[go: up one dir, main page]

CN101782666A - Helical metal wire grating circuit polarizer - Google Patents

Helical metal wire grating circuit polarizer Download PDF

Info

Publication number
CN101782666A
CN101782666A CN 201010120798 CN201010120798A CN101782666A CN 101782666 A CN101782666 A CN 101782666A CN 201010120798 CN201010120798 CN 201010120798 CN 201010120798 A CN201010120798 A CN 201010120798A CN 101782666 A CN101782666 A CN 101782666A
Authority
CN
China
Prior art keywords
helical
nanometers
metal wire
wire grid
diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN 201010120798
Other languages
Chinese (zh)
Other versions
CN101782666B (en
Inventor
杨振宇
陆培祥
赵茗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huazhong University of Science and Technology
Original Assignee
Huazhong University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huazhong University of Science and Technology filed Critical Huazhong University of Science and Technology
Priority to CN2010101207985A priority Critical patent/CN101782666B/en
Publication of CN101782666A publication Critical patent/CN101782666A/en
Application granted granted Critical
Publication of CN101782666B publication Critical patent/CN101782666B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Polarising Elements (AREA)

Abstract

一种螺旋状金属线栅圆偏振器,属于光学器件,目的在于使其在可见光波段具有较宽的工作波长,且器件尺寸小、结构紧凑、易于集成。本发明的圆偏振器,在石英玻璃基板上沉积有N个均匀分布的螺旋状的铝金属线栅,金属线栅直径40-60纳米,螺旋状的螺旋周期数大于等于2周,螺旋状的金属线栅间距190-290纳米,螺旋周期间距150-400纳米,螺旋直径100纳米,N≥106。本发明能够工作在可见光光谱范围,工作波长范围可以达到580-730纳米,偏振消光比大于8.8∶1,偏振光透过率大于67%,且器件尺寸小、结构紧凑、易于集成,适用于偏振分光、彩色显示、激光技术等领域。

The invention discloses a helical metal wire grid circular polarizer, which belongs to an optical device, and aims to make it have a wider working wavelength in the visible light band, and the device has a small size, a compact structure, and is easy to integrate. In the circular polarizer of the present invention, N evenly distributed helical aluminum metal wire grids are deposited on the quartz glass substrate, the metal wire grids have a diameter of 40-60 nanometers, and the number of helical helical periods is greater than or equal to 2 weeks. The pitch of the metal wire grid is 190-290 nanometers, the pitch of the helix is 150-400 nanometers, the diameter of the helix is 100 nanometers, and N≥10 6 . The invention can work in the visible light spectrum range, the working wavelength range can reach 580-730 nanometers, the polarization extinction ratio is greater than 8.8:1, the polarized light transmittance is greater than 67%, and the device is small in size, compact in structure and easy to integrate, and is suitable for polarization Spectroscopy, color display, laser technology and other fields.

Description

一种螺旋状金属线栅圆偏振器 A spiral metal wire grid circular polarizer

技术领域technical field

本发明属于光学器件,特别涉及一种螺旋状金属线栅圆偏振器。The invention belongs to optical devices, in particular to a spiral metal wire grid circular polarizer.

背景技术Background technique

圆偏振器是光学领域的一种重要偏振元器件,它在偏振分光、彩色显示、激光技术等领域得到了令人瞩目的应用。目前在光学领域,通常做法是利用线偏振片和四分之一波片两个分离元器件构成圆偏振器,其工作原理是:光束通过线偏振片后成为线偏振光,然后再以一定偏振角度通过四分之一波片,最终得到圆偏振光。这种结构的缺点非常明显:1.工作波长范围较窄,这主要是因为四分之一波片的工作波长范围较窄,因此该结构不能得到宽波长范围的圆偏振光;2.该结构使用的是两个分离光学元件,因此器件尺寸大,不易集成。Circular polarizer is an important polarizing component in the field of optics. It has been widely used in polarization splitting, color display, laser technology and other fields. At present, in the field of optics, it is common practice to use two separate components, a linear polarizer and a quarter-wave plate, to form a circular polarizer. The angle is passed through a quarter-wave plate, and circularly polarized light is finally obtained. The disadvantages of this structure are very obvious: 1. The working wavelength range is narrow, mainly because the working wavelength range of the quarter-wave plate is narrow, so this structure cannot obtain circularly polarized light with a wide wavelength range; 2. The structure Two separate optical components are used, so the device size is large and not easy to integrate.

利用螺旋状金属线栅获得圆偏振光是在2009年9月由德国卡尔斯鲁厄大学的研究人员首先发现的,见Justyna K.Gansel,等.“Circular Polarizer Gold HelixPhotonic Metamaterial as Broadband,”Science 325,1513(2009)。但是他们研究范围仅局限于下面两个方面:1.金属线栅材料为金;2.工作波长范围在3-6微米的红外波段。由于他们所使用的材料金在可见光范围内的光学特性远不如材料铝好,以及他们提出的螺旋状金属线栅尺寸过大,所以根本不能适用于可见光波段。另外,他们也没有提出适用于其它波段的圆偏振器的结构,也没有对其它金属材料进行讨论。Obtaining circularly polarized light using a helical metal wire grid was first discovered by researchers at the University of Karlsruhe in Germany in September 2009, see Justyna K.Gansel, et al. "Circular Polarizer Gold Helix Photonic Metamaterial as Broadband," Science 325 , 1513 (2009). But their research scope is limited to the following two aspects: 1. The metal wire grid material is gold; 2. The working wavelength range is in the infrared band of 3-6 microns. Since the optical properties of the gold they used in the visible light range are far inferior to the aluminum material, and the helical metal wire grid they proposed is too large, it cannot be applied to the visible light band at all. In addition, they did not propose the structure of circular polarizers suitable for other wavelength bands, nor did they discuss other metal materials.

发明内容Contents of the invention

本发明提出一种螺旋状金属线栅圆偏振器,目的在于使其在可见光波段具有较宽的工作波长范围,且器件尺寸小、结构紧凑、易于集成。The invention proposes a helical metal wire grid circular polarizer with the purpose of making it have a wider working wavelength range in the visible light band, and the device has a small size, a compact structure and is easy to integrate.

本发明的一种螺旋状金属线栅圆偏振器,在基板上沉积有N个均匀分布的螺旋状的金属线栅,其特征在于:A spiral metal wire grid circular polarizer of the present invention has N uniformly distributed spiral metal wire grids deposited on the substrate, and is characterized in that:

所述基板为石英玻璃;所述金属线栅的材料为金属铝,金属线栅直径40-60纳米,螺旋状的螺旋周期数大于等于2周,螺旋状的金属线栅间距190-290纳米,螺旋周期间距150-400纳米,螺旋直径100纳米,N≥106The substrate is quartz glass; the material of the metal wire grid is metal aluminum, the diameter of the metal wire grid is 40-60 nanometers, the number of helical helical periods is greater than or equal to 2, and the pitch of the helical metal wire grid is 190-290 nanometers. The helical periodic pitch is 150-400 nanometers, the helical diameter is 100 nanometers, and N≥10 6 .

本发明螺旋状金属线栅圆偏振器的制备方法,包括下述步骤:The preparation method of the spiral metal wire grid circular polarizer of the present invention comprises the following steps:

(1).在基板表面沉积导电膜;(1). Deposit a conductive film on the surface of the substrate;

(2).在导电膜上旋涂光刻胶;(2). Spin-coat photoresist on the conductive film;

(3).通过深紫外相干刻蚀,在光刻胶中形成几十纳米量级N个均匀分布的螺旋状空气隙;(3). Through deep ultraviolet coherent etching, N uniformly distributed helical air gaps on the order of tens of nanometers are formed in the photoresist;

(4).通过电化学沉积,在N个均匀分布的螺旋状空气隙中沉积金属材料,形成螺旋状的金属线栅;(4). By electrochemical deposition, metal materials are deposited in N uniformly distributed spiral air gaps to form a spiral metal wire grid;

(5).除去螺旋状的金属线栅之间的光刻胶。(5). Remove the photoresist between the spiral metal wire grids.

在制备过程中,步骤(3)和步骤(4)是比较重要的两个步骤。形成几十纳米线宽的结构对于一般光刻来讲有一定难度,2007年美国一研究小组成功的运用深紫外相干刻蚀的方法得到了大范围线宽小于40纳米的金属线栅结构,见J.J.Wang,F.Walters,X.M.Liu,P.Sciortino,and X.G.Deng,“High-performance,large area,deep ultraviolet to infrared polarizers based on 40nm line/78nm spacenanowire grids,”Appl.Phys.Lett.90,61104(2007);这为步骤(3)的实施提供了依据。另外,运用电化学沉积的方法在螺旋结构中沉积金属材料也是完全可行的,见Justyna K.Gansel,等.“Circular Polarizer Gold Helix Photonic Metamaterialas Broadband,”Science 325,1513(2009)。In the preparation process, step (3) and step (4) are two more important steps. Forming a structure with a line width of tens of nanometers is difficult for general lithography. In 2007, a research team in the United States successfully used the method of deep ultraviolet coherent etching to obtain a large-scale metal wire grid structure with a line width of less than 40 nanometers. See J.J.Wang, F.Walters, X.M.Liu, P.Sciortino, and X.G.Deng, "High-performance, large area, deep ultraviolet to infrared polarizers based on 40nm line/78nm spacenanowire grids," Appl.Phys.Lett.90, 61104 (2007); this provides a basis for the implementation of step (3). In addition, it is completely feasible to deposit metal materials in a helical structure by electrochemical deposition, see Justyna K. Gansel, et al. "Circular Polarizer Gold Helix Photonic Metamaterialas Broadband," Science 325, 1513 (2009).

与现有螺旋状圆偏振器相比,通过调整和优化螺旋状金属纳米线栅的参数(如:线栅直径、螺旋周期数等),本发明能够工作在波长更短的可见光光谱范围,其工作波长范围可以达到580-730纳米,偏振消光比大于8.8∶1,偏振光透过率大于67%,优于现有的可见光偏振器,且器件尺寸小、结构紧凑、易于集成,适用于偏振分光、彩色显示、激光技术等领域。Compared with the existing helical circular polarizer, by adjusting and optimizing the parameters of the helical metal nanowire grid (such as: wire grid diameter, number of helical periods, etc.), the present invention can work in the visible light spectrum range with a shorter wavelength, and its The working wavelength range can reach 580-730 nanometers, the polarization extinction ratio is greater than 8.8:1, and the polarized light transmittance is greater than 67%, which is superior to existing visible light polarizers, and the device is small in size, compact in structure, easy to integrate, and suitable for polarization Spectroscopy, color display, laser technology and other fields.

附图说明Description of drawings

图1(a)为本发明的结构示意图;Fig. 1 (a) is the structural representation of the present invention;

图1(b)为本发明的俯视图;Fig. 1 (b) is the top view of the present invention;

图l(c)为本发明的侧视图;Fig. 1 (c) is the side view of the present invention;

图2(a)为用FDTD算法模拟左旋圆偏光经过本发明时,不同时刻光场的分布图;Fig. 2 (a) is the distribution diagram of the light field at different times when the FDTD algorithm is used to simulate left-handed circularly polarized light passing through the present invention;

图2(b)为为用FDTD算法模拟右旋圆偏光经过本发明时,不同时刻光场的分布图;Fig. 2 (b) is for using the FDTD algorithm to simulate right-handed circularly polarized light passing through the present invention, the distribution diagram of the light field at different times;

图3为实施例1的光学特性曲线;Fig. 3 is the optical characteristic curve of embodiment 1;

图4为实施例2的光学特性曲线;Fig. 4 is the optical characteristic curve of embodiment 2;

图5为实施例3的光学特性曲线;Fig. 5 is the optical characteristic curve of embodiment 3;

图6为实施例4的光学特性曲线;Fig. 6 is the optical characteristic curve of embodiment 4;

图7为实施例5的光学特性曲线;Fig. 7 is the optical characteristic curve of embodiment 5;

图8为实施例6的光学特性曲线;Fig. 8 is the optical characteristic curve of embodiment 6;

图9(a)~图9(e)为本发明的制备方法工艺流程图。Fig. 9(a) to Fig. 9(e) are process flow diagrams of the preparation method of the present invention.

具体实施方式Detailed ways

如图1(a)~图1(c)所示,本发明在基板1上沉积有N个均匀分布的螺旋状的金属线栅2,所述基板为石英玻璃;所述金属线栅的材料为金属铝,金属线栅直径SD为40-60纳米,螺旋状的螺旋周期数CN大于等于2,螺旋状的金属线栅间距CW为190-290纳米,螺旋周期间距CS为150-400纳米,螺旋直径CD为100纳米,N≥106As shown in Fig. 1 (a) ~ Fig. 1 (c), the present invention is deposited with N uniformly distributed spiral metal wire grids 2 on the substrate 1, and the substrate is quartz glass; the material of the metal wire grids It is metal aluminum, the diameter SD of the metal wire grid is 40-60 nanometers, the number of helical helical periods CN is greater than or equal to 2, the spacing CW of the helical metal wire grid is 190-290 nanometers, and the helical period spacing CS is 150-400 nanometers, The helix diameter CD is 100 nm, N≥10 6 .

图2(a)为用FDTD算法模拟左旋圆偏光经过本发明时,不同时刻光场的分布图;图2(b)为为用FDTD算法模拟右旋圆偏光经过本发明时,不同时刻光场的分布图;从图中可以看出左旋圆偏振光在经过偏振器后,大部分能量被反射掉了,而右旋圆偏振光的大部分能量则可以顺利的通过偏振器。Fig. 2 (a) is the distribution diagram of the light field at different times when simulating left-handed circularly polarized light with the FDTD algorithm passes through the present invention; It can be seen from the figure that most of the energy of the left-handed circularly polarized light is reflected after passing through the polarizer, while most of the energy of the right-handed circularly polarized light can pass through the polarizer smoothly.

实施例1:石英玻璃基板1上沉积有106个均匀分布的螺旋状的铝金属线栅2,金属线栅直径SD为40纳米,螺旋状的螺旋周期数CN等于2,螺旋状的金属线栅间距CW为190纳米,螺旋周期间距CS为200纳米,螺旋直径CD为100纳米;Embodiment 1: 10 6 evenly distributed helical aluminum metal wire grids 2 are deposited on the quartz glass substrate 1, the metal wire grid diameter SD is 40 nanometers, the helical helical cycle number CN is equal to 2, and the helical metal wires The grid spacing CW is 190 nanometers, the helix periodic spacing CS is 200 nanometers, and the helix diameter CD is 100 nanometers;

图3所示为实施例1的光学特性曲线,图中,空心矩形框描绘的曲线为右旋圆偏振光透过率,空心三角形框描绘的曲线为左旋圆偏振光透过率,黑色实心框描绘的曲线为消光比;Fig. 3 shows the optical characteristic curve of embodiment 1, among the figure, the curve that hollow rectangular frame depicts is right-handed circularly polarized light transmittance, and the curve that hollow triangular frame depicts is left-handed circularly polarized light transmittance, black solid frame The curve depicted is the extinction ratio;

本实施例工作波长范围、平均透过率、平均消光比分别为0.5~0.75μm、73%、19.7∶1。In this embodiment, the working wavelength range, average transmittance, and average extinction ratio are 0.5-0.75 μm, 73%, and 19.7:1, respectively.

实施例2:石英玻璃基板1上沉积有106个均匀分布的螺旋状的铝金属线栅2,金属线栅直径SD为60纳米,螺旋状的螺旋周期数CN等于2,螺旋状的金属线栅间距CW为190纳米,螺旋周期间距CS为200纳米,螺旋直径CD为100纳米;Embodiment 2: 10 6 evenly distributed helical aluminum metal wire grids 2 are deposited on the quartz glass substrate 1, the metal wire grid diameter SD is 60 nanometers, the helical helical cycle number CN is equal to 2, and the helical metal wires The grid spacing CW is 190 nanometers, the helix periodic spacing CS is 200 nanometers, and the helix diameter CD is 100 nanometers;

图4所示为实施例2的光学特性曲线,图中,空心矩形框描绘的曲线为右旋圆偏振光透过率,空心三角形框描绘的曲线为左旋圆偏振光透过率,黑色实心框描绘的曲线为消光比;Fig. 4 shows the optical characteristic curve of embodiment 2, among the figure, the curve that hollow rectangular frame depicts is right-handed circularly polarized light transmittance, and the curve that hollow triangular frame depicts is left-handed circularly polarized light transmittance, black solid frame The curve depicted is the extinction ratio;

本实施例工作波长范围、平均透过率、平均消光比分别为0.4-0.77μm、69%、26.3∶1。In this embodiment, the working wavelength range, average transmittance, and average extinction ratio are 0.4-0.77 μm, 69%, and 26.3:1, respectively.

实施例3:石英玻璃基板1上沉积有106个均匀分布的螺旋状的铝金属线栅2,金属线栅直径SD为40纳米,螺旋状的螺旋周期数CN等于4,螺旋状的金属线栅间距CW为190纳米,螺旋周期间距CS为200纳米,螺旋直径CD为100纳米;Embodiment 3: 10 6 evenly distributed helical aluminum metal wire grids 2 are deposited on the quartz glass substrate 1, the metal wire grid diameter SD is 40 nanometers, the helical helical cycle number CN is equal to 4, and the helical metal wires The grid spacing CW is 190 nanometers, the helix periodic spacing CS is 200 nanometers, and the helix diameter CD is 100 nanometers;

图5所示为实施例3的光学特性曲线,图中,空心矩形框描绘的曲线为右旋圆偏振光透过率,空心三角形框描绘的曲线为左旋圆偏振光透过率,黑色实心框描绘的曲线为消光比;Fig. 5 shows the optical characteristic curve of embodiment 3, among the figure, the curve that the hollow rectangular frame depicts is the right-handed circularly polarized light transmittance, the curve that the hollow triangular frame depicts is the left-handed circularly polarized light transmittance, and the black solid frame The curve depicted is the extinction ratio;

本实施例工作波长范围、平均透过率、平均消光比分别为0.42-0.83μm、58%、46.3∶1。In this embodiment, the working wavelength range, average transmittance, and average extinction ratio are 0.42-0.83 μm, 58%, and 46.3:1, respectively.

实施例4:石英玻璃基板1上沉积有106个均匀分布的螺旋状的铝金属线栅2,金属线栅直径SD为40纳米,螺旋状的螺旋周期数CN等于2,螺旋状的金属线栅间距CW为290纳米,螺旋周期间距CS为200纳米,螺旋直径CD为100纳米;Embodiment 4: 10 6 uniformly distributed helical aluminum metal wire grids 2 are deposited on the quartz glass substrate 1, the metal wire grid diameter SD is 40 nanometers, the number of helical helical periods CN equals 2, and the helical metal wires The grid spacing CW is 290 nanometers, the helix periodic spacing CS is 200 nanometers, and the helix diameter CD is 100 nanometers;

图6所示为实施例4的光学特性曲线,图中,空心矩形框描绘的曲线为右旋圆偏振光透过率,空心三角形框描绘的曲线为左旋圆偏振光透过率,黑色实心框描绘的曲线为消光比;Fig. 6 shows the optical characteristic curve of embodiment 4, among the figure, the curve that hollow rectangular frame depicts is right-handed circularly polarized light transmittance, the curve that hollow triangular frame depicts is left-handed circularly polarized light transmittance, black solid frame The curve depicted is the extinction ratio;

本实施例工作波长范围、平均透过率、平均消光比分别为0.55-0.73μm、85%、8.8∶1。In this embodiment, the working wavelength range, average transmittance, and average extinction ratio are 0.55-0.73 μm, 85%, and 8.8:1, respectively.

实施例5:石英玻璃基板1上沉积有106个均匀分布的螺旋状的铝金属线栅2,金属线栅直径SD为40纳米,螺旋状的螺旋周期数CN等于2,螺旋状的金属线栅间距CW为190纳米,螺旋周期间距CS为150纳米,螺旋直径CD为100纳米;Embodiment 5: 10 6 uniformly distributed helical aluminum metal wire grids 2 are deposited on the quartz glass substrate 1, the metal wire grid diameter SD is 40 nanometers, the number of helical helical periods CN equals 2, and the helical metal wires The grid spacing CW is 190 nanometers, the helix periodic spacing CS is 150 nanometers, and the helix diameter CD is 100 nanometers;

图7所示为实施例5的光学特性曲线,图中,空心矩形框描绘的曲线为右旋圆偏振光透过率,空心三角形框描绘的曲线为左旋圆偏振光透过率,黑色实心框描绘的曲线为消光比;Fig. 7 shows the optical characteristic curve of embodiment 5, among the figure, the curve that hollow rectangular frame depicts is right-handed circularly polarized light transmittance, the curve that hollow triangular frame depicts is left-handed circularly polarized light transmittance, black solid frame The curve depicted is the extinction ratio;

本实施例工作波长范围、平均透过率、平均消光比分别为0.39-0.79μm、67%、12.1∶1。In this embodiment, the working wavelength range, average transmittance, and average extinction ratio are 0.39-0.79 μm, 67%, and 12.1:1, respectively.

实施例6:石英玻璃基板1上沉积有106个均匀分布的螺旋状的铝金属线栅2,金属线栅直径SD为40纳米,螺旋状的螺旋周期数CN等于2,螺旋状的金属线栅间距CW为190纳米,螺旋周期间距CS为400纳米,螺旋直径CD为100纳米;Embodiment 6: 10 6 evenly distributed helical aluminum metal wire grids 2 are deposited on the quartz glass substrate 1, the diameter SD of the metal wire grid is 40 nanometers, the helical helical cycle number CN is equal to 2, and the helical metal wires The grid spacing CW is 190 nanometers, the helix periodic spacing CS is 400 nanometers, and the helix diameter CD is 100 nanometers;

图8所示为实施例6的光学特性曲线,图中,空心矩形框描绘的曲线为右旋圆偏振光透过率,空心三角形框描绘的曲线为左旋圆偏振光透过率,黑色实心框描绘的曲线为消光比;Fig. 8 shows the optical characteristic curve of embodiment 6, among the figure, the curve that the hollow rectangular frame depicts is the right-handed circularly polarized light transmittance, the curve that the hollow triangular frame depicts is the left-handed circularly polarized light transmittance, and the black solid frame The curve depicted is the extinction ratio;

本实施例工作波长范围、平均透过率、平均消光比分别为0.58-0.75μm、78%、138∶1。In this embodiment, the working wavelength range, average transmittance, and average extinction ratio are 0.58-0.75 μm, 78%, and 138:1, respectively.

图9(a)~图9(e)所示为本发明的制备方法工艺流程图。图9(a).在基板表面沉积导电膜;图9(b).在导电膜上旋涂光刻胶;图9(c).通过深紫外相干刻蚀,在光刻胶中形成几十纳米量级N个均匀分布的螺旋状空气隙;图9(d).通过电化学沉积,在N个均匀分布的螺旋状空气隙中沉积金属铝材料,形成螺旋状的金属线栅;图9(e).除去螺旋状的金属线栅之间的光刻胶,最终形成螺旋状金属线栅圆偏振器。Figure 9(a) to Figure 9(e) show the process flow chart of the preparation method of the present invention. Figure 9(a). Deposit a conductive film on the surface of the substrate; Figure 9(b). Spin-coat photoresist on the conductive film; Figure 9(c). Form tens of N uniformly distributed helical air gaps at the nanoscale; Figure 9(d). Metal aluminum materials are deposited in N uniformly distributed helical air gaps by electrochemical deposition to form a helical metal wire grid; Figure 9 (e). Removing the photoresist between the helical metal wire grids to finally form a helical metal wire grid circular polarizer.

Claims (1)

1.一种螺旋状金属线栅圆偏振器,在基板上沉积有N个均匀分布的螺旋状的金属线栅,其特征在于:1. A spiral metal wire grid circular polarizer is deposited with N uniformly distributed spiral metal wire grids on the substrate, characterized in that: 所述基板为石英玻璃;所述金属线栅的材料为金属铝,金属线栅直径40-60纳米,螺旋状的螺旋周期数大于等于2周,螺旋状的金属线栅间距190-290纳米,螺旋周期间距150-400纳米,螺旋直径100纳米,N≥106The substrate is quartz glass; the material of the metal wire grid is metal aluminum, the diameter of the metal wire grid is 40-60 nanometers, the number of helical helical periods is greater than or equal to 2, and the pitch of the helical metal wire grid is 190-290 nanometers. The helical periodic pitch is 150-400 nanometers, the helical diameter is 100 nanometers, and N≥10 6 .
CN2010101207985A 2010-03-05 2010-03-05 Helical metal wire grating circuit polarizer Expired - Fee Related CN101782666B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2010101207985A CN101782666B (en) 2010-03-05 2010-03-05 Helical metal wire grating circuit polarizer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2010101207985A CN101782666B (en) 2010-03-05 2010-03-05 Helical metal wire grating circuit polarizer

Publications (2)

Publication Number Publication Date
CN101782666A true CN101782666A (en) 2010-07-21
CN101782666B CN101782666B (en) 2011-09-14

Family

ID=42522735

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2010101207985A Expired - Fee Related CN101782666B (en) 2010-03-05 2010-03-05 Helical metal wire grating circuit polarizer

Country Status (1)

Country Link
CN (1) CN101782666B (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102073088A (en) * 2010-12-28 2011-05-25 华中科技大学 Spiral metal wire grating circuit polarizer
CN102230987A (en) * 2011-07-08 2011-11-02 华中科技大学 Oval light polarizer
CN102651502A (en) * 2011-02-24 2012-08-29 同济大学 Wide-frequency band wave plate based on metal spiral line array
CN103984055A (en) * 2014-05-09 2014-08-13 京东方科技集团股份有限公司 Polarization structure, manufacturing method thereof and display panel
CN104316988A (en) * 2014-11-17 2015-01-28 中国人民解放军国防科学技术大学 Single-layer planar chirality metal structure circular polarizer
CN104880754A (en) * 2015-04-24 2015-09-02 苏州大学 Sub-wavelength three dimensional spiral circular polarization light filter and manufacturing method thereof
CN105137520A (en) * 2015-09-22 2015-12-09 中国科学院上海技术物理研究所 Gradually varied spiral metal chiral metamaterial circular polarizer
CN105404013A (en) * 2015-11-27 2016-03-16 北京科东电力控制系统有限责任公司 Circularly polarized light beam splitter and manufacturing method thereof
CN105403944A (en) * 2015-11-27 2016-03-16 北京科东电力控制系统有限责任公司 Circular polarizer and manufacturing method thereof
CN114879386A (en) * 2022-07-11 2022-08-09 华南师范大学 Spin photon transmission regulation and control device based on pyramid helical line array metamaterial

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1405584A (en) * 2001-08-07 2003-03-26 大日本印刷株式会社 Polarization element and optical display device comprising same
CN101183158A (en) * 2007-11-26 2008-05-21 华中科技大学 A kind of metal wire grid broadband polarizer and its preparation method
CN100421021C (en) * 2001-09-21 2008-09-24 3M创新有限公司 Cholesteric liquid crystal optical bodies and methods of manufacture and use

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1405584A (en) * 2001-08-07 2003-03-26 大日本印刷株式会社 Polarization element and optical display device comprising same
CN100421021C (en) * 2001-09-21 2008-09-24 3M创新有限公司 Cholesteric liquid crystal optical bodies and methods of manufacture and use
CN101183158A (en) * 2007-11-26 2008-05-21 华中科技大学 A kind of metal wire grid broadband polarizer and its preparation method

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102073088A (en) * 2010-12-28 2011-05-25 华中科技大学 Spiral metal wire grating circuit polarizer
CN102073088B (en) * 2010-12-28 2012-01-25 华中科技大学 Spiral metal wire grating circuit polarizer
CN102651502A (en) * 2011-02-24 2012-08-29 同济大学 Wide-frequency band wave plate based on metal spiral line array
CN102230987A (en) * 2011-07-08 2011-11-02 华中科技大学 Oval light polarizer
CN102230987B (en) * 2011-07-08 2012-07-25 华中科技大学 Oval light polarizer
CN103984055A (en) * 2014-05-09 2014-08-13 京东方科技集团股份有限公司 Polarization structure, manufacturing method thereof and display panel
US10203440B2 (en) 2014-05-09 2019-02-12 Boe Technology Group Co., Ltd. Polarization structure and method for manufacturing the same, and display panel
CN104316988A (en) * 2014-11-17 2015-01-28 中国人民解放军国防科学技术大学 Single-layer planar chirality metal structure circular polarizer
CN104880754B (en) * 2015-04-24 2017-07-07 苏州大学 Sub-wavelength three-dimensional spiral circular polarization filter and preparation method thereof
CN104880754A (en) * 2015-04-24 2015-09-02 苏州大学 Sub-wavelength three dimensional spiral circular polarization light filter and manufacturing method thereof
CN105137520B (en) * 2015-09-22 2017-06-27 中国科学院上海技术物理研究所 Graded helical metal chiral metamaterial circular polarizer
CN105137520A (en) * 2015-09-22 2015-12-09 中国科学院上海技术物理研究所 Gradually varied spiral metal chiral metamaterial circular polarizer
CN105404013A (en) * 2015-11-27 2016-03-16 北京科东电力控制系统有限责任公司 Circularly polarized light beam splitter and manufacturing method thereof
CN105403944A (en) * 2015-11-27 2016-03-16 北京科东电力控制系统有限责任公司 Circular polarizer and manufacturing method thereof
CN105404013B (en) * 2015-11-27 2018-02-16 国网浙江省电力公司 A kind of circularly polarized light beam splitter and preparation method thereof
CN114879386A (en) * 2022-07-11 2022-08-09 华南师范大学 Spin photon transmission regulation and control device based on pyramid helical line array metamaterial
CN114879386B (en) * 2022-07-11 2022-09-23 华南师范大学 Spin-photon transport control device based on pyramid helix array metamaterial

Also Published As

Publication number Publication date
CN101782666B (en) 2011-09-14

Similar Documents

Publication Publication Date Title
CN101782666B (en) Helical metal wire grating circuit polarizer
Zhigunov et al. Femtosecond laser printing of single Ge and SiGe nanoparticles with electric and magnetic optical resonances
CN101852884B (en) Double-helical metal grid circuit polarizer
Chen et al. Broadband enhancement in thin-film amorphous silicon solar cells enabled by nucleated silver nanoparticles
Taguchi et al. Tailoring plasmon resonances in the deep-ultraviolet by size-tunable fabrication of aluminum nanostructures
Diao et al. Nanostructured stealth surfaces for visible and near-infrared light
Venugopal et al. Surface-enhanced Raman scattering and polarized photoluminescence from catalytically grown CdSe nanobelts and sheets
CN104656170B (en) Broadband light full absorber and preparation method thereof
Afshinmanesh et al. Transparent metallic fractal electrodes for semiconductor devices
Araujo et al. Influence of the substrate on the morphology of self-assembled silver nanoparticles by rapid thermal annealing
Oener et al. Perovskite nanowire extrusion
Lee et al. AlGaN deep-ultraviolet light-emitting diodes with localized surface plasmon resonance by a high-density array of 40 nm Al nanoparticles
CN102148429B (en) The manufacture method of nano-optical antenna array
Lemasters et al. Ultrathin wetting layer-free plasmonic gold films
CN101973512B (en) Method for directly writing metal micro-nano structure by ultraviolet laser interferometry etching
Gadalla et al. Excitation of strong localized surface plasmon resonances in highly metallic titanium nitride nano-antennas for stable performance at elevated temperatures
Ye et al. Plasma-induced, self-masking, one-step approach to an ultrabroadband antireflective and superhydrophilic subwavelength nanostructured fused silica surface
Li et al. Plasmonic biomimetic nanocomposite with spontaneous subwavelength structuring as broadband absorbers
Sun et al. Wafer-scale high anti-reflective nano/micro hybrid interface structures via aluminum grain dependent self-organization
Lee et al. ZnO nanowire-based antireflective coatings with double-nanotextured surfaces
Taher et al. Broadband absorption of nanostructured stainless steel surface fabricated by nanosecond laser irradiation
Higashino et al. Improving the plasmonic response of silver nanoparticle arrays via atomic layer deposition coating and annealing above the melting point
Zhu et al. Highly Polarized Light Emission of Monolayer WSe2 Coupled with Gap‐Plasmon Nanocavity
Luo et al. Large-scale structural color on transparent plexiglass by nanosphere lithography combined with reactive-ion etching
Malik et al. Studies on femtosecond laser textured broadband anti-reflective hierarchical a-SiNx: H thin films for photovoltaic applications

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20110914

Termination date: 20140305