献号CN101350062A,公开日2009-1-21,记载了一种“基于视频的快速人脸检测方法”,该技术通过预处理利用视频帧间的时空域特征进行前景区域的人脸检测,将人脸检测过程分为审查模式和跟踪模式两种不同的模式。如果跟踪模式中无法在预测区域检测到人脸或者预测到在下一帧中正在跟踪的人脸将脱离监控区域,检测流程转入审查模式,对前景区域做全面的搜索,重新收集监控区域的人脸信息。该方案利用训练好的正面人脸分类器,对前景预测区域进行人脸检测,以达到提高检测速度的目的。但是,对于视频序列中的多个角度人脸目标,仅仅依靠AdaBoost检测和前景预测方法,通过对视频中的每一帧用不同角度的人脸分类器进行检测,难以达到视频跟踪实时性的要求。After searching the prior art, it is found that the AdaBoost face detection method based on the cascade structure is currently considered to be an effective face detection scheme, such as Chinese Patent Document No. CN101350062A, published on 2009-1-21, which records a "Video-based fast face detection method", this technology uses the temporal and spatial domain features between video frames to perform face detection in the foreground area through preprocessing, and divides the face detection process into two different modes: censorship mode and tracking mode. If the face cannot be detected in the prediction area in the tracking mode or it is predicted that the face being tracked in the next frame will leave the monitoring area, the detection process will be transferred to the review mode, a comprehensive search will be performed on the foreground area, and the people in the monitoring area will be collected again. face information. This scheme uses the trained frontal face classifier to perform face detection on the foreground prediction area to achieve the purpose of improving the detection speed. However, for multiple-angle face targets in video sequences, it is difficult to meet the real-time requirements of video tracking by only relying on AdaBoost detection and foreground prediction methods, and by using face classifiers from different angles to detect each frame in the video .
发明内容Contents of the invention
本发明针对现有技术存在的上述不足,提供一种用于视频序列的多角度多目标快速人脸跟踪方法,能够快速排除非人脸区域,使视频序列的实时多角度多人脸目标跟踪成为可能;同时,通过引入卡尔曼滤波器,在视频序列中出现目标遮挡时,利用卡尔曼滤波器的预测结果,更新被遮挡目标的位置,可以较好地克服由遮挡带来的跟踪困难。Aiming at the above-mentioned deficiencies in the prior art, the present invention provides a multi-angle and multi-target fast face tracking method for video sequences, which can quickly exclude non-face areas, making real-time multi-angle multi-face target tracking of video sequences a Possibly; at the same time, by introducing the Kalman filter, when the target occlusion occurs in the video sequence, the prediction result of the Kalman filter is used to update the position of the occluded target, which can better overcome the tracking difficulties caused by occlusion.
本发明是通过以下技术方案实现的,本发明包括步骤:The present invention is realized through the following technical solutions, and the present invention comprises steps:
第一步、多角度人脸快速检测:对视频序列中的待检测帧进行肤色分割,用不同角度的人脸分类器对肤色区域进行人脸检测,并融合人脸检测结果。The first step, multi-angle face rapid detection: perform skin color segmentation on the frames to be detected in the video sequence, use face classifiers from different angles to perform face detection on the skin color area, and fuse the face detection results.
所述的肤色分割是指:利用肤色特征,将待检测帧由RGB颜色空间转化到HSV颜色空间,然后按照人脸肤色模型,提取出肤色区域并剔除非肤色区域。The skin color segmentation refers to converting the frame to be detected from the RGB color space to the HSV color space by using the skin color feature, and then extracting the skin color area and removing the non-skin color area according to the human face skin color model.
所述的肤色特征是指:人体皮肤的颜色相对于其他物体是人体表面最为显著的特征之一,能够利用肤色这一特征将人体与其他物体区分开来。The feature of skin color means that the color of human skin is one of the most prominent features on the surface of the human body compared to other objects, and the feature of skin color can be used to distinguish the human body from other objects.
所述的人脸肤色模型是指:利用肤色在通常的光照条件下,会集聚在色彩空间中某个特定的区域内的特性,通过对肤色图像采样建立一个分布函数或寻找肤色分布的合适阈值,就能够将肤色区域从背景图像中提取出来。The described human face skin color model refers to: using the characteristics that skin color will gather in a specific area in the color space under normal lighting conditions, by sampling the skin color image to establish a distribution function or find a suitable threshold for skin color distribution , the skin color area can be extracted from the background image.
所述的人脸检测是指:先利用积分图计算候选区域内的肤色面积,当肤色面积小于设定的阈值,则排除该肤色面积对应的区域,否则利用AdaBoost算法训练得到的人脸分类器对候选区域进行检测,如果检测结果为真,则候选区域为人脸区域;否则,候选区域为非人脸区域。Described human face detection refers to: first utilize integral graph to calculate the skin color area in candidate area, when skin color area is less than the threshold value of setting, then exclude the area corresponding to this skin color area, otherwise utilize the human face classifier that AdaBoost algorithm training obtains Detect the candidate area, if the detection result is true, the candidate area is a face area; otherwise, the candidate area is a non-face area.
所述的肤色面积为Sskin=iiA+iiD-(iiB+iiC),其中:Sskin表示矩形区域ABCD内肤色面积,取值范围为0到255×矩形ABCD的宽度×矩形ABCD的高度,iit为在点t处的积分图,取值范围为0到255×待检测图像宽度×待检测图像高度。The skin color area is S skin =ii A +ii D -(ii B +ii C ), wherein: S skin represents the skin color area in the rectangular area ABCD, and the value range is 0 to 255×the width of the rectangle ABCD×the rectangle ABCD ii t is the integral image at point t, and its value ranges from 0 to 255×the width of the image to be detected×the height of the image to be detected.
第二步、当两个人脸目标区域没有出现重叠,则对每一个对人脸区域建立H通道颜色直方图并计算H通道颜色直方图,然后用Camshift迭代算法计算人脸目标位置,更新卡尔曼滤波器人脸目标运动模型,否则执行第三步;The second step, when there is no overlap between the two face target areas, establish an H channel color histogram for each face area and calculate the H channel color histogram, and then use the Camshift iterative algorithm to calculate the face target position and update Kalman Filter face target motion model, otherwise perform the third step;
所述的计算H通道颜色直方图,是指:由H通道颜色直方图计算待检测图像的颜色概率图,以颜色亮度的高低作为判定质心位置准则,用Camshift迭代算法在颜色概率图中计算搜索区域的质心位置,动态调整目标窗口大小,并卡尔曼滤波器建立的人脸运动模型。The described calculation of the H channel color histogram refers to: the color probability map of the image to be detected is calculated by the H channel color histogram, and the height of the color brightness is used as the criterion for determining the position of the centroid, and the Camshift iterative algorithm is used to calculate and search the color probability map. The location of the centroid of the region, dynamically adjust the size of the target window, and the face motion model established by the Kalman filter.
第三步、目标遮挡时的人脸跟踪:如果任意两个人脸目标出现重叠,由卡尔曼滤波器预测被遮挡人脸的位置,同时利用卡尔曼预测的人脸位置来更新卡尔曼滤波器参数。The third step, face tracking when the target is occluded: if any two face targets overlap, the position of the occluded face is predicted by the Kalman filter, and the Kalman filter parameters are updated using the face position predicted by Kalman .
与现有技术相比,本发明能够显著提高检测、跟踪的速度,实现多角度、多人脸的实时跟踪,对480×320的视频,每秒跟踪速度可达35帧以上。对于一般场景中的多角度、多人脸跟踪,准确率可达95%以上。Compared with the prior art, the present invention can significantly improve the detection and tracking speed, realize multi-angle and multi-face real-time tracking, and the tracking speed can reach more than 35 frames per second for 480×320 video. For multi-angle and multi-face tracking in general scenes, the accuracy rate can reach more than 95%.
附图说明Description of drawings
图1为本发明流程图。Fig. 1 is the flow chart of the present invention.
图2为待测图例;Figure 2 is a legend to be tested;
其中:a为对正面人脸检测图例;b为对左半边人脸检测图例;c为对右半边人脸检测图例;d为对正面、侧面人脸检测融合后的图例。Among them: a is the legend of the frontal face detection; b is the legend of the left half of the face detection; c is the legend of the right half of the face detection; d is the legend of the fusion of the front and side face detection.
图3为处理后图例;Figure 3 is a legend after processing;
其中:a为经过肤色分割后的图例;b为颜色概率图。Among them: a is the legend after skin color segmentation; b is the color probability map.
图4为实施例部分跟踪结果示意图。Fig. 4 is a schematic diagram of part of the tracking results in the embodiment.
具体实施方式Detailed ways
下面对本发明的实施例作详细说明,本实施例在以本发明技术方案为前提下进行实施,给出了详细的实施方式和具体的操作过程,但本发明的保护范围不限于下述的实施例。The embodiments of the present invention are described in detail below. This embodiment is implemented on the premise of the technical solution of the present invention, and detailed implementation methods and specific operating procedures are provided, but the protection scope of the present invention is not limited to the following implementation example.
如图1所示,本实施例包括如下步骤:As shown in Figure 1, this embodiment includes the following steps:
第一步、多角度人脸快速检测:对待检测帧进行肤色分割,利用积分图快速剔除非肤色区域,对肤色区域进行人脸检测,用不同角度的人脸分类器检测图像,融合最后的人脸检测区域。The first step, multi-angle face rapid detection: perform skin color segmentation on the frame to be detected, use the integral map to quickly eliminate non-skinned areas, perform face detection on skin-colored areas, use face classifiers from different angles to detect images, and fuse the final person Face detection area.
第二步、未出现目标遮挡时的人脸跟踪:对人脸区域建立颜色直方图,计算待检测图像的颜色概率图,用Camshift算法的迭代结果,更新人脸区域位置,同时更新由卡尔曼滤波器建立的人脸运动模型。The second step, face tracking when there is no target occlusion: establish a color histogram for the face area, calculate the color probability map of the image to be detected, use the iterative result of the Camshift algorithm, update the position of the face area, and update the position of the face area by Kalman at the same time The face motion model built by the filter.
第三步、目标遮挡时的人脸预测:如果出现人脸遮挡,由卡尔曼滤波器预测人脸区域位置,再更新人脸运动模型。The third step is face prediction when the target is occluded: if there is a face occlusion, the Kalman filter is used to predict the position of the face area, and then the face motion model is updated.
上述多角度人脸快速检测步骤如下:The above-mentioned multi-angle face rapid detection steps are as follows:
利用肤色特征,将图像由RGB颜色空间转化到HSV颜色空间,克服了RGB颜色空间对光照亮度变化比较敏感的缺陷,按照人脸肤色模型,提取出肤色区域,如图3a所示。在用多角度人脸检测器检测图像前,先计算候选区域内的肤色面积,如果肤色面积小于设定的阈值,则马上排除该区域,以提高检测的速度;否则利用AdaBoost算法训练得到的人脸分类器对候选区域进行检测,如果检测结果为真,则候选区域为人脸区域;否则,候选区域为非人脸区域。Using the skin color feature, the image is converted from the RGB color space to the HSV color space, which overcomes the defect that the RGB color space is sensitive to changes in light brightness. According to the skin color model of the face, the skin color area is extracted, as shown in Figure 3a. Before using the multi-angle face detector to detect the image, first calculate the skin color area in the candidate area, if the skin color area is less than the set threshold, immediately exclude the area to improve the speed of detection; otherwise use the AdaBoost algorithm to train the human body The face classifier detects the candidate area. If the detection result is true, the candidate area is a face area; otherwise, the candidate area is a non-face area.
而候选区域的肤色面积,可以直接由积分图求得Sskin=iiA+iiD-(iiB+iiC),如图3a所示,其中:Sskin表示矩形区域ABCD内肤色面积,取值范围为[0,255×矩形ABCD的宽度×矩形ABCD的高度],iit为在点t处的积分图,取值范围为[0,255×待检测图像宽度×待检测图像高度]。The skin color area of the candidate area can be obtained directly from the integral map S skin =ii A +ii D -(ii B +ii C ), as shown in Figure 3a, wherein: S skin represents the skin color area in the rectangular area ABCD, which is taken as The value range is [0, 255×the width of the rectangle ABCD×the height of the rectangle ABCD], ii t is the integral image at point t, and the value range is [0, 255×the width of the image to be detected×the height of the image to be detected].
最后融合各个角度人脸检测器检测得到的人脸区域,检测结果如图2所示,图2中的a、b、c和d分别表示正面、左侧、右侧人脸和最后融合各个角度的人脸检测结果。Finally, the face areas detected by the face detector at various angles are fused, and the detection results are shown in Figure 2. A, b, c, and d in Figure 2 represent the front, left, and right faces respectively, and the final fusion of each angle face detection results.
上述未出现目标遮挡时的人脸跟踪方法具体实现方法如下:The specific implementation method of the above-mentioned face tracking method when no target occlusion occurs is as follows:
判断人脸目标区域间的相对位置,如果任意两个人脸区域没有出现重叠,计算由步骤1)得到的每个人脸区域的H通道颜色直方图,由H通道颜色直方图,计算待检测图像的颜色概率图,如图3b所示,亮度越高越接近人脸颜色,用Camshift迭代算法,在颜色概率图中计算搜索区域的质心位置,动态调整目标窗口大小,更新人脸区域位置,同时更新由卡尔曼滤波器建立的人脸运动模型。Judge the relative position between the human face target areas, if any two human face areas do not overlap, calculate the H channel color histogram of each human face area obtained by step 1), and calculate the image to be detected by the H channel color histogram The color probability map, as shown in Figure 3b, the higher the brightness, the closer to the color of the face. Use the Camshift iterative algorithm to calculate the centroid position of the search area in the color probability map, dynamically adjust the size of the target window, update the position of the face area, and update Facial motion model built by Kalman filter.
上述目标遮挡时的人脸预测实现方法如下:The implementation method of face prediction when the above target is occluded is as follows:
判断人脸目标区域间的相对位置,如果任意两个人脸区域出现重叠,由卡尔曼滤波器人脸运动模型预测被遮挡的人脸区域位置,同时利用卡尔曼预测的人脸区域位置来更新卡尔曼滤波器人脸运动模型参数。预测过程即如图1中的虚线所示。预测结果如图4第3和第20帧,当两个人脸区域出现重叠时,由卡尔曼滤波器人脸运动模型进行预测(白色矩形框所示),甚至在人脸完全被遮挡时,卡尔曼滤波器人脸运动模型依然能预测到人脸的所在位置。Judging the relative position between face target areas, if any two face areas overlap, the Kalman filter face motion model predicts the position of the occluded face area, and uses the position of the face area predicted by Kalman to update the Kalman Mann filter face motion model parameters. The prediction process is shown by the dotted line in Figure 1. The prediction results are shown in the 3rd and 20th frames of Figure 4. When two face areas overlap, the Kalman filter face motion model is used to predict (shown in the white rectangle box), even when the face is completely blocked, the Kalman filter The Mann filter face motion model can still predict the location of the face.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2010101294926A CN101794385B (en) | 2010-03-23 | 2010-03-23 | Multi-angle multi-target fast human face tracking method used in video sequence |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2010101294926A CN101794385B (en) | 2010-03-23 | 2010-03-23 | Multi-angle multi-target fast human face tracking method used in video sequence |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101794385A true CN101794385A (en) | 2010-08-04 |
CN101794385B CN101794385B (en) | 2012-11-21 |
Family
ID=42587067
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2010101294926A Expired - Fee Related CN101794385B (en) | 2010-03-23 | 2010-03-23 | Multi-angle multi-target fast human face tracking method used in video sequence |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101794385B (en) |
Cited By (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102496009A (en) * | 2011-12-09 | 2012-06-13 | 北京汉邦高科数字技术股份有限公司 | Multi-face Tracking Method in Smart Bank Video Surveillance |
CN102542244A (en) * | 2010-12-15 | 2012-07-04 | 财团法人工业技术研究院 | Face detection method and system and computer program product |
CN102622604A (en) * | 2012-02-14 | 2012-08-01 | 西安电子科技大学 | Multi-angle human face detecting method based on weighting of deformable components |
CN102855496A (en) * | 2012-08-24 | 2013-01-02 | 苏州大学 | Method and system for authenticating shielded face |
CN103116763A (en) * | 2013-01-30 | 2013-05-22 | 宁波大学 | Vivo-face detection method based on HSV (hue, saturation, value) color space statistical characteristics |
CN103632126A (en) * | 2012-08-20 | 2014-03-12 | 华为技术有限公司 | Human face tracking method and device |
CN103700112A (en) * | 2012-09-27 | 2014-04-02 | 中国航天科工集团第二研究院二O七所 | Sheltered target tracking method based on mixed predicting strategy |
CN104281837A (en) * | 2014-09-26 | 2015-01-14 | 哈尔滨工业大学深圳研究生院 | Pedestrian tracking method combining Kalman filtering with ROI expansion between adjacent frames |
CN104318211A (en) * | 2014-10-17 | 2015-01-28 | 中国传媒大学 | Anti-shielding face tracking method |
CN104573614A (en) * | 2013-10-22 | 2015-04-29 | 北京三星通信技术研究有限公司 | Equipment and method for tracking face |
CN105069431A (en) * | 2015-08-07 | 2015-11-18 | 成都明图通科技有限公司 | Method and device for positioning human face |
CN105427346A (en) * | 2015-12-01 | 2016-03-23 | 中国农业大学 | Motion target tracking method and system |
CN105868574A (en) * | 2016-04-25 | 2016-08-17 | 南京大学 | Human face tracking optimization method for camera and intelligent health monitoring system based on videos |
CN106022220A (en) * | 2016-05-09 | 2016-10-12 | 西安北升信息科技有限公司 | Method for performing multi-face tracking on participating athletes in sports video |
CN106650675A (en) * | 2016-12-28 | 2017-05-10 | 天津天地伟业生产力促进有限公司 | Embedded system-based real-time face detection algorithm |
CN106780542A (en) * | 2016-12-29 | 2017-05-31 | 北京理工大学 | A kind of machine fish tracking of the Camshift based on embedded Kalman filter |
CN107122762A (en) * | 2017-05-16 | 2017-09-01 | 甘肃政法学院 | A kind of processing method for compound movement image |
CN107680123A (en) * | 2017-08-30 | 2018-02-09 | 王连圭 | Cross-region human body video single target intelligent tracking algorithm |
CN107995418A (en) * | 2017-11-21 | 2018-05-04 | 维沃移动通信有限公司 | A kind of image pickup method, device and mobile terminal |
CN108280524A (en) * | 2017-01-05 | 2018-07-13 | 通用汽车环球科技运作有限责任公司 | The system and method for identifying vehicle and generating reservation information |
CN108734091A (en) * | 2018-03-30 | 2018-11-02 | 暨南大学 | Compartment anomaly detection method, computer installation and computer readable storage medium |
CN109348190A (en) * | 2018-12-05 | 2019-02-15 | 吉林大学 | Video surveillance-based fall monitoring system and method |
CN109345566A (en) * | 2018-09-28 | 2019-02-15 | 上海应用技术大学 | Moving target tracking method and system |
CN109614841A (en) * | 2018-04-26 | 2019-04-12 | 杭州智诺科技股份有限公司 | Fast face detecting method in embedded system |
CN110706253A (en) * | 2019-09-19 | 2020-01-17 | 中国科学院自动化研究所 | Target tracking method, system and device based on apparent feature and depth feature |
CN111582212A (en) * | 2020-05-15 | 2020-08-25 | 山东大学 | Multi-domain fusion micro-expression detection method based on motion unit |
CN113876311A (en) * | 2021-09-02 | 2022-01-04 | 天津大学 | Self-adaptively-selected non-contact multi-player heart rate efficient extraction device |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1924894A (en) * | 2006-09-27 | 2007-03-07 | 北京中星微电子有限公司 | Multiple attitude human face detection and track system and method |
CN101231703A (en) * | 2008-02-28 | 2008-07-30 | 上海交通大学 | Multi-Face Tracking Method Based on Correlation Vector Machine and Boosting Learning |
CN101620673A (en) * | 2009-06-18 | 2010-01-06 | 北京航空航天大学 | Robust face detecting and tracking method |
-
2010
- 2010-03-23 CN CN2010101294926A patent/CN101794385B/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1924894A (en) * | 2006-09-27 | 2007-03-07 | 北京中星微电子有限公司 | Multiple attitude human face detection and track system and method |
CN101231703A (en) * | 2008-02-28 | 2008-07-30 | 上海交通大学 | Multi-Face Tracking Method Based on Correlation Vector Machine and Boosting Learning |
CN101620673A (en) * | 2009-06-18 | 2010-01-06 | 北京航空航天大学 | Robust face detecting and tracking method |
Non-Patent Citations (3)
Title |
---|
《北京理工大学学报》 20000831 刘万春 等 基于肤色的人脸实时跟踪方法 第20卷, 第4期 2 * |
《微计算机应用》 20080229 王亮亮 等 基于人脸检测和CAMSHIFT算法的人脸跟踪系统 第29卷, 第2期 2 * |
《计算机应用研究》 20080731 蒋建国 等 基于mean_shift算法的人脸实时跟踪方法 第25卷, 第7期 2 * |
Cited By (45)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102542244A (en) * | 2010-12-15 | 2012-07-04 | 财团法人工业技术研究院 | Face detection method and system and computer program product |
US8559707B2 (en) | 2010-12-15 | 2013-10-15 | Industrial Technology Research Institute | System and method for face detection using face region location and size predictions and computer program product thereof |
CN102496009A (en) * | 2011-12-09 | 2012-06-13 | 北京汉邦高科数字技术股份有限公司 | Multi-face Tracking Method in Smart Bank Video Surveillance |
CN102496009B (en) * | 2011-12-09 | 2013-09-18 | 北京汉邦高科数字技术股份有限公司 | Multi-face tracking method in intelligent bank video monitoring |
CN102622604A (en) * | 2012-02-14 | 2012-08-01 | 西安电子科技大学 | Multi-angle human face detecting method based on weighting of deformable components |
CN102622604B (en) * | 2012-02-14 | 2014-01-15 | 西安电子科技大学 | A Multi-angle Face Detection Method Based on Deformable Parts Weighting |
CN103632126A (en) * | 2012-08-20 | 2014-03-12 | 华为技术有限公司 | Human face tracking method and device |
CN102855496A (en) * | 2012-08-24 | 2013-01-02 | 苏州大学 | Method and system for authenticating shielded face |
CN102855496B (en) * | 2012-08-24 | 2016-05-25 | 苏州大学 | Block face authentication method and system |
CN103700112A (en) * | 2012-09-27 | 2014-04-02 | 中国航天科工集团第二研究院二O七所 | Sheltered target tracking method based on mixed predicting strategy |
CN103116763A (en) * | 2013-01-30 | 2013-05-22 | 宁波大学 | Vivo-face detection method based on HSV (hue, saturation, value) color space statistical characteristics |
CN103116763B (en) * | 2013-01-30 | 2016-01-20 | 宁波大学 | A kind of living body faces detection method based on hsv color Spatial Statistical Character |
CN104573614A (en) * | 2013-10-22 | 2015-04-29 | 北京三星通信技术研究有限公司 | Equipment and method for tracking face |
CN104573614B (en) * | 2013-10-22 | 2020-01-03 | 北京三星通信技术研究有限公司 | Apparatus and method for tracking human face |
CN104281837A (en) * | 2014-09-26 | 2015-01-14 | 哈尔滨工业大学深圳研究生院 | Pedestrian tracking method combining Kalman filtering with ROI expansion between adjacent frames |
CN104281837B (en) * | 2014-09-26 | 2018-05-25 | 哈尔滨工业大学深圳研究生院 | With reference to Kalman filtering and the adjacent widened pedestrian tracting methods of interframe ROI |
CN104318211A (en) * | 2014-10-17 | 2015-01-28 | 中国传媒大学 | Anti-shielding face tracking method |
CN105069431B (en) * | 2015-08-07 | 2018-09-14 | 成都明图通科技有限公司 | The localization method and device of face |
CN105069431A (en) * | 2015-08-07 | 2015-11-18 | 成都明图通科技有限公司 | Method and device for positioning human face |
CN105427346A (en) * | 2015-12-01 | 2016-03-23 | 中国农业大学 | Motion target tracking method and system |
CN105427346B (en) * | 2015-12-01 | 2018-06-29 | 中国农业大学 | A kind of motion target tracking method and system |
CN105868574A (en) * | 2016-04-25 | 2016-08-17 | 南京大学 | Human face tracking optimization method for camera and intelligent health monitoring system based on videos |
CN105868574B (en) * | 2016-04-25 | 2018-12-14 | 南京大学 | A kind of optimization method of camera track human faces and wisdom health monitor system based on video |
CN106022220A (en) * | 2016-05-09 | 2016-10-12 | 西安北升信息科技有限公司 | Method for performing multi-face tracking on participating athletes in sports video |
CN106022220B (en) * | 2016-05-09 | 2020-02-28 | 北京河马能量体育科技有限公司 | Method for tracking multiple faces of participating athletes in sports video |
CN106650675A (en) * | 2016-12-28 | 2017-05-10 | 天津天地伟业生产力促进有限公司 | Embedded system-based real-time face detection algorithm |
CN106650675B (en) * | 2016-12-28 | 2020-01-21 | 天地伟业技术有限公司 | Real-time face detection method based on embedded system |
CN106780542A (en) * | 2016-12-29 | 2017-05-31 | 北京理工大学 | A kind of machine fish tracking of the Camshift based on embedded Kalman filter |
CN108280524B (en) * | 2017-01-05 | 2021-11-02 | 通用汽车环球科技运作有限责任公司 | System and method for identifying vehicles and generating reservation information |
CN108280524A (en) * | 2017-01-05 | 2018-07-13 | 通用汽车环球科技运作有限责任公司 | The system and method for identifying vehicle and generating reservation information |
CN107122762A (en) * | 2017-05-16 | 2017-09-01 | 甘肃政法学院 | A kind of processing method for compound movement image |
CN107680123A (en) * | 2017-08-30 | 2018-02-09 | 王连圭 | Cross-region human body video single target intelligent tracking algorithm |
CN107995418A (en) * | 2017-11-21 | 2018-05-04 | 维沃移动通信有限公司 | A kind of image pickup method, device and mobile terminal |
CN107995418B (en) * | 2017-11-21 | 2020-07-21 | 维沃移动通信有限公司 | Shooting method and device and mobile terminal |
CN108734091A (en) * | 2018-03-30 | 2018-11-02 | 暨南大学 | Compartment anomaly detection method, computer installation and computer readable storage medium |
CN109614841A (en) * | 2018-04-26 | 2019-04-12 | 杭州智诺科技股份有限公司 | Fast face detecting method in embedded system |
CN109614841B (en) * | 2018-04-26 | 2023-04-18 | 杭州智诺科技股份有限公司 | Rapid face detection method in embedded system |
CN109345566A (en) * | 2018-09-28 | 2019-02-15 | 上海应用技术大学 | Moving target tracking method and system |
CN109348190A (en) * | 2018-12-05 | 2019-02-15 | 吉林大学 | Video surveillance-based fall monitoring system and method |
CN110706253A (en) * | 2019-09-19 | 2020-01-17 | 中国科学院自动化研究所 | Target tracking method, system and device based on apparent feature and depth feature |
CN110706253B (en) * | 2019-09-19 | 2022-03-08 | 中国科学院自动化研究所 | Target tracking method, system and device based on apparent feature and depth feature |
CN111582212A (en) * | 2020-05-15 | 2020-08-25 | 山东大学 | Multi-domain fusion micro-expression detection method based on motion unit |
CN111582212B (en) * | 2020-05-15 | 2023-04-18 | 山东大学 | Multi-domain fusion micro-expression detection method based on motion unit |
CN113876311A (en) * | 2021-09-02 | 2022-01-04 | 天津大学 | Self-adaptively-selected non-contact multi-player heart rate efficient extraction device |
CN113876311B (en) * | 2021-09-02 | 2023-09-15 | 天津大学 | An adaptive selection non-contact multi-player heart rate efficient extraction device |
Also Published As
Publication number | Publication date |
---|---|
CN101794385B (en) | 2012-11-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101794385B (en) | Multi-angle multi-target fast human face tracking method used in video sequence | |
WO2019196130A1 (en) | Classifier training method and device for vehicle-mounted thermal imaging pedestrian detection | |
Pan et al. | Robust abandoned object detection using region-level analysis | |
Bayona et al. | Comparative evaluation of stationary foreground object detection algorithms based on background subtraction techniques | |
WO2019196131A1 (en) | Method and apparatus for filtering regions of interest for vehicle-mounted thermal imaging pedestrian detection | |
O’Malley et al. | Detection of pedestrians in far-infrared automotive night vision using region-growing and clothing distortion compensation | |
Hsu et al. | Passenger flow counting in buses based on deep learning using surveillance video | |
CN103824070A (en) | A Fast Pedestrian Detection Method Based on Computer Vision | |
WO2019114145A1 (en) | Head count detection method and device in surveillance video | |
CN104392468A (en) | Improved visual background extraction based movement target detection method | |
CN103093212A (en) | Method and device for clipping facial images based on face detection and face tracking | |
CN106570490B (en) | A real-time pedestrian tracking method based on fast clustering | |
CN105513053B (en) | One kind is used for background modeling method in video analysis | |
CN105303571A (en) | Time-space saliency detection method for video processing | |
CN101344922A (en) | A face detection method and device thereof | |
CN103942539A (en) | Method for accurately and efficiently extracting human head ellipse and detecting shielded human face | |
CN105554462A (en) | Remnant detection method | |
CN106778478A (en) | A kind of real-time pedestrian detection with caching mechanism and tracking based on composite character | |
CN107909599A (en) | A kind of object detecting and tracking system | |
Li et al. | Abandoned objects detection using double illumination invariant foreground masks | |
Wu et al. | Video smoke detection base on dense optical flow and convolutional neural network | |
Jiang et al. | An Approach for Crowd Density and Crowd Size Estimation. | |
CN105426816A (en) | Method and device of processing face images | |
CN101719280B (en) | Infrared dim and small target detection method | |
Li et al. | Face detection in complex background based on skin color features and improved AdaBoost algorithms |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20121121 Termination date: 20150323 |
|
EXPY | Termination of patent right or utility model |