CN101781052A - Closed ultrasonic-vaporization high-voltage corona oxidation method and equipment thereof - Google Patents
Closed ultrasonic-vaporization high-voltage corona oxidation method and equipment thereof Download PDFInfo
- Publication number
- CN101781052A CN101781052A CN200910211473A CN200910211473A CN101781052A CN 101781052 A CN101781052 A CN 101781052A CN 200910211473 A CN200910211473 A CN 200910211473A CN 200910211473 A CN200910211473 A CN 200910211473A CN 101781052 A CN101781052 A CN 101781052A
- Authority
- CN
- China
- Prior art keywords
- ultrasonic
- voltage corona
- waste water
- voltage
- reaction chamber
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 39
- 230000003647 oxidation Effects 0.000 title claims abstract description 30
- 238000007254 oxidation reaction Methods 0.000 title claims abstract description 30
- 238000009834 vaporization Methods 0.000 title claims abstract 10
- 239000002351 wastewater Substances 0.000 claims abstract description 74
- 238000006243 chemical reaction Methods 0.000 claims abstract description 38
- 239000007788 liquid Substances 0.000 claims abstract description 36
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 27
- 239000011521 glass Substances 0.000 claims description 13
- 230000001590 oxidative effect Effects 0.000 claims description 8
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 7
- 229910001220 stainless steel Inorganic materials 0.000 claims description 7
- 239000010935 stainless steel Substances 0.000 claims description 7
- 238000009792 diffusion process Methods 0.000 claims description 4
- 230000000694 effects Effects 0.000 claims description 4
- JEGUKCSWCFPDGT-UHFFFAOYSA-N h2o hydrate Chemical compound O.O JEGUKCSWCFPDGT-UHFFFAOYSA-N 0.000 claims 7
- 150000003254 radicals Chemical class 0.000 claims 1
- 230000008569 process Effects 0.000 abstract description 11
- 239000006200 vaporizer Substances 0.000 abstract 6
- 238000005086 pumping Methods 0.000 abstract 1
- 239000003595 mist Substances 0.000 description 27
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 10
- 230000009471 action Effects 0.000 description 9
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 8
- 239000006199 nebulizer Substances 0.000 description 7
- 239000007800 oxidant agent Substances 0.000 description 7
- 239000000126 substance Substances 0.000 description 7
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 6
- 238000001514 detection method Methods 0.000 description 6
- 238000000889 atomisation Methods 0.000 description 5
- 239000003153 chemical reaction reagent Substances 0.000 description 5
- 239000005416 organic matter Substances 0.000 description 5
- 238000005868 electrolysis reaction Methods 0.000 description 4
- 229910052757 nitrogen Inorganic materials 0.000 description 4
- 230000029087 digestion Effects 0.000 description 3
- 239000012535 impurity Substances 0.000 description 3
- MWUXSHHQAYIFBG-UHFFFAOYSA-N nitrogen oxide Inorganic materials O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 3
- USHAGKDGDHPEEY-UHFFFAOYSA-L potassium persulfate Chemical compound [K+].[K+].[O-]S(=O)(=O)OOS([O-])(=O)=O USHAGKDGDHPEEY-UHFFFAOYSA-L 0.000 description 3
- 229910002651 NO3 Inorganic materials 0.000 description 2
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 2
- 238000005273 aeration Methods 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- 230000005684 electric field Effects 0.000 description 2
- 239000003344 environmental pollutant Substances 0.000 description 2
- 230000005284 excitation Effects 0.000 description 2
- 230000005281 excited state Effects 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 229920002521 macromolecule Polymers 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 231100000719 pollutant Toxicity 0.000 description 2
- 238000012372 quality testing Methods 0.000 description 2
- 230000036632 reaction speed Effects 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- JVMRPSJZNHXORP-UHFFFAOYSA-N ON=O.ON=O.ON=O.N Chemical compound ON=O.ON=O.ON=O.N JVMRPSJZNHXORP-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- XKMRRTOUMJRJIA-UHFFFAOYSA-N ammonia nh3 Chemical compound N.N XKMRRTOUMJRJIA-UHFFFAOYSA-N 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000003487 electrochemical reaction Methods 0.000 description 1
- 238000009297 electrocoagulation Methods 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 150000002897 organic nitrogen compounds Chemical class 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000002957 persistent organic pollutant Substances 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- OTYBMLCTZGSZBG-UHFFFAOYSA-L potassium sulfate Chemical compound [K+].[K+].[O-]S([O-])(=O)=O OTYBMLCTZGSZBG-UHFFFAOYSA-L 0.000 description 1
- 229910052939 potassium sulfate Inorganic materials 0.000 description 1
- 235000011151 potassium sulphates Nutrition 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000013049 sediment Substances 0.000 description 1
- 150000003384 small molecules Chemical class 0.000 description 1
- 238000002798 spectrophotometry method Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Images
Landscapes
- Water Treatment By Electricity Or Magnetism (AREA)
- Physical Water Treatments (AREA)
Abstract
Description
技术领域technical field
本发明涉及一种废水氧化方法,尤其是一种密闭超声波雾化高压电晕氧化方法及其设备,属于废水氧化的技术领域。The invention relates to a wastewater oxidation method, in particular to a closed ultrasonic atomization high-voltage corona oxidation method and equipment thereof, belonging to the technical field of wastewater oxidation.
背景技术Background technique
目前对废水中氮磷等物质含量的检测,主要采用以下方法:首先选用某种氧化方法,把有机物消解,并把废水中各种价态的待检测元素氧化成统一的最高价态形式,然后对各种元素离子采用紫外分光光度计或电化学传感器检测出待测物质含量。At present, the following methods are mainly used for the detection of the content of nitrogen, phosphorus and other substances in wastewater: first, select some oxidation method to digest the organic matter, and oxidize the elements to be detected in various valence states in the wastewater into a unified highest valence form, and then For various element ions, use ultraviolet spectrophotometer or electrochemical sensor to detect the content of the substance to be tested.
其中对待测废水的氧化方法,目前主要有以下两种方法:Among them, the oxidation methods of the wastewater to be tested mainly include the following two methods:
1.添加氧化剂方法1. Add oxidant method
传统的废水氧化方法采用添加某种对应氧化剂的方法。The traditional wastewater oxidation method uses the method of adding some corresponding oxidant.
(1)过硫酸钾法(1) Potassium persulfate method
对于废水中总氮的测定,国标《水质 总氮的测定 碱性过硫酸钾消解紫外分光光度法》(GB 11894-89)中规定,在120℃~124℃的碱性介质条件下,用过硫酸钾作氧化剂,不仅可将水样中的氨氮和亚硝酸盐氮氧化为硝酸盐,同时将水样中大部分有机氮化合物氧化为硝酸盐。这种方法需要大量消耗过硫酸钾试剂,对试剂的存储使用难以控制,操作复杂,效率低下。For the determination of total nitrogen in wastewater, the national standard "Water Quality Determination of Total Nitrogen Alkaline Potassium Persulfate Digestion Ultraviolet Spectrophotometry" (GB 11894-89) stipulates that under the condition of alkaline medium at 120 ° C ~ 124 ° C, used Potassium sulfate as an oxidant can not only oxidize the ammonia nitrogen and nitrite nitrogen in the water sample to nitrate, but also oxidize most of the organic nitrogen compounds in the water sample to nitrate. This method needs to consume a large amount of potassium persulfate reagent, it is difficult to control the storage and use of the reagent, the operation is complicated, and the efficiency is low.
(2)臭氧氧化法(2) Ozone oxidation method
臭氧是一种强氧化剂,氧化电势为2.07V,与有机物反应速度快。臭氧通过曝气或射流的方法混入水中,能与水中各种形态存在的污染物质起反应,将复杂的有机物转化成为简单化合物,并逐步将低价态离子氧化到高价态形式。通常臭氧发生器产生的臭氧会混有氮氧化合物,无法用于水质中氮元素检测。同时,臭氧的曝气和射流都对废水的压力和流速有较高的要求,难以适用于少量样品的现场检测。Ozone is a strong oxidant with an oxidation potential of 2.07V and reacts quickly with organic matter. Ozone is mixed into water through aeration or jet flow, and can react with various forms of pollutants in water, transform complex organic matter into simple compounds, and gradually oxidize low-valence ions to high-valence forms. Usually the ozone produced by the ozone generator will be mixed with nitrogen oxides, which cannot be used for the detection of nitrogen in water quality. At the same time, the aeration and jet flow of ozone have high requirements on the pressure and flow rate of wastewater, which are difficult to apply to the on-site detection of a small amount of samples.
(3)过氧化氢法(3) hydrogen peroxide method
过氧化氢是一种无色黏稠的液体,它的水溶液俗称双氧水,也是水处理中常用的强氧化剂,氧化电势为1.77V,能氧化水中的无机和有机污染物。过氧化氢化学性质不稳定,一般以30%或60%的水溶液形式存放,过氧化氢的储藏和使用过程都不容易控制,难以适用于现场检测。Hydrogen peroxide is a colorless viscous liquid. Its aqueous solution is commonly known as hydrogen peroxide. It is also a strong oxidizing agent commonly used in water treatment. The oxidation potential is 1.77V, which can oxidize inorganic and organic pollutants in water. The chemical properties of hydrogen peroxide are unstable, and it is generally stored in the form of 30% or 60% aqueous solution. The storage and use of hydrogen peroxide are not easy to control, and it is difficult to apply to on-site detection.
2.电解氧化方法2. Electrolytic oxidation method
废水电解处理法是废水化学处理法之一种。应用电解的基本原理,使废水中有害物质通过电解转化成为无害物质以实现净化的方法。废水电解处理包括电极表面电化学作用、间接氧化和间接还原,以及电絮凝等过程,分别以不同的作用去除废水中的污染物。缺点在于在处理大量废水时电耗和电极金属的消耗量较大,分离的沉淀物不易处理利用。同时还会在溶液中产生金属阳离子干扰,不适用于水质检测。Wastewater electrolysis treatment is one of wastewater chemical treatment methods. The basic principle of electrolysis is applied to convert harmful substances in wastewater into harmless substances through electrolysis to achieve purification. Wastewater electrolysis treatment includes electrode surface electrochemical action, indirect oxidation and indirect reduction, and electrocoagulation processes, which remove pollutants in wastewater with different functions. The disadvantage is that the power consumption and electrode metal consumption are relatively large when treating a large amount of wastewater, and the separated sediment is not easy to process and utilize. At the same time, metal cation interference will be generated in the solution, which is not suitable for water quality detection.
发明内容Contents of the invention
本发明的目的是克服现有技术中存在的不足,提供一种密闭超声波雾化高压电晕氧化方法及其设备,其操作方便,设备简单,工艺流程简化,成本低廉,适用性好。The purpose of the present invention is to overcome the deficiencies in the prior art, and provide a closed ultrasonic atomization high-voltage corona oxidation method and its equipment, which are easy to operate, simple in equipment, simplified in process flow, low in cost and good in applicability.
按照本发明提供的技术方案,所述氧化方法包括如下步骤:a、利用进液泵、进液阀及流量计,向超声波雾化器中灌入30ml~60ml的废水水样;b、开启超声波雾化器;所述超声波雾化器对废水水样施加1.6MHz~2.5MHz的超声波,废水水样吸收能量,分子动能增加,将废水水样激发为雾状;c、开启高压电晕反应室和循环泵;超声波雾化器中的废水雾气,在雾气的扩散和循环泵抽吸的作用下,进入高压电晕反应室中;高压电晕反应室对废水雾气施加15000~30000V的电压作用,打开废水雾气的分子链和连接键,并产生强氧化性自由基,对废水雾气进行氧化消解;d、利用循环泵的抽吸作用,使废水雾气在超声波雾化器及高压电晕反应室中循环3~6分钟,对废水雾气进行充分氧化消解;e、开启出水泵和出液阀;通过出水泵和出液阀,释放超声波雾化器与高压电晕反应室内的废水雾气,得到氧化消解完成的废水水样。According to the technical solution provided by the present invention, the oxidation method includes the following steps: a. using a liquid inlet pump, a liquid inlet valve and a flow meter to pour 30ml to 60ml of wastewater water samples into the ultrasonic atomizer; b. turning on the ultrasonic wave Atomizer; the ultrasonic atomizer applies ultrasonic waves of 1.6MHz to 2.5MHz to the wastewater water sample, the wastewater water sample absorbs energy, the molecular kinetic energy increases, and the wastewater water sample is excited into a mist; c. Turn on the high-voltage corona reaction chamber and circulation pump; the wastewater mist in the ultrasonic atomizer enters the high-voltage corona reaction chamber under the action of the mist diffusion and circulation pump suction; the high-voltage corona reaction chamber applies 15000-30000V to the wastewater mist Under the action of voltage, the molecular chains and connecting bonds of the waste water mist are opened, and strong oxidizing free radicals are generated to oxidize and digest the waste water mist; Circulate in the corona reaction chamber for 3 to 6 minutes to fully oxidize and digest the waste water mist; e. Open the outlet pump and liquid outlet valve; through the outlet water pump and liquid outlet valve, release the wastewater in the ultrasonic atomizer and high-voltage corona reaction chamber mist to obtain the wastewater sample that has been oxidized and digested.
所述氧化方法所用的密闭超声波雾化高压电晕设备,包括进液泵与超声波雾化器;所述进液泵用于抽取废水水样,进液泵的出液端通过进液阀及流量计与超声波雾化器相连;所述超声波雾化器与高压电晕反应室相连通,所述超声波雾化器与高压电晕反应室间还设有循环泵,所述循环泵的出液端与超声波雾化器连接,所述超声波雾化器通过出液泵及出液阀释放氧化消解后的废水水样。The airtight ultrasonic atomization high-voltage corona equipment used in the oxidation method includes a liquid inlet pump and an ultrasonic atomizer; the liquid inlet pump is used to extract waste water samples, and the liquid outlet end of the liquid inlet pump passes through the liquid inlet valve and The flow meter is connected with the ultrasonic atomizer; the ultrasonic atomizer is connected with the high-pressure corona reaction chamber, and a circulating pump is also arranged between the ultrasonic atomizer and the high-voltage corona reaction chamber, and the circulating pump The liquid outlet is connected to an ultrasonic nebulizer, and the ultrasonic nebulizer releases the oxidized and digested wastewater sample through a liquid outlet pump and a liquid outlet valve.
所述超声波雾化器与高压电晕反应室通过玻璃管相连通。所述超声波雾化器中的超声波频率为1.6MHz~2.5MHz。所述高压电晕反应室包括玻璃管路和直流高压包电源,所述玻璃管路的端部设有凹槽,凹槽内放置有不锈钢,所述玻璃管路的外部包裹有铜丝网,所述直流高压包电源的正极、负极端分别与不锈钢及铜丝网相连。The ultrasonic atomizer communicates with the high-voltage corona reaction chamber through a glass tube. The ultrasonic frequency in the ultrasonic nebulizer is 1.6MHz-2.5MHz. The high-voltage corona reaction chamber includes a glass pipeline and a DC high-voltage package power supply. The end of the glass pipeline is provided with a groove, and stainless steel is placed in the groove, and the outside of the glass pipeline is wrapped with a copper wire mesh , the positive pole and the negative pole of the DC high voltage pack power supply are respectively connected with stainless steel and copper wire mesh.
所述直流高压包电源的输出电压为15000~30000V。The output voltage of the DC high voltage pack power supply is 15000-30000V.
本发明的优点:反应速度快,反应效率高,雾化后废水水样在高压电晕作用下可以迅速被氧化。反应过程在密闭管路中进行,雾化过程和高压电晕过程都没有损耗,同时也不会掺入空气等外界杂质元素,有利于水质现场检测的准确性;不使用催化剂、氧化剂等化学试剂,避免了使用或者生产这些化学试剂过程中的能耗和污染问题;使用这种氧化方法的设备体积小巧,操作简便,运行成本低廉;辅助自动控制手段,可以实现自动进样和出样,同时对使用环境无特殊要求,可以方便的使用于水质现场检测。The invention has the advantages of fast reaction speed and high reaction efficiency, and the atomized waste water sample can be rapidly oxidized under the action of high-voltage corona. The reaction process is carried out in a closed pipeline. There is no loss in the atomization process and the high-voltage corona process. At the same time, it will not be mixed with external impurity elements such as air, which is conducive to the accuracy of on-site water quality testing; no catalysts, oxidants and other chemicals are used. Reagents avoid the energy consumption and pollution problems in the process of using or producing these chemical reagents; the equipment using this oxidation method is small in size, easy to operate, and low in operating costs; auxiliary automatic control means can realize automatic sample injection and sample output, At the same time, there is no special requirement for the use environment, and it can be conveniently used for on-site testing of water quality.
附图说明Description of drawings
图1为本发明的结构框图。Fig. 1 is a structural block diagram of the present invention.
图2为本发明高压电晕反应室的结构示意图。Fig. 2 is a schematic structural view of the high-voltage corona reaction chamber of the present invention.
具体实施方式Detailed ways
下面结合具体附图和实施例对本发明作进一步说明。The present invention will be further described below in conjunction with specific drawings and embodiments.
如图1所示:本发明包括进液泵2、进液阀3、流量计4、超声波雾化器5、高压电晕反应室6、循环泵7、出液泵8及出液阀9。As shown in Figure 1: the present invention includes liquid inlet pump 2, liquid inlet valve 3, flow meter 4,
如图1所示:所述进液泵2用于抽取废水水样1,进液泵2抽取的废水水样1通过进液阀3及流量计4进入超声波雾化器5中。进入超声波雾化器5中的废水水样1,在1.6MHz~2.5MHz超声波的空化和激励作用下,分子动能增加,成为雾状,同时废水水样1吸收超声波能量,成为活化激发态。As shown in FIG. 1 , the liquid inlet pump 2 is used to extract a
所述超声波雾化器5通过玻璃管路与高压电晕反应室6相连,超声波雾化器5中的废水雾气,利用废水雾气的扩散作用及循环泵7的抽吸作用进入高压电晕反应室6内;超声波雾化器5与高压电晕反应室6内的废水雾气利用循环泵7进行循环,保证废水水样1的充分氧化消解。废水水样1在超声波雾化器5和高压电晕反应室6中充分氧化消解后,由出液泵8及出液阀9释放氧化完成后的废水水样10。The
所述超声波雾化器5采用市售医用超声波雾化器,其主要技术参数:额定电压:220V±10%;额定频率:50Hz;额定输入功率:<35w超声频率:1.7MHZ;雾化量:4ml/min;雾粒直径:0.5-5μm。超声波雾化器5通过电子振荡电路,由晶片产生超声波,利用超声波的空化和激励作用将废水水样激发成雾状。The
如图2所示:所述高压电晕反应室6包括所述玻璃管路15和直流高压包电源11;所述玻璃管路15的端部设有凹槽13,凹槽13内放置有不锈钢12,所述玻璃管路15的外部包裹有铜丝网14,所述直流高压包电源11的正极、负极端分别与不锈钢12及铜丝网14相连。所述直流高压包电源11通过不锈钢12作为正极,铜丝网14作为电源负极,对玻璃管路15内的废水雾气进行高压电晕作用。As shown in Figure 2: the high-voltage corona reaction chamber 6 includes the glass pipeline 15 and the DC high-voltage pack power supply 11; the end of the glass pipeline 15 is provided with a groove 13, and the groove 13 is placed with Stainless steel 12, the outside of the glass pipeline 15 is wrapped with a copper wire mesh 14, and the positive and negative terminals of the DC high voltage pack power supply 11 are connected to the stainless steel 12 and the copper wire mesh 14 respectively. The DC high-voltage pack power supply 11 uses stainless steel 12 as the positive pole, and copper wire mesh 14 as the negative pole of the power supply to perform high-voltage corona action on the waste water mist in the glass pipeline 15 .
高压电晕反应室6为废水雾气提供能量,废水雾气吸收高压电场的能量,打开有机物以及大分子团之间的分子链和连接键,使有机物和大分子成为小分子,有利于消解氧化。水分子在高压电晕的作用下,产生强氧化性的羟基自由基(·OH),水分子在高压电晕作用下的电化学反应式为:H2O*→·OH+·H;其中H2O*为吸收电场能量后的激发态水分子。The high-voltage corona reaction chamber 6 provides energy for the waste water mist, and the waste water mist absorbs the energy of the high-voltage electric field to open the molecular chains and linkages between organic matter and macromolecules, so that organic matter and macromolecules become small molecules, which is conducive to digestion and oxidation. Under the action of high-voltage corona, water molecules produce strong oxidizing hydroxyl radicals (OH). The electrochemical reaction formula of water molecules under the action of high-voltage corona is: H 2 O*→·OH+·H; Wherein H 2 O* is the excited state water molecule after absorbing the electric field energy.
所述氧化方法包括如下步骤:Described oxidation method comprises the steps:
a、利用进液泵2、进液阀3及流量计4,向超声波雾化器5中灌入30ml~60ml的废水水样1;a. Using the liquid inlet pump 2, the liquid inlet valve 3 and the flow meter 4, pour 30ml to 60ml of
b、开启超声波雾化器5;所述超声波雾化器5对废水水样1施加1.6MHz~2.5MHz的超声波,废水水样1吸收能量,分子动能增加,将废水水样1激发为雾状;;b. Turn on the
c、开启高压电晕反应室6和循环泵7;超声波雾化器5中的废水雾气,在雾气的扩散和循环泵7抽吸的作用下,进入高压电晕反应室6中;高压电晕反应室6对废水雾气施加15000~30000V的电压作用,打开废水雾气的分子链和连接键,并产生强氧化性自由基,对废水雾气进行氧化消解;C, open high-voltage corona reaction chamber 6 and circulating pump 7; The waste water mist in the
d、利用循环泵7的抽吸作用,使废水雾气在超声波雾化器5及高压电晕反应室6中循环3~6分钟,对废水雾气进行充分氧化消解;d. Using the suction effect of the circulation pump 7, the waste water mist is circulated in the
e、开启出水泵8和出液阀9;通过出水泵8和出液阀9,释放超声波雾化器5与高压电晕反应室6内的废水雾气,得到氧化消解完成的废水10。e. Turn on the water outlet pump 8 and the
如图1和图2所示:废水水样1进入超声波雾化器5和高压电晕反应室6后,都是在密闭的环境下进行氧化消解,废水水样1在雾化过程和高压电晕过程中均没有消耗,同时也不会掺入杂质元素,有利于水质现场检测的准确性。整个过程不使用催化剂、氧化剂等化学试剂,避免了氧化过程中的消耗和污染。在高压电晕反应室6中进行高压电晕作用时,直流高压包电源11的正、负极均不与废水雾气接触,避免了杂质元素的干扰。整个氧化过程中,反应速度快,反应效率高,对设备使用无特殊环境要求,方便对水质现场的检测。As shown in Figure 1 and Figure 2: after the
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2009102114735A CN101781052B (en) | 2009-11-12 | 2009-11-12 | Sealed Ultrasonic Atomization High Voltage Corona Oxidation Method and Equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2009102114735A CN101781052B (en) | 2009-11-12 | 2009-11-12 | Sealed Ultrasonic Atomization High Voltage Corona Oxidation Method and Equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101781052A true CN101781052A (en) | 2010-07-21 |
CN101781052B CN101781052B (en) | 2011-10-05 |
Family
ID=42521222
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2009102114735A Expired - Fee Related CN101781052B (en) | 2009-11-12 | 2009-11-12 | Sealed Ultrasonic Atomization High Voltage Corona Oxidation Method and Equipment |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101781052B (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101915686A (en) * | 2010-07-09 | 2010-12-15 | 江南大学 | Ultrasonic atomization high-voltage discharge combined with ozone ultraviolet oxidation digestion device |
CN101956417A (en) * | 2010-08-11 | 2011-01-26 | 国家海洋局第二海洋研究所 | Foam plugging type microbial decomposition water circulating environmental protection toilet for islands |
CN103241806A (en) * | 2013-05-27 | 2013-08-14 | 苏州科技学院 | Method for treating organic wastewater through high-frequency and high-voltage discharge and reactor thereof |
-
2009
- 2009-11-12 CN CN2009102114735A patent/CN101781052B/en not_active Expired - Fee Related
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101915686A (en) * | 2010-07-09 | 2010-12-15 | 江南大学 | Ultrasonic atomization high-voltage discharge combined with ozone ultraviolet oxidation digestion device |
CN101915686B (en) * | 2010-07-09 | 2012-06-20 | 江南大学 | Ultrasonic atomization high-voltage discharging and ozone-ultraviolet combined oxidization digestion device |
CN101956417A (en) * | 2010-08-11 | 2011-01-26 | 国家海洋局第二海洋研究所 | Foam plugging type microbial decomposition water circulating environmental protection toilet for islands |
CN103241806A (en) * | 2013-05-27 | 2013-08-14 | 苏州科技学院 | Method for treating organic wastewater through high-frequency and high-voltage discharge and reactor thereof |
CN103241806B (en) * | 2013-05-27 | 2015-06-24 | 苏州科技学院 | Method for treating organic wastewater through high-frequency and high-voltage discharge and reactor thereof |
Also Published As
Publication number | Publication date |
---|---|
CN101781052B (en) | 2011-10-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Guo et al. | Degradation of nitrobenzene by sodium persulfate activated with zero-valent zinc in the presence of low frequency ultrasound | |
CN102636446B (en) | On-line detection device for detecting total nitrogen and total phosphorus through ozone ultraviolet collaborative oxidative digestion | |
CN104355388B (en) | A kind of preparation method of hydroxyl free based sols and device | |
CN101915686B (en) | Ultrasonic atomization high-voltage discharging and ozone-ultraviolet combined oxidization digestion device | |
CN110227499A (en) | Method for degrading organic dye in water by using molybdenum disulfide and ferrous iron activated persulfate | |
CN108483743A (en) | A kind of coating wastewater processing system and method | |
CN101367031A (en) | A device and method for generating hydroxyl radicals by ultrasonic waves in cooperation with strong ionization discharge | |
CN102616882A (en) | Advanced wastewater treatment system by aid of ozone and microwave ultraviolet light oxidation | |
CN108383207A (en) | A kind of oilfield polymer flooding dirt containing PAM water purification method | |
CN103252160A (en) | Methane degradation device | |
CN103086461A (en) | Method for treating oxytetracycline-containing wastewater by adopting low-temperature plasma technology | |
CN101781052A (en) | Closed ultrasonic-vaporization high-voltage corona oxidation method and equipment thereof | |
CN104355389A (en) | Method and device for removing insoluble organic matters in water | |
CN206437986U (en) | A kind of sound, light, ozone coupling handle the device of organic wastewater | |
CN202705159U (en) | Ozone-microwave ultraviolet oxidation treatment advanced waste treatment system | |
CN104944565B (en) | Multiple free radicals synergy method for treating water under a kind of plasma ambient | |
CN101759276A (en) | Device and method for treating organic wastewater by combining ozone/potassium ferrate | |
CN114920350B (en) | Method for degrading ibuprofen by utilizing monoatomic copper coupled red phosphorus to activate molecular oxygen | |
CN201351131Y (en) | Advanced device for oxidative degradation of nitrobenzene wastewater | |
CN211419933U (en) | Application system for treating sludge | |
CN201372225Y (en) | An ozone oxidation water treatment device | |
CN211999245U (en) | An arsenic-containing organic wastewater treatment system | |
CN211570200U (en) | Electrocatalytic oxidation device | |
CN113998769A (en) | A sewage treatment oxidation system | |
CN205653215U (en) | Three -dimensional peroxidating electrochemical device of 3D -EO |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20111005 |