CN101782374A - Gear and moulding structure outline measuring method based on template near-field light projection scanning - Google Patents
Gear and moulding structure outline measuring method based on template near-field light projection scanning Download PDFInfo
- Publication number
- CN101782374A CN101782374A CN 201010125502 CN201010125502A CN101782374A CN 101782374 A CN101782374 A CN 101782374A CN 201010125502 CN201010125502 CN 201010125502 CN 201010125502 A CN201010125502 A CN 201010125502A CN 101782374 A CN101782374 A CN 101782374A
- Authority
- CN
- China
- Prior art keywords
- gear
- template
- tested
- measurement
- edge
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 11
- 238000000465 moulding Methods 0.000 title claims description 4
- 238000005259 measurement Methods 0.000 claims abstract description 37
- 238000005286 illumination Methods 0.000 claims abstract description 6
- 238000000691 measurement method Methods 0.000 abstract description 5
- 238000007689 inspection Methods 0.000 abstract description 3
- 238000012545 processing Methods 0.000 abstract description 3
- 238000012360 testing method Methods 0.000 description 9
- 238000005516 engineering process Methods 0.000 description 5
- 230000003287 optical effect Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000002356 laser light scattering Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
Images
Landscapes
- Length Measuring Devices By Optical Means (AREA)
Abstract
基于模板近场光投影扫描的齿轮和成型结构轮廓测量方法,根据被测齿轮的形状,制作与被测齿轮的齿或齿槽截面相同的模板;将该模板置于被测齿轮的齿槽中,然后在模板的一侧安装照明光源,利用CCD或图像传感器与边缘投影形成的三角关系,得到物体表面的轮廓数据;对于齿轮上的每个齿,通过角分度编码装置转动被测齿轮重复测量即能够完整的测量整个齿轮的几何形状和参数。本发明可以实现微米级的阴影投影,进而在对齿轮等成型结构的轮廓测量中,沿表面法线方向测量精度将达到5微米以上。横向分辨率达到20微米以上,测量速度达5000点/秒以上。特别适用于齿轮加工的质量检测。该技术也可用于其它结构件的表面轮廓测量中。
Based on the profile measurement method of gear and forming structure based on template near-field light projection scanning, according to the shape of the gear to be tested, a template that is the same as the tooth or alveolar section of the gear to be tested is made; the template is placed in the tooth groove of the gear to be tested , and then install an illumination light source on one side of the template, and use the triangular relationship formed by the CCD or image sensor and the edge projection to obtain the contour data of the object surface; Measurement means the ability to completely measure the geometry and parameters of the entire gear. The invention can realize micron-level shadow projection, and furthermore, in the contour measurement of gears and other formed structures, the measurement accuracy along the surface normal direction will reach more than 5 microns. The horizontal resolution reaches above 20 microns, and the measurement speed reaches above 5000 points/second. Especially suitable for quality inspection of gear processing. This technique can also be used in the surface profile measurement of other structural parts.
Description
技术领域technical field
本发明属于物体面型三维轮廓的测量方法,具体涉及一种基于模板近场光投影扫描的齿轮和成型结构轮廓测量方法。The invention belongs to a method for measuring a three-dimensional profile of an object surface, in particular to a method for measuring a profile of a gear and a molding structure based on template near-field light projection scanning.
背景技术Background technique
随着工业的发展,越来越多的产品制造需要有高精度的测量手段和仪器来保证产品的质量,光学测量方法具有非接触、快速以及高精度测量等优点,得到了国内外研究工作者广泛的重视和研究,主要测量方法有采用接触式三坐标测量机以及激光三角测量技术的测量方法,但是,尽管三坐标测量机具有较高的测量精度,但是其测量效率低,特别是在对大齿轮等大型物体测量时,由于其受测量范围的限制,其测量精度将大大降低,同时三坐标测量机在逐点测量中受环境影响产生的误差离散性较大,难以进行补偿;而激光三角测量技术受到光斑大小、光刀宽度以及金属表面对激光散射的影响等因素,通常精度低于50微米,因此,现有的方法难以达到测量要求。With the development of industry, more and more product manufacturing needs high-precision measurement methods and instruments to ensure the quality of products. Optical measurement methods have the advantages of non-contact, fast and high-precision measurement, and have been favored by researchers at home and abroad. Extensive attention and research, the main measurement methods are the measurement methods using contact three-coordinate measuring machine and laser triangulation technology, but although the three-coordinate measuring machine has high measurement accuracy, its measurement efficiency is low, especially for When measuring large objects such as large gears, due to the limitation of the measurement range, the measurement accuracy will be greatly reduced. At the same time, the error dispersion caused by the influence of the environment in the point-by-point measurement of the three-coordinate measuring machine is large, and it is difficult to compensate; and the laser Triangulation technology is affected by factors such as the spot size, the width of the light knife, and the influence of laser light scattering on the metal surface. Usually, the accuracy is lower than 50 microns. Therefore, the existing methods are difficult to meet the measurement requirements.
发明内容Contents of the invention
本发明的目的在于克服上述现的技术的缺点,提供了一种利用模板投影的齿轮及成型结构轮廓的测量方法。该方法不仅具有高的测量速度,同时又可保证高的测量精度,在该领域测量中解决了激光三角测量中的光刀细化的技术难题,特别适用于齿轮加工的质量检测。该技术也可用于其它结构件(如:管道的内外形状,各种型材以及叶片等)的表面轮廓测量中。The purpose of the present invention is to overcome the shortcomings of the above-mentioned existing technologies, and provide a method for measuring the profile of gears and forming structures using template projection. This method not only has high measurement speed, but also can ensure high measurement accuracy. In this field of measurement, it solves the technical problem of light knife refinement in laser triangulation measurement, and is especially suitable for quality inspection of gear processing. This technology can also be used in the surface profile measurement of other structural parts (such as: the inner and outer shapes of pipes, various profiles and blades, etc.).
为达到上述目的,本发明采用的技术方案是:In order to achieve the above object, the technical scheme adopted in the present invention is:
1)根据被测齿轮的形状,制作与被测齿轮的齿或齿槽截面相同的模板2;1) According to the shape of the gear to be tested, make a
2)将与被测齿轮的齿截面相同的模板置于被测齿轮的齿槽中或将与被测齿轮的齿槽截面相同的模板与被测齿轮的齿相啮合,然后在模板的一侧安装照明光源,该照明光源将模板边缘或安装在模板边缘的刀口或狭缝投影到被测齿轮的沟槽或齿上,形成清晰的边缘或狭缝投影;2) Place the template with the same tooth section of the gear under test in the tooth groove of the gear under test or mesh the template with the same tooth groove section of the gear under test with the teeth of the gear under test, and then place the template on one side of the template Install an illumination source that projects the edge of the template or the knife edge or slit installed on the edge of the template onto the groove or tooth of the gear under test to form a clear projection of the edge or slit;
3)在模板的另一侧安装CCD或图像传感器,利用CCD或图像传感器与步骤2)边缘投影形成的三角关系,得到物体表面的轮廓数据;3) Install a CCD or an image sensor on the other side of the template, and use the triangular relationship formed between the CCD or the image sensor and step 2) edge projection to obtain the contour data of the object surface;
或根据CCD或图像传感器得到的图像数据确定模板边缘或刀口与边缘投影之间的距离,得到物体表面的三维轮廓数据测量;Or determine the distance between the edge of the template or the distance between the knife edge and the edge projection according to the image data obtained by the CCD or image sensor, and obtain the three-dimensional contour data measurement of the object surface;
4)对于一个完整的齿形轮廓,则沿此齿轮的齿槽移动模板与CCD或图像传感器组成的测量系统重复步骤3)得到一个完整的齿形轮廓;4) For a complete tooth profile, then repeat step 3) to obtain a complete tooth profile by moving the template along the tooth groove of the gear and the measuring system composed of CCD or image sensor;
5)对于齿轮上的每个齿,通过角分度编码装置转动被测齿轮重复步骤2)-4)即能够完整的测量整个齿轮的几何形状和参数;5) For each tooth on the gear, rotate the gear to be tested through the angular indexing encoding device and repeat steps 2)-4) to completely measure the geometry and parameters of the entire gear;
本发明的照明光源采用普通光源或激光光源;The illumination light source of the present invention adopts common light source or laser light source;
在测量前通过激光跟踪仪对测量系统以及被测对象的坐标进行测量标定。Before the measurement, the laser tracker is used to measure and calibrate the coordinates of the measurement system and the measured object.
本发明具有比传统三坐标测量机高得多的测量速度,同时在对成型结构轮廓测量中又具有很高的测量精度,在该测量领域中解决了激光三角测量中的光刀细化的技术难题,本发明可以实现微米级的阴影投影,进而在对大型齿轮等成型结构的轮廓测量中,沿表面法线方向测量精度将达到5微米以上。横向分辨率达到20微米以上,测量速度达5000点/秒以上。特别适用于大型和巨大型齿轮的质量检测,该技术也可用于其它结构件(如:管道的内外形状,各种型材以及叶片等)的表面轮廓测量中。The invention has a much higher measurement speed than the traditional three-coordinate measuring machine, and at the same time has a high measurement accuracy in the measurement of the profile of the forming structure, and solves the technical problem of light knife refinement in the laser triangulation measurement in this measurement field , the present invention can realize micron-level shadow projection, and then in the contour measurement of large gears and other formed structures, the measurement accuracy along the surface normal direction will reach more than 5 microns. The horizontal resolution reaches above 20 microns, and the measurement speed reaches above 5000 points/second. It is especially suitable for the quality inspection of large and huge gears, and this technology can also be used in the surface profile measurement of other structural parts (such as: internal and external shapes of pipes, various profiles and blades, etc.).
附图说明Description of drawings
图1、2是本发明的测量原理图;Fig. 1, 2 are measurement schematic diagrams of the present invention;
图3是本发明测量系统图。Fig. 3 is a diagram of the measurement system of the present invention.
具体实施方式Detailed ways
下面结合附图对本发明作进一步详细说明。The present invention will be described in further detail below in conjunction with the accompanying drawings.
参见图1,2,3,1)根据被测齿轮1的形状,制作与被测齿轮1的齿或齿槽截面相同的模板2;Referring to Fig. 1, 2, 3, 1) according to the shape of the tested gear 1, make the
2)将与被测齿轮1的齿截面相同的模板2置于被测齿轮的齿槽(见图1)中或将与被测齿轮的齿槽截面相同的模板2与被测齿轮的齿相啮合(见图2),该模板固定在底座3上面的移动平台4上,然后在模板2的一侧安装照明光源,该照明光源将模板2边缘或安装在模板边缘的刀口或狭缝投影到被测齿轮的沟槽或齿上,形成清晰的边缘或狭缝投影;2) Place the
3)在模板2的另一侧的底座3的移动平台4上安装CCD或图像传感器5,与步骤2)中的模板光学投影装置组成了一个光学三角测量系统,在测量前通过激光跟踪仪对测量系统以及被测对象的坐标进行测量标定;利用CCD或图像传感器5与步骤2)投射到齿轮表面上的刀口边缘投影形成的三角关系,根据三角测量原理可以得到齿轮轮廓的三维数据,并将该数据送入计算机8(见图3)中进行处理得到物体表面的轮廓数据;3) CCD or
或根据CCD或图像传感器得到的图像数据确定模板边缘或刀口与投射到齿轮表面上的刀口边缘投影之间的距离,将此数据送入计算机8中处理后得到物体表面的三维轮廓数据测量;Or determine the distance between the edge of the template or the edge of the knife and the projection of the edge of the knife edge projected onto the gear surface according to the image data obtained by the CCD or the image sensor, and send this data into the
4)对于一个完整的齿形轮廓,则沿此齿轮的齿槽移动模板与CCD或图像传感器组成的测量系统重复步骤3)得到一个完整的齿形轮廓;4) For a complete tooth profile, then repeat step 3) to obtain a complete tooth profile by moving the template along the tooth groove of the gear and the measuring system composed of CCD or image sensor;
5)对于齿轮上的每个齿,通过角分度编码装置7转动被测齿轮1重复步骤2)-4)即能够完整的测量整个齿轮的几何形状和参数。5) For each tooth on the gear, rotate the measured gear 1 through the angular
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 201010125502 CN101782374A (en) | 2010-03-16 | 2010-03-16 | Gear and moulding structure outline measuring method based on template near-field light projection scanning |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 201010125502 CN101782374A (en) | 2010-03-16 | 2010-03-16 | Gear and moulding structure outline measuring method based on template near-field light projection scanning |
Publications (1)
Publication Number | Publication Date |
---|---|
CN101782374A true CN101782374A (en) | 2010-07-21 |
Family
ID=42522465
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN 201010125502 Pending CN101782374A (en) | 2010-03-16 | 2010-03-16 | Gear and moulding structure outline measuring method based on template near-field light projection scanning |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101782374A (en) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102141384A (en) * | 2010-12-30 | 2011-08-03 | 浙江昱辉阳光能源有限公司 | Guide wheel outline detection method and system |
CN102865828A (en) * | 2011-07-04 | 2013-01-09 | 贵州红林机械有限公司 | Determination method of special profile part |
CN103292993A (en) * | 2012-02-24 | 2013-09-11 | 王汝化 | Gear detection device |
CN103959010A (en) * | 2011-11-30 | 2014-07-30 | 株式会社尼康 | Profile measuring apparatus, structure manufacturing system, method for measuring profile, method for manufacturing structure, program for measuring profile and non-transitory computer readable medium |
CN105301007A (en) * | 2015-12-02 | 2016-02-03 | 中国计量学院 | Linear array CCD-based ABS gear ring defect online detection device and method |
CN105509651A (en) * | 2016-01-11 | 2016-04-20 | 石家庄铁道大学 | Digital image measuring device and method for three-dimensional microstrain field of gear engagement face |
CN105571523A (en) * | 2015-12-23 | 2016-05-11 | 中国科学院长春光学精密机械与物理研究所 | Tooth error vision measurement method for involute of straight toothed spur gear |
CN107117511A (en) * | 2017-05-22 | 2017-09-01 | 长沙海川自动化设备有限公司 | Gear detector, building hoist and detection method |
CN108225188A (en) * | 2018-02-07 | 2018-06-29 | 武汉市精华减速机制造有限公司 | A kind of RV retarders pin gear composition error device for fast detecting and method |
CN110146033A (en) * | 2019-06-04 | 2019-08-20 | 西安工业大学 | Contact line-expanded line gear tooth surface error expression method based on point cloud data |
CN111492199A (en) * | 2017-12-15 | 2020-08-04 | 雷肖尔股份公司 | Method and device for measuring a rolling tool |
CN114234796A (en) * | 2021-10-26 | 2022-03-25 | 深圳市裕展精密科技有限公司 | Hole detection method, hole detection device and hole detection equipment |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1228526A (en) * | 1998-12-30 | 1999-09-15 | 西安交通大学 | Three-dimensional contour phase measuring method and device for fast projection structure beam |
CN1900651A (en) * | 2006-07-27 | 2007-01-24 | 西安交通大学 | Three dimension object contour phase measuring method based on double frequency color strip projection |
JP2009229312A (en) * | 2008-03-24 | 2009-10-08 | Harmonic Drive Syst Ind Co Ltd | Contour shape measuring method |
-
2010
- 2010-03-16 CN CN 201010125502 patent/CN101782374A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1228526A (en) * | 1998-12-30 | 1999-09-15 | 西安交通大学 | Three-dimensional contour phase measuring method and device for fast projection structure beam |
CN1900651A (en) * | 2006-07-27 | 2007-01-24 | 西安交通大学 | Three dimension object contour phase measuring method based on double frequency color strip projection |
JP2009229312A (en) * | 2008-03-24 | 2009-10-08 | Harmonic Drive Syst Ind Co Ltd | Contour shape measuring method |
Non-Patent Citations (1)
Title |
---|
《激光与红外》 19990228 李根乾等 一种快速回转式三维轮廓的测量技术 27-29 1-3 第29卷, 第1期 2 * |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102141384B (en) * | 2010-12-30 | 2013-03-27 | 浙江昱辉阳光能源有限公司 | Guide wheel outline detection method and system |
CN102141384A (en) * | 2010-12-30 | 2011-08-03 | 浙江昱辉阳光能源有限公司 | Guide wheel outline detection method and system |
CN102865828A (en) * | 2011-07-04 | 2013-01-09 | 贵州红林机械有限公司 | Determination method of special profile part |
CN103959010B (en) * | 2011-11-30 | 2017-10-27 | 株式会社尼康 | Shape measuring apparatus, structure manufacture system, process for measuring shape, structure manufacture method, measuring shape program and non-transitory computer readable media |
CN103959010A (en) * | 2011-11-30 | 2014-07-30 | 株式会社尼康 | Profile measuring apparatus, structure manufacturing system, method for measuring profile, method for manufacturing structure, program for measuring profile and non-transitory computer readable medium |
CN103292993A (en) * | 2012-02-24 | 2013-09-11 | 王汝化 | Gear detection device |
CN105301007A (en) * | 2015-12-02 | 2016-02-03 | 中国计量学院 | Linear array CCD-based ABS gear ring defect online detection device and method |
CN105571523A (en) * | 2015-12-23 | 2016-05-11 | 中国科学院长春光学精密机械与物理研究所 | Tooth error vision measurement method for involute of straight toothed spur gear |
CN105509651A (en) * | 2016-01-11 | 2016-04-20 | 石家庄铁道大学 | Digital image measuring device and method for three-dimensional microstrain field of gear engagement face |
CN107117511A (en) * | 2017-05-22 | 2017-09-01 | 长沙海川自动化设备有限公司 | Gear detector, building hoist and detection method |
CN107117511B (en) * | 2017-05-22 | 2022-12-20 | 长沙海川自动化设备有限公司 | Gear detection device, construction hoist and detection method |
CN111492199A (en) * | 2017-12-15 | 2020-08-04 | 雷肖尔股份公司 | Method and device for measuring a rolling tool |
CN108225188A (en) * | 2018-02-07 | 2018-06-29 | 武汉市精华减速机制造有限公司 | A kind of RV retarders pin gear composition error device for fast detecting and method |
CN110146033A (en) * | 2019-06-04 | 2019-08-20 | 西安工业大学 | Contact line-expanded line gear tooth surface error expression method based on point cloud data |
CN110146033B (en) * | 2019-06-04 | 2020-08-07 | 西安工业大学 | Contact line-expansion line gear tooth surface error expression method based on point cloud data |
CN114234796A (en) * | 2021-10-26 | 2022-03-25 | 深圳市裕展精密科技有限公司 | Hole detection method, hole detection device and hole detection equipment |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101782374A (en) | Gear and moulding structure outline measuring method based on template near-field light projection scanning | |
CN204730814U (en) | A kind of parts passer based on line laser three-dimensional measurement | |
CN103344182B (en) | A kind of confection physical dimension based on binocular vision measures system and method | |
CN204313798U (en) | A kind of laser beam in-situ calibration device | |
CN205383997U (en) | Holographic three -dimensional scanning device of awl light | |
CN103148784B (en) | The full-scale detection method of a kind of large-scale blade | |
CN101947962B (en) | A rapid non-contact railway encroachment measurement method | |
CN106289109A (en) | A kind of three-dimensional reconstruction system based on structure light and method | |
CN105627923B (en) | A kind of planning parameters of scanning paths method that blade dense point cloud based on laser ranging is obtained | |
CN202013181U (en) | Device for precisely measuring inner diameter of multi-direction shaft hole based on laser triangulation method | |
CN104567690A (en) | Field calibration method and device for laser beams | |
CN104913737A (en) | Component quality checking device based on line laser three-dimensional measurement and detection method of device | |
CN101975560A (en) | Optical detection method for parallelism of planar array CCD target surface and installation locating surface | |
CN103307984A (en) | Laser measuring device, laser measuring system and laser measuring method for adjustable paddle blade | |
CN108507466A (en) | The method that three-dimensional precise information is obtained using two-dimentional line laser scanner | |
CN103363923A (en) | Non-contact type gear tooth direction measuring method of laser vision distance measurement | |
CN110672029A (en) | Flexible measuring system of large-scale complex curved surface three-dimensional shape robot | |
CN106767512A (en) | Optical element high precision measuring device based on real-time monitoring kinematic error | |
CN101629816A (en) | Complex revolving body contour measuring method and device capable of eliminating part positioning error | |
CN103009194B (en) | Non-contact inner parallel plane distance measuring method for large-sized workpiece | |
CN106546192A (en) | A kind of high reflection Free-Form Surface and system | |
CN106546193A (en) | A kind of high reflection body surface three-dimensional measuring method and system | |
CN203349785U (en) | Laser measurement device and system for adjustable propeller blade | |
CN112485805A (en) | Laser triangular displacement sensor and measuring method thereof | |
CN106441147B (en) | A kind of method for building up for essence casting moving turbine blade three dimensional optical measuring benchmark |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |
Open date: 20100721 |