CN101752664B - Annular circular polarization ceramic antenna based on quadrature coupling feed - Google Patents
Annular circular polarization ceramic antenna based on quadrature coupling feed Download PDFInfo
- Publication number
- CN101752664B CN101752664B CN2010100194278A CN201010019427A CN101752664B CN 101752664 B CN101752664 B CN 101752664B CN 2010100194278 A CN2010100194278 A CN 2010100194278A CN 201010019427 A CN201010019427 A CN 201010019427A CN 101752664 B CN101752664 B CN 101752664B
- Authority
- CN
- China
- Prior art keywords
- low
- line
- antenna
- dielectric substrate
- impedance
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q9/00—Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
- H01Q9/04—Resonant antennas
- H01Q9/0407—Substantially flat resonant element parallel to ground plane, e.g. patch antenna
- H01Q9/0464—Annular ring patch
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q9/00—Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
- H01Q9/04—Resonant antennas
- H01Q9/0407—Substantially flat resonant element parallel to ground plane, e.g. patch antenna
- H01Q9/0428—Substantially flat resonant element parallel to ground plane, e.g. patch antenna radiating a circular polarised wave
- H01Q9/0435—Substantially flat resonant element parallel to ground plane, e.g. patch antenna radiating a circular polarised wave using two feed points
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q9/00—Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
- H01Q9/04—Resonant antennas
- H01Q9/0407—Substantially flat resonant element parallel to ground plane, e.g. patch antenna
- H01Q9/045—Substantially flat resonant element parallel to ground plane, e.g. patch antenna with particular feeding means
- H01Q9/0457—Substantially flat resonant element parallel to ground plane, e.g. patch antenna with particular feeding means electromagnetically coupled to the feed line
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Waveguide Aerials (AREA)
Abstract
本发明公开基于正交耦合馈电的环形圆极化陶瓷天线,包括上层微带天线结构、上层介质基板、中层介质基板、金属地板层、下层介质基板和底层Wilkinson功分器;上层微带天线结构为环形天线,两金属圆片是分别以两点为圆心的小圆片,两金属圆片分别位于两圆弧与内圆区域内;底层Wilkinson功分器层由高阻线、第一低阻抗线、第二低阻抗线以及贴片电阻组成;高阻线的特征阻抗为第一低阻抗线或第二低阻抗线的特征阻抗z0的倍;上层介质基板、中层介质基板和下层介质基板均为陶瓷介质。该天线馈电机制采用两个圆形金属片,产生两幅度相同且相互正交的电流源,拓展环形金属天线中的轴比带宽,增加天线的调节的自由度。
The invention discloses an annular circularly polarized ceramic antenna based on orthogonal coupling feeding, including an upper layer microstrip antenna structure, an upper layer dielectric substrate, a middle layer dielectric substrate, a metal floor layer, a lower layer dielectric substrate and a bottom Wilkinson power divider; the upper layer microstrip antenna The structure is a loop antenna. The two metal discs are small discs with two points as the center respectively. The two metal discs are respectively located in the two arcs and the inner circle area; the bottom Wilkinson power splitter layer is composed of high resistance lines, the first low Impedance line, the second low impedance line and chip resistors; the characteristic impedance of the high resistance line is the characteristic impedance z 0 of the first low impedance line or the second low impedance line times; the upper dielectric substrate, the middle dielectric substrate and the lower dielectric substrate are all ceramic dielectrics. The antenna feed mechanism uses two circular metal sheets to generate two current sources with the same amplitude and are orthogonal to each other, so as to expand the axial ratio bandwidth of the circular metal antenna and increase the degree of freedom of antenna adjustment.
Description
技术领域technical field
本发明涉及到一种卫星导航与定位天线,它可以同时工作在中国北斗二代系统的B1频段(1561.098MHz)、B1-2频段(1589.742MHz),美国的GPS系统L1频段(1575.42MHz)和欧洲GLONASS的L1频段(1602.56-1615.50MHz)的多个导航系统的兼容接收天线。The invention relates to a satellite navigation and positioning antenna, which can work simultaneously in the B1 frequency band (1561.098MHz) and B1-2 frequency band (1589.742MHz) of China's Beidou second-generation system, and the L1 frequency band (1575.42MHz) of the American GPS system and Compatible receiving antenna for multiple navigation systems in the L1 frequency band (1602.56-1615.50MHz) of European GLONASS.
背景技术Background technique
卫星导航产业是国家战略性高技术产业,是典型的技术密集型与服务型IT产业,其发展前景十分广阔,已经成为国际八大无线产业之一,是继蜂窝移动通信和互联网之后,全球发展最快的信息产业,已成为第三个IT经济的又一个新的增长点。以美国全球定位系统GPS为代表的卫星与定位GPS应用产业已逐步成为一个全球性的高新技术产业。我国的卫星导航产业正进入产业化高速发展的关键时刻,预计在今后五到十年内将形成GPS、GLONASS、GALILEO和北斗卫星导航系统融合的全球性导航卫星系统的集合。The satellite navigation industry is a national strategic high-tech industry. It is a typical technology-intensive and service-oriented IT industry. Its development prospects are very broad. It has become one of the eight major wireless industries in the world. The rapid information industry has become another new growth point of the third IT economy. The satellite and positioning GPS application industry represented by the US Global Positioning System GPS has gradually become a global high-tech industry. my country's satellite navigation industry is entering a critical moment of rapid industrialization development. It is expected that in the next five to ten years, a global navigation satellite system integrating GPS, GLONASS, GALILEO and Beidou satellite navigation system will be formed.
随着各导航系统的发展,多系统并存、多模融合步伐将进一步加快,单一的GPS系统时代正在转变为多星座并存且兼容的全球导航卫星系统(GNSS)时代,在可以预见的将来,覆盖各国领土的卫星导航系统将包括GPS、GLONASS、GALILEO和北斗卫星导航系统四大系统。各个系统的优劣在于:GPS发展时间长,应用广泛,但出于国家安全考虑,美国的GPS一直没有承诺对民用服务的连续性;GLONASS的抗干扰能力强,但是系统运行状态不稳,同时编码方式特殊;GALILEO相对精准,但技术成熟度相对较晚。北斗卫星导航系统是从中国战略层面上开发的一套具有自主知识产权和双向通信能力的卫星导航与定位系统。因此,开发同时兼容上述卫星导航系统的应用技术,实现多模融合,是卫星导航产业发展的必然趋势。With the development of various navigation systems, the coexistence of multiple systems and the pace of multi-mode integration will be further accelerated. The era of a single GPS system is changing into the era of a multi-constellation coexisting and compatible Global Navigation Satellite System (GNSS). In the foreseeable future, coverage The satellite navigation systems in the territory of each country will include four major systems: GPS, GLONASS, GALILEO and Beidou satellite navigation system. The advantages and disadvantages of each system are: GPS has been developed for a long time and is widely used, but for the sake of national security, GPS in the United States has not promised the continuity of civilian services; GLONASS has strong anti-jamming ability, but the system is unstable, The coding method is special; GALILEO is relatively accurate, but the technology maturity is relatively late. The Beidou satellite navigation system is a set of satellite navigation and positioning systems with independent intellectual property rights and two-way communication capabilities developed from China's strategic level. Therefore, it is an inevitable trend in the development of the satellite navigation industry to develop application technologies that are compatible with the above-mentioned satellite navigation systems and realize multi-mode integration.
但是,目前设计多导航系统兼容的天线存在以下几方面的技术难点:However, the current design of multi-navigation system compatible antennas has the following technical difficulties:
1、轴比/阻抗宽带化技术1. Axial ratio/impedance broadband technology
在移动卫星通信中,卫星上的发射系统用圆极化波广播信号,以便运动中的交通工具和用户配用的移动卫星通信设备终端在与卫星无关的任何方向上可以接收卫星的信号,卫星上的发射系统覆盖一个很大的范围,无须对准某个具体的终端。为了满足这种需求,用于移动卫星通信设备的天线必需在很宽波束内具有良好的圆极化性能。In mobile satellite communication, the launch system on the satellite broadcasts the signal with circularly polarized waves, so that the moving vehicle and the mobile satellite communication equipment terminal equipped by the user can receive the satellite signal in any direction independent of the satellite. The launch system on the Internet covers a large range and does not need to be aimed at a specific terminal. To meet this demand, antennas for mobile satellite communications equipment must have good circular polarization performance over a wide beam.
传统的螺旋天线常用于卫星导航系统中,用于产生圆极化波传播,由于该天线需要从接地金属板的表面向上延伸出的高度为λ0/4~λ0/2(其中λ0为天线工作波长)一段螺旋,因此其样式不佳,还增加了空气动力学上的阻力。低剖面的微带天线可以弥补上述不足,但是传统的单馈点微带圆极化天线尚存在以下缺点:(1)没有足够的波束宽度,无法保证为移动卫星通信提供足够宽的覆盖范围;(2)当拥有足够的波束宽度时,阻抗带宽却不足。微带天线的辐射波束宽度虽然通过采用高介电常数的介质材料或采用微带开槽技术把天线的尺寸缩小从而产生宽的辐射波束,但这种方法却使阻抗带宽减少,不能满足需求。Traditional helical antennas are often used in satellite navigation systems to generate circularly polarized wave propagation. Since the antenna needs to extend upward from the surface of the grounded metal plate to a height of λ0/4~λ0/2 (where λ0 is the antenna operating wavelength ) a helix, so it's poorly styled and adds aerodynamic drag. The low-profile microstrip antenna can make up for the above shortcomings, but the traditional single-feed microstrip circularly polarized antenna still has the following disadvantages: (1) There is not enough beam width to ensure a wide enough coverage for mobile satellite communications; (2) When having sufficient beam width, the impedance bandwidth is insufficient. Although the radiation beam width of the microstrip antenna is reduced by using a high dielectric constant dielectric material or using microstrip slot technology to produce a wide radiation beam, this method reduces the impedance bandwidth and cannot meet the requirements.
2、小型化技术2. Miniaturization technology
小型化技术是多系统导航兼容型天线设计中的一大难题。不管从电性能方面来说,还是从机械尺寸方面来说,小型化技术都是不可或缺的。从电性能方面来说,卫星导航系统要求天线的辐射波束要足够宽,而通常情况下,尺寸小的天线可以产生宽的辐射波束。从机械尺寸方面来说,当多个天线单元组合在一起的时候,整个天线的尺寸势必会增加,不仅会增加空气动力学的阻力,还会增加到天线的装配方面的难度,对天线的机械强度提出了更高的要求。Miniaturization technology is a major challenge in the design of multi-system navigation-compatible antennas. Regardless of electrical performance or mechanical size, miniaturization technology is indispensable. In terms of electrical performance, the satellite navigation system requires that the radiation beam of the antenna be sufficiently wide, and usually, a small-sized antenna can produce a wide radiation beam. From the perspective of mechanical size, when multiple antenna units are combined, the size of the entire antenna will inevitably increase, which will not only increase the aerodynamic resistance, but also increase the difficulty of antenna assembly, and affect the mechanical properties of the antenna. Strength puts forward higher requirements.
3、天线增益增强技术3. Antenna gain enhancement technology
北斗、GPS及GLONASS等卫星导航定位系统要求天线不仅具有很宽的波束范围,还要求天线具有较高的增益。常见的增益要求为:在仰角20°~90°的范围内,增益大于0dBic,在仰角为5°~20°的范围内,增益大于-3dBic。为了达到这种要求,首先要改善端口的阻抗匹配,保证射频信号能够馈入各个天线单元中,减少反射回去的信号能量。在保证端口良好匹配的基础上还要提高天线的辐射效率,使馈入天线的信号能充分的发射出去,减少天线单元中的能量损失,包括介质损耗,金属损耗等。Satellite navigation and positioning systems such as Beidou, GPS and GLONASS require the antenna not only to have a wide beam range, but also to have a high gain. Common gain requirements are: within the range of
发明内容Contents of the invention
本发明的目的在于克服现有技术的缺点,提供一种能够兼容多个卫星导航与定位系统的接收天线,且实现良好的阻抗带宽、轴比带宽、增益和小体积等性能。The purpose of the present invention is to overcome the shortcomings of the prior art, provide a receiving antenna compatible with multiple satellite navigation and positioning systems, and achieve good performances such as impedance bandwidth, axial ratio bandwidth, gain and small volume.
本发明利用正交耦合馈电的环形圆极化陶瓷天线,实现了圆极化天线性能,其天线的阻抗带宽、轴比带宽和增益带宽都涵盖了北斗B1、GPS L1、北斗B1-2和GLONASS L1等三个全球卫星定位系统的四个频段,此外还具有小型化,结构紧凑,便于加工和应用的特点。The invention utilizes the circularly polarized ceramic antenna with orthogonal coupling feed to realize the performance of the circularly polarized antenna. The impedance bandwidth, axial ratio bandwidth and gain bandwidth of the antenna all cover Beidou B1, GPS L1, Beidou B1-2 and Beidou B1-2. The four frequency bands of three global satellite positioning systems such as GLONASS L1 are also characterized by miniaturization, compact structure, and easy processing and application.
本发明的目的通过如下技术方案实现:The purpose of the present invention is achieved through the following technical solutions:
一种基于正交耦合馈电的环形圆极化陶瓷天线,包括上层微带天线结构、上层介质基板、中层介质基板、金属地板层、下层介质基板和底层Wilkinson功分器;上层介质基板和中层介质基板叠在一起形成环形金属辐射体的介质复合基板,上层微带天线结构和金属地板层分别附着在该介质复合基板上下两面;金属地板层下表面与下层介质基板连接,底层Wilkinson功分器附着在下层介质基板下表面;A circularly polarized ceramic antenna based on orthogonal coupling feeding, including an upper microstrip antenna structure, an upper dielectric substrate, a middle dielectric substrate, a metal floor layer, a lower dielectric substrate and a bottom Wilkinson power divider; an upper dielectric substrate and a middle layer The dielectric substrates are stacked together to form a dielectric composite substrate of an annular metal radiator. The upper microstrip antenna structure and the metal floor layer are respectively attached to the upper and lower sides of the dielectric composite substrate; the lower surface of the metal floor layer is connected to the lower dielectric substrate, and the bottom Wilkinson power divider Attached to the lower surface of the lower dielectric substrate;
所述上层微带天线结构包括环形天线,在环形天线1内圆边界上设有向外突出的两段圆弧,两段圆弧分别以距环形天线内圆边界相同距离两点为圆心,两点与环形天线的圆心的连线的夹角为90°;两金属圆片是分别以两点为圆心的小圆片,两金属圆片的分别位于两圆弧与内圆区域内;The microstrip antenna structure of the upper layer comprises a loop antenna, and two sections of circular arcs protruding outward are provided on the inner circle boundary of the
所述底层Wilkinson功分器层由高阻线、第一低阻抗线、第二低阻抗线以及贴片电阻组成;高阻线和贴片电阻连接成环形结构,第一低阻抗线和第二低阻抗线的一端分别与两金属圆片在下层介质基板下表面投影点连接,第一低阻抗线和第二低阻抗线的另一端分别与高阻线和贴片电阻连接;第一低阻抗线和第二低阻抗线的特征阻抗均为z0;高阻线的特征阻抗为第一低阻抗线或第二低阻抗线的特征阻抗z0的倍,贴片电阻的阻抗值为z0的2倍;The bottom Wilkinson power divider layer is made up of high resistance lines, first low impedance lines, second low impedance lines and chip resistors; the high resistance lines and chip resistors are connected into a ring structure, the first low impedance lines and the second One end of the low-impedance line is respectively connected to the projection points of the two metal discs on the lower surface of the lower dielectric substrate, and the other ends of the first low-impedance line and the second low-impedance line are respectively connected to the high-impedance line and the chip resistor; the first low-impedance The characteristic impedance of the line and the second low impedance line are z 0 ; the characteristic impedance of the high resistance line is the characteristic impedance z 0 of the first low impedance line or the second low impedance line times, the impedance value of the chip resistor is 2 times of z 0 ;
上层介质基板、中层介质基板、下层介质基板和金属地板层位于两金属圆片下端设有两个圆形挖孔,分别用于设置两馈电同轴线;两馈电同轴线分别将两金属圆片与第一低阻抗线、第二低阻抗线连接在一起;The upper dielectric substrate, the middle dielectric substrate, the lower dielectric substrate and the metal floor layer are located at the lower ends of the two metal discs. The metal disc is connected together with the first low-impedance line and the second low-impedance line;
上层介质基板、中层介质基板和下层介质基板均为陶瓷介质。The upper dielectric substrate, the middle dielectric substrate and the lower dielectric substrate are all ceramic dielectrics.
为进一步实现本发明的目的,所述上层介质基板的介电常数比中层介质基板的介电常数高。To further achieve the object of the present invention, the dielectric constant of the upper dielectric substrate is higher than that of the middle dielectric substrate.
所述金属圆片为铜片或银片,对上层微带天线进行耦合馈电。The metal disc is copper or silver, and is used to couple and feed the microstrip antenna on the upper layer.
与现有技术相比,本发明具有如下优点和技术效果:Compared with the prior art, the present invention has the following advantages and technical effects:
(1)所述天线采用双馈耦合馈电和三层介质,拓展轴比带宽和阻抗带宽。实施例中在轴比小于1.65的情况下,频率范围为1.55~1.685GHz,带宽达到135MHz,增益大于2.5dB的情况下频率范围为1.545~1.615GHz,增益带宽达到70MHz;而回波损耗在1.55~1.7GHz频率范围内小于-15dB,使得阻抗带宽大于250MHz。(1) The antenna adopts double-feed coupling feeding and three-layer dielectric to expand the axial ratio bandwidth and impedance bandwidth. In the embodiment, when the axial ratio is less than 1.65, the frequency range is 1.55-1.685 GHz, and the bandwidth reaches 135 MHz; when the gain is greater than 2.5 dB, the frequency range is 1.545-1.615 GHz, and the gain bandwidth reaches 70 MHz; and the return loss is 1.55 The frequency range of ~1.7GHz is less than -15dB, making the impedance bandwidth greater than 250MHz.
(2)天线由圆金属片正交耦合馈电,避免了由陶瓷介质高介电常数和环形天线带来的高阻抗匹配难度大的问题,增加了调节的自由度,便于生产环节的调试。(2) The antenna is fed by a circular metal plate orthogonally coupled, which avoids the difficult problem of high impedance matching caused by the high dielectric constant of the ceramic dielectric and the loop antenna, increases the degree of freedom of adjustment, and facilitates the debugging of the production link.
(3)天线采用功分器与天线共用地板,有效减小天线的厚度,使结构更紧凑,便于加工生产。(3) The antenna uses a power divider to share the floor with the antenna, which effectively reduces the thickness of the antenna, making the structure more compact and convenient for processing and production.
(4)天线采用陶瓷介质和环形天线结构,有效地减少了天线的体积,拓展了波束宽度。(4) The antenna adopts ceramic dielectric and loop antenna structure, which effectively reduces the volume of the antenna and expands the beam width.
(5)天线采用正交耦合馈电技术和低损耗的三层陶瓷材料改善了天线的匹配性能和辐射效率,使得本发明天线具有良好的天线增益。(5) The antenna adopts orthogonal coupling feeding technology and low-loss three-layer ceramic material to improve the matching performance and radiation efficiency of the antenna, so that the antenna of the present invention has good antenna gain.
附图说明Description of drawings
图1为本发明的基于正交耦合馈电的环形圆极化陶瓷天线结构示意图;Fig. 1 is the structure schematic diagram of the annular circularly polarized ceramic antenna based on orthogonal coupling feeding of the present invention;
图2a为微带天线结构层的示意图;Fig. 2 a is the schematic diagram of microstrip antenna structural layer;
图2b为底层Wikinson功分器的示意图;Figure 2b is a schematic diagram of the underlying Wikinson power divider;
图3a为本发明的回波损耗示意图;Fig. 3 a is the return loss schematic diagram of the present invention;
图3b为本发明的轴比示意图;Figure 3b is a schematic diagram of the axial ratio of the present invention;
图3c为本发明的增益示意图。Fig. 3c is a schematic diagram of gain of the present invention.
具体实施方式Detailed ways
下面结合附图对本发明的实施做详细说明,但本发明要求的保护范围不限于下述的实施方式。The implementation of the present invention will be described in detail below in conjunction with the accompanying drawings, but the scope of protection required by the present invention is not limited to the following embodiments.
如图1、2a、2b所示,基于正交耦合馈电的环形圆极化陶瓷天线,采用微带电路的形式来实现,包括上层微带天线结构、上层介质基板13、中层介质基板14、金属地板层8、下层介质基板15和底层Wilkinson功分器。上层介质基板13和中层介质基板14叠在一起形成环形金属辐射体的介质复合基板,上层微带天线结构和金属地板层8分别附着在该介质复合基板上下两面;金属地板层8下表面与下层介质基板15连接,底层Wilkinson功分器附着在下层介质基板15下表面。As shown in Figures 1, 2a, and 2b, the circularly polarized ceramic antenna based on orthogonally coupled feed is implemented in the form of a microstrip circuit, including an upper layer microstrip antenna structure, an upper layer dielectric substrate 13, a middle layer dielectric substrate 14, The metal floor layer 8, the lower
上层微带天线结构包括环形天线1,环形的内径为Rin,外径为Rout,圆环的平均半径(Rin+Rout)/2和上层介质基板13及中层介质基板的介电常数一起决定天线的谐振频率,具体的公式为式中fc是工作频率,对同时工作在中国北斗二代B1频段、B1-2频段,美国的GPS系统L1频段(1575.42MHz)和欧洲GLONASS的L1频段(1602.56-1615.50MHz)的多个导航系统可取fc=1.575GHz;是多层介质叠放之后的等效相对介电常数,hi是上层介质基板13、中层介质基板14、下层介质基板15的厚度,eri是各层介质的相对介电常数,n是天线所用介质层的数目,本例n=3。在环形天线1内圆边界上设有向外突出的两段圆弧2、3,两段圆弧2、3分别以环形天线1内圆边界上两点A、B为圆心,两点A、B分别与环形天线1的圆心的连线的夹角为90°;两金属圆片4、5是分别以两点A、B为圆心的小圆片,两金属圆片4、5的分别位于两圆弧2、3与内圆区域内。The upper layer microstrip antenna structure includes a
底层Wilkinson功分器层由高阻线11、第一低阻抗线11x、第二低阻抗线11y以及贴片电阻12组成。高阻线11和贴片电阻12连接成环形结构,第一低阻抗线11x和第二低阻抗线11y的一端分别与两金属圆片4、5在下层介质基板15下表面投影点连接,第一低阻抗线11x和第二低阻抗线11y的另一端分别与高阻线11和贴片电阻12连接。具体是高阻线11两端分别与第一低阻抗线11x和第二低阻抗线11y的另一端连接,贴片电阻12的两端分别焊接在第一低阻抗线11x和第二低阻抗线11y与高阻线11的连接点上。高阻线11的特征阻抗为第一低阻抗线11x和第二低阻抗线11y的特征阻抗Z0的倍,贴片电阻12的阻抗值为特征阻抗Z0的2倍;这样就可使得Wilkinson功分器的输入端和输出端接入与低阻抗微带线特征阻抗Z0相等的负载时完全匹配。The bottom Wilkinson power splitter layer is composed of a high-
上层介质基板13、中层介质基板14、下层介质基板15和金属地板层8位于两金属圆片4、5下端设有两个圆形挖孔9、10,分别用于设置两馈电同轴线6、7;两馈电同轴线6、7分别将两金属圆片4、5与第一低阻抗线11x和第二低阻抗线11y连接在一起;两个圆形挖孔9、10与两馈电同轴线6、7的轴线同圆心。The upper dielectric substrate 13, the middle dielectric substrate 14, the lower
两馈电同轴线6、7的位置应满足两个馈电点之间幅度相等相位正交的要求,即当底层Wilkinson功分器的第一低阻抗线11x和第二低阻抗线11y之间信号幅度相同且相位正交时,两馈电同轴线6、7的中心与环形天线1的中心之间的连线构成的夹角为90度,两馈电同轴线6、7与圆弧2、3之间的距离越大则输入阻抗越小,根据天线的馈电端口阻抗可以通过遗传算法(GeneticAlgorithm)等优化算法得到。金属圆片4、5的直径,圆弧2、3的半径大小,共同影响天线的阻抗匹配:两圆弧2、3与金属圆片之间的距离越大则天线的输入阻抗越大;但金属圆片4、5的直径和输入阻抗的关系并不满足线性关系,在设计的过程中需要采用遗传算法(Genetic Algorithm)等优化算法结合圆弧2、3的半径大小进行优化。由于采用了耦合馈电方式,消除了环形天线工作在TM11模式和采用高介电常数材料带来的高输入阻抗问题,使天线的输入阻抗更易于与馈电端口阻抗匹配。两馈电点分别与环形天线圆心的连线成90°,且与圆心的距离相等,能够激励产生两相互正交的模式,满足了右旋圆极化的其中一个条件。为了保证该天线产生右旋圆极化,Wilkinson功分器连接到同轴线6的微带线11x要比连接到同轴线7的微带线11y长l/4(l为下层介质基板15中的等效波长,可通过公式计算得到,其中c是光在真空中的速度,f是工作频率,eeff是等效介电常数,它由微带线宽度、介质厚度和介质相对介电常数决定,其计算公式为h是介质厚度,w是微带线宽度),保证同轴线6中的相位比同轴线7中相位超前90°。Wilkinson功分器的使用,提高了天线的圆极化性能,拓展了天线的轴比带宽。The positions of the two feeding
上层微带天线结构与底层Wilkinson功分器层共用金属地板层8,有效地减少天线体积,使结构更加紧凑。The upper microstrip antenna structure shares the metal floor layer 8 with the bottom Wilkinson power divider layer, effectively reducing the volume of the antenna and making the structure more compact.
上层介质基板13、中层介质基板14和下层介质基板15均为陶瓷介质,其中,上层介质基板13的介电常数比中层介质基板14的介电常数要高。上层介质基板13具有高介电常数的特点,能够有效的减小天线体积。中层介质基板14的介电常数比上层介质基板13的要低,有效的减小了由于具有高介电常数特性的上层介质基板13带来的高阻抗的影响,拓展了阻抗带宽,保证了天线的匹配。中层介质基板14的介电常数小于上层介质基板13可以减小整体介电常数,拓展天线带宽。The upper dielectric substrate 13 , the middle dielectric substrate 14 and the lower
实施后得到的结果如图3所示。从图3a中可以看到,在北斗B1,B1-2,GPS L1,GLONASS L1所在的1.55~1.615GHz频段内,回波损耗S11<-15dB,从图3b中可以看到,在上述频带内轴比AR<1.65dB,从图3c中可以看到在1.55~1.615GHz频带内,增益Gain>2.5dB,增益的最大值在1.575GHz为4.1dB。这说明天线的阻抗带宽、轴比带宽和增益带宽覆盖了北斗B1/B1-2,GPSL1和GLONASS L1等频段,使得天线在上述频段内具有良好的性能。The results obtained after implementation are shown in Figure 3. It can be seen from Figure 3a that in the 1.55-1.615GHz frequency band where Beidou B1, B1-2, GPS L1, and GLONASS L1 are located, the return loss S11<-15dB, as can be seen from Figure 3b, in the above frequency band The axial ratio AR<1.65dB. It can be seen from Figure 3c that in the 1.55-1.615GHz frequency band, the gain Gain>2.5dB, and the maximum gain is 4.1dB at 1.575GHz. This shows that the impedance bandwidth, axial ratio bandwidth and gain bandwidth of the antenna cover the frequency bands of Beidou B1/B1-2, GPSL1 and GLONASS L1, which makes the antenna have good performance in the above frequency bands.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2010100194278A CN101752664B (en) | 2010-01-15 | 2010-01-15 | Annular circular polarization ceramic antenna based on quadrature coupling feed |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2010100194278A CN101752664B (en) | 2010-01-15 | 2010-01-15 | Annular circular polarization ceramic antenna based on quadrature coupling feed |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101752664A CN101752664A (en) | 2010-06-23 |
CN101752664B true CN101752664B (en) | 2013-07-24 |
Family
ID=42479257
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2010100194278A Expired - Fee Related CN101752664B (en) | 2010-01-15 | 2010-01-15 | Annular circular polarization ceramic antenna based on quadrature coupling feed |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101752664B (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3520174A4 (en) * | 2016-09-29 | 2020-06-17 | Getsat Communications Ltd. | Methods circuits devices assemblies and systems for providing an active antenna |
EP3787114A1 (en) * | 2019-08-30 | 2021-03-03 | Sivers Ima AB | An antenna device |
Families Citing this family (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102013551B (en) * | 2010-09-15 | 2013-04-17 | 华南理工大学 | Circularly polarized ceramic antenna based on coupling and feeding of strip line via multiple slots |
CN102332637B (en) * | 2011-08-31 | 2014-06-11 | 华南理工大学 | Dual-polarized multi-system compatible antenna |
CN106207405A (en) | 2012-06-29 | 2016-12-07 | 华为技术有限公司 | An Electromagnetic Dipole Antenna |
CN103311653B (en) * | 2013-05-20 | 2015-10-28 | 华南理工大学 | Adopt differential feed and the wide band antenna of multiple-layered patches miniaturized structure height isolation |
CN104183913B (en) * | 2014-08-18 | 2017-10-31 | 浙江大学 | Broadband circle polarized RFID handheld readers antenna |
CN106374228B (en) * | 2016-11-21 | 2022-12-27 | 广东工业大学 | Single-chip double-frequency broadband patch antenna |
CN107196052A (en) * | 2017-04-13 | 2017-09-22 | 成都电科星天科技有限公司 | The low elevation angle omnidirectional radiation circular polarized antenna of small size |
CN107369897A (en) * | 2017-07-06 | 2017-11-21 | 五邑大学 | A kind of unit line array of X-band Optically controlled microwave four |
CN109524778B (en) * | 2018-10-31 | 2020-08-25 | 广东曼克维通信科技有限公司 | Double-fed circularly polarized antenna |
CN109638422B (en) * | 2018-11-15 | 2021-02-05 | 中国电子科技集团公司第三十八研究所 | Broadband circularly polarized common-caliber communication navigation array antenna |
CN109378581B (en) * | 2018-11-22 | 2021-03-12 | 厦门大学 | Microstrip circular patch antenna for radiating double-frequency vortex wave |
CN109616763A (en) * | 2019-01-11 | 2019-04-12 | 厦门大学 | A compact annular circularly polarized microstrip antenna |
CN112290220B (en) * | 2020-11-24 | 2025-03-04 | 上海航空机械有限公司 | A dual-port dual-polarization broadband V/UHF composite antenna |
CN113193350A (en) * | 2021-04-29 | 2021-07-30 | 人民华智通讯技术有限公司 | A no silver thick liquid microstrip antenna for location |
CN115064862A (en) * | 2022-06-21 | 2022-09-16 | 西安茂德通讯科技有限公司 | Microstrip antenna |
US20240356229A1 (en) * | 2023-04-21 | 2024-10-24 | Auden Techno Corp. | Microstrip antenna |
EP4451472A1 (en) * | 2023-04-21 | 2024-10-23 | Auden Techno Corp. | Antenna array |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1941504A (en) * | 2005-09-30 | 2007-04-04 | 西北工业大学 | Micro-band antenna of C-band negative-permeability material |
WO2008083719A1 (en) * | 2007-01-12 | 2008-07-17 | Aida Centre, S.L. | Self-resonant electrically small antenna |
CN101533956A (en) * | 2009-03-27 | 2009-09-16 | 大连海事大学 | Multi-mode satellite positioning navigation terminal antenna |
-
2010
- 2010-01-15 CN CN2010100194278A patent/CN101752664B/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1941504A (en) * | 2005-09-30 | 2007-04-04 | 西北工业大学 | Micro-band antenna of C-band negative-permeability material |
WO2008083719A1 (en) * | 2007-01-12 | 2008-07-17 | Aida Centre, S.L. | Self-resonant electrically small antenna |
CN101533956A (en) * | 2009-03-27 | 2009-09-16 | 大连海事大学 | Multi-mode satellite positioning navigation terminal antenna |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3520174A4 (en) * | 2016-09-29 | 2020-06-17 | Getsat Communications Ltd. | Methods circuits devices assemblies and systems for providing an active antenna |
EP3787114A1 (en) * | 2019-08-30 | 2021-03-03 | Sivers Ima AB | An antenna device |
Also Published As
Publication number | Publication date |
---|---|
CN101752664A (en) | 2010-06-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101752664B (en) | Annular circular polarization ceramic antenna based on quadrature coupling feed | |
CN102013551B (en) | Circularly polarized ceramic antenna based on coupling and feeding of strip line via multiple slots | |
CN102332637B (en) | Dual-polarized multi-system compatible antenna | |
CN201674000U (en) | A Circularly Polarized Ceramic Antenna Based on Orthogonal Coaxial Feed | |
CN111883912B (en) | Ultra-wideband circularly polarized dielectric resonator antenna array | |
Massa | A dual frequency microstrip patch antenna for high-precision GPS applications | |
CN106532278B (en) | A Broadband Low Axial Ratio GNSS Antenna Anti-Multipath Interference | |
CN101083358A (en) | Design of three-frequency dual-circle polarization GPS microstrip patch antenna | |
CN103151606A (en) | Nested type Koch fractal Beidou dual-frequency micro-strip antenna | |
CN102324620B (en) | Double-frequency dual-polarized antenna capable of working at GPS (Global Position System) and TD-SCDMA (Time Division-Synchronization Code Division Multiple Access) | |
CN103414024B (en) | For the Big Dipper, the three frequency satellite navigation aerials of GPS, GLONASS | |
CN103700946B (en) | Be with the parasitic triangular multi-arm antenna across arm slot-coupled | |
CN106785394B (en) | Zero phase center satellite navigation antenna with wide frequency band and wide wave beam | |
CN111342225A (en) | Miniaturized three-frequency circuit loading helical antenna | |
CN114883818A (en) | Low-coupling dual-frequency dual-radiation directional pattern antenna | |
CN104466382B (en) | Stacked microstirp antenna based on nested recursion rotational symmetry CSRR distribution array | |
CN110176663B (en) | Circularly polarized microstrip patch antenna | |
CN101102012B (en) | Multi-layer three-dimension suspending unidirectional broadband circle polarized millimeter wave plane gap antenna | |
CN111585014A (en) | A Novel Millimeter-Wave Low Profile Planar Differential Double Helix Antenna | |
CN202308284U (en) | Dual-polarization multi-system compatible type antenna | |
CN115332807A (en) | A dual frequency circularly polarized antenna | |
CN106374207B (en) | B1/L1 Broadband Satellite Antenna Based on T-Shaped Balance Loading with L-slot | |
CN111628286B (en) | Dual-frequency dual-circularly polarized antenna | |
CN206225562U (en) | A Broadband Low Axial Ratio GNSS Antenna Anti-Multipath Interference | |
CN202150551U (en) | Double-frequency dual-polarized antenna which can work in Beidou satellite navigation system and mobile 3G network |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20130724 Termination date: 20190115 |
|
CF01 | Termination of patent right due to non-payment of annual fee |