CN101787503B - Device and method for preparing nanometer fiber orientation and location reinforced metal-based composite material - Google Patents
Device and method for preparing nanometer fiber orientation and location reinforced metal-based composite material Download PDFInfo
- Publication number
- CN101787503B CN101787503B CN201010013711A CN201010013711A CN101787503B CN 101787503 B CN101787503 B CN 101787503B CN 201010013711 A CN201010013711 A CN 201010013711A CN 201010013711 A CN201010013711 A CN 201010013711A CN 101787503 B CN101787503 B CN 101787503B
- Authority
- CN
- China
- Prior art keywords
- die
- coil
- nanofiber
- orientation
- switch
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000002131 composite material Substances 0.000 title claims abstract description 30
- 229910052751 metal Inorganic materials 0.000 title claims abstract description 23
- 239000002184 metal Substances 0.000 title claims abstract description 23
- 238000000034 method Methods 0.000 title claims abstract description 19
- 239000000835 fiber Substances 0.000 title abstract description 22
- 239000002121 nanofiber Substances 0.000 claims abstract description 36
- 238000001125 extrusion Methods 0.000 claims abstract description 29
- 238000006243 chemical reaction Methods 0.000 claims abstract description 19
- 238000002360 preparation method Methods 0.000 claims abstract description 18
- 238000003723 Smelting Methods 0.000 claims abstract description 11
- 239000011159 matrix material Substances 0.000 claims abstract description 11
- 230000004807 localization Effects 0.000 claims abstract description 10
- 238000003756 stirring Methods 0.000 claims abstract description 5
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims description 19
- 239000002994 raw material Substances 0.000 claims description 14
- 239000002134 carbon nanofiber Substances 0.000 claims description 11
- 239000002079 double walled nanotube Substances 0.000 claims description 9
- 229910052802 copper Inorganic materials 0.000 claims description 8
- 239000007787 solid Substances 0.000 claims description 5
- 230000003068 static effect Effects 0.000 claims description 5
- 229910052782 aluminium Inorganic materials 0.000 claims description 4
- 238000010438 heat treatment Methods 0.000 claims description 3
- 229910052749 magnesium Inorganic materials 0.000 claims description 3
- 229910052799 carbon Inorganic materials 0.000 claims description 2
- 230000000694 effects Effects 0.000 claims description 2
- 229910052719 titanium Inorganic materials 0.000 claims description 2
- 238000009827 uniform distribution Methods 0.000 claims description 2
- 238000007493 shaping process Methods 0.000 claims 6
- 239000000155 melt Substances 0.000 claims 1
- 238000012856 packing Methods 0.000 claims 1
- 238000009423 ventilation Methods 0.000 claims 1
- 239000011156 metal matrix composite Substances 0.000 abstract description 25
- 239000000463 material Substances 0.000 abstract description 11
- 230000005672 electromagnetic field Effects 0.000 abstract description 6
- 239000012783 reinforcing fiber Substances 0.000 abstract description 3
- 238000004519 manufacturing process Methods 0.000 abstract description 2
- 238000001816 cooling Methods 0.000 description 16
- 239000007788 liquid Substances 0.000 description 15
- 239000000203 mixture Substances 0.000 description 12
- 239000010949 copper Substances 0.000 description 8
- 239000002109 single walled nanotube Substances 0.000 description 8
- 229910000838 Al alloy Inorganic materials 0.000 description 7
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 7
- 238000010586 diagram Methods 0.000 description 7
- 229910000861 Mg alloy Inorganic materials 0.000 description 6
- 238000009826 distribution Methods 0.000 description 6
- 230000002787 reinforcement Effects 0.000 description 6
- 238000013019 agitation Methods 0.000 description 4
- 238000005245 sintering Methods 0.000 description 4
- 125000006850 spacer group Chemical group 0.000 description 4
- 230000008595 infiltration Effects 0.000 description 3
- 238000001764 infiltration Methods 0.000 description 3
- 239000011777 magnesium Substances 0.000 description 3
- 239000011208 reinforced composite material Substances 0.000 description 3
- 238000010008 shearing Methods 0.000 description 3
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000005470 impregnation Methods 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 238000005728 strengthening Methods 0.000 description 2
- 238000005411 Van der Waals force Methods 0.000 description 1
- YKTSYUJCYHOUJP-UHFFFAOYSA-N [O--].[Al+3].[Al+3].[O-][Si]([O-])([O-])[O-] Chemical compound [O--].[Al+3].[Al+3].[O-][Si]([O-])([O-])[O-] YKTSYUJCYHOUJP-UHFFFAOYSA-N 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910001338 liquidmetal Inorganic materials 0.000 description 1
- 230000003014 reinforcing effect Effects 0.000 description 1
- 239000012779 reinforcing material Substances 0.000 description 1
Images
Landscapes
- Manufacture Of Alloys Or Alloy Compounds (AREA)
Abstract
本发明公开了一种纳米纤维定向和定域增强金属基复合材料制备装置及制备方法,用于解决现有技术分三种工艺进行金属基复合材料制备的技术问题,其技术方案是将挤压模具、熔炼装置、电磁产生系统一体化设计,利用电磁场来实现复合材料的均匀搅拌、纳米纤维预取向以及确定纳米纤维的增强区域,通过挤压可一次快速成形纳米纤维定向和定域增强金属基复合材料制件。本发明采用电磁预取向和挤压取向相结合的方式,实现了纤维增强金属基复合材料中纤维的定向取向,可一次、低成本制造高性能的各向异性复合材料制件。通过线圈电源的交直流转换,方便地完成了均匀搅拌和纤维按需取向两个过程,使模腔内的增强纤维和金属均匀混合后定向取向。
The invention discloses a nanofiber orientation and localization reinforced metal-matrix composite material preparation device and a preparation method, which are used to solve the technical problem in the prior art that the metal-matrix composite material is prepared by three processes. Integrated design of mould, smelting device, and electromagnetic generation system, using electromagnetic field to realize uniform stirring of composite materials, pre-orientation of nanofibers and determination of reinforced areas of nanofibers, one-time rapid forming of nanofiber orientation and localized reinforced metal matrix through extrusion Composite parts. The invention adopts the combination of electromagnetic pre-orientation and extrusion orientation to realize the directional orientation of fibers in the fiber-reinforced metal matrix composite material, and can manufacture high-performance anisotropic composite material parts at one time and at low cost. Through the AC-DC conversion of the coil power supply, the two processes of uniform stirring and fiber orientation on demand are conveniently completed, so that the reinforcing fiber and metal in the mold cavity are evenly mixed and oriented.
Description
技术领域 technical field
本发明涉及一种金属基复合材料制备装置,特别涉及一种纳米纤维定向和定域增强金属基复合材料制备装置。还涉及纳米纤维定向和定域增强金属基复合材料的制备方法。The invention relates to a metal matrix composite material preparation device, in particular to a nanofiber orientation and localization reinforced metal matrix composite material preparation device. It also relates to a method for preparing nanofiber-oriented and localized reinforced metal matrix composites.
背景技术 Background technique
纳米纤维具有特殊的结构和优异的性能,以其作为增强材料,可制备出具有优异综合性能的纳米纤维增强金属基复合材料。然而,纳米纤维在基体中的分布状态将对复合材料的强化行为产生重要影响,当纤维在基体中呈定向分布时,所获得的强化效果远高于三维随机分布,而且对于特殊功能构件,只需要对其进行局部复合材料增强。由此可见,为最大程度地发挥纳米纤维对金属基体的增强作用,充分提高复合材料的可设计性,有必要在制备过程中根据构件的受力特点控制纤维的分布状态。但是由于纳米短纤维之间存在很强的范德华力,极易产生团聚,导致纳米纤维在复合材料中很难均匀分散,而且在目前的金属基复合材料制备方法中较难实现对随机取向的短纤维实施定向和定域增强。Nanofibers have special structures and excellent properties, and nanofiber-reinforced metal matrix composites with excellent comprehensive properties can be prepared by using them as reinforcing materials. However, the distribution state of nanofibers in the matrix will have an important impact on the strengthening behavior of composite materials. When the fibers are distributed in a directional manner in the matrix, the strengthening effect obtained is much higher than that of three-dimensional random distribution, and for special functional components, only It needs local composite reinforcement. It can be seen that in order to maximize the reinforcing effect of nanofibers on the metal matrix and fully improve the designability of composite materials, it is necessary to control the distribution of fibers according to the stress characteristics of components during the preparation process. However, due to the strong van der Waals force between the nano-short fibers, it is easy to agglomerate, which makes it difficult to disperse the nano-fibers uniformly in the composite material, and it is difficult to realize the random orientation of short nano-fibers in the current preparation method of metal matrix composites. Fibers implement directional and localized reinforcement.
文献“硅酸铝/ZL109复合材料的纤维定向及其磨损特征,李文方,黄岳山,蒙继龙,曾美琴.材料科学与工程,1999,17(2):14~17”公开了一种纤维定向增强金属基复合材料的制备方法,该方法先利用挤压方法制备纤维定向分布的预制件,然后对预制体进行烧结,最后利用液体浸渗法制成纤维定向增强金属基复合材料块体。但是,该方法制备纤维定向增强金属基复合材料要经过预制体制备、预制体烧结、液体浸渗三种工艺,所使用的预制体制备装置包括凸模1、凹模桶4、成形模6、混合体17、预制体18,先将直径约为3~5μm的纤维按一定的体积分数与添加剂及具有良好流动性能的粘结剂混合,并将混合体17放于凹模桶4中,凸模1下行在常温下挤压,随着混合体17的流动,纤维在其内部转动并趋向于流动方向,形成纤维定向分布的预制体18,随后将预制体18放置于加热炉19中进行烧结。液体浸渗装置主要包括凸模1、凹模桶4,将烧结好的预制体18置于凹模桶4内,在预制体18上浇入金属液20,凸模1下行,在压力下金属液20渗入预制体18,制备得到纤维定向增强的金属基复合材料。The document "Fiber orientation and wear characteristics of aluminum silicate/ZL109 composite materials, Li Wenfang, Huang Yueshan, Meng Jilong, Zeng Meiqin. Materials Science and Engineering, 1999, 17(2): 14-17" discloses a fiber A method for preparing a directional reinforced metal matrix composite material. In the method, a prefabricated piece with directional distribution of fibers is prepared by an extrusion method, and then the prefabricated body is sintered, and finally a fiber directional reinforced metal matrix composite material block is made by a liquid infiltration method. However, the preparation of fiber-oriented reinforced metal matrix composites by this method requires three processes: preform preparation, preform sintering, and liquid infiltration. The preform preparation device used includes a
现有技术存在以下不足:难于实现纳米纤维在基体金属中的均匀分布;只能实现增强纤维在基体金属中沿挤压方向定向分布,难于实现按需定向和定域同时增强;而且整个制备过程需分预制体制备、预制体烧结和液体浸渗三种工艺进行,操作步骤多。The existing technology has the following disadvantages: it is difficult to realize the uniform distribution of nanofibers in the matrix metal; it can only realize the directional distribution of the reinforcing fibers in the matrix metal along the extrusion direction, and it is difficult to realize the simultaneous reinforcement of orientation and localization as required; and the whole preparation process It needs to be divided into three processes: preform preparation, preform sintering and liquid infiltration, and there are many operating steps.
发明内容 Contents of the invention
为了克服现有技术制备纤维定向增强金属基复合材料需分步进行以及无法制备纤维定域增强金属基复合材料的不足,本发明提供一种纳米纤维定向和定域增强金属基复合材料制备装置,利用电磁场来实现复合材料的均匀搅拌、纳米纤维预取向以及确定纳米纤维的增强区域,随后通过挤压可一次快速成形纳米纤维定向和定域增强金属基复合材料制件。In order to overcome the shortcomings of the existing technology that the preparation of fiber-oriented reinforced metal matrix composites needs to be carried out step by step and that fiber localized reinforced metal matrix composites cannot be prepared, the present invention provides a preparation device for nanofiber oriented and localized reinforced metal matrix composites. Electromagnetic fields are used to achieve uniform stirring of composite materials, pre-orientation of nanofibers, and determination of reinforced areas of nanofibers, and then rapid formation of nanofiber-oriented and localized reinforced metal matrix composite parts by extrusion.
本发明还提供使用这种装置制备纳米纤维定向和定域增强金属基复合材料的方法。The present invention also provides methods for preparing nanofiber-oriented and localized reinforced metal matrix composites using this device.
本发明解决其技术问题所采用的技术方案:一种纳米纤维定向和定域增强金属基复合材料制备装置,包括凸模1、凹模桶4和成形模6,其特点是还包括熔炼装置、电磁产生系统,所述熔炼装置包括B电阻加热器12,坩埚13,坩埚13通过安装有阀门15的管道与气压罐16连通,坩埚13周围放置B电阻加热器12;进液管10将熔炼装置的坩埚与凸模1和凹模桶4形成的模腔相连通,线圈5置于挤压模具A电阻加热器3的外侧;所述电磁产生系统包括线圈5和电流源11;线圈5的两端分别与电流源11的两个接线端电连接,电流源11产生的电流通入到线圈5中形成电磁场;所述电流源11由直流电源11-1、脉冲电源11-2、变频控制器11-3、开关K1和开关K2组成,所述脉冲电源11-2的两端连接变频控制器11-3,变频控制器11-3的一端通过开关K1连接到线圈5上,另一端直接连接到线圈5上;直流电源11-1的一端通过开关K2连接到线圈5上,另一端直接连接到线圈5上;通过对开关K1和开关K2的开合调整,实现线圈电源的交直流转换;所述凹模桶4置于下垫板7上,成形模6是一个中间有通孔的圆柱体,置于凹模桶4之内、下垫板7之上,成形模6的外壁和凹模桶4的内壁采用间隙配合;芯轴9置于成形模6的通孔中,芯轴9和成形模6之间形成挤压空腔;垫块2位于凹模桶4之上,其外径大于凹模桶4内径;凸模1置于垫块2之上,其外径和凹模桶4的内径满足间隙配合;冷却装置8置于下垫板7之上、凹模桶4外壁下方,A电阻加热器3位于冷却装置8上方,套在凹模桶4的外壁。The technical solution adopted by the present invention to solve its technical problems: a nanofiber orientation and localization reinforced metal matrix composite material preparation device, including a
一种采用上述装置制备纳米纤维定向和定域增强金属基复合材料的方法,其特点是包括下述步骤:A method for preparing nanofiber-oriented and localized reinforced metal matrix composites using the above-mentioned device, which is characterized in that it includes the following steps:
步骤1:将金属原料和导电的纳米纤维原料按体积分数比例50∶1~200∶1混合后装入坩埚13中,降下凸模1压紧垫块2进行密封;Step 1: Mix the metal raw material and the conductive nanofiber raw material according to the volume fraction ratio of 50:1 to 200:1, then put them into the
步骤2:关闭控制气压输入的阀门15,启动温度控制系统,A电阻加热器3加热1~2小时,控制凹模桶4温度在400~600℃,B电阻加热器12加热2~3小时,控制坩埚13温度在650~1100℃,使金属原料全部熔化;Step 2: Close the
步骤3:打开阀门15,给坩锅13内通气压,压力控制在0.3~0.5MPa之间,用压力将熔融金属原料和纳米纤维混合体压入凹模桶4中;Step 3: Open the
步骤4:合下开关K1,打开开关K2,给线圈5施加脉冲电源,脉冲磁场控制在0.5~3T内,使纳米纤维和熔融金属在交变磁场的作用下形成搅拌,并保持10~20分钟,待纳米纤维在熔融金属中均匀分布后,打开K1,合下K2,给线圈5施以直流电源产生静磁场,磁场控制在1~5T内,并保持5~10分钟;Step 4: Close the switch K1, turn on the switch K2, apply pulse power to the
步骤5:启动冷却装置8,待冷却到复合材料的半固态温度420℃~1083℃之间时,去掉芯轴9和垫块2,凸模1下行,利用复合材料和成形模6以及芯轴9之间的剪切力作用,实现纳米碳纤维的定量取向,得到纳米纤维定向和定域增强的金属基复合材料制件。Step 5: Start the
所述金属原料是Al、Cu、Ti或者易氧化Mg的任一种。The metal raw material is any one of Al, Cu, Ti or easily oxidizable Mg.
所述纳米纤维原料是尺度小于100nm的单壁碳纳米管、双壁碳纳米管或者碳纳米纤维的任一种。The nanofiber raw material is any one of single-walled carbon nanotubes, double-walled carbon nanotubes or carbon nanofibers whose size is less than 100 nm.
本发明的有益效果是:采用电磁预取向和挤压取向相结合的方式,能实现纤维增强金属基复合材料中纤维的按需取向,可一次、低成本制造高性能的各向异性复合材料制件。线圈电源能够实现交直流转换,方便完成均匀搅拌和纤维按需取向两个过程,使模腔内的增强纤维和金属均匀混合后定向取向。另外,纤维所受的电磁力的大小和方向可根据控制电源的电流强度来随意调节,达到纤维增强区域可控的目的。The beneficial effects of the present invention are: the combination of electromagnetic pre-orientation and extrusion orientation can realize the on-demand orientation of fibers in fiber-reinforced metal matrix composite materials, and can manufacture high-performance anisotropic composite materials at one time and at low cost. pieces. The coil power supply can achieve AC-DC conversion, which facilitates the two processes of uniform stirring and fiber orientation on demand, so that the reinforcing fiber and metal in the cavity are evenly mixed and then oriented. In addition, the magnitude and direction of the electromagnetic force on the fiber can be adjusted at will according to the current intensity of the control power supply, so as to achieve the purpose of controlling the fiber reinforced area.
下面结合附图和实施例对本发明作详细说明。The present invention will be described in detail below in conjunction with the accompanying drawings and embodiments.
附图说明 Description of drawings
图1是本发明制备纳米纤维定向和定域增强金属基复合材料的装置结构示意图。Fig. 1 is a schematic diagram of the device structure for preparing nanofiber-oriented and localized reinforced metal matrix composites according to the present invention.
图2是具体实施例1中制备纳米纤维径向取向增强复合材料时挤压空腔形状示意图。Fig. 2 is a schematic diagram of the shape of the extrusion cavity when preparing the nanofiber radially oriented reinforced composite material in specific example 1.
图3是具体实施例2中制备纳米纤维周向取向增强复合材料时挤压空腔形状示意图。Fig. 3 is a schematic diagram of the shape of the extrusion cavity when preparing the nanofiber circumferentially oriented reinforced composite material in specific example 2.
图4是具体实施例3中制备纳米纤维轴向取向增强复合材料时挤压空腔形状示意图。Fig. 4 is a schematic diagram of the shape of the extrusion cavity when preparing the nanofiber axially oriented reinforced composite material in specific example 3.
图5是现有技术预制体制备装置结构示意图。Fig. 5 is a schematic structural diagram of a preform preparation device in the prior art.
图6是现有技术预制体烧结装置结构示意图。Fig. 6 is a schematic structural diagram of a preform sintering device in the prior art.
图7是现有技术液体浸渗装置结构示意图。Fig. 7 is a schematic structural diagram of a liquid impregnation device in the prior art.
图中,1-凸模,2-垫块,3-A电阻加热器,4-凹模桶,5-线圈,6-成形模,7-下垫板,8-冷却装置,9-芯轴,10-进液管,11-电流源,11-1-直流电源,11-2-脉冲电源,11-3-变频控制器,12-B电阻加热器,13-坩埚,14-复合材料坯料,15-阀门,16-气压罐,17-混合体,18-预制体,19-加热炉,20-金属液,21-复合材料。In the figure, 1-punch, 2-pad, 3-A resistance heater, 4-die barrel, 5-coil, 6-forming die, 7-lower plate, 8-cooling device, 9-mandrel , 10-liquid inlet pipe, 11-current source, 11-1-DC power supply, 11-2-pulse power supply, 11-3-frequency conversion controller, 12-B resistance heater, 13-crucible, 14-composite material blank , 15-valve, 16-pressure tank, 17-mixture, 18-preform, 19-heating furnace, 20-liquid metal, 21-composite material.
具体实施方式 Detailed ways
实施例1:参见图1、图2,本实施例的制备纳米纤维定向和定域增强金属基复合材料的装置,由挤压模具、熔炼装置、电磁产生系统组成,其相互连接关系为,熔炼装置通过进液管10与挤压模具的模腔相连通,电磁产生装置置于挤压模具的外侧。Embodiment 1: Referring to Fig. 1 and Fig. 2, the device for preparing nanofiber-oriented and localized reinforced metal matrix composites in this embodiment is composed of an extrusion die, a smelting device, and an electromagnetic generation system. The interconnection relationship is as follows: The device communicates with the mold cavity of the extrusion die through the
所述挤压模具包括凸模1,垫块2,A电阻加热器3,凹模桶4,成形模6,下垫板7,冷却装置8及芯轴9;所述的凹模桶4置于下垫板7上,成形模6是一个中间有通孔的圆柱体,它同时置于凹模桶4之内、下垫板7之上,成形模6的外壁和凹模桶4的内壁采用间隙配合;芯轴9置于成形模6的通孔中,芯轴9和成形模6之间形成挤压空腔,挤压空腔剖面形状为对称Y型,通过保持挤压空腔环形直径为两端大、中间小的收缩流道,使纤维在剪切拉伸作用下沿径向取向(见图2);垫块2位于凹模桶4之上,其外径大于凹模桶4内径;凸模1置于垫块2之上,其外径和凹模桶4的内径满足间隙配合公差;冷却装置8套在凹模桶4外壁下方与挤压空腔相应的位置,同时置于下垫板7之上,A电阻加热器3位于冷却装置8上方,也套在凹模桶4的外壁。Described extrusion die comprises
所述熔炼装置包括B电阻加热器12,坩埚13,阀门15及气压罐16;其中,气压罐16通过安装有阀门15的管道与坩埚13相连通,坩埚13周围放置B电阻加热器12。Described smelting device comprises
所述电磁产生系统包括线圈5和电流源11;线圈5的两端分别与电流源11的两个接线端电连接,电流源11产生的电流通入到线圈5中形成电磁场;所述电流源11由直流电源11-1、脉冲电源11-2、变频控制器11-3、开关K1和开关K2组成,所述脉冲电源11-2的两端连接变频控制器11-3,变频控制器11-3的一端通过开关K1连接到线圈5上,另一端直接连接到线圈5上;直流电源11-1的一端通过开关K2连接到线圈5上,另一端直接连接到线圈5上;通过对开关K1和开关K2的开合调整,来实现线圈电源的交直流转换。The electromagnetic generating system includes a
一种制备纳米纤维定向和定域增强铝基复合材料的方法,包括如下步骤:A method for preparing nanofiber orientation and localization reinforced aluminum matrix composites, comprising the steps of:
步骤1:首先,将LY12铝合金和直径为10nm,长度为200nm的导电单壁碳纳米管按体积分数比例50∶1混合后装入坩埚13中;降下凸模1压紧垫块2进行密封;Step 1: First, mix LY12 aluminum alloy and conductive single-walled carbon nanotubes with a diameter of 10nm and a length of 200nm according to the volume fraction ratio of 50:1 and put them into the
步骤2:关闭控制气压输入的阀门15,启动温度控制系统,A电阻加热器3加热1小时,控制凹模桶4温度在400℃,B电阻加热器12加热2小时,控制坩埚13温度在650℃,使LY12铝合金原料全部熔化;Step 2: Close the
步骤3:打开阀门15,给坩锅内通气压,压力控制在0.3MPa,用压力将熔融LY12铝合金和单壁碳纳米管混合体压入凹模桶4中;Step 3: Open the
步骤4:合下开关K1,打开开关K2,给线圈5施加脉冲电源,脉冲磁场控制在0.5T,使单壁碳纳米管和熔融LY12铝合金在交变磁场的作用下形成搅拌,并保持10分钟,待单壁碳纳米管在熔融LY12铝合金中均匀分布后,打开K1,合下K2,给线圈5以直流电源产生静磁场,磁场控制在1T,并保持5分钟,利用增强纤维与金属液之间导电性的差异,实现单壁碳纳米管在LY12铝合金液中沿磁场方向预取向,并实现区域增强;Step 4: Close the switch K1, turn on the switch K2, apply pulse power to the
步骤5:启动冷却装置8,待冷却到复合材料的半固态温度420℃时,去掉芯轴9和垫块2,凸模1下行,利用复合材料和成形模6以及芯轴9之间的剪切力作用,实现单壁碳纳米管的径向取向,制备得到单壁碳纳米管定向和定域增强LY12铝合金的铝基复合材料管材制件。Step 5: Start the
实施例2:参见图1、图3,本实施例的制备纳米纤维定向和定域增强金属基复合材料的装置,由挤压模具、熔炼装置、电磁产生系统组成,其相互连接关系为,熔炼装置通过进液管10与挤压模具的模腔相连通,电磁产生装置置于挤压模具的外侧。Embodiment 2: Referring to Fig. 1 and Fig. 3, the device for preparing nanofiber-oriented and localized reinforced metal matrix composites in this embodiment is composed of an extrusion die, a smelting device, and an electromagnetic generation system. The interconnection relationship is as follows: The device communicates with the mold cavity of the extrusion die through the
所述挤压模具包括凸模1,垫块2,A电阻加热器3,凹模桶4,成形模6,下垫板7,冷却装置8及芯轴9;所述的凹模桶4置于下垫板7上,成形模6是一个中间有通孔的圆柱体,它同时置于凹模桶4之内、下垫板7之上,成形模6的外壁和凹模桶4的内壁采用间隙配合;芯轴9置于成形模6的通孔中,芯轴9和成形模6之间形成挤压空腔,挤压空腔剖面形状为扩张V型,通过在芯轴9上端缩减挤压空腔环形直径,在芯轴9下端保持流动通道的厚度不变,使纤维在剪切拉伸作用下沿周向取向(见图3);垫块2位于凹模桶4之上,其外径大于凹模桶4内径;凸模1置于垫块2之上,其外径和凹模桶4的内径满足间隙配合公差;冷却装置8套在凹模桶4外壁下方与挤压空腔相应的位置,同时置于下垫板7之上,A电阻加热器3位于冷却装置8上方,也套在凹模桶4的外壁。Described extrusion die comprises
所述熔炼装置包括B电阻加热器12,坩埚13,阀门15及气压罐16;其中,气压罐16通过安装有阀门15的管道与坩埚13相连通,坩埚13周围放置B电阻加热器12。Described smelting device comprises
所述电磁产生系统包括线圈5和电流源11;线圈5的两端分别与电流源11的两个接线端电连接,电流源11产生的电流通入到线圈5中形成电磁场;所述电流源11由直流电源11-1、脉冲电源11-2、变频控制器11-3、开关K1和开关K2组成,所述脉冲电源11-2的两端连接变频控制器11-3,变频控制器11-3的一端通过开关K1连接到线圈5上,另一端直接连接到线圈5上;直流电源11-1的一端通过开关K2连接到线圈5上,另一端直接连接到线圈5上;通过对开关K1和开关K2的开合调整,来实现线圈电源的交直流转换。The electromagnetic generating system includes a
一种制备纳米纤维定向和定域增强镁基复合材料的方法,包括如下步骤:A method for preparing nanofiber orientation and localized reinforced magnesium-based composite materials, comprising the steps of:
步骤1:首先,将AZ91D镁合金和直径为150nm,长度为10um的导电碳纳米纤维原料按体积分数比例100∶1混合后装入坩埚13中;降下凸模1压紧垫块2进行密封;Step 1: First, AZ91D magnesium alloy and conductive carbon nanofiber raw materials with a diameter of 150nm and a length of 10um are mixed according to the volume fraction ratio of 100:1 and then loaded into the
步骤2:关闭控制气压输入的阀门15,启动温度控制系统,A电阻加热器3加热1.5小时,控制凹模桶4温度在500℃,B电阻加热器12加热2.5小时,控制坩埚13温度在700℃,使AZ91D镁合金原料全部熔化;Step 2: Close the
步骤3:打开阀门15,给坩锅内通气压,压力控制在0.4MPa,用压力将熔融AZ91D镁合金和碳纳米纤维混合体压入凹模桶4中;Step 3: Open the
步骤4:合下开关K1,打开开关K2,给线圈5施加脉冲电源,脉冲磁场控制在2T,使碳纳米纤维和熔融AZ91D镁合金在交变磁场的作用下形成搅拌,并保持15分钟,待碳纳米纤维在熔融AZ91D镁合金中均匀分布后,打开K1,合下K2,给线圈5以直流电源产生静磁场,磁场控制在3T,并保持8分钟,利用增强纤维与金属液之间导电性的差异,实现碳纳米纤维在AZ91D镁合金液中沿磁场方向预取向,并实现区域增强;Step 4: Close the switch K1, turn on the switch K2, apply pulse power to the
步骤5:启动冷却装置8,待冷却到复合材料的半固态温度450℃时,去掉芯轴9和垫块2,凸模1下行,利用复合材料和成形模6以及芯轴9之间的剪切力作用,实现碳纳米纤维的周向取向,制备得到碳纳米纤维定向和定域增强AZ91D的镁基复合材料管形制件。Step 5: Start the
实施例3:参见图1、图4,本实施例的制备纳米纤维定向和定域增强金属基复合材料的装置,由挤压模具、熔炼装置、电磁产生系统组成,其相互连接关系为,熔炼装置通过进液管10与挤压模具的模腔相连通,电磁产生装置置于挤压模具的外侧。Embodiment 3: Referring to Fig. 1 and Fig. 4, the device for preparing nanofiber-oriented and localized reinforced metal matrix composites in this embodiment is composed of an extrusion die, a smelting device, and an electromagnetic generation system. The interconnection relationship is as follows: The device communicates with the mold cavity of the extrusion die through the
所述挤压模具包括凸模1,垫块2,电阻加热器3,凹模桶4,成形模6,下垫板7,冷却装置8;所述的凹模桶4置于下垫板7上,成形模6是一个中间有通孔的圆柱体,它同时置于凹模桶4之内、下垫板7之上,成形模6的外壁和凹模桶4的内壁采用间隙配合;垫块2位于凹模桶4之上,其外径大于凹模桶4内径;凸模1置于垫块2之上,其外径和凹模桶4的内径满足间隙配合公差;凸模1下端中部采用凸V型结构,结合成形模6中间的通孔,使纤维在剪切拉伸作用下沿轴向取向(见图4);冷却装置8套在凹模桶4外壁下方与挤压空腔相应的位置,也置于下垫板7之上,电阻加热器3位于冷却装置8上方,也套在凹模桶4的外壁。Described extrusion die comprises punch 1, cushion block 2, electric resistance heater 3, die barrel 4, forming die 6, lower backing plate 7, cooling device 8; Described die barrel 4 is placed in lower backing plate 7 Above, the forming die 6 is a cylinder with a through hole in the middle, which is placed inside the die barrel 4 and on the lower backing plate 7 at the same time, and the outer wall of the forming die 6 and the inner wall of the die barrel 4 adopt clearance fit; The block 2 is located on the die barrel 4, and its outer diameter is larger than the inner diameter of the die barrel 4; the punch 1 is placed on the cushion block 2, and its outer diameter and the inner diameter of the die barrel 4 meet the clearance fit tolerance; the lower end of the punch 1 The middle part adopts a convex V-shaped structure, combined with the through hole in the middle of the forming die 6, so that the fibers are oriented axially under the action of shearing and stretching (see Figure 4); the cooling device 8 is set under the outer wall of the die barrel 4 and the extrusion cavity The corresponding position of the cavity is also placed on the lower backing plate 7, and the resistance heater 3 is located above the cooling device 8, and is also sleeved on the outer wall of the die barrel 4.
所述熔炼装置包括B电阻加热器12,坩埚13,阀门15及气压罐16;其中,气压罐16通过安装有阀门15的管道与坩埚13相连通,坩埚13周围放置B电阻加热器12。Described smelting device comprises
所述电磁产生系统包括线圈5和电流源11;线圈5的两端分别与电流源11的两个接线端电连接,电流源11产生的电流通入到线圈5中形成电磁场;所述电流源11由脉冲电源、变频控制器、直流电源、开关K1和开关K2组成,所述脉冲电源的两端连接变频控制器,变频控制器的一端通过开关K1连接到线圈5上,另一端直接连接到线圈5上;直流电源的一端通过开关K2连接到线圈5上,另一端直接连接到线圈5上;通过对开关K1和开关K2的开合调整,来实现线圈电源的交直流转换。The electromagnetic generating system includes a
一种制备纳米纤维定向和定域增强铜基复合材料的方法,包括如下步骤:A method for preparing nanofiber orientation and localization reinforced copper-based composite materials, comprising the steps of:
步骤1:首先,将铜和直径为50nm,长度为1um的导电双壁碳纳米管按体积分数比例200∶1混合后装入坩埚13中;降下凸模1压紧垫块2进行密封;Step 1: First, mix copper and conductive double-walled carbon nanotubes with a diameter of 50nm and a length of 1um according to the volume fraction ratio of 200:1 and then put them into the
步骤2:关闭控制气压输入的阀门15,启动温度控制系统,A电阻加热器3加热2小时,控制凹模桶4温度在600℃,B电阻加热器12加热3小时,控制坩埚13温度在1100℃,使铜原料全部熔化;Step 2: Close the
步骤3:打开阀门15,给坩锅内通气压,压力控制在0.5MPa,用压力将熔融Cu和双壁碳纳米管混合体压入凹模桶4中;Step 3: Open the
步骤4:合下开关K1,打开开关K2,给线圈5施加脉冲电源,脉冲磁场控制在3T,使双壁碳纳米管和熔融铜在交变磁场的作用下形成搅拌,并保持20分钟,待双壁碳纳米管在熔融铜中均匀分布后,打开K1,合下K2,给线圈5以直流电源产生静磁场,磁场控制在5T,并保持10分钟,利用增强纤维与金属液之间导电性的差异,实现双壁碳纳米管在铜液中沿磁场方向预取向,并实现区域增强;Step 4: Close the switch K1, turn on the switch K2, apply pulse power to the
步骤5:启动冷却装置8,待冷却到复合材料的半固态温度1083℃时,去掉芯轴9和垫块2,凸模1下行,利用复合材料和凸模1以及成形模6之间的剪切力作用,实现双壁碳纳米管的轴向取向,制备得到双壁碳纳米管定向和定域增强的铜基复合材料棒制件。Step 5: Start the
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201010013711A CN101787503B (en) | 2010-01-14 | 2010-01-14 | Device and method for preparing nanometer fiber orientation and location reinforced metal-based composite material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201010013711A CN101787503B (en) | 2010-01-14 | 2010-01-14 | Device and method for preparing nanometer fiber orientation and location reinforced metal-based composite material |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101787503A CN101787503A (en) | 2010-07-28 |
CN101787503B true CN101787503B (en) | 2012-09-26 |
Family
ID=42530878
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201010013711A Active CN101787503B (en) | 2010-01-14 | 2010-01-14 | Device and method for preparing nanometer fiber orientation and location reinforced metal-based composite material |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101787503B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9289820B1 (en) | 2015-04-21 | 2016-03-22 | Ut-Battelle, Llc | Apparatus and method for dispersing particles in a molten material without using a mold |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103484706B (en) * | 2013-09-16 | 2015-07-29 | 西北工业大学 | Aligned carbon nanotube strengthens device for MMCs and method |
CN103540873B (en) * | 2013-09-23 | 2015-05-20 | 南昌航空大学 | Liquid-state near-net forming method and device for continuous carbon fiber enhanced aluminum-based composite material |
CN103801676B (en) * | 2013-12-20 | 2015-10-28 | 西北工业大学 | C fthe liquid-solid pressure former of/Mg composite material thin wall profiled piece and method |
CN105178008A (en) * | 2015-07-17 | 2015-12-23 | 浙江锦尚合成革有限公司 | Synthetic leather surface treatment agent and preparation method thereof |
CN105176053B (en) * | 2015-07-17 | 2018-06-19 | 浙江锦尚合成革有限公司 | A kind of synthetic leather slurry and preparation method thereof |
CN105133366A (en) * | 2015-07-17 | 2015-12-09 | 浙江锦尚合成革有限公司 | Environment-protective synthetic leather and preparation method thereof |
CN105155293A (en) * | 2015-07-17 | 2015-12-16 | 浙江锦尚合成革有限公司 | Anti-microbial synthetic leather and preparation method thereof |
CN107282929B (en) * | 2017-07-11 | 2019-05-07 | 大连大学 | Fiber orientation reinforced composite material current direct heating powder hot extrusion preparation method and device |
CN109706347A (en) * | 2018-12-29 | 2019-05-03 | 厦门十一维科技有限公司 | The preparation method and its preparation facilities of oriented graphite alkene alloy composite materials |
CN110042328B (en) * | 2019-04-02 | 2020-04-03 | 郑州辉龙管业有限公司 | Continuous fiber reinforced metal matrix composite preparation equipment |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07276034A (en) | 1994-04-08 | 1995-10-24 | Itaru Niimi | Fiber reinforced composite metallic article and their production |
JP2004359990A (en) * | 2003-06-03 | 2004-12-24 | Toyota Motor Corp | Fiber-reinforced metal matrix composite material and method for producing the same |
CN101024866A (en) * | 2007-02-14 | 2007-08-29 | 西北工业大学 | Magnesium alloy smelting and quantitative pouring apparatus |
CN201605309U (en) * | 2010-01-14 | 2010-10-13 | 西北工业大学 | Preparation device for nanofiber orientation and localization reinforced metal matrix composites |
-
2010
- 2010-01-14 CN CN201010013711A patent/CN101787503B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07276034A (en) | 1994-04-08 | 1995-10-24 | Itaru Niimi | Fiber reinforced composite metallic article and their production |
JP2004359990A (en) * | 2003-06-03 | 2004-12-24 | Toyota Motor Corp | Fiber-reinforced metal matrix composite material and method for producing the same |
CN101024866A (en) * | 2007-02-14 | 2007-08-29 | 西北工业大学 | Magnesium alloy smelting and quantitative pouring apparatus |
CN201605309U (en) * | 2010-01-14 | 2010-10-13 | 西北工业大学 | Preparation device for nanofiber orientation and localization reinforced metal matrix composites |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9289820B1 (en) | 2015-04-21 | 2016-03-22 | Ut-Battelle, Llc | Apparatus and method for dispersing particles in a molten material without using a mold |
US9475120B1 (en) | 2015-04-21 | 2016-10-25 | Ut-Battelle, Llc | Apparatus and method for dispersing particles in a molten material without using a mold |
Also Published As
Publication number | Publication date |
---|---|
CN101787503A (en) | 2010-07-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101787503B (en) | Device and method for preparing nanometer fiber orientation and location reinforced metal-based composite material | |
CN101435059B (en) | Manufacturing method of magnesium-based-carbon nanotube composite material | |
CN106086726B (en) | SiC nanowire reinforced aluminum matrix composites and preparation method thereof | |
CN103924114B (en) | Method for preparing carbon nano tube reinforced aluminium matrix composite by utilizing ultrasound | |
CN102206793B (en) | Preparation method of carbon nanotube-alumina composite reinforced magnesium-based composite material | |
CN103789590B (en) | The preparation method of particle reinforced magnesium base compound material | |
CN109022859B (en) | A kind of preparation method of nano titanium particle reinforced magnesium matrix composite material | |
CN107022691B (en) | A method of graphene reinforced aluminum matrix composites are prepared by raw material of multi-layer graphene microplate | |
CN201605309U (en) | Preparation device for nanofiber orientation and localization reinforced metal matrix composites | |
TWI449661B (en) | Fabrication method of metal - based nanometer carbon nanotubes composite | |
CN107471679A (en) | Carbon fibre composite manufacture method | |
CN103924110A (en) | Method for preparing nanometer reinforced aluminum-based composite material by use of aluminum-carbon nano-tube master alloy | |
CN105238946A (en) | Preparation device for carbon nanotube reinforced aluminum matrix composite and continuous preparation method of preparation device | |
CN109536780A (en) | A kind of preparation method of carbon nanotube enhancing zinc-aluminum alloy based composite material | |
CN107099758A (en) | A kind of continuous reinforced aluminum matrix composites of CNT/carbon fiber and preparation method thereof | |
CN103374690B (en) | The preparation method of the carbon nanotube/alloy composite materials of carbon nano-tube oriented arrangement | |
CN102586635A (en) | A preparation method of in-situ Al2O3 particle reinforced Al-Si-Cu composite material semi-solid slurry | |
CN101376170A (en) | Equipment for manufacturing magnesium base-carbon nano tube compound material and method for producing the same | |
CN112410606B (en) | Method for preparing long-size nano carbon copper-based composite material through rapid solidification, application and device thereof | |
CN103484706B (en) | Aligned carbon nanotube strengthens device for MMCs and method | |
CN113388752B (en) | Preparation method of metal-based composite material | |
Yu et al. | Application of carbon fiber reinforced aluminum matrix composites in automotive industry | |
CN1246113C (en) | Pressure casting method for crystal whisker and nanometer granule commingle strengthening aluminium base compound material | |
CN106399873B (en) | A kind of preparation method of coating alumina whisker nanotube enhancing magnesium-based composite material | |
CN101239396B (en) | Preparation process of in-situ generation of wear-resistant composite material with alloy powder core tube wire |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |