[go: up one dir, main page]

CN101773395A - Method for extracting respiratory movement parameter from one-arm X-ray radiography picture - Google Patents

Method for extracting respiratory movement parameter from one-arm X-ray radiography picture Download PDF

Info

Publication number
CN101773395A
CN101773395A CN200910273528A CN200910273528A CN101773395A CN 101773395 A CN101773395 A CN 101773395A CN 200910273528 A CN200910273528 A CN 200910273528A CN 200910273528 A CN200910273528 A CN 200910273528A CN 101773395 A CN101773395 A CN 101773395A
Authority
CN
China
Prior art keywords
msub
mrow
msubsup
curve
prime
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN200910273528A
Other languages
Chinese (zh)
Other versions
CN101773395B (en
Inventor
张天序
邓觐鹏
孙祥平
肖晶
黎云
曹治国
桑农
王国铸
王芳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huazhong University of Science and Technology
Original Assignee
Huazhong University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huazhong University of Science and Technology filed Critical Huazhong University of Science and Technology
Priority to CN2009102735285A priority Critical patent/CN101773395B/en
Publication of CN101773395A publication Critical patent/CN101773395A/en
Application granted granted Critical
Publication of CN101773395B publication Critical patent/CN101773395B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Apparatus For Radiation Diagnosis (AREA)

Abstract

从单臂x射线造影图中提取呼吸运动参数的方法,属于数字信号处理与医学成像交叉的领域,目的是为了将呼吸运动从复杂的实际人体心脏运动中分离出来。本发明通过在冠脉血管上选取一组结构特征点(包括血管段的首尾点)并在序列中进行跟踪得到它们随时间的运动曲线,然后通过傅里叶级数展开和频域滤波的方法分离得到二维呼吸运动曲线。此外,为了更加直观、更加有效的描述呼吸运动,本发明依据造影系统中点的三维重建原理来对两个不同造影视角下得到的二维呼气运动进行重建,而得到三维呼吸运动。本发明可以得到较好的呼吸运动提取结果,且具有更广泛的适用性和灵活性,满足临床的要求。

Figure 200910273528

A method for extracting respiratory motion parameters from a single-arm X-ray angiography image belongs to the cross field of digital signal processing and medical imaging, and the purpose is to separate respiratory motion from complex actual human heart motion. The present invention selects a group of structural feature points (including the head and tail points of the blood vessel segment) on the coronary blood vessel and tracks them in the sequence to obtain their motion curves over time, and then uses the method of Fourier series expansion and frequency domain filtering Two-dimensional respiratory motion curves are obtained by separation. In addition, in order to describe the respiratory movement more intuitively and effectively, the present invention reconstructs the two-dimensional expiratory movement obtained under two different angiographic viewing angles according to the three-dimensional reconstruction principle of the midpoint of the imaging system to obtain the three-dimensional respiratory movement. The invention can obtain better respiratory motion extraction results, has wider applicability and flexibility, and meets clinical requirements.

Figure 200910273528

Description

一种从单臂X射线造影图中提取呼吸运动参数的方法 A Method for Extracting Respiratory Motion Parameters from Single-arm X-ray Contrasting Images

技术领域technical field

本发明属于数字信号处理与医学成像交叉的领域,具体涉及一种从单臂x射线造影图中提取呼吸运动参数的方法。The invention belongs to the intersecting field of digital signal processing and medical imaging, and in particular relates to a method for extracting respiratory motion parameters from a single-arm X-ray contrast image.

背景技术Background technique

胸廓有节律的扩大和缩小,从而完成吸气与呼气,这就是呼吸运动。呼吸运动会造成人体心脏在三维空间中整体的平移运动。在X射线造影系统中,由于呼吸运动的影响,冠状动脉血管在造影面上会发生二维平移运动。Rhythmic expansion and contraction of the chest to complete inhalation and exhalation, which is breathing movement. Breathing movement will cause the overall translational movement of the human heart in three-dimensional space. In the X-ray contrast system, due to the influence of respiratory movement, the coronary blood vessels will undergo two-dimensional translational movement on the imaging surface.

因此,冠脉造影图像一方面记录有心脏的运动在二维平面上的投影,同时也叠加有人体的呼吸运动造成的冠状动脉在造影面上的二维平移运动。那么,要得到更接近真实情况下的二维血管造影图并用于血管三维重建,则需将这两种运动信息进行分离从而对人体的心脏运动和呼吸运动单独进行分析。Therefore, on the one hand, the coronary angiography image records the projection of the motion of the heart on the two-dimensional plane, and at the same time superimposes the two-dimensional translational movement of the coronary artery on the angiography plane caused by the respiratory movement of the human body. Then, in order to obtain a two-dimensional angiogram closer to the real situation and use it for three-dimensional reconstruction of blood vessels, it is necessary to separate the two kinds of motion information to analyze the heart motion and respiratory motion of the human body separately.

国外很多文献在提取人体呼吸运动的时候都要通过预先设置标记点,然后对它们进行序列跟踪。其中在x射线造影中用的比较多的是,直接手动跟踪造影图中的非心脏的结构特征点。根据呼吸运动的特点,人在进行呼吸的时候会带动体内的其他器官一起运动。一般认为,这些器官会随着肺的运动进行三维空间的平移,且它们的运动都是同步的。所以可假设呼吸运动引起的心脏的运动和与它相邻的器官的运动在造影图平面上也是一致的,可以在造影图中找到心脏外的其他组织上的一些特征点作为标记点。在整个序列中跟踪这些标记点,得到这些标记点的运动情况,然后将这些标记点的运动近似为此二维投影面上的呼吸运动。另一种做法同样利用的是这些不会跟随心脏一起运动的结构特征点,所不同的是,它是在造影的同时记录这些标记点的运动。因此,这便要求在造影前就对各个特征点进行选取和标记。很显然,这两种方案都是有缺陷的。前者主要在于它的适用性很差,因为我们并不能保证每一帧造影图中都存在符合这种条件的标记点(心脏外的其他组织上的一些特征点),而且找这种点也需要经验(需要对人体解剖结构比较了解)。所以,在造影图中不存在以上特征点时,呼吸运动是很难被提取出来的。而后者的实现则需要大量实验控制,对一般的临床应用不合适。Many foreign literatures have to set marker points in advance when extracting human breathing motion, and then track them sequentially. Among them, it is more commonly used in X-ray angiography to directly manually track the non-cardiac structural feature points in the angiography. According to the characteristics of breathing movement, when a person breathes, he will drive other organs in the body to move together. It is generally believed that these organs will translate in three-dimensional space with the movement of the lungs, and their movements are all synchronized. Therefore, it can be assumed that the movement of the heart caused by respiratory movement is consistent with the movement of its adjacent organs on the plane of the contrast image, and some feature points on other tissues other than the heart can be found in the contrast image as marker points. These marker points are tracked throughout the sequence to obtain the motion of these marker points, and then the motion of these marker points is approximated to the breathing motion on this two-dimensional projection surface. Another method also uses these structural feature points that do not move with the heart, the difference is that it records the movement of these marker points while imaging. Therefore, it is required to select and mark each feature point before imaging. Obviously, both of these solutions are flawed. The former is mainly due to its poor applicability, because we cannot guarantee that there are marker points (feature points on other tissues other than the heart) that meet this condition in every frame of contrast images, and finding such points also requires Experience (a good understanding of human anatomy is required). Therefore, when the above feature points do not exist in the contrast image, it is difficult to extract the respiratory movement. The realization of the latter requires a lot of experimental control, which is not suitable for general clinical application.

目前,还出现了一种采用在双臂x射线造影条件下实现获得呼吸运动参数的方法,其分离心脏运动与呼吸运动的思想是,取同一时刻不同投影角度的两幅造影图,对其中相对应的冠脉血管进行三维重建,获得该时刻的血管三维空间分布。那么,对一个呼吸周期中的所有造影图对进行匹配和重建后,得到的则是一组三维结构序列,而它们间的空间位移矢量便是呼吸运动。相对来说,通过该方法能得到比较可靠的呼吸运动估计结果,但是由于双臂x射线造影条件的约束,不能广泛的应用在医疗实践中。At present, there is also a method to obtain respiratory motion parameters under the condition of double-arm X-ray contrast. The corresponding coronary vessels are three-dimensionally reconstructed to obtain the three-dimensional space distribution of the vessels at that moment. Then, after matching and reconstructing all contrast image pairs in a respiratory cycle, a set of three-dimensional structure sequences is obtained, and the spatial displacement vector between them is respiratory motion. Relatively speaking, this method can obtain more reliable respiratory motion estimation results, but it cannot be widely used in medical practice due to the constraints of dual-arm X-ray angiography conditions.

发明内容Contents of the invention

本发明的目的在于提出一种从单臂X射线造影图图像序列中提取呼吸运动参数的方法,通过在冠脉血管上选取一组特征点并在序列中进行跟踪得到它们随时间的运动曲线,然后通过傅里叶级数展开和频域滤波的方法分离得到单独的心脏与呼吸运动信息。具有很好的临床适用性。The purpose of the present invention is to propose a method for extracting respiratory motion parameters from a single-arm X-ray contrast image sequence, by selecting a group of feature points on the coronary vessels and tracking them in the sequence to obtain their motion curves over time, Then separate heart and respiration motion information by means of Fourier series expansion and frequency domain filtering. It has good clinical applicability.

一种基于频域滤波的人体呼吸运动参数提取方法,包括如下步骤:A method for extracting human respiratory motion parameters based on frequency domain filtering, comprising the following steps:

(1)获取冠脉血管的单臂X射线造影图图像序列,并确定心脏运动周期N1;(1) Obtain a single-arm X-ray contrast image sequence of coronary vessels, and determine the cardiac motion cycle N1;

(2)选取冠脉血管结构特征点;(2) Select coronary vessel structural feature points;

(3)提取呼吸运动曲线,具体方式为:(3) Extracting the respiratory motion curve, the specific method is:

(3.1)在造影图图像序列中对所述冠脉血管结构特征点进行自动跟踪,获取特征点跟踪序列s(n),n为特征点跟踪序列长度;(3.1) Automatically track the feature points of the coronary vessel structure in the image sequence of the contrast image, and obtain the feature point tracking sequence s(n), where n is the length of the feature point tracking sequence;

(3.2)在特征点跟踪序列s(n)中选取一段作为目标序列

Figure G2009102735285D00021
ns=n-n%N1,其中,%为取余符号;(3.2) Select a segment in the feature point tracking sequence s(n) as the target sequence
Figure G2009102735285D00021
ns=nn%N1, wherein, % is the remainder symbol;

(3.3)对目标序列

Figure G2009102735285D00022
进行离散傅立叶变换,得到目标频域响应S(k),k=0,...,ns-1;(3.3) For the target sequence
Figure G2009102735285D00022
Carry out discrete Fourier transform, obtain target frequency domain response S (k), k=0,..., ns-1;

(3.4)令呼吸运动的频域响应(3.4) Let the frequency domain response of respiratory motion

R ( k ) = S ( k ) , ( k ≠ ns N 1 l , l = 1 , . . . , N 1 - 1 ) ( S ( k ) + S ( k + 1 ) ) / 2 , ( k = ns N 1 l , l = 1 , . . . , N 1 - 1 ) , 对R(k)进行离散傅立叶逆变换得到呼吸运动曲线r(ns),即能够提取出呼吸运动参数。 R ( k ) = S ( k ) , ( k ≠ ns N 1 l , l = 1 , . . . , N 1 - 1 ) ( S ( k ) + S ( k + 1 ) ) / 2 , ( k = ns N 1 l , l = 1 , . . . , N 1 - 1 ) , Inverse discrete Fourier transform is performed on R(k) to obtain a respiratory motion curve r(ns), that is, respiratory motion parameters can be extracted.

通过上面所述的呼吸运动提取方法,最后获得的是某造影角度下的二维呼吸运动曲线。但为了更加直观、更加有效的描述呼吸运动,我们可依据造影系统中点的三维重建原理来对两个不同造影视角下得到的二维运动进行重建,而得到三维呼吸运动。Through the respiratory motion extraction method described above, the final obtained is a two-dimensional respiratory motion curve under a certain contrast angle. However, in order to describe the respiratory movement more intuitively and effectively, we can reconstruct the two-dimensional movement obtained under two different angiographic viewing angles according to the three-dimensional reconstruction principle of the midpoint of the imaging system to obtain the three-dimensional respiratory movement.

具体步骤如下:Specific steps are as follows:

Step1:确定两个不同造影角度下的造影图图像序列,记为左造影图图像序列和右造影图图像序列,再分别在左右造影图图像序列中确定相对应的任一参考点,分别记为pl(x,y,t)和pr(x,y,t),其中(x,y)为该任一参考点在图像序列中的坐标,t为时间,即造影图图像序列的帧序号,t为0到70之间的整数,分别选取t中的时刻tl,tr下的坐标(xl,yl)、(xr,yr)作为参考点pl(x,y,t)和pr(x,y,t)的初始化值,即pl(xl,yl,tl)和pr(xr,yr,tr),其中tl,tr对应于心动周期的同一时刻,一般选心脏舒张末期;Step1: Determine two contrast image sequences under different contrast angles, which are recorded as the left contrast map image sequence and the right contrast map image sequence, and then determine any corresponding reference point in the left and right contrast map image sequences, respectively recorded as p l (x, y, t) and p r (x, y, t), where (x, y) is the coordinates of any reference point in the image sequence, and t is the time, that is, the frame of the contrast image sequence serial number, t is an integer between 0 and 70, respectively select the coordinates (x l , y l ) and (x r , y r ) at the time t l in t and t r as the reference point p l (x, y , t) and the initialization values of p r (x, y, t), that is, p l (x l , y l , t l ) and p r (x r , y r , t r ), where t l , t r Corresponding to the same moment of the cardiac cycle, the end diastole is generally selected;

Step2:按照上述呼吸运动参数提取方法提取出左右造影图图像序列的呼吸运动曲线,分别记为curvel(x,y,t)和curver(x,y,t),然后分别在两条曲线上对应着选择呼吸运动周期中的吸气末期或呼气末期的极值点作为呼吸参考点,即在两条曲线上均选择吸气末期极值点或均选择呼气末期极值点,记为curvel(xcl,ycl,tcl)和curver(xcr,ycr,tcr),其中tcl,tcr分别为左右造影图图像序列中对应的吸气末期时刻或者呼气末期时刻,(xcl,ycr)、(xcr,ycr)分别为曲线curvel(x,y,t)和curver(x,y,t)上对应时刻tcl,tcr的坐标;Step2: According to the above respiratory motion parameter extraction method, extract the respiratory motion curves of the left and right contrast image sequences, which are respectively recorded as curve l (x, y, t) and curve r (x, y, t), and then the two curves are respectively Corresponding to select the extreme point of the end-inspiration or the end-expiration in the breathing movement cycle as the breathing reference point, that is, select the extreme point of the end-inspiration or the extreme point of the end-expiration on both curves, record is curve l (x cl , y cl , t cl ) and curve r (x cr , y cr , t cr ), where t cl and t cr are the corresponding end-inspiration moments or expiratory At the final moment, (x cl , y cr ), (x cr , y cr ) are the coordinates of the corresponding time t cl and t cr on the curves curve l (x, y, t) and curve r (x, y, t) respectively ;

Step3:对左右造影图图像序列中的初始化后的点对pl(xl,yl,tl)和pr(xr,yr,tr)进行呼吸运动补偿,即将tl,tr时刻下的呼吸运动分别补偿到对应的呼吸参考时刻tcl,tcr下,:Step3: Perform respiratory motion compensation on the initialized point pairs p l (x l , y l , t l ) and p r (x r , y r , t r ) in the image sequence of the left and right contrast images, that is, t l , t The breathing movement at time r is compensated to the corresponding breathing reference time tcl and tcr , respectively:

pp ll ′′ (( xx ll ′′ ,, ythe y ll ′′ ,, tt ll )) == pp ll (( xx ll ,, ythe y ll ,, tt ll )) -- (( curvecurve ll (( xx tltl ,, ythe y tltl ,, tt ll )) -- curvecurve ll (( xx clcl ,, ythe y clcl ,, tt clcl )) )) pp rr ′′ (( xx rr ′′ ,, ythe y rr ′′ ,, tt rr )) == pp rr (( xx rr ,, ythe y rr ,, tt rr )) -- (( curvecurve rr (( xx trtr ,, ythe y trtr ,, tt rr )) -- curvecurve rr (( xx crcr ,, ythe y crcr ,, tt crcr )) ))

式中,curvel(xil,ytl,tl)、curver(xtr,ytr,tr)分别表示tl,tr时刻曲线curvel(x,y,t)和curver(x,y,t)上的点,p′l(x′l,y′l,t′l)和p′r(x′r,y′r,tr)为补偿后参考点。接着对两补偿后的参考点进行三维重建,获得三维点P(xclr,yclr,zclr,tclr),其中tclr表示与tcl(或tcr)对应一致的吸气末期或呼气末期;In the formula, curve l (x il , y tl , t l ), curve r (x tr , y tr , t r ) respectively represent t l , t r time curve curve l (x, y, t) and curve r ( Points on x, y, t), p′ l (x′ l , y′ l , t′ l ) and p′ r (x′ r , y′ r , t r ) are reference points after compensation. Then perform three-dimensional reconstruction on the two compensated reference points to obtain a three-dimensional point P(x clr , y clr , z clr , t clr ), where t clr represents the end-spirit or expiratory phase corresponding to t cl (or t cr ). end of life;

Step4:合理假设心脏本身是静止的,引起左冠脉血管树运动的仅仅是呼吸作用。那么,可以将Step3中获得的p′l(x′l,y′l,tl)和p′r(x′r,y′r,tr)在没有心脏运动的影响下进一步补偿到呼吸运动周期的其他时刻:Step4: It is reasonable to assume that the heart itself is at rest, and that only respiration causes the movement of the left coronary vascular tree. Then, the p′ l (x′ l , y′ l , t l ) and p′ r (x′ r , y′ r , t r ) obtained in Step3 can be further compensated to the respiratory Other moments in the motion cycle:

pp ll ′′ (( xx ll ++ ii ′′ ,, ythe y ll ++ ii ′′ ,, tt ll ++ ii )) == pp ll ′′ (( xx ll ′′ ,, ythe y ll ′′ ,, tt ll )) ++ (( curvecurve ll (( xx ll ++ ii ,, ythe y ll ++ ii ,, tt ll ++ ii )) -- curvecurve ll (( xx clcl ,, ythe y clcl ,, tt clcl )) )) pp rr ′′ (( xx rr ++ ii ′′ ,, ythe y rr ++ ii ′′ ,, tt rr ++ ii )) == pp rr ′′ (( xx rr ′′ ,, ythe y rr ′′ ,, tt rr )) ++ (( curvecurve rr (( xx rr ++ ii ,, ythe y rr ++ ii ,, tt rr ++ ii )) -- curvecurve rr (( xx crcr ,, ythe y crcr ,, tt crcr )) ))

同理,对呼吸运动周期的其他时刻的点对p′l(x′l+i,y′l+i,tl+i)和p′r(x′r+i,y′r+i,tr+i)进行三维重建,获得三维点P(xclr+i,yclr+i,zclr+i,tclr+i),其中i表示相对于呼吸参考时刻tl和tr前(取负整数)或后(取正整数)的帧数;Similarly, for the point pairs p′ l (x′ l+i , y′ l+i , t l+i ) and p′ r (x′ r+i , y′ r+i ) at other moments of the breathing cycle , t r+i ) for 3D reconstruction to obtain a 3D point P(x clr+i , y clr+i , z clr+i , t clr+i ), where i represents relative to the breathing reference time t l and t r before (take a negative integer) or the number of frames after (take a positive integer);

Step5:综合Step3和Step4求取的结果,可获得三维呼吸运动。Step5: Combining the results obtained in Step3 and Step4, the three-dimensional breathing motion can be obtained.

本发明的技术效果体现在:考虑到在单臂X射线造影的条件下,并非在所有造影图中都能找到合适的特征点(像肋骨的交点等),所以提出了选取血管结构特征点和傅立叶频域滤波相结合的新途径来提取呼吸运动,比单纯的手动跟踪具有更广泛的适用性和灵活性,几乎可适用于所有造影序列图(需满足有较清晰的血管分布和包含两个或两个以上心动周期)。同时此方法相较于直接在心脏附近组织设置标识点再通过相关成像手段进行跟踪的方法拥有更高安全性和可操作性。这是因为在体内组织添加的标记物一般是可侵入性的,会对人体自身产生或多或少的损害,并且其标记物的添加、成像、排除、呼吸运动提取整个过程都是繁杂的,为实际操作中带来不可避免的麻烦与误差。此外,本发明方法选取的特征点涉及到左冠脉的各级血管,综合考虑到了左冠脉的运动信息,从而具有更好的可靠性和准确性。The technical effect of the present invention is embodied in: considering that under the condition of single-arm X-ray angiography, not all suitable feature points (like the intersection of ribs, etc.) can be found in all radiography images, so it is proposed to select the feature points of vascular structure and The new way of combining Fourier frequency domain filtering to extract respiratory motion has wider applicability and flexibility than pure manual tracking, and can be applied to almost all contrast sequences or two or more cardiac cycles). At the same time, this method has higher security and operability than the method of directly setting marker points in tissues near the heart and then tracking them by relevant imaging means. This is because the markers added to tissues in the body are generally invasive and will cause more or less damage to the human body itself, and the whole process of marker addition, imaging, exclusion, and respiratory motion extraction is complicated. Bring inevitable trouble and error in actual operation. In addition, the feature points selected by the method of the present invention relate to blood vessels at all levels of the left coronary artery, and comprehensively consider the movement information of the left coronary artery, thereby having better reliability and accuracy.

附图说明Description of drawings

图1是本发明的流程框图;Fig. 1 is a block flow diagram of the present invention;

图2(a)是呼吸运动提取方法中被选取的造影图及其标记点,对应的投影角度为(-26.8°,-27.2°);Figure 2(a) is the selected contrast image and its marked points in the respiratory motion extraction method, and the corresponding projection angle is (-26.8°, -27.2°);

图2(b)是呼吸运动提取方法中被选取的造影图及其标记点,对应的投影角度为(50.8°,30.2°);Figure 2(b) is the selected contrast image and its marked points in the respiratory motion extraction method, and the corresponding projection angle is (50.8°, 30.2°);

图3(a)是对图2(a)中标记点1在造影图序列中跟踪得到的原始曲线,其中实线为横向坐标(X轴坐标)的变化,虚线为纵向坐标(Y轴坐标)的变化;图3(b)是对图2(b)中标记点1在造影图序列中跟踪得到的原始曲线,其中实线为横向坐标(X轴坐标)的变化,虚线为纵向坐标(Y轴坐标)的变化;Figure 3(a) is the original curve obtained by tracking the marker point 1 in Figure 2(a) in the contrast image sequence, where the solid line is the change of the horizontal coordinate (X-axis coordinate), and the dotted line is the vertical coordinate (Y-axis coordinate) change; Fig. 3(b) is the original curve obtained by tracking marker point 1 in Fig. Axis coordinates) change;

图3(c)是对图3(a)中原始曲线分解得到的心脏运动曲线,其中实线为横向坐标(X轴坐标)的变化,虚线为纵向坐标(Y轴坐标)的变化;Fig. 3 (c) is the cardiac motion curve obtained by decomposing the original curve in Fig. 3 (a), wherein the solid line is the change of the horizontal coordinate (X-axis coordinate), and the dotted line is the change of the vertical coordinate (Y-axis coordinate);

图3(d)是对图3(b)中原始曲线分解得到的心脏运动曲线,其中实线为横向坐标(X轴坐标)的变化,虚线为纵向坐标(Y轴坐标)的变化;Fig. 3 (d) is the cardiac motion curve obtained by decomposing the original curve in Fig. 3 (b), wherein the solid line is the change of the horizontal coordinate (X-axis coordinate), and the dotted line is the change of the vertical coordinate (Y-axis coordinate);

图3(e)是对图3(a)中原始曲线分解得到的呼吸运动曲线,其中实线为横向坐标(X轴坐标)的变化,虚线为纵向坐标(Y轴坐标)的变化;Fig. 3 (e) is the respiratory motion curve obtained by decomposing the original curve in Fig. 3 (a), wherein the solid line is the change of the horizontal coordinate (X-axis coordinate), and the dotted line is the change of the vertical coordinate (Y-axis coordinate);

图3(f)是对图3(b)中原始曲线分解得到的呼吸运动曲线,其中实线为横向坐标(X轴坐标)的变化,虚线为纵向坐标(Y轴坐标)的变化;Fig. 3 (f) is the respiratory motion curve obtained by decomposing the original curve in Fig. 3 (b), wherein the solid line is the change of the horizontal coordinate (X-axis coordinate), and the dotted line is the change of the vertical coordinate (Y-axis coordinate);

图3(g)是对图3(e)中呼吸运动曲线进行6次曲线拟合的结果,其中实线为横向坐标(X轴坐标)的变化,虚线为纵向坐标(Y轴坐标)的变化;Figure 3(g) is the result of 6 curve fittings on the respiratory movement curve in Figure 3(e), where the solid line is the change of the horizontal coordinate (X-axis coordinate), and the dotted line is the change of the vertical coordinate (Y-axis coordinate) ;

图3(h)是对图3(f)中呼吸运动曲线进行6次曲线拟合的结果,其中实线为横向坐标(X轴坐标)的变化,虚线为纵向坐标(Y轴坐标)的变化;Figure 3(h) is the result of 6 curve fittings on the respiratory movement curve in Figure 3(f), where the solid line is the change of the horizontal coordinate (X-axis coordinate), and the dotted line is the change of the vertical coordinate (Y-axis coordinate) ;

图4(a)是在投影角度为(-26.8°,-27.2°)下所有标记点的呼吸运动曲线,其中实线为横向坐标(X轴坐标)的变化,虚线为纵向坐标(Y轴坐标)的变化;Figure 4(a) is the respiratory motion curve of all marked points under the projection angle of (-26.8°, -27.2°), where the solid line is the change of the horizontal coordinate (X-axis coordinate), and the dotted line is the vertical coordinate (Y-axis coordinate )The change;

图4(b)是在投影角度为(50.8°,30.2°)下所有标记点的呼吸运动曲线,其中实线为横向坐标(X轴坐标)的变化,虚线为纵向坐标(Y轴坐标)的变化;Figure 4(b) is the breathing motion curve of all marked points under the projection angle of (50.8°, 30.2°), where the solid line is the change of the horizontal coordinate (X-axis coordinate), and the dotted line is the change of the vertical coordinate (Y-axis coordinate). Variety;

图4(c)是对图4(a)中所有点的运动曲线进行拟合的结果,其中实线为横向坐标(X轴坐标)的变化,虚线为纵向坐标(Y轴坐标)的变化;Figure 4(c) is the result of fitting the motion curves of all points in Figure 4(a), where the solid line is the change in the horizontal coordinate (X-axis coordinate), and the dotted line is the change in the vertical coordinate (Y-axis coordinate);

图4(d)是对图4(b)中所有点的运动曲线进行拟合的结果,其中实线为横向坐标(X轴坐标)的变化,虚线为纵向坐标(Y轴坐标)的变化;Figure 4(d) is the result of fitting the motion curves of all points in Figure 4(b), wherein the solid line is the change in the horizontal coordinate (X-axis coordinate), and the dotted line is the change in the vertical coordinate (Y-axis coordinate);

图5是对造影角度为(-26.8°,-27.2°)和(50.8°,30.2°)下的二维呼吸运动进行重建后获得的三维结果。Fig. 5 is the three-dimensional results obtained after reconstructing the two-dimensional respiratory motion under contrast angles of (-26.8°, -27.2°) and (50.8°, 30.2°).

具体实施方式Detailed ways

以下结合附图对本发明作进一步说明:The present invention will be further described below in conjunction with accompanying drawing:

本发明提出一种基于频域滤波的人体呼吸运动参数提取方法,如图1所示,包括如下步骤:The present invention proposes a method for extracting human respiratory motion parameters based on frequency domain filtering, as shown in Figure 1, comprising the following steps:

(1)获取冠脉血管的单臂X射线造影图图像序列,并确定心脏运动周期N1;(1) Obtain a single-arm X-ray contrast image sequence of coronary vessels, and determine the cardiac motion cycle N1;

(2)选取血管结构特征点。(2) Select the feature points of the vessel structure.

根据生理学和解剖学等知识的指导,我们标记的特征点需要能够综合反映出血管整体的运动信息,因此,所选的形殊点(即结构特征点)一般包括各血管段的起始点和终止点,以及血管段间的各个拐点(曲率最大的点)。并且在两不同投影角度下的造影图序列中,对所有特征点编号,相互对应的则拥有相同的命名。如图2所示,在投影角分别为(-26.8°,-27.2°)和(50.8°,30.2°)的一对造影图中,存在着15个编号后的形殊点,它们的关系是按照数字命名一一对应的。According to the guidance of physiological and anatomical knowledge, the feature points we mark need to be able to comprehensively reflect the movement information of the whole blood vessel. Therefore, the selected shape-specific points (ie structural feature points) generally include the starting point and ending point of each blood vessel segment. points, and each inflection point (the point with the greatest curvature) between the vessel segments. And in the sequence of contrast images under two different projection angles, all the feature points are numbered, and those corresponding to each other have the same name. As shown in Figure 2, there are 15 numbered shape-specific points in a pair of contrast images whose projection angles are (-26.8°, -27.2°) and (50.8°, 30.2°) respectively, and their relationship is One-to-one correspondence according to the number naming.

(3)分离心脏与呼吸运动的傅里叶级数展开方法(3) Fourier series expansion method for separating heart and respiratory motion

心脏与人体呼吸运动都是周期性的运动,但是呼吸运动的频率相比心脏运动来说却要小得多,一般来说,心脏正常运动的频率为60~100次/分钟,其周期为0.6-1.0s,而呼吸运动的周期则长得多,一般为3-6s,安静的时候可能更长。另一方面,心脏运动比较剧烈,而呼吸运动的幅度较小,即产生的位移较小,是一个相对平稳的过程。Both the heart and the breathing movement of the human body are periodic movements, but the frequency of breathing movement is much smaller than that of heart movement. Generally speaking, the frequency of normal heart movement is 60 to 100 times per minute, and its period is 0.6 -1.0s, while the period of breathing movement is much longer, generally 3-6s, and it may be longer when it is quiet. On the other hand, the heart movement is relatively violent, while the breathing movement has a small amplitude, that is, the generated displacement is small, and it is a relatively smooth process.

根据造影图中心脏运动与呼吸运动的这些特点,本发明通过傅立叶级数展开结合频域滤波的方法对心脏与呼吸运动进行分离。According to these characteristics of heart motion and respiratory motion in contrast images, the present invention separates heart motion and respiratory motion through the method of Fourier series expansion combined with frequency domain filtering.

下面首先介绍一下离散傅立叶级数展开。Let's first introduce the discrete Fourier series expansion.

1)离散傅立叶级数展开1) Discrete Fourier series expansion

由傅立叶级数展开的原理,连续时间周期信号可以用傅立叶级数来表达,与此相应,周期序列也可用离散傅立叶级数来表示。若周期序列xp(n)的周期为N,那么Based on the principle of Fourier series expansion, continuous time periodic signals can be expressed by Fourier series, and correspondingly, periodic sequences can also be expressed by discrete Fourier series. If the period of the periodic sequence x p (n) is N, then

xp(n)=xp(n+rN)(r为任意整数)          (1)x p (n)=x p (n+rN) (r is any integer) (1)

xp(n)可以通过公式(2)和(3)进行离散的傅立叶级数变换x p (n) can be discrete Fourier series transform through formulas (2) and (3)

Xx pp (( kk )) == ΣΣ nno == 00 NN -- 11 xx pp (( nno )) ** ee -- jj (( 22 ππ NN )) nknk -- -- -- (( 22 ))

xx pp (( nno )) == 11 NN ΣΣ kk == 00 NN -- 11 Xx pp (( kk )) ** ee jj (( 22 ππ NN )) nknk -- -- -- (( 33 ))

对于式(3)作如下解释:式中

Figure G2009102735285D00073
是周期序列的基频分量,就是k次谐波分量,Xp(k)为各次谐波的系数,也可认为是xp(n)的频域响应;全部谐波分量只有N个是独立的,因为The formula (3) is explained as follows: in the formula
Figure G2009102735285D00073
is the fundamental frequency component of the periodic sequence, It is the kth harmonic component, and X p (k) is the coefficient of each harmonic, which can also be considered as the frequency domain response of x p (n); only N of all harmonic components are independent, because

ee jj (( 22 ππ NN )) nno (( kk ++ NN )) == ee jj (( 22 ππ NN )) nknk ,,

因此,级数取和的项数是从k=0到N-1,共N个独立谐波分量。而式(2)正是由xp(n)决定系数Xp(k)的求和公式。Therefore, the number of items of the series sum is from k=0 to N-1, and there are N independent harmonic components in total. The formula (2) is exactly the summation formula of the coefficient X p (k) determined by x p (n).

2)分离算法2) Separation algorithm

假设造影图图像序列中冠脉血管上某点P(x,y)的x轴坐标的运动曲线为x(n)(n为造影帧的帧数),y轴坐标的运动曲线为y(n),令s(n)=(x(n),y(n)),可将s(n)分解成下面的式子:Assume that the motion curve of the x-axis coordinates of a certain point P(x, y) on the coronary artery in the contrast image sequence is x(n) (n is the number of contrast frames), and the motion curve of the y-axis coordinates is y(n ), let s(n)=(x(n), y(n)), s(n) can be decomposed into the following formula:

s(n)=c(n)+r(n)+t(n)s(n)=c(n)+r(n)+t(n)

其中c(n)=(xc(n),yc(n))表示心脏的运动引起的血管点的运动,r(n)=(xr(n),yr(n))表示呼吸运动引起的运动,t(n)=(xt(n),yt(n))表示其他一些运动(包括人在造影过程中身体的移动,以及造影器材的移动等)。为方便表示,后面都用s(n)来表示提取的血管点沿x轴,y轴的坐标变化曲线,c(n)表示心脏运动引起的血管点沿x轴,y轴的坐标变化曲线,r(n)表示呼吸运动引起的血管点沿x轴,y轴的坐标变化曲线,因此,对s(n)的操作就是分别对x(n)和y(n)的操作,对c(n)的操作就是分别对xc(n)和yc(n)的操作,对r(n)的操作就是分别对xr(n)和yr(n)的操作。由于t(n)为不可测的,这里将其忽略掉不予考虑,则有Where c(n)=(x c (n), y c (n)) represents the movement of the blood vessel point caused by the movement of the heart, and r(n)=(x r (n), y r (n)) represents the respiration The motion caused by motion, t(n)=(x t (n), y t (n)) represents some other motions (including the movement of the human body during the radiography process, and the movement of the radiography equipment, etc.). For the convenience of representation, s(n) is used to represent the coordinate change curve of the extracted blood vessel point along the x-axis and y-axis, and c(n) represents the coordinate change curve of the blood vessel point along the x-axis and y-axis caused by heart movement. r(n) represents the coordinate change curve of the blood vessel point along the x-axis and y-axis caused by respiratory movement. Therefore, the operation on s(n) is the operation on x(n) and y(n) respectively, and the operation on c(n ) is the operation on x c (n) and y c (n) respectively, and the operation on r(n) is the operation on x r (n) and y r (n) respectively. Since t(n) is not measurable, it is ignored here and not considered, then we have

s(n)≈c(n)+r(n)s(n)≈c(n)+r(n)

假设心脏运动的周期为N1,呼吸运动周期为N2,则c(n)和r(n)根据式(3)可变为:Assuming that the cycle of heart motion is N1 and the cycle of respiratory motion is N2, then c(n) and r(n) can be changed according to formula (3):

cc (( nno )) == 11 NN 11 ΣΣ kk == 00 NN 11 -- 11 CC (( kk )) ** ee jj (( 22 ππ NN 11 )) nknk

rr (( nno )) == 11 NN 22 ΣΣ kk == 00 NN 22 -- 11 RR (( kk )) ** ee jj (( 22 ππ NN 22 )) nknk

其中,

Figure G2009102735285D00083
是心脏运动的谐波分量,是呼吸运动的谐波分量,C(k)、R(k)分别表示c(n)和r(n)的各次谐波系数。要使c(n)和r(n)完全分离,则其谐波分量不能发生重合(零频分量可以不予考虑,因为虽然呼吸运动的频率和心脏运动的频域分量在零频上面(直流分量)都存在,这里也没有办法能够将它们完全分开,但是由于零频分量变化到时域中是一个常数,因此它不会改变周期序列曲线的形状,也不会影响我们对心脏和呼吸运动的分析),即in,
Figure G2009102735285D00083
is the harmonic component of cardiac motion, is the harmonic component of respiratory motion, and C(k) and R(k) represent the harmonic coefficients of c(n) and r(n) respectively. To completely separate c(n) and r(n), their harmonic components cannot overlap (the zero frequency component can be ignored, because although the frequency of respiratory motion and the frequency domain component of cardiac motion are above zero frequency (DC components) exist, and there is no way to completely separate them here, but since the change of the zero-frequency component to the time domain is a constant, it will not change the shape of the periodic sequence curve, nor will it affect our understanding of heart and respiratory motion analysis), that is

∀∀ kk 11 (( nno 11 )) == 11 ,, .. .. .. ,, NN 11 -- 11 ,, kk 22 (( nno 22 )) == 11 ,, .. .. .. ,, NN 22 -- 11 ,,

                                   (8) (8)

∃ ( 2 π N 1 ) n 1 k 1 ≠ ( 2 π N 2 ) n 2 k 2 , (n1,n2为时域自变量,k1,k2为频域自变量) ∃ ( 2 π N 1 ) no 1 k 1 ≠ ( 2 π N 2 ) no 2 k 2 , (n1, n2 are time-domain independent variables, k1, k2 are frequency-domain independent variables)

要满足式(8),必须使N1和N2互质。同时要分离c(n)和r(n),还必须满足s(n)的序列长度大于或等于s(n)的一个周期,即大于N1*N2。To satisfy formula (8), N1 and N2 must be mutually prime. At the same time, to separate c(n) and r(n), it must also satisfy that the sequence length of s(n) is greater than or equal to a cycle of s(n), that is, greater than N1*N2.

然而上述要求很难达到,就算N1和N2互质,第二个条件也无法满足。因为一般情况下,造影剂在人体内停留的时间不会太长,一个造影图序列只会持续6s左右,不会超过10s,假设帧速为80ms/frame(实际可能更小),则N1≈10,N2>30,N1*N2>300>10/0.08,因此根本获得不了一个周期的序列。However, the above requirements are difficult to meet. Even if N1 and N2 are mutually prime, the second condition cannot be satisfied. Because under normal circumstances, the contrast agent does not stay in the human body for too long, and a sequence of contrast images will only last for about 6s, and will not exceed 10s. Assuming that the frame rate is 80ms/frame (actually it may be smaller), then N1≈ 10, N2>30, N1*N2>300>10/0.08, so a sequence of one period cannot be obtained at all.

虽然无法对心脏和呼吸运动进行理想的分离,但是根据它们各自运动的特点,可以通过傅立叶级数变换和频域滤波的方法来进行近似的分离。Although it is impossible to ideally separate the heart and respiratory motion, according to their respective motion characteristics, an approximate separation can be performed by means of Fourier series transformation and frequency domain filtering.

分离步骤基于如下假设:The separation step is based on the following assumptions:

(1)心脏运动只在频率

Figure G2009102735285D00087
上存在分量。这一点已经通过式(3)证明;(1) Heart movement is only at the frequency
Figure G2009102735285D00087
There is weight on it. This has been proved by formula (3);

(2)呼吸运动的频域分量在频率

Figure G2009102735285D00088
处平滑。由于呼吸运动具有平滑性,且
Figure G2009102735285D00091
为呼吸运动基频分量的可能性较小,完全有理由这样假设。(2) The frequency domain component of respiratory motion is at the frequency
Figure G2009102735285D00088
smooth. Due to the smoothness of breathing motion, and
Figure G2009102735285D00091
It is less likely to be the fundamental frequency component of respiratory motion, and there is every reason to assume this.

具体算法如下:The specific algorithm is as follows:

Step1:根据人眼观察造影图序列确定心脏运动周期N1,一般情况下,N1≈0.8/f,其中,N1表示在一个心动周期内的造影图帧数,0.8表示一个心动周期的时间,单位为秒,f表示帧频,即每秒钟造影图被拍摄的数量;Step1: Determine the heart motion cycle N1 according to the sequence of contrast images observed by human eyes. In general, N1≈0.8/f, where N1 represents the number of frames of contrast images in one cardiac cycle, and 0.8 represents the time of one cardiac cycle, and the unit is seconds, f represents the frame rate, that is, the number of imaging images taken per second;

Step2:对步骤(1)中选取的血管结构特征点在整个造影图序列中进行跟踪,得到点的跟踪序列s(n);Step2: Track the feature points of the vascular structure selected in step (1) in the entire contrast image sequence to obtain the point tracking sequence s(n);

Step3:在点的跟踪序列s(n)中选取长度为ns的序列

Figure G2009102735285D00092
ns为N1的整数倍。若原始序列长度为n,则选取序列长度为ns=n-n%N1,其中,%为取余符号;Step3: Select a sequence of length ns in the point tracking sequence s(n)
Figure G2009102735285D00092
ns is an integer multiple of N1. If the original sequence length is n, then the selected sequence length is ns=nn%N1, where % is a remainder symbol;

Step4:将分解为在x方向的运动x(n)和y方向上的运动y(n),再分别对它们进行离散傅立叶变换,得到各次谐波系数X(k)和Y(k),k=0,...,ns-1;Step4: will Decompose it into motion x(n) in the x direction and motion y(n) in the y direction, and then perform discrete Fourier transform on them respectively to obtain the harmonic coefficients X(k) and Y(k), k=0 ,...,ns-1;

Step5:令呼吸运动的频域响应Step5: Make the frequency domain response of respiratory movement

R x ( k ) = X ( k ) , ( k ≠ ns N 1 l , l = 1 , . . . , N 1 - 1 ) ( X ( k ) + X ( k + 1 ) ) / 2 , ( k = ns N 1 l , l = 1 , . . . , N 1 - 1 ) , 对Rx(k)进行离散傅立叶逆变换得到呼吸运动rx(n),同理可得ry(n)。 R x ( k ) = x ( k ) , ( k ≠ ns N 1 l , l = 1 , . . . , N 1 - 1 ) ( x ( k ) + x ( k + 1 ) ) / 2 , ( k = ns N 1 l , l = 1 , . . . , N 1 - 1 ) , Inverse discrete Fourier transform is performed on R x (k) to obtain respiratory motion r x (n), and similarly, ry (n) can be obtained.

通过对造影图序列的分析,可以确定心脏运动周期N1为10帧,图3是对图2中标记点1的运动进行呼吸运动和心脏运动分离的结果。Through the analysis of the contrast image sequence, it can be determined that the cardiac motion cycle N1 is 10 frames, and Fig. 3 is the result of separating respiratory motion and cardiac motion for the motion of marker 1 in Fig. 2 .

从图3中可以看到,标记点的原始运动曲线受呼吸运动影响较大,比较凌乱,而分离后的心脏运动曲线显示了良好的周期性,但是呼吸运动曲线则还是存在一些毛刺,这个也是分离不够彻底的原因。为了去掉呼吸运动中还残留的心脏运动分量,这里对提取得到的原始的呼吸运动曲线进行曲线拟合,去除呼吸运动曲线上的毛刺,如图3(g)和3(h)所示,拟合后的呼吸运动曲线显示了明显的周期性。It can be seen from Figure 3 that the original motion curve of the marker points is greatly affected by respiratory motion and is messy, while the separated cardiac motion curve shows good periodicity, but there are still some glitches in the respiratory motion curve, which is also Reasons for insufficient separation. In order to remove the residual cardiac motion component in the respiratory motion, curve fitting is performed on the extracted original respiratory motion curve to remove the burrs on the respiratory motion curve, as shown in Figure 3(g) and 3(h). The combined breathing motion curves showed obvious periodicity.

将所有标记点的呼吸运动曲线在一起进行比较,可以发现同一个造影面内所有点的呼吸运动曲线相差不大(如图4(a)和(b)所示),于是我们将所有标记点的呼吸运动拟合成为一条曲线作为此造影面中冠脉血管的呼吸运动曲线(如图4(c)和(d)所示)。Comparing the respiratory motion curves of all marked points together, it can be found that the respiratory motion curves of all points in the same imaging plane are not much different (as shown in Figure 4(a) and (b)), so we put all the marked points The respiratory motion of the coronary arteries is fitted into a curve as the respiratory motion curve of the coronary vessels in the angiographic plane (as shown in Figure 4(c) and (d)).

(3)呼吸运动的三维重建(3) Three-dimensional reconstruction of respiratory movement

通过上面所述的呼吸运动提取方法,最后获得的是某造影角度下的二维呼吸运动曲线,如图4(c)和图4(d)。但是从图中可以看出,这种二维表示方法显然不能清晰的表达呼吸信息,那么,为了更加直观更加有效的描述呼吸运动,我们可依据造影系统中点的三维重建原理来对两个不同造影角下得到的二维运动进行重建,从而得到三维呼吸运动。具体步骤如下:Through the respiratory motion extraction method described above, the final obtained is a two-dimensional respiratory motion curve under a certain contrast angle, as shown in Fig. 4(c) and Fig. 4(d). However, it can be seen from the figure that this two-dimensional representation method obviously cannot express respiratory information clearly. Then, in order to describe the respiratory movement more intuitively and effectively, we can use the three-dimensional reconstruction principle of the midpoint of the imaging system to compare two different The two-dimensional motion obtained under the contrast angle is reconstructed to obtain the three-dimensional breathing motion. Specific steps are as follows:

Step1:确定两个不同造影角度下的造影图图像序列,记为左造影图图像序列和右造影图图像序列,再分别在左右造影图图像序列中确定相对应的任一参考点,分别记为pl(x,y,t)和pr(x,y,t),其中(x,y)为该任一参考点在图像序列中的坐标,t为时间,即造影图图像序列的帧序号,t为0到70之间的整数,分别选取t中的时刻tl,tr下的坐标(xl,yl)、(xr,yr)作为参考点pl(x,y,t)和pr(x,y,t)的初始化值,即pl(xl,yl,tl)和pr(xr,yr,tr),其中tl,tr对应于心动周期的同一时刻,一般选心脏舒张末期;Step1: Determine two contrast image sequences under different contrast angles, which are recorded as the left contrast map image sequence and the right contrast map image sequence, and then determine any corresponding reference point in the left and right contrast map image sequences, respectively recorded as p l (x, y, t) and p r (x, y, t), where (x, y) is the coordinates of any reference point in the image sequence, and t is the time, that is, the frame of the contrast image sequence serial number, t is an integer between 0 and 70, respectively select the coordinates (x l , y l ) and (x r , y r ) at the time t l in t and t r as the reference point p l (x, y , t) and the initialization values of p r (x, y, t), that is, p l (x l , y l , t l ) and p r (x r , y r , t r ), where t l , t r Corresponding to the same moment of the cardiac cycle, the end diastole is generally selected;

Step2:按照上述呼吸运动参数提取方法提取出左右造影图图像序列的呼吸运动曲线,分别记为curvel(x,y,t)和curver(x,y,t),然后分别在两条曲线上对应着选择呼吸运动周期中的吸气末期或呼气末期的极值点作为呼吸参考点,即在两条曲线上均选择吸气末期极值点或均选择呼气末期极值点,记为curvel(xcl,ycl,tcl)和curver(xcr,ycr,tcr),其中tcl,tcr分别为左右造影图图像序列中对应的吸气末期时刻或者呼气末期时刻,(xcl,ycl)、(xcr,ycr)分别为曲线curvel(x,y,t)和curver(x,y,t)上对应时刻tcl,tcr的坐标;Step2: According to the above respiratory motion parameter extraction method, extract the respiratory motion curves of the left and right contrast image sequences, which are respectively recorded as curve l (x, y, t) and curve r (x, y, t), and then the two curves are respectively Corresponding to select the extreme point of the end-inspiration or the end-expiration in the breathing movement cycle as the breathing reference point, that is, select the extreme point of the end-inspiration or the extreme point of the end-expiration on both curves, record is curve l (x cl , y cl , t cl ) and curve r (x cr , y cr , t cr ), where t cl and t cr are the corresponding end-inspiration moments or expiratory At the final moment, (x cl , y cl ), (x cr , y cr ) are the coordinates of the corresponding time t cl and t cr on the curves curve l (x, y, t) and curve r (x, y, t) respectively ;

Step3:对左右造影图图像序列中的初始化后的点对pl(xl,yl,tl)和pr(xr,yr,tr)进行呼吸运动补偿,即将tl,tr时刻下的呼吸运动分别补偿到对应的呼吸参考时刻tcl,tcr下,:Step3: Perform respiratory motion compensation on the initialized point pairs p l (x l , y l , t l ) and p r (x r , y r , t r ) in the image sequence of the left and right contrast images, that is, t l , t The breathing movement at time r is compensated to the corresponding breathing reference time tcl and tcr , respectively:

pp ll ′′ (( xx ll ′′ ,, ythe y ll ′′ ,, tt ll )) == pp ll (( xx ll ,, ythe y ll ,, tt ll )) -- (( curvecurve ll (( xx tltl ,, ythe y tltl ,, tt ll )) -- curvecurve ll (( xx clcl ,, ythe y clcl ,, tt clcl )) )) pp rr ′′ (( xx rr ′′ ,, ythe y rr ′′ ,, tt rr )) == pp rr (( xx rr ,, ythe y rr ,, tt rr )) -- (( curvecurve rr (( xx trtr ,, ythe y trtr ,, tt rr )) -- curvecurve rr (( xx crcr ,, ythe y crcr ,, tt crcr )) ))

式中,curvel(xil,ytl,tl)、curver(xtr,ytr,tr)分别表示tl,tr时刻曲线curvel(x,y,t)和curver(x,y,t)上的点,p′l(x′l,y′l,tl)和p′r(x′r,y′r,tr)为补偿后参考点。接着对两补偿后的参考点进行三维重建,获得三维点P(xclr,yclr,zclr,tclr),其中tclr表示与tcl(或tcr)对应一致的吸气末期或呼气末期;In the formula, curve l (x il , y tl , t l ), curve r (x tr , y tr , t r ) respectively represent t l , t r time curve curve l (x, y, t) and curve r ( Points on x, y, t), p′ l (x′ l , y′ l , t l ) and p′ r (x′ r , y′ r , t r ) are reference points after compensation. Then perform three-dimensional reconstruction on the two compensated reference points to obtain a three-dimensional point P(x clr , y clr , z clr , t clr ), where t clr represents the end-spirit or expiratory phase corresponding to t cl (or t cr ). end of life;

Step4:合理假设心脏本身是静止的,引起左冠脉血管树运动的仅仅是呼吸作用。那么,可以将Step3中获得的p′l(x′l,y′l,tl)和p′r(x′r,y′r,tr)在没有心脏运动的影响下进一步补偿到呼吸运动周期的其他时刻:Step4: It is reasonable to assume that the heart itself is at rest, and that only respiration causes the movement of the left coronary vascular tree. Then, the p′ l (x′ l , y′ l , t l ) and p′ r (x′ r , y′ r , t r ) obtained in Step3 can be further compensated to the respiratory Other moments in the motion cycle:

pp ll ′′ (( xx ll ++ ii ′′ ,, ythe y ll ++ ii ′′ ,, tt ll ++ ii )) == pp ll ′′ (( xx ll ′′ ,, ythe y ll ′′ ,, tt ll )) ++ (( curvecurve ll (( xx ll ++ ii ,, ythe y ll ++ ii ,, tt ll ++ ii )) -- curvecurve ll (( xx clcl ,, ythe y clcl ,, tt clcl )) )) pp rr ′′ (( xx rr ++ ii ′′ ,, ythe y rr ++ ii ′′ ,, tt rr ++ ii )) == pp rr ′′ (( xx rr ′′ ,, ythe y rr ′′ ,, tt rr )) ++ (( curvecurve rr (( xx rr ++ ii ,, ythe y rr ++ ii ,, tt rr ++ ii )) -- curvecurve rr (( xx crcr ,, ythe y crcr ,, tt crcr )) ))

同理,对呼吸运动周期的其他时刻的点对p′l(x′l+i,y′l+i,tl+i)和p′r(x′r+i,y′r+i,tr+i)进行三维重建,获得三维点P(xclr+i,yclr+i,zclr+i,tclr+i),其中i表示相对于呼吸参考时刻tl和tr前(取负整数)或后(取正整数)的帧数;Similarly, for the point pairs p′ l (x′ l+i , y′ l+i , t l+i ) and p′ r (x′ r+i , y′ r+i ) at other moments of the breathing cycle , t r+i ) for 3D reconstruction to obtain a 3D point P(x clr+i , y clr+i , z clr+i , t clr+i ), where i represents relative to the breathing reference time t l and t r before (take a negative integer) or the number of frames after (take a positive integer);

Step5:综合Step3和Step4求取的结果,可获得三维呼吸运动。Step5: Combining the results obtained in Step3 and Step4, the three-dimensional breathing motion can be obtained.

通过对造影角度为(-26.8°,-27.2°)(左)和(50.8°,30.2°)(右)下的造影图序列进行分析,分别选取同处于心脏舒张末期的第22帧和第43帧作为参考帧,再选取其上的血管起始点作为参考点,并初始化为(35,62)和(303,94),然后分析左右造影图序列中提取的呼吸运动曲线,分别确定呼吸参考时刻为第38帧和第26帧。那么,根据以上选择的各参数,可以求出三维呼吸运动,如图5所示。By analyzing the sequence of contrast images under contrast angles of (-26.8°, -27.2°) (left) and (50.8°, 30.2°) (right), the 22nd and 43rd frames, which are also in the end diastole, were selected respectively frame as the reference frame, and then select the starting point of the blood vessel as the reference point, and initialize it to (35, 62) and (303, 94), then analyze the respiratory motion curves extracted from the left and right imaging sequences, and determine the respiratory reference time respectively For frame 38 and frame 26. Then, according to the parameters selected above, the three-dimensional breathing motion can be obtained, as shown in FIG. 5 .

从图中可以看出,三维呼吸运动的整体趋势是往返做平移运动,但局部仍存在运动折角,并不是简单的直线运动。经分析,该折角现象的产生,应该是由心脏运动影响未被完全从呼吸运动中分离导致的。但是由于折角引起的运动偏移对整体影响不大,因此,在现实条件下,三维呼吸运动可以合理假设为分段直线运动。It can be seen from the figure that the overall trend of the three-dimensional breathing movement is to do translational movement back and forth, but there are still kinks in the local movement, which is not a simple linear movement. According to the analysis, the occurrence of the angle bending phenomenon should be caused by the incomplete separation of the effect of cardiac motion from respiratory motion. However, since the motion offset caused by the knuckle has little effect on the whole, under realistic conditions, the three-dimensional breathing motion can be reasonably assumed to be segmented linear motion.

Claims (2)

1. A human body respiratory motion parameter extraction method based on frequency domain filtering comprises the following steps:
(1) acquiring a single-arm X-ray radiography image sequence of coronary vessels, and determining a heart motion period N1;
(2) selecting coronary vessel structure characteristic points;
(3) extracting a respiratory motion curve in a specific mode:
(3.1) automatically tracking the coronary vessel structure characteristic points in the image sequence of the contrast map to obtain a characteristic point tracking sequence s (n), wherein n is characteristic point trackingThe length of the sequence; (3.2) selecting one section in the characteristic point tracking sequence s (n) as a target sequence
Figure F2009102735285C00011
ns-N% N1, where% is the remainder symbol;
(3.3) to the target sequence
Figure F2009102735285C00012
Performing discrete Fourier transform to obtain a target frequency domain response S (k), wherein k is 0.
(3.4) frequency-Domain response to respiratory motion
<math><mrow><mi>R</mi><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow><mo>=</mo><mfenced open='{' close=''><mtable><mtr><mtd><mi>S</mi><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow><mo>,</mo></mtd><mtd><mrow><mo>(</mo><mi>k</mi><mo>&NotEqual;</mo><mfrac><mi>ns</mi><mrow><mi>N</mi><mn>1</mn></mrow></mfrac><mi>l</mi><mo>,</mo><mi>l</mi><mo>=</mo><mn>1</mn><mo>,</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>,</mo><mi>N</mi><mn>1</mn><mo>-</mo><mn>1</mn><mo>)</mo></mrow></mtd></mtr><mtr><mtd><mrow><mo>(</mo><mi>S</mi><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow><mo>+</mo><mi>S</mi><mrow><mo>(</mo><mi>k</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow><mo>)</mo></mrow><mo>/</mo><mn>2</mn><mo>,</mo></mtd><mtd><mrow><mo>(</mo><mi>k</mi><mo>=</mo><mfrac><mi>ns</mi><mrow><mi>N</mi><mn>1</mn></mrow></mfrac><mi>l</mi><mo>,</mo><mi>l</mi><mo>=</mo><mn>1</mn><mo>,</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>,</mo><mi>N</mi><mn>1</mn><mo>-</mo><mn>1</mn><mo>)</mo></mrow></mtd></mtr></mtable></mfenced><mo>,</mo></mrow></math>
And performing inverse discrete Fourier transform on the R (k) to obtain a respiratory motion curve r (ns), namely, extracting respiratory motion parameters.
2. A method for three-dimensional reconstruction of the respiratory motion curve of claim 1 to obtain three-dimensional respiratory motion, comprising the steps of:
(I) determining two contrast image sequences under different contrast angles, recording as a left contrast image sequence and a right contrast image sequence, determining any corresponding reference point in the left contrast image sequence and the right contrast image sequence, respectively recording as pl(x, y, t) and pr(x, y, t), where (x, y) is the coordinate of the reference point in the image sequence, t is time, i.e. the frame number of the contrast image sequence, and t is an integer between 0 and 70, the time t in t is selected respectivelyl,trCoordinates of lower (x)l,yl)、(xr,yr) As reference point pl(x, y, t) and prInitialization value of (x, y, t), i.e. pl(xl,yl,tl) And pr(xr,yr,tr) Wherein t isl,trThe same time corresponding to the cardiac cycle in the left and right angiogram sequences;
(II) extracting respiratory motion curves of left and right contrast image sequences according to the respiratory motion parameter extraction method of claim 1, and respectively recording the curves as curvel(x, y, t) and curer(x, y, t), then correspondingly selecting an extreme point of an inspiratory end or an expiratory end in the respiratory motion period as a respiratory reference point on the two curves respectively, namely selecting an extreme point of the inspiratory end or selecting an extreme point of the expiratory end on the two curves respectively, and marking as curvel(xcl,ycl,tcl) And curver(xcr,ycr,tcr) Wherein t iscl,tcrThe time of the end of inspiration or expiration corresponding to the left and right contrast images in the sequence, (x)cl,ycl)、(xcr,ycr) Are respectively curvedl(x, y, t) and curerAt (x, y, t) corresponding to time tcl、tcrThe coordinates of (a);
(III) for initialized point pairs p in left and right contrast image sequencesl(xl,yl,tl) And pr(xr,yr,tr) Performing respiratory motion compensation, i.e. tl,trThe respiratory motion at the moment is respectively compensated to the corresponding respiratory reference moment tcl,tcrThe following steps:
<math><mfenced open='{' close=''><mtable><mtr><mtd><msubsup><mi>p</mi><mi>l</mi><mo>&prime;</mo></msubsup><mrow><mo>(</mo><msubsup><mi>x</mi><mi>l</mi><mo>&prime;</mo></msubsup><mo>,</mo><msubsup><mi>y</mi><mi>l</mi><mo>&prime;</mo></msubsup><mo>,</mo><msub><mi>t</mi><mi>l</mi></msub><mo>)</mo></mrow><mo>=</mo><msub><mi>p</mi><mi>l</mi></msub><mrow><mo>(</mo><msub><mi>x</mi><mi>l</mi></msub><mo>,</mo><msub><mi>y</mi><mi>l</mi></msub><mo>,</mo><msub><mi>t</mi><mi>l</mi></msub><mo>)</mo></mrow><mo>-</mo><mrow><mo>(</mo><msub><mi>curve</mi><mi>l</mi></msub><mrow><mo>(</mo><msub><mi>x</mi><mi>tl</mi></msub><mo>,</mo><msub><mi>y</mi><mi>tl</mi></msub><mo>,</mo><msub><mi>t</mi><mi>l</mi></msub><mo>)</mo></mrow><mo>-</mo><msub><mi>curve</mi><mi>l</mi></msub><mrow><mo>(</mo><msub><mi>x</mi><mi>cl</mi></msub><mo>,</mo><msub><mi>y</mi><mi>cl</mi></msub><mo>,</mo><msub><mi>t</mi><mi>cl</mi></msub><mo>)</mo></mrow><mo>)</mo></mrow></mtd></mtr><mtr><mtd><msubsup><mi>p</mi><mi>r</mi><mo>&prime;</mo></msubsup><mrow><mo>(</mo><msubsup><mi>x</mi><mi>r</mi><mo>&prime;</mo></msubsup><mo>,</mo><msubsup><mi>y</mi><mi>r</mi><mo>&prime;</mo></msubsup><mo>,</mo><msub><mi>t</mi><mi>r</mi></msub><mo>)</mo></mrow><mo>=</mo><msub><mi>p</mi><mi>r</mi></msub><mrow><mo>(</mo><msub><mi>x</mi><mi>r</mi></msub><mo>,</mo><msub><mi>y</mi><mi>r</mi></msub><mo>,</mo><msub><mi>t</mi><mi>r</mi></msub><mo>)</mo></mrow><mo>-</mo><mrow><mo>(</mo><msub><mi>curve</mi><mi>r</mi></msub><mrow><mo>(</mo><msub><mi>x</mi><mi>tr</mi></msub><mo>,</mo><msub><mi>y</mi><mi>tr</mi></msub><mo>,</mo><msub><mi>t</mi><mi>r</mi></msub><mo>)</mo></mrow><mo>-</mo><msub><mi>curve</mi><mi>r</mi></msub><mrow><mo>(</mo><msub><mi>x</mi><mi>cr</mi></msub><mo>,</mo><msub><mi>y</mi><mi>cr</mi></msub><mo>,</mo><msub><mi>t</mi><mi>cr</mi></msub><mo>)</mo></mrow><mo>)</mo></mrow></mtd></mtr></mtable></mfenced></math>
in the formula, curvel(xtl,ytl,tl)、curver(xtr,ytr,tr) Respectively represent tl,trCurve at timel(x, y, t) and curerPoint on (x, y, t), p'l(x′l,y′l,tl) And p'r(x′r,y′r,tr) Is a compensated reference point. Then, three-dimensional reconstruction is carried out on the two compensated reference points to obtain a three-dimensional point P (x)clr,yclr,zclr,tclr) Wherein t isclrRepresents the sum of tclOr tcrCorresponding to a consistent end of inspiration or end of expiration;
(IV) reacting p 'obtained in step (III)'l(x′l,y′l,tl) And p'r(x′r,y′r,tr) Further compensation to other moments of the respiratory motion cycle without the influence of cardiac motion:
<math><mfenced open='{' close=''><mtable><mtr><mtd><msubsup><mi>p</mi><mi>l</mi><mo>&prime;</mo></msubsup><mrow><mo>(</mo><msubsup><mi>x</mi><mrow><mi>l</mi><mo>+</mo><mi>i</mi></mrow><mo>&prime;</mo></msubsup><mo>,</mo><msubsup><mi>y</mi><mrow><mi>l</mi><mo>+</mo><mi>i</mi></mrow><mo>&prime;</mo></msubsup><mo>,</mo><msub><mi>t</mi><mrow><mi>l</mi><mo>+</mo><mi>i</mi></mrow></msub><mo>)</mo></mrow><mo>=</mo><msubsup><mi>p</mi><mi>l</mi><mo>&prime;</mo></msubsup><mrow><mo>(</mo><msubsup><mi>x</mi><mi>l</mi><mo>&prime;</mo></msubsup><mo>,</mo><msubsup><mi>y</mi><mi>l</mi><mo>&prime;</mo></msubsup><mo>,</mo><msub><mi>t</mi><mi>l</mi></msub><mo>)</mo></mrow><mo>+</mo><mrow><mo>(</mo><msub><mi>curve</mi><mi>l</mi></msub><mrow><mo>(</mo><msub><mi>x</mi><mrow><mi>l</mi><mo>+</mo><mi>i</mi></mrow></msub><mo>,</mo><msub><mi>y</mi><mrow><mi>l</mi><mo>+</mo><mi>i</mi></mrow></msub><mo>,</mo><msub><mi>t</mi><mrow><mi>l</mi><mo>+</mo><mi>i</mi></mrow></msub><mo>)</mo></mrow><mo>-</mo><msub><mi>curve</mi><mi>l</mi></msub><mrow><mo>(</mo><msub><mi>x</mi><mi>cl</mi></msub><mo>,</mo><msub><mi>y</mi><mi>cl</mi></msub><mo>,</mo><msub><mi>t</mi><mi>cl</mi></msub><mo>)</mo></mrow><mo>)</mo></mrow></mtd></mtr><mtr><mtd><msubsup><mi>p</mi><mi>r</mi><mo>&prime;</mo></msubsup><mrow><mo>(</mo><msubsup><mi>x</mi><mrow><mi>r</mi><mo>+</mo><mi>i</mi></mrow><mo>&prime;</mo></msubsup><mo>,</mo><msubsup><mi>y</mi><mrow><mi>r</mi><mo>+</mo><mi>i</mi></mrow><mo>&prime;</mo></msubsup><mo>,</mo><msub><mi>t</mi><mrow><mi>r</mi><mo>+</mo><mi>i</mi></mrow></msub><mo>)</mo></mrow><mo>=</mo><msubsup><mi>p</mi><mi>r</mi><mo>&prime;</mo></msubsup><mrow><mo>(</mo><msubsup><mi>x</mi><mi>r</mi><mo>&prime;</mo></msubsup><mo>,</mo><msubsup><mi>y</mi><mi>r</mi><mo>&prime;</mo></msubsup><mo>,</mo><msub><mi>t</mi><mi>r</mi></msub><mo>)</mo></mrow><mo>+</mo><mrow><mo>(</mo><msub><mi>curve</mi><mi>r</mi></msub><mrow><mo>(</mo><msub><mi>x</mi><mrow><mi>r</mi><mo>+</mo><mi>i</mi></mrow></msub><mo>,</mo><msub><mi>y</mi><mrow><mi>r</mi><mo>+</mo><mi>i</mi></mrow></msub><mo>,</mo><msub><mi>t</mi><mrow><mi>r</mi><mo>+</mo><mi>i</mi></mrow></msub><mo>)</mo></mrow><mo>-</mo><msub><mi>curve</mi><mi>r</mi></msub><mrow><mo>(</mo><msub><mi>x</mi><mi>cr</mi></msub><mo>,</mo><msub><mi>y</mi><mi>cr</mi></msub><mo>,</mo><msub><mi>t</mi><mi>cr</mi></msub><mo>)</mo></mrow><mo>)</mo></mrow></mtd></mtr></mtable></mfenced></math>
similarly, point pairs p 'for other times of the respiratory motion cycle'l(x′l+i,y′l+i,tl+i) And p'r(x′r+i,y′r+i,tr+i) Performing three-dimensional reconstruction to obtain a three-dimensional point P (x)clr+i,yclr+i,zclr+i,tclr+i) Where i denotes at the time tlAnd trThe number of previous or subsequent frames, i is a negative integer when the number of previous frames is the number of previous frames, and i is a positive integer when the number of subsequent frames is the number of subsequent frames;
and (V) integrating the results obtained in the step (III) and the step (IV) to obtain the three-dimensional respiratory motion.
CN2009102735285A 2009-12-31 2009-12-31 Method for extracting respiratory movement parameter from one-arm X-ray radiography picture Expired - Fee Related CN101773395B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2009102735285A CN101773395B (en) 2009-12-31 2009-12-31 Method for extracting respiratory movement parameter from one-arm X-ray radiography picture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2009102735285A CN101773395B (en) 2009-12-31 2009-12-31 Method for extracting respiratory movement parameter from one-arm X-ray radiography picture

Publications (2)

Publication Number Publication Date
CN101773395A true CN101773395A (en) 2010-07-14
CN101773395B CN101773395B (en) 2011-05-18

Family

ID=42510080

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2009102735285A Expired - Fee Related CN101773395B (en) 2009-12-31 2009-12-31 Method for extracting respiratory movement parameter from one-arm X-ray radiography picture

Country Status (1)

Country Link
CN (1) CN101773395B (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103083030A (en) * 2011-10-31 2013-05-08 Ge医疗系统环球技术有限公司 Device-less 4 dimensional-computed tomography (D4D-CT) imaging method, device and system
CN103083023A (en) * 2011-10-31 2013-05-08 Ge医疗系统环球技术有限公司 Method and device for measuring respiratory cycle through computerized tomography (CT) scanner
CN103340619A (en) * 2013-06-18 2013-10-09 浙江大学 Electromagnetic wave physiological movement imaging system
CN103810721A (en) * 2013-12-30 2014-05-21 华中科技大学 Single-arm x-ray angiography image multiple motion parameter decomposition and estimation method
CN103830848A (en) * 2012-11-27 2014-06-04 Ge医疗系统环球技术有限公司 Method and system for gating radiotherapy
CN104517301A (en) * 2014-12-30 2015-04-15 华中科技大学 Method for iteratively extracting movement parameters of angiography image guided by multi-parameter model
WO2015101059A1 (en) * 2013-12-31 2015-07-09 华中科技大学 Separation and estimation method for multiple motion parameters in x-ray angiographic image
CN106056589A (en) * 2016-05-24 2016-10-26 西安交通大学 Ultrasound contrast perfusion parameter imaging method based on respiratory motion compensation
CN107505584A (en) * 2016-06-14 2017-12-22 西门子(深圳)磁共振有限公司 A kind of magnetic resonance data acquisition triggering method and device
CN107569251A (en) * 2017-08-29 2018-01-12 上海联影医疗科技有限公司 Medical imaging procedure and system and non-transient computer readable storage medium storing program for executing
CN108245178A (en) * 2018-01-11 2018-07-06 苏州润迈德医疗科技有限公司 A kind of blood flowing speed computational methods based on X ray coronary angiography image
CN108364290A (en) * 2018-01-08 2018-08-03 深圳科亚医疗科技有限公司 Method, medium and the system that the image sequence of cyclical physiological activity is analyzed
CN108470357A (en) * 2018-03-27 2018-08-31 中科超精(安徽)科技有限公司 Couple the elastic registrating method of respiratory phase

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103083030B (en) * 2011-10-31 2017-04-12 Ge医疗系统环球技术有限公司 Device-less 4 dimensional-computed tomography (D4D-CT) imaging method, device and system
CN103083023A (en) * 2011-10-31 2013-05-08 Ge医疗系统环球技术有限公司 Method and device for measuring respiratory cycle through computerized tomography (CT) scanner
CN103083030A (en) * 2011-10-31 2013-05-08 Ge医疗系统环球技术有限公司 Device-less 4 dimensional-computed tomography (D4D-CT) imaging method, device and system
CN103830848A (en) * 2012-11-27 2014-06-04 Ge医疗系统环球技术有限公司 Method and system for gating radiotherapy
CN103830848B (en) * 2012-11-27 2018-09-14 Ge医疗系统环球技术有限公司 Method and system for gating radiotherapy
CN103340619A (en) * 2013-06-18 2013-10-09 浙江大学 Electromagnetic wave physiological movement imaging system
CN103810721A (en) * 2013-12-30 2014-05-21 华中科技大学 Single-arm x-ray angiography image multiple motion parameter decomposition and estimation method
WO2015101060A1 (en) * 2013-12-30 2015-07-09 华中科技大学 Decomposition and estimation method for multiple motion parameters in single-arm x-ray angiographic image
WO2015101059A1 (en) * 2013-12-31 2015-07-09 华中科技大学 Separation and estimation method for multiple motion parameters in x-ray angiographic image
CN104517301A (en) * 2014-12-30 2015-04-15 华中科技大学 Method for iteratively extracting movement parameters of angiography image guided by multi-parameter model
CN104517301B (en) * 2014-12-30 2017-07-07 华中科技大学 The method of the iterative extraction angiographic image kinematic parameter that multi-parameters model is instructed
WO2016106959A1 (en) * 2014-12-30 2016-07-07 华中科技大学 Multi-parameter model guided-method for iteratively extracting movement parameter of angiography image of blood vessel
CN106056589A (en) * 2016-05-24 2016-10-26 西安交通大学 Ultrasound contrast perfusion parameter imaging method based on respiratory motion compensation
CN106056589B (en) * 2016-05-24 2018-12-07 西安交通大学 A kind of ultrasonic contrast perfusion parametric imaging method of respiration motion compensation
CN107505584A (en) * 2016-06-14 2017-12-22 西门子(深圳)磁共振有限公司 A kind of magnetic resonance data acquisition triggering method and device
CN107569251A (en) * 2017-08-29 2018-01-12 上海联影医疗科技有限公司 Medical imaging procedure and system and non-transient computer readable storage medium storing program for executing
CN108364290A (en) * 2018-01-08 2018-08-03 深圳科亚医疗科技有限公司 Method, medium and the system that the image sequence of cyclical physiological activity is analyzed
CN108364290B (en) * 2018-01-08 2020-10-09 深圳科亚医疗科技有限公司 Method, medium, and system for analyzing a sequence of images of periodic physiological activity
CN108245178A (en) * 2018-01-11 2018-07-06 苏州润迈德医疗科技有限公司 A kind of blood flowing speed computational methods based on X ray coronary angiography image
CN108470357A (en) * 2018-03-27 2018-08-31 中科超精(安徽)科技有限公司 Couple the elastic registrating method of respiratory phase
CN108470357B (en) * 2018-03-27 2022-04-01 中科超精(南京)科技有限公司 Elastic registration method for coupling respiratory phases

Also Published As

Publication number Publication date
CN101773395B (en) 2011-05-18

Similar Documents

Publication Publication Date Title
CN101773395B (en) Method for extracting respiratory movement parameter from one-arm X-ray radiography picture
CN103886615B (en) The separating estimation method of parameter of doing more physical exercises in a kind of X ray angiographic image
Ferrario et al. Toward morphological thoracic EIT: major signal sources correspond to respective organ locations in CT
CN100381099C (en) Apparatus and method for navigating a catheter
Shechter et al. Prospective motion correction of X-ray images for coronary interventions
US9173626B2 (en) Method for performing dynamic registration, overlays, and 3D views with fluoroscopic images
JP2015515913A (en) Method for linear mapping of lumens
CN104574329A (en) Ultrasonic fusion imaging method and ultrasonic fusion imaging navigation system
CN101107628A (en) Image processing system and method for alignment of images
KR20140055896A (en) Method of motion compensation and phase-matched attenuation correction in pet imaging based on a few low-dose ct images
WO2015101060A1 (en) Decomposition and estimation method for multiple motion parameters in single-arm x-ray angiographic image
Faranesh et al. Integration of cardiac and respiratory motion into MRI roadmaps fused with x‐ray
CN104517301B (en) The method of the iterative extraction angiographic image kinematic parameter that multi-parameters model is instructed
CN108294768A (en) The X-ray angiocardiography of sequence image multi-parameter registration subtracts image method and system
JP2017538481A (en) Digital subtraction angiography
CN100462049C (en) Method of correcting double planar blood vessel 3D reconstructing deviation caused by C-arm bed motion
Zhang et al. A novel structural features-based approach to automatically extract multiple motion parameters from single-arm X-ray angiography
Schmidt et al. Reducing of gradient induced artifacts on the ECG signal during MRI examinations using Wilcoxon filter
CN112089438A (en) Four-dimensional reconstruction method and device based on two-dimensional ultrasound images
Jeong et al. Deep-learning-based registration of diagnostic angiogram and live fluoroscopy for percutaneous coronary intervention
CN104361606A (en) Cardiac cycle recovery method in X-ray radiographic image sequence
Brack et al. Development of an artifact-free aneurysm clip: Concept and approach for the development of an aneurysm clip entirely made from fiber-reinforced plastic materials
CN111862312B (en) Brain blood vessel display device and method
CN114469146A (en) Coronary motion compensation method and system in X-ray images
Naini et al. Estimation of lung's air volume and its variations throughout respiratory CT image sequences

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20110518