CN101792362A - Method and device for continuously aromatizing dimethyl ether and regenerating catalyst - Google Patents
Method and device for continuously aromatizing dimethyl ether and regenerating catalyst Download PDFInfo
- Publication number
- CN101792362A CN101792362A CN201010111821A CN201010111821A CN101792362A CN 101792362 A CN101792362 A CN 101792362A CN 201010111821 A CN201010111821 A CN 201010111821A CN 201010111821 A CN201010111821 A CN 201010111821A CN 101792362 A CN101792362 A CN 101792362A
- Authority
- CN
- China
- Prior art keywords
- catalyst
- aromatization
- reactor
- bed reactor
- gas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/584—Recycling of catalysts
Landscapes
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
Abstract
二甲醚连续芳构化与催化剂再生的方法及装置,属于化工领域,特别涉及一种二甲醚芳构化制备芳烃的方法,催化剂及其再生的方法以及相关反应装置。利用特定的催化剂,在一定的反应器(固定床,移动床与流化床)组合装置中进行连续的芳构化反应与催化剂再生。利用该装置及催化剂及方法,可处理纯二甲醚或含有二甲醚的混合原料,具有调节芳构化反应器内的催化剂的活性,达到连续高效转化二甲醚并高选择性生成芳烃的目的。
The invention discloses a method and device for continuous aromatization of dimethyl ether and regeneration of a catalyst, belonging to the field of chemical industry, and in particular to a method for preparing aromatic hydrocarbons by aromatization of dimethyl ether, a catalyst and a method for regeneration thereof, and related reaction devices. Using a specific catalyst, the continuous aromatization reaction and catalyst regeneration are carried out in a certain combination of reactors (fixed bed, moving bed and fluidized bed). The device, catalyst and method can be used to process pure dimethyl ether or mixed raw materials containing dimethyl ether, and can adjust the activity of the catalyst in the aromatization reactor to achieve continuous and efficient conversion of dimethyl ether and high selectivity to generate aromatics. Purpose.
Description
技术领域technical field
本发明涉及一种二甲醚通过芳构化制备芳烃的方法,催化剂与装置,属于化工领域。The invention relates to a method for preparing aromatic hydrocarbons through aromatization of dimethyl ether, a catalyst and a device, and belongs to the field of chemical industry.
背景技术Background technique
芳烃是最重要的基础化学品之一,在传统的化工路线中,芳烃主要是石油炼制与煤的干馏处理得到的。石油路线得到的芳烃纯度高,适于制备各种优质化学品。煤(干馏)路线得到的芳烃由于含有噻吩类杂质,品质相对较低,应用受到局限,随着石油资源日益短缺,芳烃的供应呈紧张趋势,价格居不下,极大提高了后续化学品的生成成本,使其销售受到影响。而利用天然气(主要成分为甲烷)或石油炼厂干气(主要含甲烷,乙烷,乙烯)与石油液化气或甲醇进行无氧芳构化制备芳烃均是比较新的技术路线。Aromatics are one of the most important basic chemicals. In the traditional chemical route, aromatics are mainly obtained from petroleum refining and coal dry distillation. The aromatic hydrocarbons obtained by the petroleum route have high purity and are suitable for the preparation of various high-quality chemicals. The aromatics obtained by the coal (carbonization) route contain thiophene impurities, the quality is relatively low, and the application is limited. With the increasing shortage of petroleum resources, the supply of aromatics is tense, and the price remains high, which greatly increases the production of subsequent chemicals. costs, affecting sales. The use of natural gas (mainly composed of methane) or petroleum refinery dry gas (mainly containing methane, ethane, ethylene) and petroleum liquefied gas or methanol to produce aromatics is a relatively new technical route.
特别地,甲醇等原料可以分别从煤或天然气气化及甲醇合成进行制备,具有量大,成本低的优点.并且其活性相对较高,可以在350-500℃下通过金属与分子筛复合型催化剂进行完全转化,比甲烷,丙烷,乙烷等更宜方便,高效地制得芳烃。然而,甲醇芳构化反应生成芳烃过程中,同时生成大量的。这样,在高温环境下,水蒸汽会对含分子筛的催化剂的活性产生不利影响(包括影响其他烃类的吸附以及导致分子筛脱铝而失去活性)。长期反应过程中,会导致催化剂的酸性大幅度下降,且活性不能有效恢复,催化剂的寿命也会大幅度缩短。虽然文献中报道有一些可以给分子筛补铝的方法,但这些方法均要求催化剂上不含金属,显然其不适用于芳构化体系的要求。In particular, raw materials such as methanol can be prepared from coal or natural gas gasification and methanol synthesis, which has the advantages of large quantity and low cost. And its activity is relatively high, and it can pass through metal and molecular sieve composite catalyst at 350-500 °C Complete conversion is more convenient and efficient than methane, propane, ethane, etc. to produce aromatics. However, in the process of methanol aromatization reaction to generate aromatics, a large amount of aromatic hydrocarbons are generated at the same time. In this way, in a high temperature environment, water vapor will adversely affect the activity of the catalyst containing molecular sieves (including affecting the adsorption of other hydrocarbons and causing the molecular sieves to dealuminate and lose their activity). During the long-term reaction process, the acidity of the catalyst will be greatly reduced, and the activity cannot be effectively recovered, and the life of the catalyst will be greatly shortened. Although there are some methods reported in the literature that can supplement aluminum to molecular sieves, these methods all require no metal on the catalyst, which is obviously not suitable for the requirements of the aromatization system.
目前,虽然有甲醇脱水可以生成二甲醚的专利报道,但没有将二甲醚作为实用原料进行直接芳构化的反应器技术与方法。At present, although there are patent reports that methanol dehydration can generate dimethyl ether, there is no reactor technology and method for direct aromatization of dimethyl ether as a practical raw material.
发明内容Contents of the invention
为了克服上述甲醇芳构化过程的不足,本发明的目的是提供一种以二甲醚直接进行连续芳构化的方法与装置.二甲醚的芳构化与甲醇的芳构化相比,在过程中生成水的量大幅度减较少,所以有效缓解上述问题。其特征在于:In order to overcome the deficiencies of the above-mentioned methanol aromatization process, the object of the invention is to provide a method and device for directly carrying out continuous aromatization with dimethyl ether. The aromatization of dimethyl ether is compared with the aromatization of methanol, The amount of water generated in the process is greatly reduced, so the above problems are effectively alleviated. It is characterized by:
一种利用二甲醚进行催化转化合成芳烃的方法.其特征在于:将含二甲醚的气体通入装有金属与分子筛复合型催化剂的反应器中,在一定温度与压力下生成芳烃。催化剂失活后经气氛置换进行原位再生或将催化剂移至催化剂再生反应器内进行再生,然后再返回芳构化反应器,重复上述过程,连续制备得到芳烃。A method for catalytic conversion of dimethyl ether to synthesize aromatic hydrocarbons. It is characterized in that gas containing dimethyl ether is passed into a reactor equipped with a metal-molecular sieve composite catalyst, and aromatic hydrocarbons are generated at a certain temperature and pressure. After the catalyst is deactivated, the atmosphere is replaced for in-situ regeneration or the catalyst is moved to the catalyst regeneration reactor for regeneration, and then returned to the aromatization reactor, and the above process is repeated to obtain aromatics continuously.
本发明中如权利要求1所述的二甲醚的气体原料,其特征在于,该原料可以是纯二甲醚,也可以是二甲醚与其他组分(甲醇,水,C1-C5的烃类,CO,CO2,H2)的混合物,这些组分可独立存在,也可以同时存在,且这些组份总的质量分数不大于50%。The gas raw material of dimethyl ether as claimed in
本发明中如权利要求1所述的,适于转化如权利要求2所述的气体原料的催化剂,其特征在于,其结构为金属,分子筛,结构稳定剂或增强剂的复合体。金属的种类包括锌,银,钼,铜,镍,锰,铬,铂,铁,钌,钨,钒,锇等。负载于分子筛上的金属可以是单一组分,也可以是两种或两种以上金属的复合体。金属的总负载量为催化剂总质量的0.5%-10%。分子筛的骨架组分为硅,铝,磷等,分子筛中孔径为0.5-0.7nm的孔比例大于50%。分子筛占催化剂整体重量的50%-70%,其他为结构稳定剂与增强剂,所用催化剂的莫氏硬度大于5。催化剂颗粒平均粒径为0.05-0.5mm及3-8mm。In the present invention, as claimed in
本发明中如权利要求1所述的反应器,包括一个芳构化反应器与一个催化剂再生反应器。其特征在于,使用颗粒粒径为3-8mm的催化剂时,其芳构化反应器,催化剂再生器均为固定床反应器或移动床反应器;使用颗粒粒径为0.05-0.5mm的催化剂时,其芳构化反应器,催化剂再生器均为流化床反应器。The reactor according to
本发明中在权利要求1及4所述的反应器中,利用权利要求2所述的气体原料与权利要求3所述的催化剂进行芳构化反应的工艺条件:温度为400-700℃,压力为0.1-2.0MPa,气体在催化剂上的空速为300-6000ml/gcat/h。In the present invention, in the reactor described in
为了实现芳构化反应,本发明还提供了一种为权利要求4中所述的芳构化反应器提供能量的方法。加热介质为高温气体,温度高于芳构化反应温度100-200℃,包括但不限于烟道气(含CO,CO2,H2或CH4,或H2O,不含硫),惰性气体(含氮气,氩气或氦气),供热方式为:通过芳构化流化床反应器的换热管间接供热。In order to realize the aromatization reaction, the present invention also provides a method for providing energy for the aromatization reactor described in claim 4 . The heating medium is a high-temperature gas whose temperature is 100-200°C higher than the aromatization reaction temperature, including but not limited to flue gas (containing CO, CO 2 , H 2 or CH 4 , or H 2 O, without sulfur), inert gas ( Nitrogen, argon or helium), the heat supply method is: indirect heat supply through the heat exchange tube of the aromatization fluidized bed reactor.
由于反应温度高,催化剂失活不可避免,本发明还提供一种在如权利要求4所述的催化剂再生反应器中的将权利要求3所述的催化剂进行再生的方法。再生温度为350-750℃,压力为0.1-2.0MPa,所用气体为含氧量为0.1%-20%的惰性气体(如氮气,氩气,氦气等)。Due to the high reaction temperature, catalyst deactivation is inevitable, and the present invention also provides a method for regenerating the catalyst as claimed in
本发明还提供一种为权利要求4所述的催化剂再生反应器撤出能量的方法。换热介质为低温介质,温度为200-450℃,包括但不限于烟道气(含CO,CO2,H2或CH4,或H2O,含硫量<100mg/kg),惰性气体(含氮气,氩气或氦气),水蒸汽或加压饱和水或溶剂油。撤热方式为:通过催化剂再生反应器2的换热管间接换热。The present invention also provides a method for withdrawing energy from the catalyst regeneration reactor as claimed in claim 4 . The heat exchange medium is a low temperature medium with a temperature of 200-450°C, including but not limited to flue gas (containing CO, CO 2 , H 2 or CH 4 , or H 2 O, sulfur content < 100mg/kg), inert gas (containing nitrogen, argon or helium), water vapor or pressurized saturated water or solvent oil. The heat removal method is: indirect heat exchange through the heat exchange tube of the
为了更加有效控制催化剂再生反应器中的温度,除上述撤出能量的方法外,本发明还提供一种为权利要求4所述的催化剂再生反应器控制温度的方法。首先向催化剂再生反应器的换热管中通入如权利要求8所述的换热介质,当催化剂再生反应器中的温度适于催化剂再生要求时,改为控制如权利要求7所述的含氧气体的流量,通过调节其流量达到控制催化剂再生反应器温度的目的。具体方式为当温度升高,则降低权利要求7所述的含氧气体的通入量;如果温度降低,则增加如权利要求7所述的含氧气体的通入量。这样既可以有效地进行催化剂再生,也可以有效地保护催化剂不致于高温损坏。In order to control the temperature in the catalyst regeneration reactor more effectively, in addition to the above method of withdrawing energy, the present invention also provides a method for controlling the temperature of the catalyst regeneration reactor described in claim 4 . First pass into the heat exchange medium as claimed in claim 8 in the heat exchange tube of catalyst regeneration reactor, when the temperature in the catalyst regeneration reactor is suitable for catalyst regeneration requirement, control the containing as claimed in claim 7 instead The flow rate of oxygen gas can be adjusted to achieve the purpose of controlling the temperature of the catalyst regeneration reactor. The specific method is that when the temperature increases, the feed rate of the oxygen-containing gas according to claim 7 is reduced; if the temperature decreases, the feed rate of the oxygen-containing gas according to claim 7 is increased. This can not only effectively regenerate the catalyst, but also effectively protect the catalyst from high temperature damage.
同时,为了尽快地实现芳构化反应与催化剂再生的循环连续操作,本发明还提供一种如权利要求8所述的催化剂再生的终点的判断方法。利用权利要求8所述方法,在催化剂再生后期,如持续增加权利要求9所述的含氧气体的流量均不能维持催化剂再生反应器的温度时,则视催化剂再生反应基本结束。再辅以催化剂再生反应器出口尾气中CO2含量(接近于零,且始终不变)或含氧量(接近于含氧原料气的浓度,且始终不变)进行判断或通过催化剂取样测含碳量进行判断。At the same time, in order to realize the circular continuous operation of aromatization reaction and catalyst regeneration as soon as possible, the present invention also provides a method for judging the end point of catalyst regeneration as claimed in claim 8 . Using the method described in claim 8, in the later stage of catalyst regeneration, if the continuous increase of the flow rate of the oxygen-containing gas described in claim 9 cannot maintain the temperature of the catalyst regeneration reactor, the catalyst regeneration reaction is considered to be basically completed. Supplemented by the CO2 content (close to zero, and always constant) or oxygen content (close to the concentration of oxygen-containing feed gas, and always constant) in the exhaust gas at the outlet of the catalyst regeneration reactor to judge or measure the content by catalyst sampling Carbon content is judged.
同时,考虑到上述反应与催化剂再生可以在不同的反应器中进行,本发明还提供了针Simultaneously, considering that the above-mentioned reaction and catalyst regeneration can be carried out in different reactors, the present invention also provides
对于不同反应器的连续化操作方法。Continuous operation method for different reactors.
使用如权利要求4中所述的流化床反应器进行芳构化反应与催化剂再生时,其连续化操作方法为:首先将权利要求3所述的催化剂装于权利要求1所述的芳烃化流化床反应器1中,通入如权利要求2所述的气体,在权利要求4所述的温度与压力及空速下操作,当催化剂的活性降低到其最高活性点的90-95%,即将芳构化流化床反应器1中的部分(总催化剂量的1/5-1/10)或全部催化剂经管道3输送到权利要求5所述的催化剂再生流化床反应器2中,首先将催化剂上吸附的芳烃或其他烃类气体吹扫干净。然后,在如所述权利要求7的温度与气氛下将催化剂上的积碳燃烧去除。达到如权利要求10所述的要求后,经过将催化剂上吸附的氧吹扫干净后,迅速经管道4输送回芳构化流化床反应器1。然后重复此过程,可将芳构化流化床1中的催化剂得到再生,从而始终保持良好的催化活性,可以进行连续稳定操作。When using the fluidized bed reactor as described in claim 4 to carry out aromatization reaction and catalyst regeneration, its continuous operation method is: at first the catalyst described in
使用如权利要求4中所述的固定床反应器进行芳构化反应与催化剂再生时,其连续化操作方法为:首先将权利要求3所述的催化剂装于权利要求1所述的芳烃化固定床反应器中,通入如权利要求2所述的气体,以权利要求4所述的温度与压力及空速下操作。当芳构化固定床反应器1中催化剂的活性降低到其最高活性点的85-90%时,依同样的方法开启芳构化固定床反应器2,并将芳构化固定床反应器1的气体切换至芳构化固定床反应器2进行芳构化反应。同时,将固定床反应器1中催化剂上吸附的芳烃或其他烃类气体吹扫干净,用作催化剂再生反应器。在如权利要求7所述的温度与气氛下将催化剂上的积碳燃烧去除,达到如权利要求10所述的要求后,经过将催化剂上吸附的氧吹扫干净后,通入如权利要求2所述的气体,重新进行芳构化反应。当芳构化固定床反应器2中的催化剂失活后,依同样的方法将芳构化固定床反应器2中的催化剂进行再生。重复上述过程,可在任一时间内使上述两个固定床反应器中的一个反应器内的催化剂保持良好的催化活性,而另一个固定床反应器的催化剂中能够进行再生.这样就可以利用固定床反应器进行连续稳定操作。When using the fixed-bed reactor as described in claim 4 to carry out aromatization reaction and catalyst regeneration, its continuous operation method is: at first the catalyst described in
使用如权利要求4中所述的移动床反应器进行芳构化反应与催化剂再生时,其连续化操作方法为:首先将权利要求3所述的催化剂装于权利要求1所述的芳构化移动床反应器1中,通入如权利要求2所述的气体,在权利要求4所述的温度与压力及空速下操作.当催化剂的活性降低到其最高活性点的85-90%,即将芳构化移动床反应器1中的底部先失活的催化剂(约占总催化剂量的1/5-1/3)经管道及装置3移出芳构化移动床反应器1,并转移到催化剂再生移动床反应器2中,首先将催化剂上吸附的芳烃或其他烃类气体吹扫干净。然后,在如所述权利要求7的温度与气氛下将催化剂上的积碳燃烧去除。达到如权利要求10所述的要求后,经过将催化剂上吸附的氧吹扫干净后,迅速经管道及装置4装入芳构化移动床反应器1的顶部。然后重复此过程,可将芳构化移动床反应器1中的催化剂不断移动再生,始终保持良好的催化活性,进行连续操作。When using the moving bed reactor as described in claim 4 to carry out aromatization reaction and catalyst regeneration, its continuous operation method is: at first the catalyst described in
本发明中二甲醚芳构化的方法与装置,与目前已有的甲醇芳构化过程相比,具有如下有益效果。Compared with the currently existing methanol aromatization process, the method and device for aromatizing dimethyl ether in the present invention have the following beneficial effects.
1、二甲醚可以由甲醇芳构化脱水制备,然后与水分离后,得到纯品.在芳构化反应器中,生成每摩尔芳烃副产的水,比直接的甲醚芳构化过程降低30-50%。该过程相当于提前将一部分水分离出去.从而降低了芳构化催化剂接触水的机会,可将催化剂在高温下的寿命提高1-3倍。1. Dimethyl ether can be prepared by dehydration of methanol aromatization, and then separated from water to obtain pure product. In the aromatization reactor, the by-product water per mole of aromatics is generated, which is higher than that of the direct methyl ether aromatization process 30-50% lower. This process is equivalent to separating part of the water in advance, thereby reducing the chance of the aromatization catalyst contacting water, and can increase the life of the catalyst at high temperature by 1-3 times.
2、二甲醚由甲醇先脱水,再芳构化的过程,先使用脱水剂,再使用芳构化催化剂,使得芳构化催化剂的用量降低30%。由于二甲醚芳构化过程中催化剂上吸附的水减少,酸性增加,芳烃收率可比甲醇芳构化高5-15%。同时使催化剂再生反应器中气体吹扫的时间缩短,可以适当提高再生温度20℃,使得再生催化剂能够为芳构化反应带回的热量增加5%。过程中水分压的降低,也使得芳构化反应器的尺寸减小20%,芳构化反应器的造价降低。2. In the process of first dehydrating dimethyl ether from methanol and then aromatizing it, a dehydrating agent is used first, and then an aromatization catalyst is used, so that the consumption of the aromatization catalyst is reduced by 30%. Due to the reduction of water adsorbed on the catalyst and the increase of acidity during the aromatization of dimethyl ether, the yield of aromatics can be 5-15% higher than that of methanol aromatization. At the same time, the gas purging time in the catalyst regeneration reactor can be shortened, and the regeneration temperature can be appropriately increased by 20° C., so that the regenerated catalyst can increase the heat brought back by the aromatization reaction by 5%. The reduction of the water pressure in the process also reduces the size of the aromatization reactor by 20%, and reduces the cost of the aromatization reactor.
3、二甲醚为气体状态,在水中的溶解度低于甲醇,这样可减小后续与水分离时的复杂性。3. DME is in a gaseous state, and its solubility in water is lower than that of methanol, which can reduce the complexity of subsequent separation from water.
4、使用流化床反应器,用甲醇进料,如果过热程度不够,部分液体会使得流化床的小粒径催化剂易板结或难流化。而二甲醚是气态原料,则有效避免这一缺点,会使得流化床的操作变得更加平稳与容易。4. Use a fluidized bed reactor and feed with methanol. If the degree of superheating is not enough, part of the liquid will make the small particle size catalyst in the fluidized bed easy to harden or difficult to fluidize. However, dimethyl ether is a gaseous raw material, which can effectively avoid this shortcoming and make the operation of the fluidized bed more stable and easier.
附图说明Description of drawings
图1为本发明提供的连续芳构化与催化剂再生的装置示意图(芳构化反应器与催化剂再生器均为流化床)。1.芳构化流化床反应器(1a,气体入口,1b,气体出口;1c失活催化剂出口;1d.新鲜催化剂或再生后的催化剂入口);2.催化剂再生流化床反应器(2a,气体入口,2b,气体出口;2c再生后的催化剂出口;2d.失活催化剂入口);3.由芳构化流化床反应器1向催化剂再生流化床反应器2输送失活催化剂的管道;4.由催化剂再生流化床反应器2向芳构化流化床反应器1输送再生后的催化剂的管道。Figure 1 is a schematic diagram of the device for continuous aromatization and catalyst regeneration provided by the present invention (both the aromatization reactor and the catalyst regenerator are fluidized beds). 1. Aromatization fluidized bed reactor (1a, gas inlet, 1b, gas outlet; 1c deactivated catalyst outlet; 1d. Fresh catalyst or regenerated catalyst inlet); 2. Catalyst regeneration fluidized bed reactor (2a , gas inlet, 2b, gas outlet; 2c regenerated catalyst outlet; 2d. deactivated catalyst inlet); 3. transport deactivated catalyst from aromatization
图2为本发明提供的连续芳构化与催化剂再生的装置示意图(芳构化反应器与催化剂再生器均为固定床)。1.芳构化固定床反应器(兼作催化剂原位再生的反应器);2.芳构化固定床反应器(兼作催化剂原位再生的反应器)。Fig. 2 is a schematic diagram of the device for continuous aromatization and catalyst regeneration provided by the present invention (both the aromatization reactor and the catalyst regenerator are fixed beds). 1. Aromatization fixed-bed reactor (also used as a reactor for in-situ catalyst regeneration); 2. Aromatization fixed-bed reactor (also used as a reactor for in-situ catalyst regeneration).
图3为本发明提供的连续芳构化与催化剂再生的装置示意图(芳构化反应器与催化剂再生器均为移动床)。1.芳构化移动床反应器(1a,气体入口,1b,气体出口;1c失活催化剂出口;1d.新鲜催化剂或再生后的催化剂入口);2.催化剂再生移动床反应器(2a,气体入口,2b,气体出口;2c再生后的催化剂出口;2d.失活催化剂入口);3.由芳构化移动床反应器1向催化剂再生移动床反应器2输送失活催化剂的管道及装置;4.由催化剂再生移动床反应器2向芳构化移动床反应器1输送再生后的催化剂的管道及装置。Fig. 3 is a schematic diagram of the device for continuous aromatization and catalyst regeneration provided by the present invention (both the aromatization reactor and the catalyst regenerator are moving beds). 1. Aromatization moving bed reactor (1a, gas inlet, 1b, gas outlet; 1c deactivated catalyst outlet; 1d. Fresh catalyst or regenerated catalyst inlet); 2. Catalyst regeneration moving bed reactor (2a, gas Inlet, 2b, gas outlet; 2c catalyst outlet after regeneration; 2d. deactivated catalyst inlet); 3. pipeline and device for transporting deactivated catalyst from aromatization moving
具体实施方式Detailed ways
利用上述装置与方法,提供如下实施例详细说明本发明,但不以此限制其范围。Using the above apparatus and method, the following examples are provided to illustrate the present invention in detail, but not to limit the scope thereof.
实施例1:Example 1:
使用粒径为0.3mm的金属/分子筛型催化剂,其中金属含量为1%银,0.5%钼,1%镓,0.1%钌,控制分子筛中0.5nm的孔为70%,分子筛含量为65%,控制最终催化剂的莫氏硬度大于7.5。将催化剂装入如图1所示的芳构化流化床反应器1中,用600℃的高温烟道气换热,将芳构化流化床反应器1的将温度升至400℃。通入100%二甲醚原料气,控制二甲醚空速1000ml/gcat/h,操作压力0.1MPa。催化剂活性下降至其最高活性点95%时,在保证催化剂再生流化床反应器2的压力为微正压的无氧状态下,把1/5的催化剂经管道3输送到催化剂再生流化床反应器2中。输送完毕后,用300℃水蒸汽气吹扫积碳催化剂上的芳烃后,通入含0.5%氧气的氮气进行催化剂再生,用200℃的水蒸汽换热,使温度保持在600℃。催化剂化剂再生完毕后,用氮气将催化剂再生反应器2及催化剂置换为无氧状态,用惰性气体将再生后的催化剂经管道4输送到芳构化流化床反应器1中。重复上述过程使得催化剂实现连续再生并连续制备芳烃。在催化剂稳定使用的3000小时内,二甲醚单程平均转化率大于95%,芳烃单程收率(原料气总碳基)70%,芳烃BTX(苯,甲苯,二甲苯)的选择性大于91.6%。Use a metal/molecular sieve type catalyst with a particle size of 0.3mm, wherein the metal content is 1% silver, 0.5% molybdenum, 1% gallium, 0.1% ruthenium, control the 0.5nm pores in the molecular sieve to be 70%, and the molecular sieve content is 65%, The Mohs hardness of the final catalyst is controlled to be greater than 7.5. The catalyst is loaded into the aromatization
实施例2:Example 2:
使用粒径为0.05mm的金属/分子筛型催化剂,其中金属含量为1%钼,0.3%银,4%铬,控制含硅,铝及磷的分子筛中0.5-0.7nm的孔比例为90%,分子筛含量为50%,控制最终催化剂的莫氏硬度大于8。将催化剂装入如图1所示的芳构化流化床反应器1中,用580℃的高温氮气换热,将芳构化流化床反应器1的温度升至450℃。通入二甲醚(60%),甲烷(5%),CO(5%),H2O(10%),H2(5%)与CO2(15%)混合原料气,控制总空速2000ml/gcat/h,操作压力0.1MPa。催化剂活性下降至其最高活性点92%时,在保证催化剂再生流化床反应器2的压力为微正压,无氧状态下,把1/6的催化剂通过管道3输送到催化剂再生流化床反应器2中。输送完毕后,用室温的甲烷气吹扫积碳催化剂上的芳烃后,再用室温氮气置换为无还原性气体状态,然后通入含0.1%氧,5%氩的氮气,用250℃的溶剂油换热,使再生温度保持在500℃下,催化剂再生完毕后,用氮气将催化剂再生流化床反应器2及催化剂置换为无氧状态,通过输送管道用惰性气体将再生后的催化剂从催化剂再生流化床反应器2经管道4输送到芳构化流化床反应器1中。重复上述过程使得催化剂不断得到再生,连续得到芳烃。在催化剂稳定使用的2500小时内,二甲醚平均转化率98%,芳烃单程收率(混合原料气的总碳基)大于45%,芳烃中BTX(苯,甲苯与二甲苯)的总选择性大于90.8%。Use a metal/molecular sieve catalyst with a particle size of 0.05mm, in which the metal content is 1% molybdenum, 0.3% silver, and 4% chromium, and the proportion of 0.5-0.7nm pores in the molecular sieve containing silicon, aluminum and phosphorus is controlled to 90%. The molecular sieve content is 50%, and the Mohs hardness of the final catalyst is controlled to be greater than 8. The catalyst was loaded into the aromatization
实施例3:Example 3:
使用粒径为0.5mm的金属/分子筛型催化剂,其中金属含量为5%钼,3%钒0.3%锰,0.1%铱,控制含硅,铝及磷的分子筛中0.5-0.6nm的孔比例为95%,分子筛含量为70%,控制最终催化剂的莫氏硬度大于6.5。将催化剂装入如图1所示的芳构化流化床反应器1中,用700℃的高温烟道气换热,将芳构化流化床反应器1的温度升至550℃。通入二甲醚(50%),乙烯(3%),乙烷(5%),丙烷(12%),H2(4%),丙烯(8%),丁烯(3%),丁烷(5%)与CO2(10%)混合原料气,控制总空速4000ml/gcat/h,操作压力0.1MPa。催化剂活性下降至其最高活性点94%时,在保证催化剂再生流化床反应器2的压力为微正压,无氧状态下,把1/5的催化剂经管道3输送到催化剂再生流化床反应器2中。输送完毕后,用室温的甲烷气吹扫积碳催化剂上的芳烃后,再用室温氮气置换为无还原性气体状态,然后通入含10%氧气,10%氦气的氮气,用200℃的加压饱和水换热,使再生温度保持在550℃,催化剂再生完毕后,用氦气将催化剂再生流化床反应器2及催化剂置换为无氧状态,通过输送管道用氮气将再生后的催化剂从催化剂再生流化床反应器2经管道4输送到芳构化流化床反应器1中。重复上述过程使得催化剂不断得到再生,连续得到芳烃。在催化剂稳定使用的3200小时内,二甲醚平均转化率98%,芳烃单程收率(混合原料气的总碳基)大于68%,芳烃中BTX(苯,甲苯,二甲苯)的总选择性大于92%。Use a metal/molecular sieve catalyst with a particle size of 0.5mm, wherein the metal content is 5% molybdenum, 3% vanadium, 0.3% manganese, and 0.1% iridium. 95%, the molecular sieve content is 70%, and the Mohs hardness of the final catalyst is controlled to be greater than 6.5. The catalyst is loaded into the aromatization
实施例4:Example 4:
使用粒径为0.1mm的金属/分子筛型催化剂,其中金属含量为3%钼,6%钨,0.5%锰,0.5%钌,控制含硅,铝及磷的分子筛中0.5-0.7nm的孔比例为95%,分子筛含量为65%,控制最终催化剂的莫氏硬度大于5.5。将催化剂装入如图1所示的芳构化流化床反应器1中,用700℃的高温烟道气换热,将芳构化流化床反应器1的温度升至550℃。通入二甲醚(70%),戊烷(5%),戊烯(5%),丁烷(10%)与丁烯(10%)混合原料气,控制总空速4000ml/gcat/h,操作压力0.2MPa,催化剂活性下降至其最高活性点90%。在保证催化剂再生流化床反应器2的压力为微正压,无氧状态下,把1/5的催化剂经管道3输送到催化剂流化床反应器2中。输送完毕后,用室温的甲烷气吹扫积碳催化剂上的芳烃后,再用室温氮气置换为无还原性气体状态,然后通入含7%氧气的氮气,用300℃的水蒸汽换热,使再生温度保持在500℃,催化剂再生完毕后,用氮气将催化剂再生流化床反应器2及催化剂置换为无氧状态,将再生后的催化剂从催化剂再生流化床反应器2经管道4输送到芳构化流化床反应器1中。重复上述过程使得催化剂不断得到再生,连续得到芳烃。在催化剂稳定使用的4200小时内,二甲醚平均转化率98%,芳烃单程收率(二甲醚与戊烷,戊烯,丁烷与丁烯总碳基)大于70.4%,芳烃中BTX(苯,甲苯,二甲苯)的总选择性为92.5%。Use a metal/molecular sieve catalyst with a particle size of 0.1mm, in which the metal content is 3% molybdenum, 6% tungsten, 0.5% manganese, 0.5% ruthenium, and control the pore ratio of 0.5-0.7nm in the molecular sieve containing silicon, aluminum and phosphorus 95%, the molecular sieve content is 65%, and the Mohs hardness of the final catalyst is controlled to be greater than 5.5. The catalyst is loaded into the aromatization
实施例5:Example 5:
使用粒径为0.15mm的金属/分子筛型催化剂,其中金属含量为6%钼,控制分子筛中0.5nm的孔为70%,分子筛含量为55%,控制最终催化剂的莫氏硬度大于7。将催化剂装入如图1所示芳构化流化床反应器1中,用860℃的高温烟道气换热,将芳构化流化床反应器1的温度升至700℃。通入二甲醚(90%)与甲烷(10%)的混合原料气,控制甲烷空速1500ml/gcat/h,操作压力0.1Mpa。催化剂活性下降至其最高活性点95%时,在保证催化剂再生流化床反应器2的压力为微正压,无氧状态下,把1/10的催化剂经管道3输送到催化剂再生流化床反应器2中。输送完毕后,用室温的甲烷气吹扫积碳催化剂上的芳烃后,再用室温氮气置换为无甲烷状态,然后通入含0.5%氧气的氮气,用300℃的氩气换热,使再生温度保持在750℃,催化剂化剂再生完毕后,用氮气将催化剂再生流化床反应器2及催化剂置换为无氧状态,将再生后的催化剂从催化剂再生流化床反应器2经管道4输送到芳构化流化床反应器1中。重复上述过程使得催化剂不断得到再生,连续得到芳烃。在催化剂稳定使用的4000小时内,二甲醚平均转化率大于99%,甲烷转化率大于20%,芳烃单程收率(二甲醚与甲烷总碳基)大于68%,芳烃中BTX(苯,甲苯,二甲苯)的总选择性为93.4%。Use a metal/molecular sieve catalyst with a particle size of 0.15mm, wherein the metal content is 6% molybdenum, the 0.5nm pores in the molecular sieve are controlled to be 70%, the molecular sieve content is 55%, and the Mohs hardness of the final catalyst is controlled to be greater than 7. The catalyst was loaded into the aromatization
实施例6:Embodiment 6:
使用粒径为0.25mm的金属/分子筛型催化剂,其中金属含量为1%银,控制含硅,铝及磷的分子筛中0.5-0.6nm的孔比例为90%,分子筛含量为60%,控制最终催化剂的莫氏硬度大于6.8。将催化剂装入如图1所示的芳构化流化床反应器1中,用570℃的高温烟道气换热,将芳构化流化床反应器1的温度升至450℃。通入二甲醚(80%),甲醇(19%)与H2O(1%)混合原料气,控制总空速4000ml/gcat/h,操作压力2Mpa。催化剂活性下降至其最高活性点91%时,在保证催化剂再生流化床反应器2的压力为微正压,无氧状态下,把1/7的催化剂经管道3输送到催化剂再生流化床反应器2中。输送完毕后,用室温的甲烷气吹扫积碳催化剂上的芳烃后,再用室温氮气置换为无还原性气体状态,然后通入含2%氧气,10%氩气的氮气,用250℃的溶剂油换热,使再生温度保持在400℃下再生6小时,催化剂再生完毕后,用氮气将催化剂再生流化床反应器2及催化剂置换为无氧状态,将再生后的催化剂从催化剂再生流化床反应器2经管道4输送到芳构化流化床反应器1中。重复上述过程使得催化剂不断得到再生,连续得到芳烃。在催化剂稳定使用的5200小时内,二甲醚平均转化率98%,甲醇转化率100%,芳烃单程收率(混合原料气碳基)大于67%,芳烃中BTX(苯,甲苯,二甲苯)的总选择性大于93%。Use a metal/molecular sieve catalyst with a particle size of 0.25mm, in which the metal content is 1% silver, and the proportion of pores of 0.5-0.6nm in the molecular sieve containing silicon, aluminum and phosphorus is controlled to be 90%, and the molecular sieve content is 60%. The Mohs hardness of the catalyst is greater than 6.8. The catalyst was loaded into the aromatization
实施例7:Embodiment 7:
使用粒径为0.4mm的金属/分子筛型催化剂,其中金属含量为5%锌,控制含磷,硅,铝的分子筛中0.5-0.6nm的孔比例为100%,分子筛含量为65%,控制最终催化剂的莫氏硬度大于6.5。将催化剂装入如图1所示的芳构化流化床反应器1中,用600℃的高温烟道气换热,将芳构化流化床反应器的温度升至480℃。通入二甲醚(100%)的原料气,控制总空速2000ml/gcat/h,操作压力1MPa。催化剂活性下降至其最高活性点93%时,在保证催化剂再生流化床反应器2的压力为微正压,无氧状态下,把1/6的催化剂经管道3输送到催化剂再生流化床反应器2中。输送完毕后,用室温的氮气吹扫积碳催化剂上的芳烃后,再用室温氮气置换为无还原性气体状态,然后通入含7%氧气的氮气,用300℃的水蒸汽换热,使再生温度保持在350℃。催化剂再生完毕后,用氮气将催化剂再生流化床反应器2及催化剂置换为无氧状态,将再生后的催化剂从催化剂再生流化床反应器2经管道4输送到芳构化流化床反应器1中。重复上述过程使得催化剂不断得到再生,连续得到芳烃。在催化剂稳定使用的5800小时内,二甲醚平均转化率97.2%,芳烃单程收率大于64%,芳烃中BTX(苯,甲苯,二甲苯)的总选择性大于90.8%。Use a metal/molecular sieve type catalyst with a particle size of 0.4mm, in which the metal content is 5% zinc, control the proportion of pores of 0.5-0.6nm in the molecular sieve containing phosphorus, silicon, and aluminum to be 100%, and the molecular sieve content is 65%, control the final The Mohs hardness of the catalyst is greater than 6.5. The catalyst was charged into the aromatization
实施例8:Embodiment 8:
使用粒径为0.15mm的金属/分子筛型催化剂,其中金属含量为0.5%银,3%锌,控制含硅,铝的分子筛中0.5-0.6nm的孔比例为90%,分子筛含量为70%,控制最终催化剂的莫氏硬度大于6.5。将催化剂装入如图1所示的芳构化流化床反应器1中,用600℃的高温烟道气换热,将芳构化流化床反应器1的温度升至450℃。通入二甲醚(100%)的原料气,控制总空速3000ml/gcat/h,操作压力0.1MPa。催化剂活性下降至其最高活性点95%时,在保证催化剂再生流化床反应器2的压力为微正压,无氧状态下,把1/9的催化剂经管道3输送到催化剂再生流化床反应器2。输送完毕后,用室温的氮气吹扫积碳催化剂上的芳烃后,再用室温氮气置换为无还原性气体状态,然后通入含4%氧气的氩气,用250℃的溶剂油换热,使再生温度保持在350℃。催化剂再生完毕后,用氩气将催化剂再生流化床反应器2及催化剂置换为无氧状态,将再生后的催化剂从催化剂再生流化床反应器2经管道4输送到芳构化流化床反应器1中。重复上述过程使得催化剂不断得到再生,连续得到芳烃。在催化剂稳定使用的4800小时内,二甲醚平均转化率97.5%,芳烃单程收率(二甲醚碳基)大于70.2%,芳烃中BTX(苯,甲苯,二甲苯)的总选择性大于91.7%。Use a metal/molecular sieve type catalyst with a particle size of 0.15mm, in which the metal content is 0.5% silver, 3% zinc, and the proportion of pores in the molecular sieve containing silicon and aluminum is 90%, and the molecular sieve content is 70%. The Mohs hardness of the final catalyst is controlled to be greater than 6.5. The catalyst is loaded into the aromatization
实施例9:Embodiment 9:
使用粒径为0.25mm的金属/分子筛型催化剂,其中金属含量为5%银,控制含硅,铝的分子筛中0.5-0.6nm的孔比例为100%,分子筛含量为68%,控制最终催化剂的莫氏硬度大于6.3。将催化剂装入如图1所示的芳构化流化床反应器1中,用600℃的高温氮气换热,将芳构化流化床反应器1的温度升至480℃。通入二甲醚(50%),甲醇(50%)的原料气,控制总空速6000ml/gcat/h,操作压力1MPa。催化剂活性下降至其最高活性点95%时,在保证催化剂再生流化床反应器2的压力为微正压,无氧状态下,把1/8的催化剂经管道3输送到催化剂再生流化床反应器2。输送完毕后,用室温的氮气吹扫积碳催化剂上的芳烃后,再用室温氮气置换为无还原性气体状态,然后通入含2%氧气的氮气,用260℃的水蒸汽换热,使再生温度保持在360℃。催化剂再生完毕后,用氮气将催化剂再生反应流化床反应器2及催化剂置换为无氧状态,将再生后的催化剂从催化剂再生流化床反应器2经管道4输送到芳构化流化床反应器1中。重复上述过程使得催化剂不断得到再生,连续得到芳烃。在催化剂稳定使用的4000小时内,二甲醚的平均转化率大于97.5%,甲醇转化率为100%,芳烃单程收率(混合原料气碳基)大于69%,芳烃中BTX(苯,甲苯,二甲苯)的总选择性大于89%。Use a metal/molecular sieve catalyst with a particle size of 0.25mm, in which the metal content is 5% silver, control silicon, and the ratio of pores of 0.5-0.6nm in the molecular sieve of aluminum is 100%, and the molecular sieve content is 68%, control the final catalyst. The Mohs hardness is greater than 6.3. The catalyst was loaded into the aromatization
实施例10:Example 10:
使用粒径为0.08mm的金属/分子筛型催化剂,其中金属含量为0.3%铜,3%锌与0.2%钼,控制含硅,铝和磷的分子筛中0.5-0.6nm的孔比例为90%,分子筛含量为60%,控制最终催化剂的莫氏硬度大于7。将催化剂装入如图1所示的芳构化流化床反应器1中,用600℃的高温烟道气换热,将芳构化反应器1的温度升至500℃。通入二甲醚(95%),H2O(5%)的原料气,控制总空速4000ml/gcat/h,操作压力0.5MPa。催化剂活性下降至其最高活性点95%时,在保证催化剂再生流化床反应器2的压力为微正压,无氧状态下,把1/7的催化剂经管道3输送到催化剂再生流化床反应器2中。输送完毕后,用室温的氮气吹扫积碳催化剂上的芳烃后,再用室温氮气置换为无还原性气体状态,然后通入空气,用300℃的水蒸汽换热,使再生温度保持在400℃。催化剂再生完毕后,用氮气将催化剂再生流化床反应器2及催化剂置换为无氧状态,将再生后的催化剂从催化剂再生流化床反应器2经管道4输送到芳构化流化床反应器1中。重复上述过程使得催化剂不断得到再生,连续得到芳烃。在催化剂稳定使用的4200小时内,二甲醚平均转化率96.5%,芳烃单程收率(二甲醚碳基)大于65%,芳烃中BTX(苯,甲苯,二甲苯)的总选择性大于92.5%。Use a metal/molecular sieve catalyst with a particle size of 0.08mm, in which the metal content is 0.3% copper, 3% zinc and 0.2% molybdenum, and control the ratio of 0.5-0.6nm pores in the molecular sieve containing silicon, aluminum and phosphorus to 90%, The molecular sieve content is 60%, and the Mohs hardness of the final catalyst is controlled to be greater than 7. The catalyst is loaded into the aromatization
实施例11:Example 11:
使用粒径为8mm的金属/分子筛型催化剂,其中金属含量为1.2%钼,5%锌,1%钨,控制含硅,铝的分子筛中0.5nm的孔为50%,分子筛含量为70%,控制最终催化剂的莫氏硬度大于5。将催化剂装入如图2所示的芳构化固定床反应器1。用700℃的高温氩气换热,将芳构化固定床反应器1的温度升至500℃。通入二甲醚(75%),甲醇(20%)和H2O(5%)的混合原料气,控制总空速4000ml/gcat/h,操作压力0.1MPa。催化剂活性下降至其最高活性点90%时,关闭固定床反应器1的进料,用室温的氮气吹扫积碳催化剂上的芳烃并置换为无还原性气体的状态,然后通入含5%氧气的氩气,用350℃的水蒸汽换热,使再生温度保持在400℃。在此同时,以操作上面固定床反应器1相同的方法与工艺条件,将原料气通入固定床反应器2中,进行芳构化反应。当固定床反应器1的催化剂再生完毕后,用氩气将固定床反应器1及催化剂置换为无氧状态,重新依照上述条件进行芳构化反应。当固定床反应器2中的催化剂活性下降为最高活性点的90%后,重复与固定床反应器1中相同的催化剂再生过程.通过两个固定床反应器切换,从而使得在任一时间段内催化剂都不断得到再生,连续得到芳烃。在催化剂稳定使用的37000小时内,二甲醚与甲醇的平均转化率均大于95%,芳烃单程收率(二甲醚与甲醇总碳基)大于65%,芳烃中BTX(苯,甲苯,二甲苯)的总选择性大于93.6%。Use a metal/molecular sieve type catalyst with a particle size of 8mm, in which the metal content is 1.2% molybdenum, 5% zinc, 1% tungsten, control silicon, and the 0.5nm pores in the molecular sieve of aluminum are 50%, and the molecular sieve content is 70%, Control the Mohs hardness of the final catalyst to be greater than 5. The catalyst is loaded into aromatization fixed-
实施例12:Example 12:
使用粒径为3mm的金属/分子筛型催化剂,其中金属含量为3%锌,,控制含硅,铝的分子筛中0.5nm的孔为80%,分子筛含量为65%,控制最终催化剂的莫氏硬度大于8。将催化剂装入如图3所示的芳构化移动床反应器1中,用650℃的高温烟道气换热,将芳构化移动床反应器1的温度升至450℃。通入二甲醚(100%),控制总空速6000ml/gcat/h,操作压力0.4MPa。反应过程中催化剂活性下降至其最高活性点的85%时,将1/3的催化剂逐渐从芳构化移动床反应器1的下部移出经管道及装置3进入催化剂再生移动床反应器2中,用室温的氮气吹扫积碳催化剂上的芳烃并置换为无还原性气体状态,然后通入含5%氧气的氮气,用200℃的氩气换热,使再生温度保持在600℃,催化剂再生完毕后,用氮气将催化剂再生移动床反应器2及催化剂置换为无氧状态,经管道及装置4将催化剂装入芳构化移动床反应器1的顶部。重复上述过程使得催化剂不断得到再生,不断在芳构化移动床反应器1与催化剂再生移动床反应器2中循环,连续得到芳烃。在催化剂稳定使用的3500小时内,二甲醚平均转化率95%,芳烃单程收率(二甲醚总碳基)大于68%,芳烃中BTX(苯,甲苯,二甲苯)的总选择性大于93%。Use a metal/molecular sieve type catalyst with a particle size of 3mm, wherein the metal content is 3% zinc, and the molecular sieve containing silicon and aluminum is controlled to have 80% pores of 0.5nm, and the molecular sieve content is 65%, and the Mohs hardness of the final catalyst is controlled greater than 8. The catalyst was loaded into the aromatization moving
实施例13:Example 13:
使用粒径为8mm的金属/分子筛型催化剂,其中金属含量为0.02%铂6%镓,0.3%镍,0.7%铁,控制含硅,铝的分子筛中0.5nm的孔为70%,分子筛含量为55%,控制最终催化剂的莫氏硬度大于7。将催化剂装入如图3所示的芳构化移动床反应器1中,用700℃的高温烟道气换热,将芳构化移动床反应器1的温度升至550℃。通入二甲醚(51%),CO(20%),H2(10%)与CO2(19%)混合原料气,控制总空速300ml/gcat/h,操作压力0.5MPa。反应过程中催化剂活性下降至其最高活性点的90%时,将1/5的催化剂逐渐从芳构化移动床反应器1的下部移出经管道及装置3进入催化剂再生移动床反应器2中,用室温的氮气吹扫积碳催化剂上的芳烃并置换为无还原性气体状态,然后通入含15%氧气的氮气,用200℃的氮气换热,使再生温度保持在500℃,催化剂再生完毕后,用氮气将催化剂再生移动床反应器2及催化剂置换为无氧状态,将催化剂经管道及装置4装入芳构化移动床反应器1的顶部。重复上述过程使得催化剂不断得到再生,不断在芳构化移动床反应器1与催化剂再生移动床反应器2中循环,连续得到芳烃。在催化剂稳定使用的4000小时内,二甲醚平均转化率94.5%,芳烃单程收率(二甲醚总碳基)大于70%,芳烃中BTX(苯,甲苯,二甲苯)的总选择性大于93.8%。Use a metal/molecular sieve type catalyst with a particle size of 8mm, in which the metal content is 0.02% platinum 6% gallium, 0.3% nickel, 0.7% iron, control the silicon, and the 0.5nm pores in the molecular sieve of aluminum are 70%, and the molecular sieve content is 55%, controlling the Mohs hardness of the final catalyst to be greater than 7. The catalyst was loaded into the aromatization moving
实施例14:Example 14:
使用粒径为3mm的金属/分子筛型催化剂,其中金属含量为3%银,控制含硅,铝的分子筛中0.5nm的孔为60%,分子筛含量为90%,控制最终催化剂的莫氏硬度大于6.5。将催化剂装入如图2所示的芳构化固定床反应器1。用700℃的高温氮气换热,将芳构化固定床反应器1的温度升至475℃。通入二甲醚(65%),甲醇(35%)的混合原料气,控制总空速6000ml/gcat/h,操作压力0.3MPa。催化剂活性下降至其最高活性点85%时,关闭固定床反应器1的进料,用室温的氮气吹扫积碳催化剂上的芳烃并置换为无还原性气体的状态,然后通入含10%氧气的氩气,用350℃的水蒸汽换热,使再生温度保持在600℃。在此同时,以操作上面固定床反应器1相同的方法与工艺条件,将原料气通入固定床反应器2中,进行芳构化反应。当固定床反应器1的催化剂再生完毕后,用氮气将固定床反应器1及催化剂置换为无氧状态,重新依照上述条件进行芳构化反应。当固定床反应器2中的催化剂活性下降为最高活性点的85%后,重复与固定床反应器1中相同的催化剂再生过程.通过两个固定床反应器切换,从而使得在任一时间段内催化剂都不断得到再生,连续得到芳烃。在催化剂稳定使用的3000小时内,二甲醚与甲醇的平均转化率均大于97%,芳烃单程收率(二甲醚与甲醇总碳基)大于68%,芳烃中BTX(苯,甲苯,二甲苯)的总选择性大于94%。Use a metal/molecular sieve catalyst with a particle size of 3mm, wherein the metal content is 3% silver, control the silicon, and the 0.5nm pores in the aluminum molecular sieve are 60%, and the molecular sieve content is 90%, and the Mohs hardness of the final catalyst is controlled to be greater than 6.5. The catalyst is loaded into aromatization fixed-
Claims (13)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201010111821A CN101792362A (en) | 2010-02-11 | 2010-02-11 | Method and device for continuously aromatizing dimethyl ether and regenerating catalyst |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201010111821A CN101792362A (en) | 2010-02-11 | 2010-02-11 | Method and device for continuously aromatizing dimethyl ether and regenerating catalyst |
Publications (1)
Publication Number | Publication Date |
---|---|
CN101792362A true CN101792362A (en) | 2010-08-04 |
Family
ID=42585310
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201010111821A Pending CN101792362A (en) | 2010-02-11 | 2010-02-11 | Method and device for continuously aromatizing dimethyl ether and regenerating catalyst |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101792362A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103464193A (en) * | 2013-08-09 | 2013-12-25 | 华电煤业集团有限公司 | Fluidized catalyst for alcohol ether and hydrocarbon aromatization, and preparation method and application method thereof |
CN104190441A (en) * | 2014-08-28 | 2014-12-10 | 中国科学院福建物质结构研究所 | Method for regenerating deactivated palladium catalyst on line in process of preparing ethylene glycol through coal |
CN106966849A (en) * | 2017-03-10 | 2017-07-21 | 浙江大学 | A kind of method for improving oxygenatedchemicals aromatisation yield |
CN107778122A (en) * | 2016-08-30 | 2018-03-09 | 中国石油化工股份有限公司 | The method that methanol prepares aromatic hydrocarbons |
CN112517055A (en) * | 2020-12-14 | 2021-03-19 | 中国科学院山西煤炭化学研究所 | Coupling aromatization catalyst and preparation method and application thereof |
CN114130313A (en) * | 2021-11-08 | 2022-03-04 | 清华大学 | C is to be3-C9Fluidized bed continuous reaction regeneration system and method for converting alkane into aromatic hydrocarbon |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101244969A (en) * | 2008-03-25 | 2008-08-20 | 清华大学 | Device and method for continuous aromatization and catalyst regeneration |
CN101602646A (en) * | 2009-07-24 | 2009-12-16 | 中国海洋石油总公司 | A method for producing aromatics from methanol/dimethyl ether and its special reaction device |
-
2010
- 2010-02-11 CN CN201010111821A patent/CN101792362A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101244969A (en) * | 2008-03-25 | 2008-08-20 | 清华大学 | Device and method for continuous aromatization and catalyst regeneration |
CN101602646A (en) * | 2009-07-24 | 2009-12-16 | 中国海洋石油总公司 | A method for producing aromatics from methanol/dimethyl ether and its special reaction device |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103464193A (en) * | 2013-08-09 | 2013-12-25 | 华电煤业集团有限公司 | Fluidized catalyst for alcohol ether and hydrocarbon aromatization, and preparation method and application method thereof |
CN104190441A (en) * | 2014-08-28 | 2014-12-10 | 中国科学院福建物质结构研究所 | Method for regenerating deactivated palladium catalyst on line in process of preparing ethylene glycol through coal |
CN107778122A (en) * | 2016-08-30 | 2018-03-09 | 中国石油化工股份有限公司 | The method that methanol prepares aromatic hydrocarbons |
CN107778122B (en) * | 2016-08-30 | 2020-12-29 | 中国石油化工股份有限公司 | Method for preparing aromatic hydrocarbon from methanol |
CN106966849A (en) * | 2017-03-10 | 2017-07-21 | 浙江大学 | A kind of method for improving oxygenatedchemicals aromatisation yield |
CN112517055A (en) * | 2020-12-14 | 2021-03-19 | 中国科学院山西煤炭化学研究所 | Coupling aromatization catalyst and preparation method and application thereof |
CN114130313A (en) * | 2021-11-08 | 2022-03-04 | 清华大学 | C is to be3-C9Fluidized bed continuous reaction regeneration system and method for converting alkane into aromatic hydrocarbon |
CN114130313B (en) * | 2021-11-08 | 2023-03-10 | 清华大学 | Fluidized bed continuous reaction regeneration system and method for converting C3-C9 alkanes into aromatics |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101244969A (en) | Device and method for continuous aromatization and catalyst regeneration | |
Chen et al. | Characteristics and catalytic properties of Ni/CaAlOx catalyst for hydrogen-enriched syngas production from pyrolysis-steam reforming of biomass sawdust | |
CN109569704B (en) | Catalyst for directly preparing olefin and aromatic hydrocarbon from synthesis gas and application thereof | |
CN102259036B (en) | Method for regenerating fixed bed FischerTropsch synthesis catalyst | |
CN101792362A (en) | Method and device for continuously aromatizing dimethyl ether and regenerating catalyst | |
CN101224425A (en) | A kind of cobalt catalyst with controllable distribution of Fischer-Tropsch synthesis product and its preparation and application | |
CN110538669B (en) | A kind of copper-cobalt metal carbide catalyst for producing oxygen-containing chemicals from syngas and preparation method thereof | |
CN106268816A (en) | Activated carbon supported cobalt-based synthetic oil catalyst and its preparation method and application | |
CN106140165A (en) | Porous charcoal carries twin crystal phase Co based Fischer-Tropsch synthesis catalyst and preparation method and application | |
CN104117380A (en) | Process for production of hydrocarbons by synthetic gas conversion and catalysts used for process | |
AU2022256114A1 (en) | Process for producing hydrogen, carbon, and ethylene from methane-containing feedstock | |
KR20130034052A (en) | Method for producing aromatic compounds from methane | |
CN104403682A (en) | Photocatalysis Fischer-Tropsch synthesis method and used catalyst | |
CN105903497A (en) | Regeneration treatment method of cobalt-based catalyst for Fischer-Tropsch synthesis | |
KR101816787B1 (en) | Storage method of activated catalysts for Fischer-Tropsch synthesis | |
CN106883091B (en) | Method for selectively synthesizing p-xylene from 4-methyl-3-cyclohexene formaldehyde | |
CN103252238B (en) | Catalyst for selectively synthesizing gasoline and diesel components by synthesis gas and preparation method of catalyst | |
Weber et al. | Recent advances in bifunctional synthesis gas conversion to chemicals and fuels with a comparison to monofunctional processes | |
CN107952495B (en) | A kind of regeneration method and application of Fischer-Tropsch synthesis catalyst | |
US8026290B2 (en) | Methods and apparatus for continuous removal of carbon dioxide from a mixture of reacting gases | |
CN101186550B (en) | Fischer-Tropsch synthesis method for increasing liquid hydrocarbon selectivity | |
CN101733121A (en) | Catalyst for preparing hydrocarbon from carbon dioxide-containing synthesis gas, preparation method and application | |
CN108311176A (en) | A kind of Activiation method in situ of catalyst | |
CN110760336A (en) | A method for directly preparing high-quality jet fuel from syngas | |
US20220331784A1 (en) | Catalyst composition for the production of hydrogen |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20100804 |